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Abstract 11 

The effect of the addition of materials on the leaching pattern of As and metals (Cu, Zn, 12 

Ni, Pb and Cd) in two contaminated soils was investigated. The examined materials 13 

included bentonites, silicates and industrial wastes, such as sugar foam, fly ashes and a 14 

material originated from the zeolitization of fly ash. Soil + material mixtures were 15 

prepared at 10% doses. Changes in the acid neutralization capacity, crystalline phases 16 

and contaminant leaching over a wide range of pHs were examined by using pHstat 17 

leaching tests. Sugar foam, the zeolitic material and MX-80 bentonite produced the 18 

greatest decrease in the leaching of pollutants due to an increase in the pH and/or the 19 

sorption capacity in the resulting mixture. This finding suggests that soil remediation 20 

may be a feasible option for the reuse of non-hazardous wastes. 21 

 22 

 Keywords: metal-contaminated soils, immobilization, sugar foam, fly ashes, bentonites, 23 
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1. Introduction 25 

Chemical immobilization through the use of soil amendments is considered to be a 26 

valuable approach for the remediation of contaminated soils because it may reduce the 27 

mobility of metals (Querol et al., 2006; Malandrino et al., 2011) and may eventually 28 

allow for the recovery of the contaminated soil for agricultural or industrial use. Two 29 

mechanisms are responsible for the efficiency of this remediation action: 1) the increase 30 

in the metal sorption of the resulting soil + material mixture and 2) the dilution of the 31 

contaminant concentration when large material doses are used. Another indirect benefit 32 

from this remediation strategy is that it may allow the reuse of non-hazardous wastes 33 

generated by industrial processes.  34 

After the candidate materials have been fully characterized at the laboratory level, the 35 

materials must be tested in the soil + material mixtures before being used at the field 36 

level. Soils contaminated by heavy metals and metalloids, aside from the modification 37 

of the content of certain soil phases in the resulting mixtures (e.g., clay mineral or 38 

organic matter), may lead to a significant variation in the sorption properties of the soil 39 

(Herwijnen et al., 2007). The modification of the soil pH is considered to be a key factor 40 

in reducing metal mobility (Dijkstra et al., 2004). This fact suggests examining the acid 41 

neutralization capacity of the mixtures and obtaining the leaching curves of the 42 

contaminants in a pH range of environmental interest as a better approach to assess the 43 

environmental impact. This approach is better than a simple analysis of the total 44 

concentration because it is also useful to develop end points for the remediation of 45 

contaminated soils (Kosson et al., 2002). 46 

Here, we investigated soil and material mixtures created from the samples characterized 47 

in Part I of this work. Two contaminated soils of contrasting characteristics and 48 



materials, including sugar foam, silicates, bentonites, fly ashes and a zeolitic material 49 

derived from a zeolitization of the fly ashes (González-Núñez et al., 2011), were 50 

studied. The acid neutralization capacity of the mixtures was compared with that of the 51 

individual samples, and a pHstat leaching test was applied to obtain the leaching curves 52 

of major (Ca, Mg, Fe, Mn and Al) and trace (Cd, Zn, Ni, Cu, Pb and As) elements as 53 

well as the dissolved organic carbon (DOC). A structural characterization of the 54 

samples was performed to examine the appearance of new solid phases in the mixtures 55 

and to evaluate which phases were removed after the pHstat leaching test.   56 

 57 

2. Materials and methods 58 

2.1. Samples 59 

Two contaminated soils from the south of Spain and seven materials were used in this 60 

study. The contaminated soils were HUE soil, which is a mineral soil, and a soil from 61 

Aljaraque (Huelva) (ALJ), which has been affected by mining and industrial activities. 62 

The materials tested were wastes and silicates: sugar foam (SF), wollastonite (Wolla), 63 

FEBEX, MX-80 and Zamora (ZamBent) bentonites, a waste material produced by the 64 

zeolitization of fly ash (Zeo) and fly ashes (FA).  65 

All of the samples were air-dried, sieved through 2-mm mesh and homogenized in a 66 

roller table before the experiments and the analyses. A detailed description of the 67 

samples has been provided in González-Núñez et al. 2011. 68 

2.2. Soil+material mixtures 69 

The mixtures of soil and material were prepared at 10% doses (90 g soil/10 g material). 70 

The soil samples (270 g) were placed into plastic containers and mixed with 30 g of 71 



material. For the HUE soil, the materials tested were MX-80, FEBEX, Wolla, ZamBent, 72 

SF and Zeo. For the ALJ soil, the materials tested were MX-80, Wolla, FA, Zeo and SF. 73 

To simulate the field conditions in the short term, the mixtures were submitted to three 74 

drying-wetting cycles, which consisted of rewetting the mixtures at field capacity, 75 

maintaining them in closed vessels at 40 ºC for 24 h and then drying them in open 76 

vessels at 40ºC for 48 h. These mixtures were rotated end-over-end for 24 h to ensure 77 

homogeneity before taking subsamples for the X-ray diffraction (XRD) structural 78 

analyses and leaching experiments. A description of the XRD analyses is given in the 79 

Supplementary material. 80 

 81 

2.3. pHstat leaching test 82 

The pHstat test is based on the CEN/TS 14429 test (CEN/TS, 2006) and examines metal 83 

release as a function of pH. From the information provided by the pH titration test 84 

(González-Núñez et al., 2011), the amount of HNO3 or NaOH required to obtain pH 85 

values between 2 and 12 in the final suspension was calculated for a minimum of 7 86 

extracts (with two replicates for each extract). A suitable amount of acid or base was 87 

added to 6 g of sample suspended in a given volume of deionized water to give a liquid–88 

solid ratio of 10 mL/g. Soil and soil + material mixtures were end-over-end extracted 89 

for seven days, which is the contact time proposed for the characterization of samples 90 

with a particle size of less than 2mm (Kosson et al., 2002). Following the liquid phase 91 

separation by centrifugation and filtration (0.45-μm), the final pH of the leachates was 92 

measured. The DOC and major and trace element contents were determined in the 93 

supernatants as described in the Supplementary material. 94 

 95 



 96 

3. Results and discussion 97 

3.1. Neutralization capacity of the mixtures 98 

Fig. 1 shows the changes in pH after the addition of acid (positive scale) or base 99 

(negative scale) for all of the mixtures and the amount of acid required to decrease the 100 

pH of the soil + material mixture to 4 (acid neutralization capacity, ANC; meq/kg). 101 

Bentonites and the fly ash (Fig. 1a) did not improve the ANC of the soil satisfactorily. 102 

The ANCs of the mixtures with MX-80, FEBEX and Zamora bentonites with the HUE 103 

soil were lower than that of the initial soil, which had a neutral initial pH (6.7) in these 104 

experimental conditions. The ANC of the ALJ SOIL was extremely low (in the negative 105 

scale because the initial soil pH was 2.4). MX-80 and the fly ashes slightly improved 106 

the ANC in the resulting mixtures, although it was still in the negative scale (Fig. 1c). 107 

This result is consistent with the individual ANCs of the bentonites (González-Núñez et 108 

al., 2011), which were lower ANC values (within the 100 - 300 meq/kg) with respect to 109 

the other materials (Paschke et al., 1999). Conversely, the mixtures with zeolitic 110 

material, wollastonite silicate and sugar foam had higher ANCs than those of the soils 111 

(Figs. 1b and 1d). This finding is consistent with the behaviours of the individual 112 

materials with respect to their ANCs (González-Núñez et al., 2011). When the zeolitic 113 

material, the wollastonite silicate and sugar foam are used at an economical feasible 114 

dose, such as 10%, they are able to increase the soil pH in the resulting mixtures, which 115 

leads to lower trace element leaching due to the increase in the soil pH, and increase the 116 

buffer capacity of the soil against potential acid or basic stresses. 117 

 118 

3.2. Application of the pHstat leaching test to soil and soil+material mixtures 119 



3.2.1. Structural characterization of soil+material mixtures 120 

Figs. 2 - 4 show examples of the XRD patterns in soil + material mixtures before and 121 

after leaching. The XRD diagrams of the initial mixtures before leaching (Figs. 2a, 3a 122 

and 4a and Figs. 2e, 3e and 4e) are characterized by the main constituents of the soils, 123 

(quartz in the HUE soil and pyrite in the ALJ soil) along with other minor soil phases, 124 

such as illite, vermiculite, brushite (CaHPO4) and anglesite (PbSO4). The main phases 125 

representing the materials were also observed: calcite (CaCO3) in the mixtures with 126 

sugar foam (Figs. 2a and 2e), montmorillonite in the mixtures with MX-80 (Figs. 3a and 127 

3e) and zeolite (sodium aluminosilicate hydrate) in the mixtures with the zeolitic 128 

material (Figs. 4a and 4e). As could be expected no new crystalline phases were formed 129 

as a consequence of the preparation of the mixtures, and the XRD spectra of the 130 

mixtures were consistent with the pure XRD spectra of the materials at the doses 131 

assayed (González-Núñez et al., 2011). 132 

The examination of the soil + sugar foam mixture residues after leaching (Figs. 2b - d 133 

and 2f - h) revealed that a few soil crystalline phases, especially calcite, vermiculite and 134 

illite, diminished after leaching at extremely acidic pH levels. It is well known that 2:1 135 

phyllosilicates (such as illite or vermiculite) and calcite are rapidly and fully dissolved 136 

under acid conditions (Galan et al., 1999) . Anglesite disminished at basic pH, and 137 

brushite diminished at both extreme pH levels, as observed by the absence of the peaks 138 

and/or the decrease in their intensities. It is well know that brushite at pH> 8 is 139 

transformed to secondary phases, however, at pH acid showed to be quite stable ( 140 

Larsen and Jensen, 1989). Therefore the observed diminishing of the XRD intensity can 141 

be ony explained by an amorphization of the phase. The rest of the phases, including the 142 

pyrite phase in the ALJ soil mixtures, were constantat the pH treatments. Regarding the 143 

soil + MX-80 mixtures (Fig. 3), the crystalline phase of the bentonite (montmorillonite) 144 



was affected by both increases and decreases in the pH, and it disappeared after 145 

leaching. It has been observed that montmorillonites are rapidly and fully dissolved 146 

under acid conditions (Galan et al., 1999 ) and in basic conditions  the  montmorillonite 147 

are dissolved and precipitate as secondary products (Huertas et al., 2009). However, a 148 

small peak could be observed at a basic pH for the HUE mixture. As in the previous 149 

mixtures, brushite diminished at extreme pH levels. With respect to the mixtures with 150 

the zeolitic material, the XRD patterns showed that the sodium aluminum silicate phase 151 

(Zeolite P-1), related to the zeolitic material and brushite, diminished in pH conditions 152 

more basic and more acidic than the initial condition. Brushite and zeolitic are not stable 153 

at basic and acid conditions, respectively (Larsen and Jensen, 1989 and Savage et al., 154 

2007 ) and it is the reason of the observed diminishing of their XRD peaks. However, in 155 

the other extremes conditions such diminishing can be caused by an amorphization of 156 

these phases. 157 

 158 

3.2.2. Extraction of major elements and organic matter 159 

The leaching curves of major elements and DOC provide information on the phases that 160 

may be solubilized after changing the pH of the suspensions. To illustrate this effect, 161 

Fig. 5 plots the extraction curves of Ca, Mg, Al, Fe and Mn in all of mixtures as well as 162 

the DOC quantified in all of the soil extracts (expressed as mg C/L). Table S1 lists 163 

several extraction yields for significant acid and basic pH values. 164 

The leaching of metals from soils may be affected by the DOC content, which includes 165 

soluble organic acids (Cappuyns and Swennen, 2008). The two soils showed a low 166 

DOC concentration (lower than 20 mg C/L) in the pH range tested with a DOC curve 167 

having the common U-shaped pattern, which was consistent with their low organic 168 



carbon content. At pH levels higher than 8, the DOC values were within the 6 - 12 and 8 169 

- 17 mgC/L ranges for the HUE and ALJ soils, respectively. These values are lower 170 

than those reported in the literature for mineral soils (100-1000 mgC/L) (Rigol et al., 171 

2009).  172 

The leaching curves of Ca and Mg were similar for both soils, with increased leaching 173 

when decreasing the pH. The Mg extraction yields were lower than those of Ca, 174 

especially in the HUE soil. This leaching pattern agrees with the observed decrease in 175 

Ca-bearing crystalline phases, such as brushite, vermiculite, montmorillonite and illite, 176 

at acidic pH levels. The steeper increase in Ca and Mg leaching from pH 5 downwards 177 

in the HUE SOIL than in the ALJ soil was consistent with its larger carbonate content. 178 

For the ALJ soil, the Ca concentration in the extract at the more acidic pH level (1.9) 179 

approached the Ca total content with an extraction yield close to 70[UB5]%. The addition 180 

of certain materials, such as wollastonite and sugar foam, modified the Mg and the Ca 181 

leaching curves because these materials had a higher Ca and Mg content than the soil 182 

(González-Núñez et al., 2011) and they were associated with phases that were soluble at 183 

acidic pH levels. However, as indicated by the XRD analyses, these samples were not 184 

quantitatively solubilized at the more acidic pH level because the Ca extraction yields 185 

remained in the 60 - 70% range in the mixtures with wollastonite and sugar foam. 186 

Aluminum solubility, which increased at acidic pH levels and was lower at basic pH 187 

levels, was explained by the presence of amorphous hydroxide and hydroxysilicate 188 

phases (Meima and Comans, 1997). The Al extraction yields were much higher in the 189 

HUE soil than in the ALJ soil. Only the addition of zeolitic material caused a marked 190 

change in the Al leaching curves, thus indicating its partial decomposition at an acidic 191 

pH (with Al extraction yields up to 36% in the HUE_Zeo mixture), as shown in Figs. 192 

4c, 4f and 4g by the XRD analyses. For the other mixtures, including bentonites, the Al 193 



leaching was lower or similar to that of the initial soil, with the exception of the ALJ 194 

_FA mixture. 195 

The pHstat curves for Fe in both soils were similar, with higher extraction yields 196 

obtained at pH levels lower than 4. The extraction yields decreased to almost negligible 197 

values at basic pH, which was characteristic for the solubility of Fe hydroxides, such as 198 

ferrihydrite (Dijkstra et al., 2006). The total concentration of Fe in the ALJ soil was 199 

higher than in the HUE soil because the ALJ soil was affected by contamination with 200 

pyritic minerals (González-Núñez et al., 2011); however, the Fe leaching rates were 201 

lower in the ALJ soil due to the lower solubility of the pyritic phase. The addition of 202 

materials did not modify substantially the pattern of the Fe leaching curves.  203 

Manganese solubility was also highly dependent on pH and similar to that of Fe. Its 204 

behavior was quite similar in all of the samples, with higher extraction yields at an 205 

acidic pH and almost negligible remobilization at a basic pH. The overall Mn solubility 206 

was lower in the ALJ soil than in the HUE soil. The addition of wollastonite, the 207 

material with the highest Mn content (González-Núñez et al., 2011), modified the 208 

leaching curve of Mn in the related mixtures, as observed in the ALJ soil, because the 209 

Mn that originated from the wollastonite was more soluble than that from the soil. 210 

 211 

3.2.3. Extraction of trace elements 212 

Fig. 6 shows the pHstat leaching curves for Cd, Zn, Cu, Pb, As and Ni, and table S1 lists 213 

several extraction yields for given pH values.  214 

The leached concentrations of the trace elements were generally much lower than the 215 

total concentrations and showed strong pH dependence. The leaching of Cd, Zn, Cu and 216 



Ni in the soils increased with decreasing pH, especially in the HUE soil. A much lower 217 

amount of these elements was leached in the neutral and alkaline pH ranges. This 218 

finding was consistent with the fact that the number of negative sites for cation sorption 219 

decrease with pH. Zn, Ni, Cu and Cd extraction yields in the acidic pH levels (3.2) were 220 

high in the HUE soil, especially for the latter element, with values of approximately 221 

70% of total element. The extraction yields were much lower in the ALJ soil (a 222 

maximum of 18% for Cu). For Zn, the reported potential formation of soluble anionic 223 

hydroxyl complexes or the likely associations of Cu with carbonate DOC were not 224 

observed in these mineral soils with such a low organic matter and carbonate content, 225 

thus their leaching rates at a high pH was negligible and only observed in a few cases 226 

(Van der Sloot et al., 1996).  227 

The leaching curves for As and Pb differed from those of the other heavy metals, 228 

especially in the HUE soil, in which the maximum leachability for these elements was 229 

observed at pH values above 12, although with a low extraction yield for Pb (3.9%). 230 

This finding was consistent with the observed instability of the anglesite at the extreme 231 

basic pH levels. In addition to the solubilization of this mineral phase, an additional 232 

explanation for the release of Pb at alkaline pH values is its affinity to soluble organic 233 

compounds (Dijkstra, et al., 2004). The high extraction yield of As at a basic pH in the 234 

HUE soil was related to the anionic character of the As species because arsenate is the 235 

predominant species in oxidized soils, and it showed a high leaching rate at a basic pH 236 

because the surfaces are negatively charged (Cappuyns et al., 2002; Dijkstra, et al., 237 

2004: Rigol et al., 2009). In the ALJ soil, this pattern was much less significant due to 238 

the arsenopyritic nature of the contamination, although the maximum As concentration 239 

in the leachates was also quantified at basic pH. 240 



In the HUE soil, a few materials (MX-80 and FEBEX bentonites, wollastonite and sugar 241 

foam) produced a decrease in the leaching of Cd, Zn, Ni and Cu at acidic pH values in 242 

addition to the dilution effect, which was confirmed by a small decrease in the 243 

extraction yields, especially for Cd and Ni. These results were consistent with the 244 

sorption properties of these materials (González-Núñez et al., 2011). Although the 245 

zeolitic material exhibited a promising sorption capacity, it was partially dissolved at an 246 

acidic pH and was only partially efficient for Cd and Zn. In the ALJ soil that was 247 

affected by a particulate, pyritic source of contamination, the materials were much less 248 

efficient, and only decreases in the leaching aside from the dilution effect were observed 249 

for Cu and Zn (except for MX-80). Regarding As and Pb, practically all of the materials 250 

succeeded in decreasing their leaching at basic pH levels in the HUE soil. At acidic pH 251 

levels, the leaching rates were almost negligible, and the beneficial effect of the 252 

materials was difficult to be observed. 253 

In addition to comparing and analyzing changes in the pattern of the leaching curves of 254 

the trace elements across the entire pH range, a detailed examination of the initial 255 

situation of the resulting mixtures without acid or base additions is required to assess 256 

the best materials to be used at field level. Table 1 shows the lixiviation data for trace 257 

elements at the initial situation of the soils and their mixtures. For HUE SOIL, which 258 

already had a neutral pH, the addition of materials did not lead to a significant change in 259 

the pH with the exception of the sugar foam, which increased the pH more than one unit 260 

at the 10% dose. This observation was fully consistent with the ANC previously 261 

calculated. Therefore, changes in leaching should be explained on the basis of the 262 

dilution effect and changes in the sorption capacity in the mixture, with the pH playing 263 

an additional role only in the mixture with sugar foam. From the results in Table 1, 264 

sugar foam, zeolitic materials and MX-80 produced the highest decreases in the trace 265 



element concentration in the extracts, as observed for Zn, Ni, Cu and Cd. This decrease 266 

was due to the increase in pH and the sorption capacity, respectively, because the 267 

zeolitic material was stable at this neutral pH. Therefore, for contaminated soils having 268 

a slightly acidic pH, a mixture of sugar foam with the zeolitic material (or a bentonite 269 

like MX-80) could be an efficient remediation strategy.  270 

The effect on the pH by changes in the trace element concentrations in the extracts was 271 

more significant in the ALJ soil because the initial pH of many mixtures was still very 272 

acidic, The exceptions were the mixtures with wollastonite and sugar foam, which 273 

raised the pH to basic or neutral values, as predicted by the ANC sequence. The 274 

potential beneficial effect of MX-80 could not be observed due to the low pH of its 275 

mixture. Therefore, the decrease in trace element leaching was basically due to the 276 

increase in pH. Sugar foam and wollastonite led to the highest decreases in the amount 277 

of metal leached, which was more than two orders of magnitude for a few metals (e.g., 278 

Cu and Zn). 279 

4. Conclusions 280 

A remediation strategy based on the addition of materials to contaminated soils is a 281 

feasible approach because these materials could increase the metal retention and 282 

decrease metal leaching at economically acceptable doses. The most promising 283 

materials tested here in the remediation of soils of contrasting properties are sugar foam 284 

and wollastonite silicate, which increased the soil pH, and the zeolitic material, which 285 

increased the sorption capacity. When considering a remediation strategy that may make 286 

use of mixtures of materials, combinations of sugar foam with zeolitic materials and 287 

with bentonites (such as MX-80) should be considered. The decrease in the metal 288 

leaching would allow for the reuse of the soils at least for industrial purposes and/or 289 



their reclassification in waste categories with a lower management cost. The use of 290 

sugar foam and zeolitic material, alone or combined, would also permit the valorization 291 

of waste materials. 292 

Moreover, the combined use of X-ray diffraction and analytical techniques has allowed 293 

not only controlling the leaching of element but also to determine the mechanism 294 

responsible of such leaching, such as dissolution of the phases or transformation in 295 

secondary phases or amorphization. 296 
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