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Abstract

In this paper we address duopolistic competition when the firms have to

assess the results of the interaction at different scenarios. Specifically we

consider the case in which the scenarios are identified with several states of

nature and, therefore, the firms face uncertainty on their results. The proba-

bility of occurrence of the scenarios is unknown by the firms and they make

their output decision before uncertainty is resolved. Within this framework,

we analyze competition between firms when these firms exhibit extreme and

neutral attitudes towards uncertainty with respect to the final profits. For

the variety of cases that can occur, we characterize the sets of equilibria, and

provide procedures to determine them. The analysis proposed can also be ap-

plied to study situations in a deterministic setting with simultaneous multiple

scenarios, and to the analysis of multiple criteria duopolistic competition.
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1 Introduction

In this paper, we investigate a model of duopolistic competition where firms face

different market demands at several possible scenarios or states of nature. Only
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†Dpto. de Economı́a e Historia Económica, Universidad de Sevilla, Spain. mcaraba@us.es.
‡Dpto. de Economı́a Aplicada III and IMUS. Universidad de Sevilla, Spain. amarmol@us.es.

1



one will be realized as the true state, and no information is available about the

probability distributions of the occurrence of these states. Specifically, we analyze

the extension of a Cournot duopoly (Cournot, 1838) in which two firms producing

homogeneous products have to deal with uncertain demand and may show different

attitudes towards uncertainty.

Approaches based on subjective expected utility (Savage, 1954) could primarily

be used to address the identification of equilibria in a multiple scenario context.

When firms seek to maximize their expected profits with subjective probabilities

distributions, equilibrium outcomes are strongly determined by the vectors of prob-

abilities. However, in the strategic situations studied in this paper, uncertainty on

the probability distributions and attitudes of the firms with respect to risk are rele-

vant issues which cannot be easily accommodated in the theory of expected utility.

Other analysis of duopoly games where firms act under uncertainty can be found

in the literature. One line of research investigates incentives for duopolists to share

their private information about market uncertainty with its competitors. For in-

stance, Novshek and Sonnenschein (1982), Vives (1984), Li (1985), Gal-Or (1986),

among others, analyzed how market uncertainty with either unknown market de-

mand or unknown constant marginal cost affects firm’s behavior. More recently,

Wu et al. (2008) address a Cournot model with capacity constraints, in which the

uncertainty is about uncertain demand conditions or production costs.

Related work on oligopolistic competition under uncertainty have focused on

the conditions for the existence of equilibria and their properties, in an effort to

provide a general and tractable framework for the analysis of quantity competition

under demand uncertainty. In this line of research, Eichberger and Kelsey (2002),

analyzed the effect of ambiguity in symmetric n-player games with aggregate exter-

nalities. The application of their results to a Cournot oligopoly showed that the

total output in these models is lower when there is uncertainty. Lagerlöf (2007)

obtains the conditions on distribution functions of the stochastic demand intercept

that guarantee the existence of a unique equilibrium in a linear framework, while

Einy et al. (2010) show some examples in which a (Bayesian) Cournot equilibrium

in pure strategies may not exist when firms have incomplete information about

demand and costs. Moreover, they provide sufficient conditions for existence and

uniqueness of Cournot equilibria in a certain class of industries. De Frutos and

Fabra (2011) and Lepore (2012) consider two-stage games to analyze competition

between firms in which firms make capacity investments under demand uncertainty

prior to competing in prices.
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The majority of these papers have assumed that firms are risk neutral. Never-

theless, evidence shows that in the presence of uncertainty, firms often exhibit dif-

ferent risk attitudes. The incorporation of these rational, but uncertain, beliefs will

certainly influence the outcomes of the decision processes. This issue has been anal-

ysed by Asplund (2002), who studied competition in prices and quantities between

risk-averse firms. Fontini (2005) analyzed a Cournot oligopoly under uncertainty

using the Choquet expected utility model (Schmeilder, 1989) with optimistic and

pessimistic firms, and showed that when uncertainty is low, optimistic firms make

higher profits than pessimistic firms, and when uncertainty is high, only optimistic

firms participate in the market producing too much and facing losses. Eichberger et

al. (2009) also addressed ambiguity in strategic games. In their model, uncertainty

is defined over the other players’ actions. Formally, individuals partially distrust

their own beliefs about other players’ behavior and place themselves in the best and

worst cases depending on their relative optimism and pessimism. In a recent paper,

Chronopoulos et al. (2014) analyze the impact of risk aversion and uncertainty on

the optimal investment timing decision in a duopolistic competition. They consider

the case where the two competing firms exhibit the same level of risk aversion.

In the above mentioned papers, uncertainty is analysed by means of a random

variable in the corresponding parameter of the model or by considering a probability

distribution on the state of nature, and expected utility theory is applied then in

order to make decisions. By contrast, we develop our study in a context where

the probabilities of occurrence of these states cannot be ascertained by firms. Our

approach is essentially based on the idea that uncertainty cannot be modeled globally

for every action of one of the firms. Due to the strategic interdependence of the

environment in which firms make their decisions, a firm’s best strategy not only

depends on the strategy adopted by the other firm, but also on the performance of

the profits in the scenarios.

In our setting, the firms face a different market demand in each of the two

scenarios. The profits of the firms depend on the scenario that will occur, and the

firms’ attitudes to uncertainty are defined with respect to the profits in each possible

scenario. In our model firms have to make their output decision before uncertainty

is resolved, and, contrarily to the subjective expected utility approach, it is assumed

that no information exists on the probability of occurrence of the different states.

In order to describe the reaction functions of the firms in the multiple scenario

framework, we need to take into account the different attitudes towards uncertainty

that they may exhibit. In the situations we investigate, such attitudes are explained
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by the importance that each firm gives to the realization of profits: a firm is con-

servative if it gives relatively greater importance to the scenario with low profits,

the reverse is true for optimistic firms. More precisely, we investigate the situations

in which these attitudes represent the extreme cases, i.e., conservative firms which

only take into account the scenario that implies the lowest profit, and optimistic

firms which only consider the scenario with the highest profit. We also consider the

case of neutral firms which have a similar concern about both scenarios.

It is worth remarking that subjective expected utility approaches are limited to

the cases in which all the firms are expected profit maximizers. Our model gener-

alizes the representation of their preferences by allowing also the possibilities that

firms are minimum (maximum) profit maximizers. Our representation of conserva-

tive preferences can be considered a special case of Gilboa and Schmeidler’s (1989)

maxmin expected utility model in which all the probability distributions are possi-

ble, whereas the neutral attitude of the firms is identified with the maximization of

expected utility when all the scenarios are equally probable.

In this paper we present an analysis of the different competitive situations that

can arise. That is, we study the cases in which both firms have the same attitude

to uncertainty, and the cases in which this attitude is different. In Caraballo et al.

(2015), we analyzed duopolistic competitions under uncertainty in which demand

functions are linear and the firms exhibit identical extreme attitudes towards un-

certainty. Now, we extend and complete the investigation of strategic competition

between firms in a multiple scenario framework.

The main contributions in this new paper are: Firstly, we extend the analysis to

strategic competition in which the firms deal with general demand functions. This

new context is more complex, since some of the desirable and well-known properties

of linear functions are lost. We investigate to what extent the results for linear

demands are also valid in the general case. Secondly, we address the cases in which

the firms do not show the same attitude towards uncertainty. The analysis of these

models becomes more complicated as a consequence of the lack of symmetry, and this

is the reason of the scarcity of results in the existing literature. However, our results

on duopoly models under uncertainty with asymmetric firms provides more accurate

insights into Cournot competition. Overall, we present an unified framework for the

exhaustive analysis of the different cases.

Our first result is the identification of the reaction functions for conservative,

optimistic, and neutral firms in terms of the reaction functions at each scenario. On

the basis of these reaction functions we characterize the equilibria for several specific
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situations: both firms are conservative, both firms are optimistic, both firms are

neutral, and the mixing between the three types of previous firms. We state that

for the cases in which firms show the same attitude to uncertainty, equilibria always

exist, and general procedures to determine them are provided. In the cases in which

the attitude to uncertainty of the firms does not coincide, the existence of equilibria

cannot always be assured. Nevertheless, we provide sufficient conditions for the

existence of equilibria, together with results that permit the identification of the set

of equilibria.

The methodological framework considered in this paper can also be applied to

other decisional contexts in which the utilities of the firms are represented by vector-

valued functions. These contexts include Cournot games in which the profits of the

firms are evaluated simultaneously in different scenarios. For instance, these scenar-

ios can be several geographical regions, or different types of consumers. Another kind

of problem in which the analysis proposed can be helpful is multi-criteria Cournot

games. In these models, firms regard several conflicting criteria at the same time.

For example, social responsible firms take into account not only their profits, but

also a share of consumer surplus, and this additional goal may heavily influence the

equilibrium outcomes. Related work about multi-criteria strategic models is Mármol

et al. (2016) and Monroy et al. (2016).

The rest of the paper is organized as follows. In Section 2 we present the model.

The reaction functions for conservative, optimistic and neutral firms are established

in Section 3. In Section 4 the notion of equilibrium with attitude to uncertainty is

stated. Sections 5 and 6 are devoted to the analysis of the equilibria when firms

have identical attitude to uncertainty and different attitude to uncertainty, respec-

tively. Section 7 contains the conclusions of this research. In order to simplify the

presentation, proofs are included in an Appendix.

2 Two-scenario Cournot games

We consider a duopoly situation in which two firms producing homogeneous com-

modities compete in quantities and face uncertain market demand since two different

future scenarios are possible. In scenario k, k = 1, 2, the inverse demand function

is given by p = Pk(Q), where Q is the total quantity produced in the market. As

it is standard in the literature (see for instance, Kreps and Scheinkman(1983)),

we assume that each function Pk(Q) is twice-continuously differentiable, strictly
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decreasing, concave and non-negative on some bounded interval (0, Qk), and that

Pk(Q) = 0 for Q ≥ Qk.

In order to avoid trivial cases, we assume that the profit function of one of the

scenarios does not dominate the other. For the sake of simplicity in the presentation,

we also assume that the demand functions only intersect once. Thus, we consider

that the reservation price in the first scenario, P1(0), is higher than that of the

second, P2(0), and the perfect competition quantity at scenario 1 is smaller than

the perfect competition quantity at scenario 2. By dropping this assumption, we

could face a situation in which the demand functions intersect twice. An extended

analysis based on the same ideas as those presented here could be performed for

these cases.

Firms i = 1, 2 are allowed to select any non-negative quantity qi. Since the

demand is bounded, the strategy set of each firm is given by a bounded convex set

Ai ⊆ [0,∞), i = 1, 2.

For simplicity, it is assumed that firms have no fixed costs and their marginal

costs are equal to zero. In addition, we consider that the reservation price and

market size are finite. Thus, for i = 1, 2, the profit for firm i at scenario k is:

Πi
k(q1, q2) = qiPk(q1 + q2), and the two-scenario Cournot game is represented as

G = {(Ai,Πi
1,Π

i
2)i=1,2}.

Note that in each scenario, the profit function of each firm is strictly concave

in its own action. As a consequence, given the action of one of the firms in the

corresponding interval (0, Qk), the profit of the other attains its maximum where

its derivative is null. For qj ∈ (0, Qk), the reaction function of firm i to the action

of firm j at scenario k, denoted by rik(qj), is implicitly defined by the following

equation.

Pk(q1 + q2) + qiP ′k(q1 + q2) = 0.

For qj ≥ Qk, the reaction function is defined as rik(qj) = 0. Under our initial

assumptions on the inverse demand functions, the reaction functions at each sce-

nario, rik, are non-increasing, strictly decreasing over the range where it is strictly

positive, and continuously differentiable (see, for instance, Kreps and Scheikman,

1983). Moreover, these assumptions guarantee the existence of a unique Cournot

equilibrium at each scenario.

In our analysis the different attitudes towards uncertainty are modeled by means

of a value function which represents the firm’s evaluation of the profits attained in

both scenarios when the different strategies are adopted. We will investigate the
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cases in which firms are conservative, optimistic and neutral. A conservative firm

follows the extreme maxmin utility decision rule that prescribes concentrating on

the state with the lower profit. An optimistic firm evaluates its profit assuming the

occurrence of the higher-profit state. A neutral firm considers the average between

both extreme evaluations.

The corresponding value functions for the different types of firms are respectively:

Πi
c(q

1, q2) = Min{Πi
1(q1, q2),Πi

2(q1, q2)},

Πi
op(q

1, q2) = Max{Πi
1(q1, q2),Πi

2(q1, q2)},

Πi
n(q1, q2) =

1

2
(Πi

c(q
1, q2) + Πi

op(q
1, q2)).

3 Reaction functions with attitudes to uncertainty

Under our initial assumptions on the demand functions, for positive values of P and

Q, the inverse demand functions of the scenarios intersect at only one point. Denote

by Q̄ the point such that P1(Q̄) = P2(Q̄), and note that for values of Q below Q̄,

the price in scenario 2 is lower than the price in scenario 1.

Thus, if firm i is conservative, then the value function is:

Πi
c(q

1, q2) =

{
Πi

2(q1, q2) if q1 + q2 ≤ Q̄

Πi
1(q1, q2) if q1 + q2 ≥ Q̄ .

If firm i is optimistic, then the value function is:

Πi
op(q

1, q2) =

{
Πi

1(q1, q2) if q1 + q2 ≤ Q̄

Πi
2(q1, q2) if q1 + q2 ≥ Q̄ .

If firm i is neutral, then the value function coincides with the average utility. Thus,

it can be written as:

Πi
n(q1, q2) =

1

2
(Πi

1(q1, q2) + Πi
2(q1, q2)).

Both the value function of the conservative firm and the value function of the op-

timistic firm are continuous in the strategy space of the firms. However, note that

they are not differentiable at the points in which q1 + q2 = Q̄.

Denote by L the line representing a total quantity equal to Q̄ ,

L = {(q1, q2) ∈ IR2 | q1 + q2 = Q̄}.
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This line plays a central role in the analysis presented in this paper, since it partitions

the space of strategies of the firms into two regions, L, L̄, in which the profit function

of one or the other scenario applies.

The relative position of this line and the curves representing the reaction function

of the firm at each scenario determines a piece-wise reaction function for the pes-

simistic firm, and also a piecewise reaction function for the optimistic firm. The

derivatives of the reaction functions in each scenario verify (rik)′(qj) ≥ −1, for

k = 1, 2, i = 1, 2, with strict inequality for qj such that rik(qj) > 0 (see Kreps

and Scheinkman, 1983, Lemma 1, p. 328). The slope of the line L is equal to −1.

As a consequence, the line intersects each one of the reaction functions at most at

one point.

In what follows, we assume that the inverse demand functions in the scenarios

are such that ri1(qj) ≤ ri2(qj) for all qj ∈ Aj, i, j = 1, 2, i 6= j. This assumption

is not very restrictive. In fact, it is adopted in the general treatment proposed by

Kreps and Scheinkman (1983), and it holds for a wide range of demand functions,

including linear and quadratic demand functions, among others.

The following result describes the reaction function of a conservative firm, de-

noted by Ri
c.

Lemma 3.1. If firm i is conservative, then the reaction function, Ri
c, is given by:

Ri
c(q

j) =


ri1(qj) for Q̄− qj ≤ ri1(qj) ≤ ri2(qj)

Q̄− qj for ri1(qj) ≤ Q̄− qj ≤ ri2(qj)

ri2(qj) for ri1(qj) ≤ ri2(qj) ≤ Q̄− qj

That is to say, the reaction function for a conservative firm i is a piecewise

continuous function, which coincides with the reaction function corresponding to

scenario 1 for those strategies of firm j such that the total quantity offered when

firm i reacts with his best response at scenario 1 is greater than Q̄. It coincides with

the reaction function corresponding to scenario 2 for those strategies of firm j such

that the total quantity offered when firm i reacts with his best response at scenario

2 is below Q̄. Otherwise, the best response of firm i makes the total quantity offered

equal to Q̄. It is worth remarking that, since the reaction function at each scenario

intersects L at most at one point, then the piecewise conservative reaction function

is formed by at most three pieces.

Figure 1 is an illustration of the reaction function for a conservative firm.
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Figure 1: The reaction function of a conservative firm.

The reaction function for an optimistic firm i is denoted by Ri
op. The following

lemma establishes that if the total quantity offered with the pair of strategies ob-

tained with qj and the reaction of firm i at scenario 1 is above Q̄, then the reaction

of an optimistic firm coincides with the reaction function at scenario 2. Similarly,

if the total quantity offered with the pair of strategies obtained with qj and the

reaction of firm i at scenario 2 is below Q̄, then the reaction of an optimistic firm

coincides with the reaction function in scenario 1.

Lemma 3.2. If firm i is optimistic, then

a) If Q̄− qj ≤ ri1(qj) ≤ ri2(qj), then Ri
op(q

j) = ri2(qj).

b) If Q̄− qj ≥ ri2(qj) ≥ ri1(qj), then Ri
op(q

j) = ri1(qj).

The reaction of firm i for values of qj such that ri1(qj) ≤ Q̄ − qj ≤ ri2(qj), still

remains to be established. For these values of qj, the best response of firm i is

either ri1(qj) or ri2(qj). If the best response in the first scenario, ri1(qj), is chosen,

then under the first scenario the profit would be ri1(qj)P1(ri1(qj) + qj). If ri2(qj) is

selected, then under the second scenario the profit would be ri2(qj)P2(ri2(qj) + qj).

An optimistic firm will select the best response that yields the highest profit.

The values of qj for which the profit obtained in scenario 1 with the best response

in scenario 1 coincides with the profit in scenario 2 with the best response in scenario
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2 are the values for which this firm switches from one of the best responses to the

other. These values are the solutions to the equation:

ri1(qj)P1(ri1(qj) + qj) = ri2(qj)P2(ri2(qj) + qj) (3.1)

That is, to say

Πi
1(ri1(qj), qj) = Πi

2(ri2(qj), qj).

Let S be the set of positive solutions of this equation, S = {st}t=1,...t̄, and set

s0 = 0, and st̄+1 = +∞.

Note that Πi
1(ri1(qj), qj), Πi

2(ri2(qj), qj) are continuous as functions of qj, and that

the solutions of this equation are the points at which the reaction function, Ri
op,

switches from the reaction function in one scenario to the reaction function in the

other scenario. Thus, these are the only points in which Ri
op can be discontinuous.

The description of the reaction function of an optimistic firm i, Ri
op, depends on

which of the best responses of the scenarios applies at qj = 0. In both scenarios,

the best response of firm i, when the strategy of firm j is qj = 0, is the monopoly

quantity qMk
, and therefore, Πi

k(rik(0), 0) = Πi
k(qMk

, 0). If Πi
1(qM1 , 0) > Πi

2(qM2 , 0)

then Ri
op(0) = ri1(0). Analogously, if Πi

1(qM1 , 0) < Πi
2(qM2 , 0) then Ri

op(0) = ri2(0).

Note that Πi
k(qMk

, 0) represents the monopoly profit at scenario k, which is the

maximum profit attainable under that specific scenario.

Thus, in order to describe the reaction function, we consider two cases, as estab-

lished in the following lemma.

Lemma 3.3. If firm i is optimistic, the following hold:

a) If Πi
1(qM1 , 0) > Πi

2(qM2 , 0), then

Ri
op(q

j) =

 ri1(qj) if st ≤ qj < st+1, with an even t

ri2(qj) if st ≤ qj < st+1, with an odd t.

b) If Πi
1(qM1 , 0) < Πi

2(qM2 , 0)

Ri
op(q

j) =

 ri1(qj) if st ≤ qj < st+1, with an odd t

ri2(qj) if st ≤ qj < st+1, with an even t.

Note that if Q̄ ≥ ri2(0) ≥ ri1(0), then it follows from Lemma 3.2 that Ri
op(0) =

ri1(0), and case a) of the lemma holds. If ri1(0) ≤ Q̄ ≤ ri2(0) then, either cases a) or

b) can occur.
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Figure 2: The reaction function of an optimistic firm.

Figure 2 illustrates the reaction function of an optimistic firm. Note that the

result does not guarantee the uniqueness of the solution of Equation 3.1 in each

interval.

For the case of a neutral firm, the value function is

Πi
n(q1, q2) =

1

2
(Πi

1(q1, q2) + Πi
2(q1, q2)).

It follows from our initial assumptions that the value function for the neutral

firm is differentiable and strictly concave in its own action, and the corresponding

reaction function is strictly decreasing and continuously differentiable. Moreover,

the reaction function of a neutral firm is always in the region bounded by the reaction

function in each scenario as stated formally in the next result.

Lemma 3.4. If firm i is neutral, then the reaction function, Ri
n, is non-increasing,

strictly decreasing and continuously differentiable in some bounded interval. More-

over, it verifies ri1(qj) ≤ Ri
n(qj) ≤ ri2(qj) for all qj ∈ Aj, i, j = 1, 2, i 6= j.

Figure 3 is an illustration of the reaction function of a neutral firm.

4 Equilibria with attitudes to uncertainty

In our analysis the different attitudes towards uncertainty are modeled by means

of a value function which represents the firm’s evaluation of the profits attained in
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Figure 3: The reaction function of a neutral firm.

both scenarios when the different strategies are adopted.

In general, for i = 1, 2, the attitude towards uncertainty of firm i is represented

by a function ui : IR2 → IR, fulfilling:

a) ui is non-decreasing in each of its arguments.

b) ui(y1, y2) > ui(x1, x2) whenever y1 > x1 and y2 > x2.

For (q1, q2) ∈ A1 × A2, denote Πi
ui(q1, q2) = ui(Πi

1(q1, q2),Πi
2(q1, q2)).

The notion of Nash equilibrium (Nash, 1951) when firms exhibit different atti-

tudes to uncertainty can now be stated.

Definition 4.1. (q∗1, q∗2) is an equilibrium for the two-scenario Cournot game

G = {(Ai,Πi
1,Π

i
2)i=1,2} in which the attitude towards uncertainty of the firms is

represented by u = (u1, u2), if for each q1 ∈ A1, q1 6= q∗1, Π1
u1(q1, q∗2) ≤ Π1

u1(q∗1, q∗2)

holds, and for each q2 ∈ A2, q2 6= q∗2, Π2
u2(q∗1, q2) ≤ Π2

u2(q∗1, q∗2) holds.

Denote by Eu(G) the set of these equilibria.

Equivalently, Eu(G) are the equilibria of the standard normal-form game Gu =

{(Ai,Πi
ui)i=1,2}.

Recall that it is assumed that the inverse demand functions at the scenarios are

such that ri1(qj) ≤ ri2(qj) for all qj ∈ Aj, i, j = 1, 2, i 6= j. Denote by T the following

region:

T = {(q1, q2) | r1
1(q2) ≤ q1 ≤ r1

2(q2), r2
1(q1) ≤ q2 ≤ r2

2(q1)}.
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Lemma 4.2. If, for i = 1, 2, the functions ui fulfills a) and b), then the set of

equilibria of the two-scenario Cournot game G with respect to u = (u1, u2), Eu(G),

is contained in T .

5 Equilibria for symmetric firms

In this section we analyse the case of symmetric firms, that is, two-scenario Cournot

games in which the firms exhibit identical attitude towards uncertainty.

5.1 Conservative equilibria

In order to model a duopoly in which both firms are conservative, the value function

of the firms is represented by the worst profit obtained in the scenarios. That is, for

i = 1, 2, ui ≡ c, with c(x1, x2) = Min{x1, x2}.
Therefore, a pair of strategies of the firms is a conservative equilibrium for the

two-scenario Cournot game, G, if it is an equilibrium when the attitude towards

uncertainty of both firms is represented by the function c. With conservative equi-

libria, the firms produce quantities such that no individual deviation produces an

improvement in the minimum profit. We denote by Ec(G) the set of conservative

equilibria of game G.

Equivalently, a conservative equilibrium for the two-scenario Cournot game G is

an equilibrium for the standard normal-form game, Gc = {(Ai,Πi
c)i=1,2}.

As a consequence of the concavity in its own action of the conservative value

function, the existence of conservative equilibria is assured under our assumptions.

However, since strict concavity fails, multiple equilibria may exist. The following

results identify these equilibria for the general case.

For k = 1, 2, denote by (c∗k, c
∗
k) the Cournot equilibrium in scenario k. The

existence and uniqueness of the Cournot equilibrium in each scenario is guaranteed

under the initial assumptions. Note that 2c∗1 ≤ Q̄ ≤ 2c∗2 if and only if T ∩ L 6= {∅}.
The following result identifies the conservative equilibria.

Theorem 5.1. The set of conservative equilibria for the two-scenario Cournot game

G = {(Ai,Πi
1,Π

i
2)i=1,2} is given by

a) If Q̄ ≤ 2c∗1, then Ec(G) = {(c∗1, c∗1)}

b) If 2c∗1 < Q̄ < 2c∗2 then Ec(G) = T ∩ L
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c) If Q̄ ≥ 2c∗2, then Ec(G) = {(c∗2, c∗2)}

Note that if 2c∗1 ≤ Q̄ ≤ 2c∗2, then the points in T ∩ L are the conservative

equilibria. In the cases in which T ∩ L = {∅}, a single conservative equilibrium

exists which coincides with either the Cournot equilibrium in one or in the other

scenario.

5.2 Optimistic equilibria

The other extreme case in terms of uncertainty attitude of the firms is the situation

when the two firms select their strategies by only taking into account the best of the

results they can obtain. That is, for i = 1, 2, ui ≡ op, with op(x1, x2) = Max{x1, x2}.
A pair of strategies of the firms is an optimistic equilibrium for the two-scenario

Cournot game, G, if it is an equilibrium when the attitude towards uncertainty

of both firms is represented by the function op. We denote by Eop(G) the set of

optimistic equilibria of game G. Equivalently, an optimistic equilibrium for the

two-scenario Cournot game G is an equilibrium for the standard normal-form game,

Gop = {(Ai,Πi
op)i=1,2}.

Accordingly, in an optimistic equilibrium firms obtain quantities such that no

individual deviation produces an improvement in its maximum profit.

When both firms are optimistic, since the reaction functions of the firms may

be discontinuous, the existence of equilibria cannot be assured. However, Roberts

and Sonnenschein (1976) showed the existence of a symmetric Cournot equilibrium

for n identical firms when the discontinuities of the reaction functions take the form

of ”upward jumps”, that is, if the function is continuous from the right and upper

semicontinuous from the left. As a consequence of this result, when only a switch

between scenarios occurs, the existence of equilibria is assured. This is the case of

linear demand functions as shown in Caraballo et al. (2015).

Conditions for the existence of the optimistic equilibria based on the relationship

between regions T and L can now be established.

Note that the optimistic reaction functions of the firms are formed by pieces

of the reaction functions at each scenario, therefore the candidates for optimistic

equilibria are the points where they intersect. It follows from the symmetry of the

model that these points are necessarily the Cournot equilibria at the two scenarios.

This fact is formally stated in the following lemma.

Lemma 5.2. If (q̄1, q̄2) ∈ Eop(G) then (q̄1, q̄2) = (c∗1, c
∗
1) or (q̄1, q̄2) = (c∗2, c

∗
2).
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This result does not guarantee the existence, nor the uniqueness of the equilib-

rium.

It is also easy to see that when the Cournot equilibria of the two scenarios are

both located on the same region of those limited by L, then the optimistic equilibria

exists and coincides with one of them, as stated in the following lemma.

Lemma 5.3. Let G = {(Ai,Πi
1,Π

i
2)i=1,2} be a two-scenario Cournot game

a) If Q̄ < 2c∗1, then Eop(G) = {(c∗2, c∗2)}.

b) If Q̄ > 2c∗2, then Eop(G) = {(c∗1, c∗1)}.

In the following theorem, we characterize the optimistic equilibria. Let qMk
be

the monopoly quantity in scenario k, k = 1, 2.

Theorem 5.4. For the two-scenario Cournot game G = {(Ai,Πi
1,Π

i
2)i=1,2}, the

following holds:

a) If Πi
1(qM1 , 0) > Πi

2(qM2 , 0),

(c∗1, c
∗
1) ∈ Eop(G) if and only if st ≤ c∗1 ≤ st+1 with an even t.

(c∗2, c
∗
2) ∈ Eop(G) if and only if st ≤ c∗2 ≤ st+1 with an odd t.

b) If Πi
1(qM1 , 0) < Πi

2(qM2 , 0),

(c∗1, c
∗
1) ∈ Eop(G) if and only if st ≤ c∗1 ≤ st+1 with an odd t.

(c∗2, c
∗
2) ∈ Eop(G) if and only if st ≤ c∗2 ≤ st+1 with an even t.

As an illustration, consider the two-scenario Cournot game in which the inverse

demand functions in the scenarios are, respectively, p = 20 − 20q2 and p = 3 − q.

The conservative equilibria and the optimistic equilibria are obtained by applying

Theorem 5.1 b) and Theorem 5.4 a). The situation is represented in Figure 4.

5.3 Neutral equilibria

In order to model a duopoly in which both firms are neutral, the value functions of

the firms is represented by the average profit. That is, for i = 1, 2, ui ≡ n, with

n(x1, x2) = 1/2(x1 + x2),

A pair of strategies of the firms is a neutral equilibrium for the two-scenario

Cournot game, G, if it is an equilibrium when the attitude towards uncertainty of
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Figure 4: Conservative equilibria (left) and optimistic equilibria (right)

both firms is represented by the function n. The set of neutral equilibria of game G

is denoted as En(G). Accordingly, in a neutral equilibrium firms obtain quantities

such that no individual deviation produces an improvement in the average profit.

The following result is a consequence of our initial assumptions on the inverse

demand functions in the different scenarios, and Lemma 3.4.

Theorem 5.5. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, a

unique neutral equilibrium exists, (c∗n, c
∗
n). Moreover, c∗1 ≤ c∗n ≤ c∗2.

6 Hybrid equilibria

In this section we analyze the case where the firms show different attitudes to un-

certainty. In accordance to Definition 4.1, a hybrid equilibrium is an equilibrium

of the two-scenario Cournot game, G, when the attitude towards uncertainty of the

firms is represented by functions u1 and u2, with u1 6= u2. The corresponding set of

hybrid equilibria is then denoted Eu1,u2
(G).

6.1 Neutral vs conservative

When one of the firms is neutral an the other firm is conservative, both value func-

tions are concave in its own action. Therefore, the existence of this type of hybrid

equilibrium is guaranteed. In what follows, we prove that, under our assumptions,

the equilibrium is unique and a result which identifies the equilibrium is presented.
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Figure 5: Equilibrium when Firm 1 is neutral and Firm 2 is conservative

Let Firm 1 be neutral and Firm 2 be conservative, then u1 ≡ n, and u2 ≡ c.

Denote by (z∗1k , z∗2k ), k = 1, 2, the point where the reaction function of firm 1, R1
n,

and the reaction function of firm 2 at scenario k, r2
k, coincide. Denote by (z̄1, z̄2), the

intersection of the graph of the reaction function, R1
n, and the line L. The following

theorem establishes the uniqueness of the equilibrium and identifies it, depending

on the relative position of the points (z∗1k , z∗2k ), k = 1, 2, and the line L.

Theorem 6.1. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, where

Firm 1 is neutral and Firm 2 is conservative, an equilibrium always exist and is

unique. Moreover,

a) En,c(G) = (z∗11 , z∗21 ) if and only if Q̄ ≤ z∗11 + z∗21 .

b) En,c(G) = (z∗12 , z∗22 ) if and only if Q̄ ≥ z∗12 + z∗22 .

c) En,c(G) = (z̄1, z̄2)En,c(G) if and only if z∗11 + z∗21 ≤ Q̄ ≤ z∗12 + z∗22 .

As an example, consider the inverse demand function p = 32− 50q for scenario

1, and p = 1 − q for scenario 2. By applying Theorem 6.1 b), the equilibrium is

determined. Figure 5 illustrates this situation.

6.2 Neutral vs optimistic

When one of the firms is neutral and the other is optimistic, the existence of equi-

libria is not guaranteed. However, under our assumptions, if an equilibrium exists,

it is unique.
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Let Firm 1 be neutral and Firm 2 be optimistic, then u1 ≡ n, and u2 ≡ op.

Recall that for k = 1, 2, (z∗1k , z∗2k ) denotes the point where the reaction function

of firm 1, R1
n, and the reaction function of firm 2 at scenario k, r2

k, coincide. The

following result, which follows from Lemma 3.2, states that if an equilibrium exists,

it must be either (z∗11 , z∗21 ) or (z∗12 , z∗22 ).

Lemma 6.2. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, where

Firm 1 is neutral and Firm 2 is optimistic, at most one equilibrium exists. Moreover,

En,op(G) ⊂ {(z∗11 , z∗21 ), (z∗12 , z∗22 )}.

The following result states the conditions for the existence of a hybrid equilibrium

for neutral and optimistic firms, and provides a procedure to identify it. The proof

follows analogous reasonings to those of Theorem 5.4 and 6.1.

Theorem 6.3. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, where

Firm 1 is neutral and Firm 2 is optimistic,

a) (z∗11 , z∗21 ) ∈ En,op(G) if and only if either a1) or a2) holds

a1) Π2
1(0, qM1) < Π2

2(0, qM2), and st ≤ z∗11 ≤ st+1 with an odd t.

a2) Π2
1(0, qM1) > Π2

2(0, qM2), and st ≤ z∗11 ≤ st+1 for an even t.

b) (z∗12 , z∗22 ) ∈ En,op(G) if and only if either b1) or b2) holds

b1) Π2
1(0, qM1) < Π2

2(0, qM2), and st ≤ z∗12 ≤ st+1 with an even t.

b2) Π2
1(0, qM1) > Π2

2(0, qM2), and st ≤ z∗12 ≤ st+1 for an odd t.

Note that in this hybrid situation, the existence of equilibria cannot be guaran-

teed. For instance, when the inverse demand functions are p = 10−q and p = 5− 7
20
q,

no equilibrium exists, as shown in Figure 6 (left-hand side).

Remark: For the case of linear models, when Π2
1(0, qM1) < Π2

2(0, qM2), an equilib-

rium always exists, and is given by {(2c∗n − c∗2, 2c
∗
2 − c∗n)}. This follows from the

fact that, under this condition, the optimistic value function is not discontinuous.

This case is illustrated in Figure 6 (right-hand side) for inverse demand functions

p = 3− 5
2
q, and p = 2− q.
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Figure 6: Cases of no equilibrium (left) and equilibrium (right) when Firm 1 is

neutral and Firm 2 is optimistic

6.3 Conservative vs optimistic

When firms exhibit extreme and opposed uncertainty attitudes, that is, when one

of them is conservative and the other is optimistic, the existence of equilibria is not

assured either. In what follows we establish conditions for the existence of equilibria

in this hybrid situation.

Let Firm 1 be conservative and Firm 2 be optimistic, then u1 ≡ c, and u2 ≡ op.

Denote by (d∗1, d
∗
2) the point where the graph of the reaction function of firm 1

at scenario 1, r1
1, and the graph of the reaction function of firm 2 at scenario 2, r2

2,

intersect. This point can be seen as the Cournot equilibrium in a situation where

the demand function of firm 1 corresponds to that of scenario 1, and the demand

function of firm 2 corresponds to that of scenario 2. Since the inverse demand

functions of the firms are identical at each scenario, it follows that (d∗2, d
∗
1) is the

intersection point of the graph of the reaction function of firm 1 at scenario 2, r1
2, and

the reaction function of firm 2 at scenario 1, r2
1 (note that d∗1 or d∗2 might be null).

In addition, we have to consider the points of discontinuity of the reaction function

of the optimistic firm. We denote these points as (st, R
2
op(st)), t = 0, 1, . . . t̄. The

following lemma states that if equilibria exist, then they must coincide with some

of these points.

Lemma 6.4. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, if Firm
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1 is conservative and Firm 2 is optimistic, then

Ec,op(G) ⊂ {(d∗1, d∗2), (d∗2, d
∗
1), (st, R

2
op(st)), t = 0, 1, . . . t̄}.

In the following result these hybrid equilibria are identified in the different cases.

Theorem 6.5. For the two-scenario Cournot game, G = {(Ai,Πi
1,Π

i
2)i=1,2}, where

Firm 1 is conservative and Firm 2 is optimistic.

a) (st, R
2
op(st)) ∈ Ec,op(G) if and only if Q̄ = st + R2

op(st).

b) (d∗1, d
∗
2) ∈ Ec,op(G) if and only if either b1) or b2) holds:

b1) Q̄ ≤ d∗1 + d∗2, Π2
1(0, qM1) < Π2

2(0, qM2), and st ≤ d∗1 ≤ st+1 for an even t,

b2) Q̄ ≤ d∗1 + d∗2, Π2
1(0, qM1) > Π2

2(0, qM2), and st ≤ d∗1 ≤ st+1 for an odd t.

c) (d∗2, d
∗
1) ∈ Ec,op(G) if and only if either c1) or c2) holds:

c1) Q̄ ≥ d∗1 + d∗2, Π2
1(0, qM1) < Π2

2(0, qM2), and st ≤ d∗2 ≤ st+1 for an odd t,

c2) Q̄ ≥ d∗1 + d∗2, Π2
1(0, qM1) > Π2

2(0, qM2), and st ≤ d∗2 ≤ st+1 for an even t.

Remark: Note that in the case in which d∗1 + d∗2 = Q̄, it may happen that (d∗1, d
∗
2)

or (d∗2, d
∗
1) are equilibria. In these cases d∗1 or d∗2 coincide with the discontinuities of

the reaction function R2
op.

The existence of equilibria cannot be guaranteed in this case either. Consider

the following inverse demand functions: p = 60 − 30q and p = 20 − 6q. It can be

proven that there is no equilibrium. This case corresponds to the left-hand side of

Figure 7.

Remark: For linear models it can be shown that the existence of an equilibrium

can be guaranteed when Π2
1(0, qM1) < Π2

2(0, qM2). The equilibrium is then (2c∗1 −
c∗2, 2c

∗
2 − c∗1). This case is illustrated in the right-hand side of Figure 7, where the

demand functions in the scenarios p = 3− 5
2
q, and p = 2− q.

Moreover, under the initial assumptions, for linear models, the condition in Case

a) of Theorem 6.5 does never hold, since the equilibria cannot belong to L.
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Figure 7: Cases of no equilibrium (left) and equilibrium (right) when Firm 1 is

conservative and Firm 2 is optimistic.

7 Conclusions

In this paper, we have analysed the strategic decisions of firms in a context where

there are two possible scenarios characterized by different demand functions. The

firms have to decide their strategies on quantities before the uncertainty is resolved.

In an important preliminary step, the reaction functions of firms that exhibit

extreme and neutral attitudes to uncertainty have been fully described. We have

shown that under not very restrictive assumptions, the reaction for conservative

firms is a continuous piece-wise function with, at most, three pieces. In the case of

optimistic firms, the reaction function is also piece-wise. However, continuity cannot

be assured.

The analysis of equilibria is carried out when firms show identical and different

attitudes to uncertainty. In both cases, the presence of an optimistic firm implies

that the existence of equilibria cannot be guaranteed. However, we establish neces-

sary and sufficient conditions for the existence of equilibria and provide procedures

to determine the sets of equilibria. If both firms are neutral, or one of them is

neutral and the other one is conservative, equilibrium always exists and is unique.

When both firms are conservative, existence is also assured, but multiple equilib-

ria may exist. An important property of these equilibria is that, regardless of the

scenario that finally occurs, all of them yield the same total output and price level.

One interesting interpretation of these results is that, although crossing the price

threshold by changing quantity causes a radical shift in the scenario in which the
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firms compete, when both firms are conservative there is a certain stabilization of

equilibria; this does not occur when both firms are optimistic.

It is also worth remarking that, even though, when both firms are conservative

and hence, firms are symmetric, non-symmetric conservative equilibria do exist. In

fact, only one of the equilibria is symmetric. The consequence of the symmetry of the

model is that the set of conservative equilibria is a symmetric set. This generalizes

the result obtained by Caraballo et al. (2015) for linear models. Moreover, in linear

models, when both firms are optimistic, equilibria always exist, while this cannot

be assured for the general model.

Our analysis is valid for a broad range of concave inverse demand functions,

which include among others, the special cases of linear and quadratic functions.

However, our results have some limitations. For simplicity, and in order to avoid

excessive technicalities, we have restricted our analysis to the case of two scenarios.

Nevertheless, the ideas underlying our approach can also be used to describe the

conservative, the optimistic and the neutral reaction functions in the cases of more

than two scenarios, and therefore the corresponding equilibria could be identified.

On the other hand, the analysis could be extended to more realistic situations in

which firms do not exhibit extreme pessimistic or optimistic attitudes, and it is

possible to characterize their behavior in terms of a parameter representing their

degree of optimism. The influence of this optimism parameter on the equilibria

outcomes is the topic of current research.

In addition, the research carried out in this paper extends the range of real-world

situations where the ideas of Cournot competition can be applied. In fact, the study

of situations where the attitudes of the firms towards uncertainty are not symmetric

is particularly relevant since certain events can not only generate uncertainty about

demand, but also lead firms to adopt different attitudes towards uncertainty. This

would be the case, for example, of the results of parliamentary elections that can

give rise to uncertainty about the demand for goods and services. In addition, the

place where firms are located may influence their attitude towards uncertainty. If

the elections are held in a country of the European Union, the attitudes towards

uncertainty could depend on whether firms are settled inside or outside the Union.

Or let us think about the uncertain effects of the presidency of Donald Trump.

The attitude towards the uncertainty of a Mexican firm may not be the same as

that of an American firm.
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8 Appendix

Proof Lemma 3.1: Denote L = {(q1, q2) ∈ IR2 | q1 +q2 < Q̄}, and L̄ = {(q1, q2) ∈
IR2 | q1 + q2 > Q̄}. Recall that for each firm, the profit functions in the scenarios,

Π1 and Π2, are concave at its own action. When firm j selects a strategy qj such

that Q̄ − qj ≤ ri1(qj) ≤ ri2(qj), then (ri1(qj), qj) ∈ L̄ and (ri2(qj), qj) ∈ L̄. Since,

at L̄ the value function coincides with the profits in scenario 1, Πc = Π1, then the

conservative firm i will select ri1(qj) as the best response.

Analogously, if firm j selects a strategy qj such that ri1(qj) ≤ ri2(qj) ≤ Q̄ − qj,

then (ri1(qj), qj) ∈ L, and (ri2(qj), qj) ∈ L. Since, at L the value function of the firm

coincides with the profit in scenario 2, Πc = Π2, then the conservative firm i will

select ri2(qj) as the best response.

If firm j selects a strategy qj such that ri1(qj) ≤ Q̄−qj ≤ ri2(qj), then (ri1(qj), qj) ∈
L and (ri2(qj), qj) ∈ L̄. Note that at L, Πc = Π2. If firm i chooses a strategy qi such

that (qi, qj) ∈ L, then the firm should select this quantity as large as possible since

Πc increases with qi. However, once (qi, qj) ∈ L̄, then Πc = Π1, and Πc decreases as

qi increases. As a result, the best response for a conservative firm i is to choose the

strategy such that (qi, qj) ∈ L, that is qi = Q̄− qj. 2

Proof Lemma 3.2: By using a reasoning analogous to that of the Lemma 3.1 , it

is easy to see that, given a strategy of firm j, qj, if both (ri1(qj), qj) and (ri2(qj), qj)

belong to either L or L̄, then firm i will select the best response at the scenario

which corresponds to the optimistic option in L or L̄. 2

Proof Lemma 3.4: Consider qj ∈ Aj and qi = Ri
n(qj), j = 1, 2, j 6= i. Suppose that

qi = Ri
n(qj) < ri1(qj) < ri2(qj). Since the profit functions at the scenarios Πi

1 and Πi
2

are stricly concave in its own actions and they attains their maximun value at ri1(qj)

and ri2(qj), respectively, then Πi
1(qi+ε, qj) > Πi

1(qi, qj) and Πi
2(qi+ε, qj) > Πi

2(qi, qj),

for ε > 0. Therefore, Πi
n(qi + ε, qj) > Πi

n(qi, qj) and qi is not the best response

to qj. Analogously, suppose that ri1(qj) < ri2(qj) < qi = Ri
n(qj). In this case,

Πi
1(qi − ε, qj) > Πi

1(qi, qj) and Πi
2(qi − ε, qj) > Πi

2(qi, qj), for ε > 0. Therefore,

Πi
n(qi−ε, qj) > Πi

n(qi, qj) and qi is not the best response to qj. Hence, if qi = Ri
n(qj),
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then ri1(qj) ≤ Ri
n(qj) ≤ ri2(qj). 2

Proof Lemma 4.2: In order to prove that Eu(G) ⊆ T , suppose on the contrary

that (q̄1, q̄2) 6∈ T and (q̄1, q̄2) ∈ Eu(G). If q̄1 < r1
1(q̄2), since each firm’s objective

function, Πi
k, is strictly concave in the firm’s own quantity, both Π1

1(q1, q̄2) and

Π1
2(q1, q̄2) are increasing for q1 ≤ r1

1(q̄2), therefore, it follows that if firm 1 moves to

q̄1+ε then his profit will increase in both scenarios and thus Πu1 will increase. Hence,

(q̄1, q̄2) 6∈ Eu(G). Analogously, this can be proven for q̄1 > r1
2(q̄2), for q̄2 < r2

1(q̄1)

and for q̄2 > r2
2(q̄1). 2

Proof Theorem 5.1: We first prove that T ∩ L ⊆ Ec(G).

A point (q1, q2) ∈ Ec(G), if and only if (q1, R2
c(q

1)) = (R1
c(q

2), q2). If (q1, q2) ∈
T∩L, then it follows from Lemma 3.1 that R1

c(q
2) = Q̄−q2 and R2

c(q
1) = Q̄−q1, and

therefore, since (q1, Q̄− q1) = (Q̄− q2, q2), the point is a conservative equilibrium.

We next prove that if (q1, q2) ∈ Ec(G) then either (q1, q2) ∈ T ∩ L or (q1, q2)

coincides with the Cournot equilibrium in one of the scenarios.

Suppose that (q1, q2) ∈ Ec(G) and (q1, q2) ∈ T ∩ L. Consider first the points

in the interior of T , int(T ). Let (q1, q2) ∈ int(T ) ∩ L. Since L is an open set

and q2 < r1
2(q1), for ε > 0, then (q1, q2 + ε) ∈ int(T ) ∩ L. At L, Πc(q

1, q2) =

Π2(q1, q2), and it follows from the strict concavity in its own action of Π2 that

Πc(q
1, q2 + ε) > Πc(q

1, q2). Therefore, (q1, q2) 6∈ Ec(G). An analogous reasoning

holds when (q1, q2) ∈ int(T ) ∩ L̄.

Now consider the points on the boundary of T , ∂T . Note that these points are

located on the graphs of some of the reaction functions. Let (q1, q2) ∈ ∂T ∩L. At L,

Πc(q
1, q2) = Π2(q1, q2), Therefore, for (q1, q2) to be a conservative equilibrium (q1, q2)

needs to be the Cournot equilibrium in scenario 2. Analogously, when (q1, q2) ∈
∂T ∩ L̄, if (q1, q2) is a conservative equilibrium, then this point must be the Cournot

equilibrium in scenario 1.

Cases a) and c): If Q̄ < 2c∗1 then (c∗1, c
∗
1) ∈ L̄. Since for (q1, q2) ∈ L̄, Πc(q

1, q2) =

Π1(q1, q2), it is easy to see that the Cournot equilibrium of scenario 1 is also a

conservative equilibrium. If Q̄ = 2c∗1, then T ∩ L = {(c∗1, c∗1)} and it follows that

Ec(G) = {(c∗1, c∗1)}. The proof of case c) is analogous.

Case b) If 2c∗1 < Q̄ < 2c∗2 then T∩L 6= {∅}, and T∩L ⊆ Ec(G). Moreover, (c∗1, c
∗
1)

cannot be a conservative equilibrium, since in this case (c∗1, c
∗
1) ∈ L, Πc(c

∗
1, c
∗
1) =

Π2(c∗1, c
∗
1), and therefore the firms can improve their conservative value function

by adopting a strategy qi > c∗1. Analogously, (c∗2, c
∗
2) cannot be a conservative

equilibrium, and the result follows. 2
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Proof Theorem 5.4: The result follows from Lemmas 3.3 and 5.2.

Proof Theorem 6.1: The existence of equilibria follows from the fact that the

value functions of the neutral firm and the value function of the conservative firm

are concave in its own action.

If Q̄ ≥ z∗12 + z∗22 then, it follows from Lemma 3.1 that R2
c(z
∗1
2 ) = r2

2(z∗12 ) = z∗22 .

Thus, (z∗12 , z∗22 ) is an equilibrium. Conversely, if (z∗12 , z∗22 ) is an equilibrium, then

R2
c(z
∗1
2 ) = r2

2(z∗12 ) and, from Lemma 3.1, Q̄ ≥ z∗12 + z∗22 holds.

To prove uniqueness, note that the reaction function of the neutral firm is strictly

decreasing and continuously differentiable and its derivative fulfills (R1
n)′(q2) > −1 in

the interval where it attains positive values. On the other hand, the reaction function

of the conservative firm is a piecewise function, strictly decreasing and continuous.

It is also differentiable, except at most at two points. Where differentiable, it fulfills

(R1
c)
′(q1) ≥ −1.

Let Z̄2 = z∗12 + z∗22 . Since (R1
n)′(q2) > −1, for all the points of the graph

(R1
n(q2), q2) with q2 < z∗22 , then R1

n(q2)+q2 < Z̄2 holds. If the graphs of the reaction

functions, R1
n and R2

c , intersect at any other point (q1, q2), then q2 = R2
c(q

1) = Q̄−q1

or q2 = R2
c(q

1) = r2
1(q1) must hold. In both cases, by using Lemma 3.1, q1 + q2 ≥

Q̄ ≥ Z̄2 what contradicts R1
n(q2) + q2 < Z̄2.

Cases b) and c) can be proven by using analogous reasonings. 2

Proof Lemma 6.4: If an equilibrium exists in L̄, then the reaction functions of

both firms must intersect on L̄. From Lemma 3.1, it can be assured that in L̄, the

conservative reaction function corresponds to r1
1. From Lemma 3.2, the optimistic

reaction function corresponds to r2
2. Therefore, only (d∗1, d

∗
2) can be an equilibrium.

The same reasoning applies if a equilibrium exists in L. In this case, only (d∗2, d
∗
1) can

be an equilibrium. If an equilibrium exists in L, Lemma 3.1 assures that the reaction

function of the conservative firm is defined by Q̄− q2. The optimistic response may

correspond to r2
1 or r2

2, and therefore only if Q̄− q2 = st, where st corresponds to a

discontinuity of R2
op, an equilibrium in L can exist. 2.

Proof Theorem 6.5: It follows from Lemma 6.4 and a similar reasoning to Theo-

rem 6.1
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Lagerlöf JMN., 2007. Insisting on a non-negative price: oligopoly, uncertainty,

welfare, and multiple equilibria. International Journal of Industrial Organization

25, 861-875.

Lepore JJ., 2012. Cournot outcomes under Bertrand-Edgeworth competition with

demand uncertainty. Journal of Mathematical Economics 48, 177-186.

26



Li L., 1985. Cournot Oligopoly with Information Sharing. The RAND Journal of

Economics 16, 521-53
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