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Abstract

In this paper we analyze competition between firms with uncertain de-

mand functions. A duopoly model is considered in which two identical firms

producing homogeneous commodities compete in quantities. They face uncer-

tain market demand in a context in which two different future scenarios are

possible, and no information about the probability distribution of occurrence

of the scenarios is available.

This decision-making situation is formalized as a normal-form game with

vector-valued utility functions for which the notion of Pareto equilibrium is

adopted as a natural extension of that of Cournot equilibrium. Under stan-

dard assumptions about the demand functions, we characterize the complete

set of Pareto equilibria. In the second part of the paper, we analyse the

equilibria to which the agents will arrive depending on their attitude to risk.

We find that equilibria always exist if both agents are simultaneously pes-

simistic or optimistic. In the non-trivial cases, for pessimistic firms, infinitely

many equilibria exist, whereas when firms act optimistically, only those pairs

of strategies corresponding to the Cournot equilibria in each scenario can be

equilibria.
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1 Introduction

Uncertainty plays an important role in oligopolistic models since it is difficult or im-

possible to assure that random events will not influence the outcomes of oligopolis-

tic competition. For instance, firms often face major uncertainty about demand,

competitors’ costs, distribution of consumers’ reservation prices, and other mar-

ket features relevant in decision-making by the firms. Therefore, when managers

make choices or decisions in these situations, they must somehow incorporate this

uncertainty into their decision-making process.

This paper examines the effect of introducing uncertainty about demand in

duopoly models into a non-probabilistic framework. To this end, it is assumed

that there are several possible scenarios or states of nature, of which only one will

be realized as the true state, and the probabilities of occurrence of the different

scenarios are unknown. Specifically, we analyse the extension of a Cournot duopoly

(Cournot, 1838) in which two firms producing homogeneous products face a different

market demand in each one of two scenarios and they have to decide their strategies

on quantities before uncertainty is resolved.

Situations where firms face uncertain demand which depends on the final scenario

often occur in areas affected by political decisions that modify the initial demand

level. For instance, the demand in the solar energy market is highly influenced by the

presence or absence of financial support from the Government to consumers for the

installation of equipment. In the case of Government support, the demand changes

because new consumers with a different pattern of consumption enter the market.

Thus, companies involved in the market may face uncertain demand because there

are two possible future scenarios: with and without support. However, the firms’

strategic decisions about the level of supply they will offer often must be adopted

before the uncertainty about support is resolved.

Several oligopoly models under uncertainty have previously been addressed in the

literature. Lagerlöf (2007) and Grimm (2008) analyzed Cournot competition under

demand uncertainty for risk-neutral firms. They showed that multiple equilibria

may exist and provided a plausible setting in which uniqueness of the Cournot

equilibrium under demand uncertainty is guaranteed. The effects of introducing

attitudes to risk on oligopoly competition have been considered by Asplund (2002),

who analyzed competition in prices and quantities between risk-averse firms. Fontini

(2005) studied the impact that optimistic and pessimistic attitudes play in a Cournot

oligopoly when each firm is uncertain about whether the other firms will act as
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Cournot competitors.

In the aforementioned papers, uncertainty is introduced into the model through

randomness in the corresponding function and expected utility theory is applied to

make decisions. As a consequence, the results heavily depend on the probability dis-

tributions considered. However, a range of situations exists for which no information

about the probability distribution of the random variable is available, or in which

inaccuracy of the information about the probability distribution or about the distri-

bution parameters may yield unrealistic predictions. In such situations, subjective

expected theory (Savage, 1954), in which the decision-makers have beliefs in the

forms of probability distributions, is frequently applied. It has been argued that a

single probability distribution is insufficient to describe the decision-maker’s beliefs

in some situations of uncertainty. An alternative direction, in which uncertainty

aversion is taken into account is maxmin expected utility (Gilboa and Schmeidler,

1989), where the decision-maker considers a range of possible probabilities, and

preferences are represented by the minimum of all the expected utilities.

The case of complete absence of information about probability distributions can

be considered as an extreme case in the setting of Gilboa and Schmeidler (1989),

which leads to the two well-known maxmin and maxmax criteria for choice under

uncertainty. The present research is developed in this decisional context.

The analysis presented in the paper contributes to the existing literature in

several ways. First, we assume that the profits of the firms depend on the future

scenarios, and no information exists on the probability of occurrence of each scenario.

As a consequence, unlike previous literature, the results about the equilibria in the

extended Cournot model do not rely on the assumptions or on the beliefs about

probability distributions, and our analysis covers situations where information is

not available. Second, firms are uncertain both about the reservation price and

about the number of consumers in the market. This way of modeling uncertainty

allows us to go beyond the cases discussed in the literature, where uncertainty is

considered only for one of the two features mentioned. And third, once the set of

equilibria for the Cournot duopoly with no assumption about the firms’ attitudes

towards risk is obtained, we analyse strategic competition for risk-averse firms and

also for firms that show preference for risk. In this decisional context, in which

firms have to decide their strategies on quantities before uncertainty is resolved,

we present an ex-ante analysis which permits the identification of the equilibria to

which risk-averse firms and risk-preference firms will eventually arrive.

To begin our analysis, we establish a general framework for the study of duopolis-
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tic competitions under uncertainty, where, as is usual in oligopoly models, for rea-

sons of analytical tractability, we assume the demand functions are linear. As Vives

(1984) pointed out, such an assumption presents the unappealing feature that neg-

ative prices and outputs can be obtained. However, the non-negativity of outputs

is included in our analysis, and even though negative prices are possible, we prove

that the prices in any non-degenerate equilibrium are positive.

The Cournot duopoly under uncertainty is formalized as a game with vector-

valued utility functions. The natural extension of the concept of Nash equilibrium

was introduced by Shapley (1959) for the class of multicriteria matrix games with the

name of Pareto equilibrium. Bade (2005) studied the existence of Pareto equilibria

in games with vector payoffs in which agents’ preferences are incomplete in different

economic models. She precedes us in showing the applicability in oligopoly situations

of the theoretical results which characterize equilibria in the framework of vector-

valued utilities.

Our first result is the characterization of the set of Pareto equilibria of the

Cournot game, with and without non-negative conditions on demand realizations.

This set is symmetric and only depends on the quantities of perfect competition in

the two scenarios, thus generalizing the classic Cournot equilibrium. On the neg-

ative side, the set of Pareto equilibria contains an infinity of demand pairs which

renders this concept insufficient for conclusions to be drawn about the equilibria at

which agents will arrive in real-world duopolistic markets.

However, this general setting permits the analysis of a range of situations in which

firms exhibit different attitudes towards risk. In the second part of the paper, specific

attitudes towards risk are introduced into the model. When agents are pessimistic,

exhibiting extreme risk aversion, the maxmin principle is applied. In this context,

we show that in non-trivial cases multiple equilibria exist. An important fact is that

the total quantity offered in all these equilibria is a constant, and all equilibria yield

the same price. That is, the price at equilibria is unique.

On the other hand, for optimistic agents, who only value the best results they

can obtain, a criterion consisting of maximizing the maximum benefit is applied. In

this case, we also prove that equilibria always exist. Moreover, we show that any

game has either a unique optimistic equilibrium, which coincides with the Cournot

equilibrium of one of the scenarios, or that both Cournot equilibria of the scenarios

are optimistic equilibria.

The relevance of the results we present herein for conservative and optimistic

equilibria lies in the understanding of the effects of uncertainty in the final equilib-
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rium outcome. If firms are conservative, the uncertainty with respect to both the

total quantity to be offered and the price that reaches such a quantity disappears.

That is, regardless of the state of nature that finally occurs, all conservative equi-

libria provide the same output and price level. However, if firms show preference

for risk, the price depends on the state of nature that will take place, and since

different equilibria may exist, the quantity that the firms will eventually produce at

equilibrium can not be predicted.

The rest of the paper is organized as follows. In Section 2 the Cournot model

under uncertainty is presented and the corresponding set of Pareto equilibria is

characterized. In Section 3, the attitude towards risk of the agents is introduced into

the analysis. We obtain results which permit the identification of equilibria when

agents show extreme risk aversion and when the agents are optimistic. Section 4 is

devoted to the conclusions of our research. In order to ease the presentation, proofs

are included in an Appendix.

2 Pareto Equilibria in the Cournot model under

demand uncertainty

In this section a Cournot model with an uncertain linear demand function is anal-

ysed. In previous literature uncertainty in the demand function is usually modelled

either as an uncertain intercept, which is applied in cases where firms are uncertain

about the reservation price, or as an uncertain slope, which can represent situations

in which firms are uncertain about the number of consumers in the market.

We address a general model where uncertainty affects both the intercept and the

slope which allows us to represent situations of uncertainty in terms of type and

number of consumers. For example, firms trying to introduce a new product in the

market are unsure whether they are going to be successful in a small market with

consumers of high income with a high reservation price or in a bigger market with

consumers of low income with a lower reservation price.

We consider a duopoly model in which two identical firms producing homoge-

neous commodities compete in quantities and face uncertain market demand since

two different future scenarios are possible.

The inverse demand function at scenario k, k = 1, 2, is given by p = αk − γkq,
with αk, γk > 0. For simplicity, it is assumed that firms have no fixed costs and their

marginal costs are equal to zero. In our setting, firms make their output decision,
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q1, q2, before the uncertainty is resolved. For i = 1, 2, the benefit for firm i at

scenario k is

Πi
k(q

1, q2) = qi(αk − γk(q1 + q2)).

Without loss of generality, throughout the paper it is assumed that
α1

γ1
<
α2

γ2
,

that is, the quantity of perfect competition in the first scenario is lower than that

of the second scenario.

If the two scenarios are considered separately, then a Cournot equilibrium exists

in each, given by

(q1∗k , q
2∗
k ) = (

αk
3γk

,
αk
3γk

).

The situations we are going to investigate are those in which no information exists

about the probability of occurrence of the scenarios or the existing information is

not held by the agents. In such cases, the game the firms face is formally a normal-

form game with vector-valued utility function G = {(Ai, ui)i=1,2}, where Ai is the

set of strategies that agent i can adopt and ui is his vector-valued utility function,

ui := (Πi
1(q

1, q2),Πi
2(q

1, q2)).

We refer to these games as Cournot games under uncertainty, and denote the

Cournot game under uncertainty in which firms are allowed to select any non-

negative quantity as GUC
+ = {(R+,Π

i)i=1,2}.
We will adopt the term Pareto Equilibrium (PE ) to refer to the natural extension

of the concept of Nash equilibrium for these games with vector-valued utilities.

Definition 2.1. (q∗1, q∗2) is a Pareto Equilibrium for the game G = {(Ai, ui)i=1,2}
if /∃ q1 ∈ A1 such that u1k(q

1, q∗2) ≥ u1k(q
∗1, q∗2) for k = 1, 2 (with a strict inequality

for some k), and /∃ q2 ∈ A2 such that u2k(q
∗1, q2) ≥ u2k(q

∗1, q∗2) for k = 1, 2 (with a

strict inequality for some k).

The set of Pareto Equilibria for G = {(Ai, ui)i=1,2} is denoted as PE(G).

Note that in our context of complete uncertainty about the occurrence of the

scenarios, a Pareto equilibrium consists of a pair of strategies of the agents such that

neither firm can raise its benefit in both scenarios by deviating from the equilibrium

strategy.

Our focus is on the game GUC
+ in which Ai = R+. However, as a previous step we

analyse the relaxed Cournot game GUC = {(R,Πi)i=1,2} in which no non-negativity

constraint is imposed.
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It is worth noting that at each scenario, each firm’s benefit function, Πi
k(q

1, q2) =

qi(αk − γk(q1 + q2)), is strictly concave in its own action. As a consequence, given

the action of one of the agents, the benefit of the other attains its maximum where

its derivative is null. For i, j = 1, 2 with i 6= j, denote rik : Aj → R as the function

which represents the best response of agent i to the actions of agent j at scenario k,

rik(q
j) =

αk − γkqj

2γk
.

The following result characterizes the whole set of Pareto Equilibria of the

Cournot game under uncertainty, GUC . It establishes that the set of equilibria

is bounded by the graphs of the best responses of each agent to the others’ action

at each scenario. This result can be extended to more general benefit functions

provided that they fulfill adequate concavity requirements.

Theorem 2.2. The set of Pareto Equilibria for the game GUC is

PE(GUC) = {(q1, q2) | r11(q2) ≤ q1 ≤ r12(q
2), r21(q

1) ≤ q2 ≤ r22(q
1)}.

The linearity of the response functions enables the set of equilibria, GUC , to

be represented as the convex hull1 of its extreme points. These points corre-

spond to the equilibria of certain associated games. For k, l ∈ {1, 2}, the com-

ponent game GC
k,l is defined as a game with complete preferences consisting of

GC
k,l = {(A1,Π

1
k), (A2,Π

2
l )}. The equilibrium of game GC

k,l is obtained as the best

mutual response, that is, the point solving q1 = r1k(q
2) and q2 = r2l (q

1):

(q1∗, q2∗) = (
2

3

αk
γk
− 1

3

αl
γl
,

2

3

αl
γl
− 1

3

αk
γk

).

Denote as C∗k =
αk
3γk

the Cournot equilibrium quantity at scenario k. With this

notation, the equilibrium for game GC
k,l becomes

(2C∗k − C∗l , 2C∗l − C∗k).

The following result establishes that the set of Pareto equilibria coincides with

the convex hull of the equilibrium points obtained when each of the firms considers

each one of the possible scenarios. This fact is a consequence of the linearity of the

response functions, and does not extend to the case of general benefit functions.

1The convex hull of S ⊆ R2, is conv(S) = {z ∈ R2 : z = αx+ (1− α)y, x, y ∈ S, α ∈ [0, 1] }.
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Corollary 2.3. The set of Pareto Equilibria for the game GUC is

PE(GUC) = conv{(C∗1 , C∗1), (C∗2 , C
∗
2), (2C∗1 −C∗2 , 2C∗2 −C∗1), (2C∗2 −C∗1 , 2C∗1 −C∗2)}.

In the game we want to investigate, firms can only select non-negative quantities.

We prove that the set of Pareto equilibria of the game GUC
+ coincides with those

Pareto equilibria of GUC with nonnegative components. Formally,

Proposition 2.4. The set of Pareto Equilibria for the game GUC
+ is

PE(GUC
+ ) = {(q1, q2) ∈ PE(GUC) : q1, q2 ≥ 0}.

In the following result, part a) is a necessary and sufficient condition for the

coincidence of the set of equilibria of the game with non-negative strategies and that

of the relaxed game. Part b) describes the equilibria of GUC
+ when this condition

does not hold. Recall that α1

γ1
< α2

γ2
.

Corollary 2.5. a) PE(GUC
+ ) = PE(GUC) if and only if α2

2γ2
≤ α1

γ1
.

b) Otherwise,

PE(GUC
+ ) = conv{( α1

3γ1
, α1

3γ1
), ( α2

3γ2
, α2

3γ2
), (α1

γ1
, 0), ( α2

2γ2
, 0), (0, α1

γ1
), (0, α2

2γ2
)}.

Note that the condition in case a) means that the quantity of perfect competition

in the first scenario has to be at least as much as the monopolistic quantity in the

second scenario.

Figure 1 illustrates the sets of Pareto equilibria in the two different cases.

It is interesting to point out that, as for standard Cournot duopoly, the set of

Pareto Equilibria in Cournot games under uncertainty only depends on the perfect

competition quantity of each scenario.

Another consequence of Proposition 2.4 refers to the extension of the classic

result on the symmetry of standard Nash equilibria. For these Cournot games

under uncertainty where firms face identical benefit functions, Pareto equilibria are

not necessarily symmetric. However, the set of Pareto equilibria is a symmetric set2.

Formally,

Corollary 2.6. The set PE(GUC
+ ) is symmetric.

The symmetry of the set of equilibria means that for each non-symmetric equi-

librium pair, another equilibrium exists in which each firm offers the quantity offered

by the opponent in the first equilibrium.

2A set S ⊆ R2 is symmetric if for all (x1, x2) ∈ S then (x2, x1) ∈ S.
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Firm 2
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PE(GUC
+ )

Figure 1: Sets of Pareto equilibria.

3 Conservative and optimistic equilibria

In the general model considered in the section above, firms are assumed to lack any

information about the occurrence of the scenarios, nor is any assumption made on

the firms’ attitude towards risk. However, firms can show different attitudes to risk,

from extreme risk-aversion to extreme preference for risk, due to several reasons,

such as the presence of liquidity constraints or costly financial distress.

The rest of the paper is devoted to the identification of the equilibria to which

the agents will arrive when they exhibit different attitudes towards risk. In our

model such attitudes are explained by the importance that each firm gives to the

realization of profits: a firm is risk-averse if it gives relatively greater importance

to the scenario with low profits, the reverse is true for firms with preference for

risk. More precisely, we consider the extreme cases, i.e., firms present extreme risk-

aversion (or preference) when they only take into account the scenario that implies

the lowest (or highest) profits. The former are named conservative firms and the

latter, optimistic firms.

In the previous section, the set of Pareto equilibria for the Cournot game under

uncertainty only depends on the quantities of perfect competition in both scenarios.

However, it is when we seek to refine the set of equilibria by including risk attitudes

in the model, that the other parameters of the demand function and the relationships

between them become relevant.
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Given the inverse demand functions of the scenarios p = αk − γkq, for k = 1, 2,

if γ1 6= γ2, then there is a unique value of the demand for which prices coincide at

both scenarios, q = α1−α2

γ1−γ2 . The relative position of this value with respect to the

Cournot quantities and to the perfect competition quantities at the two scenarios

plays a key role in the analysis of the conservative equilibria and optimistic equilibria

of the Cournot game. We first observe that when the reservation price in the first

scenario is higher than that of the second, then this value is smaller than the total

quantity offered in perfect competition in the first scenario. Otherwise, this value is

either non-positive or greater than or equal to the perfect competition quantity in

the second scenario. These facts are stated formally in the following lemma which

is easy to prove by using a geometric argument.

Lemma 3.1. Provided that α1

γ1
< α2

γ2
,

a) If α1 > α2 then 0 < α1−α2

γ1−γ2 <
α1

γ1
.

b) If α1 ≤ α2

b1) γ2 < γ1, then
α1−α2

γ1−γ2 ≤ 0.

b2) γ2 > γ1,
α1−α2

γ1−γ2 >
α2

γ2
.

3.1 Conservative equilibria

In order to model situations in which agents exhibit extreme risk aversion, we con-

sider a standard normal-form game in which the utility of the firms is represented

by the worst benefit obtained in the scenarios. For i = 1, 2, the real-valued utility

function of firm i is:

Πi
c(q

1, q2) = Min{Πi
1(q

1, q2),Πi
2(q

1, q2)}.

In accordance, the definition of conservative equilibrium is:

Definition 3.2. (q∗1, q∗2) is a conservative equilibrium for the Cournot game G =

{(Ai,Πi)i=1,2} if for each q1 ∈ A1, q
1 6= q∗1, Π1

c(q
1, q∗2) < Π1

c(q
∗1, q∗2) holds, and for

each q2 ∈ A2, q
2 6= q∗2, Π2

c(q
∗1, q2) < Π2

c(q
∗1, q∗2) holds.

The set of conservative equilibria of a game G is denoted by Ec(G).

In an equilibrium the strategy of each firm is the best response to the strategy of

the other firm, and therefore, conservative firms obtain quantities such that no indi-

vidual deviation produces an improvement in the minimum benefit. The strategies
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adopted by the firms in a conservative equilibrium can be seen as robust strategies,

in the sense that whichever scenario finally materializes each firm maximizes its

assured benefit.

We first establish that, for the Cournot game under uncertainty, the set of con-

servative equilibria is a subset of the set of Pareto equilibria. A self-contained proof

of this fact is presented in the Appendix. The result can also be obtained as a

consequence of Theorem 1 in Bade (2005).

Proposition 3.3. Ec(GUC
+ ) ⊆ PE(GUC

+ ).

We are now interested in the existence and in the identification of the conservative

equilibria for Cournot games under uncertainty GUC
+ . The following theorem is a

result that is central to our analysis. It shows that if the firms exhibit extreme

risk aversion, then equilibria always exist. Moreover, it states the conditions on

the parameters of the demand functions for a unique equilibrium to exist. In this

case the equilibrium coincides with the Cournot equilibrium in one of the scenarios.

We also prove that when multiple equilibria exist, the total quantity offered by the

agents is the value of the demand for which prices coincide at both scenarios, α1−α2

γ1−γ2 .

The proof of the results rely on the concavity of the conservative utility of the agents

with respect to their own action.

Theorem 3.4. Assume that α1

γ1
< α2

γ2
. The set of conservative equilibria for the

Cournot game GUC
+ is

a) If α1 ≤ α2, then E
c(GUC

+ ) = {( α1

3γ1
, α1

3γ1
)}.

b) If α1 > α2 and α1−α2

γ1−γ2 ≤
2α1

3γ1
, then Ec(GUC

+ ) = {( α1

3γ1
, α1

3γ1
)}.

c) If α1 > α2 and 2α1

3γ1
< α1−α2

γ1−γ2 <
2α2

3γ2
, then

Ec(GUC
+ ) = PE(GUC

+ ) ∩ {(q1, q2) | q1 + q2 =
α1 − α2

γ1 − γ2
}.

d) If α1 > α2 and 2α2

3γ2
≤ α1−α2

γ1−γ2 , then E
c(GUC

+ ) = {( α2

3γ2
, α2

3γ2
)}.

Figures 2 and 3 illustrate cases b) and c) respectively. In the case of Figure 2,

the whole set of Pareto equilibria lies on the region in which the conservative utility

coincides with the benefit in scenario 1, and therefore the conservative equilibrium

is the Cournot equilibria in scenario 1. The best response functions of risk-averse
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Firm 1

Firm 2

↵1�↵2
�1��2

⇧2⇧2

⇧1

Ec

Figure 2: A unique conservative equi-

librium

Firm 1

Firm 2

↵1�↵2
�1��2

⇧2⇧2

⇧1

Ec

Figure 3: Multiple conservative equi-

libria

firms in case c) are represented in Figure 3. The points located on both lines are

the conservative equilibria.

Remarks: A first remark is that only in the cases in which the Cournot equilibria

quantities in the two scenarios are very similar, does the conservative equilibrium

correspond to the equilibria in the second scenario. Note that α1

γ1
< α2

γ2
and 2α2

3γ2
< α1

γ1

must hold so that {( α2

3γ2
, α2

3γ2
)} is the conservative equilibrium.

It is also worth remarking that in the case in which a multiplicity of conservative

equilibria exists (case c)), all of them correspond to the same price: p =
α2γ1 − α1γ2
γ1 − γ2

,

and the total quantity offered is q =
α1 − α2

γ1 − γ2
. That is, the equilibrium price is

unique. In addition, given one of these equilibria, each agent obtains the same

benefit in both scenarios.

Moreover, the explicit expressions of the total quantity and the price at the

conservative equilibria enables us to make predictions about the equilibrium price.

If the reservation prices of the markets (αk) approach each other (move away from

each other) or the sizes of the markets (γk) differ more (become more similar), then

the total equilibrium quantity decreases (increases) and therefore the equilibrium

price increases (decreases).

If the changes are such that the conditions in c) are no longer fulfilled, the prices
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at the equilibria then depend on the final scenario. A detailed study of comparative

statics for this model would involve keeping track of the changes in the corresponding

parameters for each case, and no general results can be obtained.

3.2 Optimistic Equilibria

The other extreme case in terms of risk attitude of the firms is the situation when the

two firms select their strategies by only taking into account the best of the results

they can obtain. The utility of the firms is now given by:

Πi
op(q

1, q2) = Max{Πi
1(q

1, q2),Πi
2(q

1, q2)}.

This optimistic utility function coincides with Πi
1 when (γ1 − γ2)(q

1 + q2) ≤
α1 − α2, and with Πi

2 otherwise.

Definition 3.5. (q∗1, q∗2) is an optimistic equilibrium for the Cournot game G =

{(Ai,Πi)i=1,2} if for each q1 ∈ A1, q
1 6= q∗1, Π1

op(q
1, q∗2) < Π1

op(q
∗1, q∗2) holds, and

for each q2 ∈ A2, q
2 6= q∗2, Π2

op(q
∗1, q2) < Π2

op(q
∗1, q∗2) holds.

We denote by Eop(G) to the set of optimistic equilibria of game G.

Optimistic equilibria are also Pareto Equilibria, as established below.

Proposition 3.6. Eop(GUC
+ ) ⊆ PE(GUC

+ ).

In contrast to the case of the conservative utility function, the optimistic utility

does not exhibit desirable concavity properties. This fact increases the complexity

of the analysis of the existence and identification of equilibria. In the following result

Cournot games under uncertainty are classified depending on the relative position

of the value α1−α2

γ1−γ2 and the Cournot quantities. It establishes that in certain cases

(a), b) d)) a unique optimistic equilibrium exists which coincides with the Cournot

equilibrium of one of the scenarios.

For case c), the relative position of these quantities does not permit the existence

of equilibria to be concluded. However, it permits us to prove that only the Cournot

equilibria associated to the scenarios can be optimistic equilibria for the uncertain

Cournot game.

Theorem 3.7. Assume that α1

γ1
< α2

γ2
. The set of optimistic equilibria for the game

GUC
+ is

a) If α1 ≤ α2, then E
op(GUC

+ ) = {( α2

3γ2
, α2

3γ2
)}.
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b) If α1 > α2 and α1−α2

γ1−γ2 ≤
2α1

3γ1
, then Eop(GUC

+ ) = {( α2

3γ2
, α2

3γ2
)}.

c) If α1 > α2 and 2α1

3γ1
< α1−α2

γ1−γ2 <
2α2

3γ2
, then Eop(GUC

+ ) ⊆ {( α1

3γ1
, α1

3γ1
), ( α2

3γ2
, α2

3γ2
)}.

d) If α1 > α2 and 2α2

3γ2
≤ α1−α2

γ1−γ2 , then E
op(GUC

+ ) = {( α1

3γ1
, α1

3γ1
)}.

It remains to analyse the situation in case c). In order to do this, it is important

to identify at which values of the strategy of his opponent, an optimistic agent

switches from reacting with the best response at one scenario to reacting with the

best response at the other scenario. The values of q for which the benefit obtained

in scenario 1 with the best response in scenario 1 coincides with the benefit in

scenario 2 with the best response in scenario 2 are the values for which agent 2 will

change from one of the best responses to the other. The relative positions of one of

these values and the Cournot quantities of the scenarios, determine the optimistic

equilibria of the uncertain Cournot game.

Recall that for k = 1, 2, given an action of agent i, the best response of agent j

in his feasible set of actions (qj ≥ 0) in scenario k is rjk(q
i) = αk−γkqi

2γk
if qi ≤ αk

γk
, and

rjk(q
i) = 0 if qi ≥ αk

γk
.

The Lemma below states that for optimistic agents there is at most one point,

qm, in the set of actions in which the optimistic best response switches from the best

response of scenario 1 to that of scenario 2.

Lemma 3.8. Assume that α1

γ1
< α2

γ2
in the game GUC

+ . Let qm = α1−α2

γ1−γ2−
1√
γ1γ2

α2γ1−α1γ2
γ1−γ2 .

For j = 1, 2 the best response function of an optimistic agent j, rjop, is given by

rjop(q
i) = rj1(q

i) for qi ≤ qm, and r
j
op(q

i) = rj2(q
i) for qi > qm.

The following result establishes that, also in case c) of Theorem 3.7, optimistic

equilibria exist and identifies the optimistic equilibria in the various cases.

Theorem 3.9. Assume that α1

γ1
< α2

γ2
. If α1 > α2 and 2α1

3γ1
< α1−α2

γ1−γ2 <
2α2

3γ2
, then

a) If qm < α1

3γ1
, then Eop(GUC

+ ) = {( α2

3γ2
, α2

3γ2
)}.

b) α1

3γ1
≤ qm ≤ α2

3γ2
, then Eop(GUC

+ ) = {( α1

3γ1
, α1

3γ1
), ( α2

3γ2
, α2

3γ2
)}.

c) qm > α2

3γ2
, then Eop(GUC

+ ) = {( α1

3γ1
, α1

3γ1
)}.

As a conclusion, in relation to the optimistic equilibria of the Cournot game under

uncertainty, any one of three situations is possible: the Cournot equilibrium for the

14
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Figure 4: Optimistic Equilibria.

first scenario is the optimistic equilibrium; the Cournot equilibrium for the second

scenario is the optimistic equilibrium; or both of them are optimistic equilibria.

Figure 4 illustrates two of these situations. Dotted lines represent the optimistic

best response of Firm 1, and dashed lines represent the optimistic best response of

Firm 2.

Two examples follow. In one of them, a unique optimistic equilibrium exists

which coincides with the Cournot equilibrium in scenario 2. In the other example,

the Cournot equilibria at the two scenarios are optimistic equilibria.

Example 3.10. Consider the Cournot game under uncertainty in which the demand

functions at scenario 1 and 2 are respectively: p = 10− 100q and p = 1− q. In this

case α1 = 10, γ1 = 100, α2 = 1, γ2 = 1. As α2

2γ2
> α1

γ1
, according to Corollary 2.5 b)

the set of Pareto equilibria is

PE(GUC
+ ) = conv{(1/30, 1/30), (1/3, 1/3), (1/10, 0), (1/2, 0), (0, 1/10), (0, 1/2)}.

Since qm = 0, the condition in Theorem 3.9 case a), holds and (1/3, 1/3) is the

optimistic equilibrium.

Note that the Cournot equilibrium in the first scenario is (1/30,1/30) which will

yield a profit equal to 1/9 for each firm at scenario 1. However, if one of the firms

produces 1/30, its optimistic opponent will adopt its best response in scenario 2

and produce 29/60, which will yiel higher profits if eventually scenario 2 is realized:

841/3600. Thus, (1/30, 1/30) is not an optimistic equilibrium. In contrast, if one of

15



the firms produces 1/3, the best response of the other firm in scenario 1 is 0, and

thus its profit equals 0. In scenario 2 the best response is 1/3, giving a profit of 2/3.

Therefore, (1/3, 1/3) is the optimistic equilibrium and the profit of each firm in the

optimistic equilibrium will be either 0 or 2/3.

In this uncertain Cournot game, the conservative equilibria are those Pareto

equilibria (q1, q2), such that q1 + q2 = 1/11. The quantity produced by each firm

in the set of conservative equilibria varies from 11/1210 to 9/110, and their profits

(which coincide in the two scenarios) varies accordingly between 1/121 and 9/121.

Example 3.11. Consider the Cournot game under uncertainty in which the demand

functions at scenario 1 and 2 are respectively: p = 300−150q and p = 100−30q. In

this case α1 = 300, γ1 = 150, α2 = 100, γ2 = 30. Therefore, α2

2γ2
≤ α1

γ1
and according

to corollary 2.5 a) the set of Pareto equilibria is

PE(GUC
+ ) = conv{(2/3, 2/3), (10/9, 10/9), (2/9, 14/9), (14/9, 2/9)}.

The Cournot equilibrium in scenario 1 is (2/3, 2/3), and the Cournot equilibrium

in scenario 2 is (10/9, 10/9). Since qm = 5−
√
5

3
, then (2/3, 2/3) and (10/9, 10/9) are

the optimistic equilibria for this uncertain Cournot game.

In this case, if both firms adopt the strategy corresponding to the Cournot

equilibria in scenario 1, then they obtain either 200/3 or 40. If they adopt the

strategy corresponding to scenario 2, they obtain, either 0 or 1000/27.

In this case, as can be expected, given the quantity of Cournot equilibrium in

scenario 1, the best response of the opponent in scenario 2 is 4/3 with a profit of

160/3, that is, less than 200/3, and therefore (2/3,2/3) is an equilibrium. And given

the quantity of Cournot equilibrium in scenario 2, the best response of the opponent

in scenario 1 is 4/9 with a profit of 800/27(less than 1000/27), and thus (10/9,10/9)

is an equilibrium.

In this uncertain Cournot game, the conservative equilibria are those Pareto

equilibria (q1, q2), such that q1 + q2 = 5/3. The quantity to produce by each firm

in the set of conservative equilibria varies from 1/3 to 4/3, and their profits (which

coincide in the two scenarios) varies accordingly between 50/3 and 200/3.

4 Concluding remarks

An alternative analysis of the Cournot duopoly under demand uncertainty, which

differs from those existing in the literature, is presented in this paper.
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The situations considered are formalized as normal-form games with vector-

valued utility functions. When no assumption about the firms’ attitude towards

risk can be made, then the set of equilibria to which the agents will arrive solely

depends on the quantities of perfect competition of the scenarios as is the case in the

classic Cournot equilibrium. In addition, the set of Pareto equilibria is a symmetric

set, although Pareto equilibria are not necessarily symmetric.

The introduction into the model of the attitude of the firms towards risk carries

a major implication on the equilibria that the firms will attain. The analysis of the

particular cases of pessimistic and optimistic firms provides interesting results. The

existence of equilibria when both firms are simultaneously pessimistic is established,

together with conditions on the parameters of the demand functions for the unicity

of the equilibrium. When there are multiple equilibria, a significant property is that

all of them yield the same price. In relation with situations in which both firms are

simultaneously optimistic, we also prove that equilibria always exist and we show

that any uncertain Cournot game has either a unique optimistic equilibrium, which

coincides with the Cournot equilibrium of one of the scenarios, or both Cournot

equilibria of the scenarios are optimistic equilibria.

The results presented in this paper constitute the starting point for a complete

study of the equilibria in the cases in which the risk-attitude of each agent is different.

This analysis may help to explain some real-world situations. For instance, the recent

financial crisis has highlighted the differences between firms with respect to attitude

towards risk and the potential equilibria should be investigated in this framework.

5 Appendix: proofs

Proof of Theorem 2.2: First note that since
α1

γ1
<
α2

γ2
, then ri1(q

j) < ri2(q
j) for

all qj ∈ Aj.
Consider a point (q̄1, q̄2) such that q̄1 < r11(q̄

2). Since each firm’s objective

function, Πi
k, is strictly concave in the firm’s own quantity, both Π1

1(q
1, q̄2) and

Π1
2(q

1, q̄2) are increasing for q1 ≤ r11(q̄
2), therefore, it follows that if agent 1 moves to

q̄1 + ε then his benefit will increase in both scenarios. Hence, (q̄1, q̄2) 6∈ PE(GUC).

Analogously, this holds for q̄1 > r12(q̄
2).

On the other hand, if r11(q̄
2) ≤ q̄1 ≤ r12(q̄

2), r21(q̄
1) ≤ q̄2 ≤ r22(q̄

1), then any

individual movement of one of the agents produces an increase of the benefit in one

of the scenarios and a decrease in the other, and therefore (q̄1, q̄2) ∈ PE(GUC).
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Proof of Theorem 2.4: The first inclusion (⊆) follows from the definition of

Pareto equilibrium.

The other inclusion is a consequence of the strict concavity of the benefit func-

tions. To proof it, consider q∗ = (q∗1, q∗2) ∈ PE(GUC
+ ). We will distinguish the

following cases:

a) q∗1, q∗2 > 0.

Suppose that the contrary is true: q∗ 6∈ PE(GUC). It follows that for an

agent, say agent 1, there exists an alternative, q1 < 0 such that u11(q
1, q∗2) ≥

u11(q
∗1, q∗2) and u12(q

1, q∗2) ≥ u12(q
∗1, q∗2) (with a strict inequality). Let q̄ =

(0, q∗2), 0 = λq1 + (1 − λ)q∗1 with λ ∈ (0, 1). It follows from the strict

concavity of u1k that u1k(q̄) > λu1k(q
1, q∗2) + (1 − λ)u1k(q

∗1, q∗2) ≥ u1k(q
∗1, q∗2).

This contradicts q∗ ∈ PE(GUC
+ ).

b) q∗1 > 0, q∗2 = 0 (or q∗1 = 0, q∗2 > 0).

Suppose that the contrary is true: q∗ 6∈ PE(GUC). Hence q1∗ < α1

γ1
or q1∗ > α2

2γ2
.

If q1∗ < α1

γ1
, then for a fixed q1∗, the benefit of agent 2, Π2

k(q
1∗, q2), is strictly

increasing for both k = 1, 2 at q2 = 0, and therefore, a strategy of agent 2

exists, q2 = ε with ε > 0 such that Π2
k(q

1∗, ε) > Π2
k(q

1∗, 0) for k = 1, 2. This

contradicts q∗ ∈ PE(GUC
+ ).

If q1∗ > α2

2γ2
, then the benefit of agent 1 when q2 fixed at 0, Π1

k(q
1, 0) is

strictly decreasing for both k = 1, 2, and therefore, ε > 0 exists, such that, for

q1 = q1∗−ε > 0, Π2
k(q

1∗−ε, 0) > Π2
k(q

1∗, 0) holds for k = 1, 2. This contradicts

q∗ ∈ PE(GUC
+ ).

c) q∗1 = 0, q∗2 = 0. The reasoning is analogous to that above.

Proof of Proposition 3.3: Let (q∗1, q∗2) be a conservative equilibrium for the

Cournot game GUC
+ , and suppose to the contrary that it is not a Pareto equilibrium.

It follows that, for a firm i, a strategy qi ∈ R+ exists such that Πi
k(q

i, q∗j) ≥
Πi
k(q
∗i, q∗j) for k = 1, 2 (with a strict inequality).

Therefore, since Πi
k(q
∗i, q∗j) ≥ Πi

c(q
∗i, q∗j) for k = 1, 2, then Πi

k(q
i, q∗j) ≥ Πi

c(q
∗i, q∗j)

for k = 1, 2 and Πi
c(q

i, q∗j) ≥ Πi
c(q
∗i, q∗j). Thus qi ∈ R+ exists such that Πi

c(q
i, q∗j) ≥

Πi
c(q
∗i, q∗j), which is a contradiction with (q∗1, q∗2) being a conservative equilibrium.
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Proof of Theorem 3.4: To prove our result we consider several cases which depend

on the relative positions of the demand functions in the two scenarios. Recall that
α1

γ1
< α2

γ2
, and note that the conservative utility function, Πi

c coincides with Πi
1 for

(q1, q2) such that (γ1 − γ2)(q1 + q2) ≥ α1 − α2, and coincides with Πi
2 otherwise.

a1) α1 ≤ α2 and γ1 > γ2.

It is easy to see that in this case Πi
c(q

1, q2) = Πi
1(q

1, q2) if and only if q1 + q2 ≥
α1−α2

γ1−γ2 . However, since α1−α2

γ1−γ2 ≤ 0, it follows that Πi
c(q

1, q2) = Πi
1(q

1, q2) for

all q1, q2 ≥ 0 and therefore the conservative equilibria coincide with that of

scenario 1, Ec(GUC
+ ) = {( α1

3γ1
, α1

3γ1
)}.

a2) α1 ≤ α2 and γ1 < γ2.

Here Πi
c(q

1, q2) = Πi
1(q

1, q2) if and only if q1 + q2 ≤ α1−α2

γ1−γ2 , and Πi
c(q

1, q2) =

Πi
2(q

1, q2) if and only if q1 + q2 ≥ α1−α2

γ1−γ2 . Since, by Lemma 3.1, α1−α2

γ1−γ2 > α2

γ2
,

then the whole set of Pareto Equilibria lies in the region where the conservative

function coincides with the benefit in scenario 1. It is easy to prove that in

this case the conservative equilibrium also coincides with that of scenario 1,

Ec(GUC
+ ) = {( α1

3γ1
, α1

3γ1
)}.

a3) α1 ≤ α2 and γ1 = γ2.

It is straightforward that in this case Πi
c(q

1, q2) = Πi
1(q

1, q2) for all (q1, q2),

and hence Ec(GUC
+ ) = {( α1

3γ1
, α1

3γ1
)}.

We will now analyse the cases in which α1 > α2.

For these values, γ1 > γ2, by Lemma 3.1 α1−α2

γ1−γ2 <
α1

γ1
holds, and

Πi
c(q

1, q2) =

{
qi(α2 − γ2(q1 + q2)) if q1 + q2 ≤ α1−α2

γ1−γ2
qi(α1 − γ1(q1 + q2)) if q1 + q2 ≥ α1−α2

γ1−γ2

Several subcases are now determined:

b) α1−α2

γ1−γ2 ≤
2α1

3γ1
.

For these values of the parameters, the whole set of Pareto equilibria lies

in the region where the conservative function coincides with the benefit in

scenario 1, and the conservative equilibria coincide with that of scenario 1,

Ec(GUC
+ ) = {( α1

3γ1
, α1

3γ1
)}.

19



c) 2α1

3γ1
< α1−α2

γ1−γ2 <
2α2

3γ2
.

To prove that a point (q1∗, q2∗) ∈ PE(GUC
+ ) with q1∗ + q2∗ =

α1 − α2

γ1 − γ2
is a

conservative equilibrium, we rely on the strict concavity of Πi
k(q

i, qj∗).

Suppose that agent 1 deviates from (q1∗, q2∗) by adopting strategy q1. If

q1 > q1∗, then since Π1
1(q

1, q2∗) is decreasing, then her utility decreases since

Π1
c(q

1, q2∗) = Π1
1(q

1, q2∗) < Π1
1(q

1∗, q2∗) = Π1
c(q

1∗, q2∗). If q1 < q1∗ then

Π1
c(q

1, q2∗) = Πi
2(q

1, qj∗). However, in this region, Π1
2(q

1, q2∗) is increasing

and therefore Π1
2(q

1, q2∗) < Π1
2(q

1∗, q2∗) = Π1
c(q

1∗, q2∗).

Analogous reasoning with the deviations of agent 2, leads us to the result.

Consider now a point (q1∗, q2∗) ∈ PE(GUC
+ ) with q1∗ + q2∗ <

α1 − α2

γ1 − γ2
.

In this region, Πi
c(q

1, q2) = Π1
2(q

1, q2) and given the action of one of the firms,

the benefit at scenario 2 is strictly increasing in its own action. Therefore, any

of the firms will improve its utility by increasing its quantity, and the point is

not a conservative equilibrium.

d) 2α2

3γ2
≤ α1−α2

γ1−γ2 .

In this case, the set of Pareto equilibria lies in the region where the conservative

utility coincides with the benefit at scenario 2 and the conservative equilibria

coincides with that of scenario 2.

Proof of Proposition 3.6: Let (q∗1, q∗2) be an optimistic equilibrium for the

Cournot game GUC
+ , and suppose to the contrary that it is not a Pareto equilib-

rium. It follows that, for a firm i, a strategy qi ∈ R+ exists such that Πi
k(q

i, q∗j) ≥
Πi
k(q
∗i, q∗j) for k = 1, 2 (with a strict inequality). As a consequence, since Πi

op(q
i, q∗j) ≥

Πi
k(q

i, q∗j) for i = 1, 2, then Πi
op(q

i, q∗j) ≥ Πi
k(q
∗i, q∗j) for k = 1, 2, and therefore

Πi
op(q

i, q∗j) ≥ Πi
op(q

∗i, q∗j). This contradicts (q∗1, q∗2) being an optimistic equilib-

rium.

Proof of Theorem 3.7: Recall that α1

γ1
< α2

γ2
, and note that the optimistic utility

function Πi
op coincides with Πi

1 for those (q1, q2) such that (γ1−γ2)(q1+q2) ≤ α1−α2,

and coincides with Πi
2 otherwise. Several subcases can be determined:

a1) α1 ≤ α2 and γ1 > γ2.

In this case, Πi
op(q

1, q2) = Πi
2(q

1, q2) if and only if q1 + q2 ≥ α1−α2

γ1−γ2 . How-

ever, since α1−α2

γ1−γ2 ≤ 0, it follows that Πi
op(q

1, q2) = Πi
2(q

1, q2) for all q1, q2 ≥
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0 and therefore the optimistic equilibria coincides with that of scenario 2,

Eop(GUC
+ ) = {( α2

3γ2
, α2

3γ2
)}.

a2) α1 ≤ α2 and γ1 < γ2.

In this case Πi
op(q

1, q2) = Πi
2(q

1, q2) if and only if q1 + q2 ≤ α1−α2

γ1−γ2 , and

Πi
op(q

1, q2) = Πi
1(q

1, q2) if and only if q1 + q2 ≥ α1−α2

γ1−γ2 . Since, by Lemma 3.1,
α1−α2

γ1−γ2 > α2

γ2
holds, then the whole set of Pareto Equilibria lies in the region

where the optimistic function coincides with the benefit in scenario 2 and the

optimistic equilibria coincide with that of scenario 2, Eop(GUC
+ ) = {( α2

3γ2
, α2

3γ2
)}.

a3) α1 ≤ α2 and γ1 = γ2.

It is straightforward that in this case Πi
c(q

1, q2) = Πi
2(q

1, q2) for all (q1, q2),

and hence Ec(GUC
+ ) = {( α2

3γ2
, α2

3γ2
)}.

We now analyse the cases in which α1 > α2.

For these values, γ1 > γ2. By Lemma 3.1, α1−α2

γ1−γ2 <
α1

γ1
holds and

Πi
op(q

1, q2) =

{
qi(α1 − γ1(q1 + q2)) if q1 + q2 ≤ α1−α2

γ1−γ2
qi(α2 − γ2(q1 + q2)) if q1 + q2 ≥ α1−α2

γ1−γ2

We distinguish several sub-cases.

b) α1−α2

γ1−γ2 <
2α1

3γ1
.

It is easy to see that since the whole set of Pareto equilibria lies in the region

where Πop coincides with Π2, then the only candidate to be an optimistic

equilibria is ( α2

3γ2
, α2

3γ2
). To prove that this point is the optimistic equilibrium,

consider the possible deviations of firm 1 from ( α2

3γ2
, α2

3γ2
). If, by deviating,

(q1, α2

3γ2
) remains in the region where Πop coincides with Π2, then its benefit

decreases. On the other hand, if a negative deviation takes (q1, α2

3γ2
) outside

this region then Πop(q
1, α2

3γ2
) = Π1(q

1, α2

3γ2
). Note that, since Π1 is strictly

increasing in q1, then Π1(q
1, α2

3γ2
) < Π1(q̄

1, α2

3γ2
) = Π2(q̄

1, α2

3γ2
), where q̄1 is such

that q̄1+ α2

3γ2
= α1−α2

γ1−γ2 . Now note that Π2(q̄
1, α2

3γ2
) < Π2(

α2

3γ2
, α2

3γ2
) = Πop(

α2

3γ2
, α2

3γ2
).

Therefore, any deviation from ( α2

3γ2
, α2

3γ2
) yields a strict decrease of the firm’s

optimistic utility. As a consequence ( α2

3γ2
, α2

3γ2
) is the optimistic equilibrium.

c) 2α1

3γ1
< α1−α2

γ1−γ2 <
2α2

3γ2
.

We will prove that only ( α1

3γ1
, α1

3γ1
) and ( α2

3γ2
, α2

3γ2
) can be optimistic equilibria.

21



1) Given a point (q1, q2) ∈ PE(GUC
+ ) in the interior of PE(GUC

+ ), any of the

agents can deviate to his best response corresponding to the scenario in which

the optimistic function coincides with the benefit.

2) Consider now (q1, q2) ∈ PE(GUC
+ )\{( α1

3γ1
, α1

3γ1
), ( α2

3γ2
, α2

3γ2
)} which lies on some

of the best response lines. Assume without loss of generality that q2 = r21(q
1)

or q2 = r22(q
1):

-If q2 = r21(q
1) and q1 + q2 ≤ α1 − α2

γ1 − γ2
, then, since q1 is not the best response

of agent 1 to this q2, then agent 1 will improve his benefit by moving to his

best response line in scenario 1.

- If q2 = r21(q
1) and q1 + q2 ≥ α1 − α2

γ1 − γ2
, then agent 2 will improve its benefit

by moving to his best response line in scenario 2.

-If q2 = r22(q
1) and q1 + q2 ≤ α1 − α2

γ1 − γ2
, then agent 2 will improve his benefit

by moving to his best response line in scenario 1.

- If q2 = r22(q
1) and q1 + q2 ≥ α1 − α2

γ1 − γ2
, then agent 1 will improve his benefit

by moving to his best response line in scenario 2.

3) If (q1, q2) ∈ PE(GUC
+ ) with q2 = 0 and lies on the boundary of PE(GUC

+ ),

then q1 ≥ α1

γ1
. As a consequence of Lemma 3.1, α1−α2

γ1−γ2 ≤
α1

γ1
holds and it follows

that at this point the optimistic utility coincides with the benefit in scenario

2. In this situation, firm 2 can improve its optimistic utility by adopting a

strategy q̄2 > 0. Therefore, (q1, 0) is not an optimistic equilibrium.

Analogous reasoning is valid if If (q1, q2) ∈ PE(GUC
+ ) with q1 = 0 and lies on

the boundary of PE(GUC
+ ).

d) 2α2

3γ2
< α1−α2

γ1−γ2 .

The reasoning is analogous to that of sub-case a3).

Proof of Lemma 3.8: When the strategy of agent 1 is q1 ≤ α1

γ1
, agent 2 has

the possibility of adopting the best response function corresponding to the first

scenario or to the second scenario. If agent 2 is optimistic, then he only considers

the maximum of the benefits he obtains with these best responses, that is, the

maximum of the following two quantities:

Π2
1(q

1, r21(q
1)) =

(α1 − γ1q1)2

4γ1
, Π2

2(q
1, r22(q

1)) =
(α2 − γ2q1)2

4γ2
.
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In other words, for q1 ≤ α1

γ1
, the best response of agent 2 is r2op(q

1) = r2k(q
1) where

for each q1, k is such that

(αk − γkq1)2

4γk
= max{(α1 − γ1q1)2

4γ1
,

(α2 − γ2q1)2

4γ2
}.

On the other hand, when q1 ≥ α1

γ1
, then the best response of agent 2 at scenario

1 is r21(q
1) = 0 and therefore r2op(q

1) = r22(q
1).

Note that, as a consequence of the symmetry of our model, for each q ≤ α1

γ1
,

Π2
1(q, r

2
1(q)) = Π1

1(r
1
1(q), q) and Π2

2(q, r
2
1(q)) = Π1

2(r
1
2(q), q). Hence, for q ≤ α1

γ1
, the

best response of agent 1, r1op(q), is attained for the same scenario as the best response

for agent 2, r2op(q). On the other hand if q ≥ α1

γ1
, then r1op(q) = r12(q).

It is important to identify at which values of the strategy of his opponent, an

optimistic agent switches from reacting with the best response at one scenario to

reacting with the best response at the other scenario. The values of q for which the

benefit obtained in scenario 1 with the best response in scenario 1 coincides with the

benefit in scenario 2 with the best response in scenario 2 are the values for which

agent 2 will change from one of the best responses to the other. These values are

obtained by solving the equation

(α1 − γ1q)2

4γ1
=

(α2 − γ2q)2

4γ2
.

Denote these quantities as qm and qM :

qm =
α1 − α2

γ1 − γ2
− 1
√
γ1γ2

α2γ1 − α1γ2
γ1 − γ2

, qM =
α1 − α2

γ1 − γ2
+

1
√
γ1γ2

α2γ1 − α1γ2
γ1 − γ2

.

A first remarkable fact is that one and only one of these switching points is

below α1

γ1
. That is, qm < α1

γ1
< qM : Clearly qm < α1−α2

γ1−γ2 , and it follows from Lemma

3.1 that α1−α2

γ1−γ2 ≤
α1

γ1
, therefore the first inequality holds. The second inequality

is obtained by taking into account that in this case γ2 < γ1, and by performing

algebraic operations.

Now note that both Π2
1(q, r

2
1(q)) = (α1−γ1q)2

4γ1
and Π2

2(q, r
2
2(q)) = (α2−γ2q)2

4γ2
are

convex parabolic functions attaining their minima at α1

γ1
and α2

γ2
respectively. Hence,

for q < α1

γ1
they are both decreasing. Since for q = α1

γ1
, Π2

2(q, r
2
2(q)) > Π2

1(q, r
2
1(q)),

it follows that Π2
2(q, r

2
2(q)) > Π2

1(q, r
2
1(q)) for those q such that qm < q < α1

γ1
. It also

follows that Π2
1(q, r

2
1(q)) > Π2

2(q, r
2
2(q)) for all q < qm.

As a consequence, given an action of one of the agents q ≥ 0, the best response

of the optimistic opponent is: For q < qm, r2op(q) = r21(q) = r1op(q) = r11(q). For all

q > qm, r2op(q) = r22(q) = r1op(q) = r12(q).
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Proof of Proposition 3.9: From Theorem 3.7 it is known that the only points

which can be optimistic equilibria are the Cournot equilibria of the two scenarios.

We will analyse whether they are or not:

a) qm < α1

3γ1
.

In this case, r2op(
α1

3γ1
) = r22(

α1

3γ1
) 6= α1

3γ1
and therefore ( α1

3γ1
, α1

3γ1
) is not an opti-

mistic equilibria.

On the other hand, since qm < α2

3γ2
also holds, then r2op(

α2

3γ2
) = r22(

α2

3γ2
) = α2

3γ2
.

Symmetrically, r1op(
α2

3γ2
) = r12(

α2

3γ2
) = α2

3γ2
.

It follows that ( α2

3γ2
, α2

3γ2
) is the unique optimistic equilibrium in this case.

b) α1

3γ1
≤ qm ≤ α2

3γ2
.

In this case, r2op(
α1

3γ1
) = r21(

α1

3γ1
) = α1

3γ1
and symmetrically r1op(

α1

3γ1
) = α1

3γ1
. There-

fore ( α1

3γ1
, α1

3γ1
) is an optimistic equilibria.

Analogous reasoning leads us to conclude that ( α2

3γ2
, α2

3γ2
) is also an optimistic

equilibrium.

c) qm > α2

3γ2
. By using an identical argument as in case b), we conclude that

( α1

3γ1
, α1

3γ1
) is an optimistic equilibrium. By a reasoning to that of case a), it can

be proven that ( α2

3γ2
, α2

3γ2
) is not an optimistic equilibrium.
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