Hindawi

Complexity

Volume 2017, Article ID 7208216, 10 pages
https://doi.org/10.1155/2017/7208216

Research Article

WILEY

Hindawi

A Computable Measure of Algorithmic Probability by
Finite Approximations with an Application to Integer Sequences

Fernando Soler-Toscano"? and Hector Zenil*>*

'Grupo de Légica, Lenguaje e Informacién, Universidad de Sevilla, Sevilla, Spain

2Algorithmic Nature Group, LABORES, Paris, France

’ Algorithmic Dynamics Lab, Center for Molecular Medicine, Science for Life Laboratory (SciLifeLab), Department of Medicine,
Solna, Karolinska Institute, Stockholm, Sweden

*Group of Structural Biology, Department of Computer Science, University of Oxford, Oxford, UK

Correspondence should be addressed to Hector Zenil; hzenilc@gmail.com
Received 19 February 2017; Revised 22 June 2017; Accepted 7 August 2017; Published 21 December 2017
Academic Editor: Giacomo Innocenti

Copyright © 2017 Fernando Soler-Toscano and Hector Zenil. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity and
that, usually, generic lossless compression algorithms fall short at characterizing features other than statistical ones not different
from entropy evaluations, here we explore an alternative and complementary approach. We study formal properties of a Levin-
inspired measure m calculated from the output distribution of small Turing machines. We introduce and justify finite approxima-
tions 11, that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic
(Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both m and m1, and compare them to Levins
Universal Distribution. We provide error estimations of i, with respect to . Finally, we present an application to integer sequences
from the On-Line Encyclopedia of Integer Sequences, which suggests that our AP-based measures may characterize nonstatistical

patterns, and we report interesting correlations with textual, function, and program description lengths of the said sequences.

1. Algorithmic Information Measures

Central to Algorithmic Information Theory is the definition
of algorithmic (Kolmogorov-Chaitin or program-size) com-
plexity [1, 2]:

Ky (s) = min{|p[, T (p) = s}, M

where p is a program that outputs s running on a universal
Turing machine T and |p| is the length in bits of p. The
measure was first conceived to define randomness and is
today the accepted objective mathematical measure of ran-
domness, among other reasons, because it has been proven
to be mathematically robust [3]. In the following, we use
K(s) instead of K(s) because the choice of T'is only relevant
up to an additive constant (invariance theorem). A technical
inconvenience of K as a function taking s to be the length of
the shortest program that produces s is its uncomputability.
In other words, there is no program that takes a string

s as input and produces the integer K(s) as output. This
is usually considered a major problem, but one ought to
expect a universal measure of randomness to have such a
property.

In previous papers [4, 5], we have introduced a novel
method to approximate K based on the seminal concept of
algorithmic probability (or AP), introduced by Solomonoft
[6] and further formalized by Levin [3] who proposed the
concept of uncomputable semimeasures and the so-called
Universal Distribution.

Levin’s semimeasure (it is called a semimeasure because,
unlike probability measures, the sum is never 1. This is due
to the Turing machines that never halt) m defines the so-
called Universal Distribution [7], with the value m(s) being
the probability that a random program halts and produces s
running on a universal Turing machine T'. The choice of T is
only relevant up to a multiplicative constant, so we will simply
write m instead of m.

https://doi.org/10.1155/2017/7208216

It is possible to use m(s) to approximate K(s) by means of
the following theorem.

Theorem 1 (algorithmic coding theorem [3]). There is a
constant c such that

l—logzm (s) — K(s)| <c. 2)

This implies that if a string s has many descriptions (high
value of m(s), as the string is produced many times, which
implies a low value of —log,m(s), given that m(s) < 1),
it also has a short description (low value of K(s)). This is
because the most frequent strings produced by programs of
length 7 are those which were already produced by programs
of length n — 1, as extra bits can produce redundancy in
an exponential number of ways. On the other hand, strings
produced by programs of length n which could not be
produced by programs of length n — 1 are less frequently
produced by programs of length #, as only very specific
programs can generate them (see Section 14.6 in [8]). This
theorem elegantly connects probability to complexity—the
frequency (or probability) of occurrence of a string with
its algorithmic (Kolmogorov-Chaitin) complexity. It implies
that [4] one can calculate the Kolmogorov complexity of a
string from its frequency [4], simply rewriting the formula as

K (s) = =log,m (s) + O(1). (3)

Thanks to this elegant connection established by (2) between
algorithmic complexity and probability, our method can
attempt to approximate an algorithmic probability measure
by means of finite approximations using a fixed model of
computation. The method is called the Coding Theorem
Method (CTM) [5].

In this paper, we introduce m, a computable approx-
imation to m which can be used to approximate K by
means of the algorithmic coding theorem. Computing m(s)
requires the output of a numerable infinite number of
Turing machines, so we first undertake the investigation of
finite approximations m(s) that require only the output of
machines up to k states. A key property of m and K is
their universality: the choice of the Turing machine used to
compute the distribution is only relevant up to an (additive)
constant, independent of the objects. The computability of
this measure implies its lack of universality. The same is
true when using common lossless compression algorithms
to approximate K, but on top of their nonuniversality in the
algorithmic sense, they are block entropy estimators as they
traverse files in search of repeated patterns in a fixed-length
window to build a replacement dictionary. Nevertheless, this
does not prevent lossless compression algorithms from find-
ing useful applications in the same way as more algorithmic-
based motivated measures can contribute even if also limited.
Indeed, m has found successful applications in cognitive
sciences [9-13] and in financial time series research [14] and
graph theory and networks [15-17]. However, a thorough
investigation to explore the properties of these measures and
to provide theoretical error estimations was missing.

We start by presenting our Turing machine formalism
(Section 2) and then show that it can be used to encode a

Complexity

prefix-free set of programs (Section 3). Then, in Section 4,
we define a computable algorithmic probability measure m
based on our Turing machine formalism and prove its main
properties, both for m and for finite approximations m1,. In
Section 5, we compute s, compare it with our previous
distribution D(5) [5], and estimate the error in m as an
approximation to m. We finish with some comments in
Section 7.

2. The Turing Machine Formalism

We denote by (1, 2) the class (or space) of all n-state 2-symbol
Turing machines (with the halting state not included among
the n states) following the Busy Beaver Turing machine
formalism as defined by Radd [18]. Busy Beaver Turing
machines are deterministic machines with a single head and a
single tape unbounded in both directions. When the machine
enters the halting state, the head no longer moves and the
output is considered to comprise only the cells visited by
the head prior to halting. Formally, we have the following
definition.

Definition 2 (Turing machine formalism). We designate as
(n,2) the set of Turing machines with two symbols {0, 1} and
n states {1,...,n} plus a halting state 0. These machines have
2n entries (s, k;) (for s € {1,...,n} and k € {0,1}) in the
transition table, each with one instruction that determines
their behavior. Such entries are represented by

(51>k1) - (52>k27d) > (4)

where s, and k, are, respectively, the current state and the
symbol being read and (s,, k,, d) represents the instruction
to be executed: s, is the new state, k, is the symbol to write,
and d is the direction. If s, is the halting state 0, then d = 0;
otherwise d is 1 (right) or —1 (left).

Proposition 3. Machines in (n,2) can be enumerated from 0
to(dn+2)"" - 1.

Proof. Given the constraints in Definition 2, for each transi-
tion of a Turing machine in (n, 2), there are 4n + 2 different
instructions (s,, k,, d). These are 2 instructions when s, = 0
(given thatd = 01is fixed and k, can be one of the two possible
symbols) and 4# instructions if s, # 0 (2 possible moves, n
states, and 2 symbols). Then, considering the 27 entries in the
transition table,

(n,2)] = (4n +2)™". (5)

These machines can be enumerated from 0 to |(1,2)| — 1.
Several enumerations are possible. We can, for example, use
a lexicographic ordering on transitions (4). O

For the current paper, consider that some enumeration
has been chosen. Thus, we use 7, to denote the machine
number ¢ in (1, 2) following that enumeration.

Complexity

3. Turing Machines as a Prefix-Free
Set of Programs

We show in this section that the set of Turing machines
following the Busy Beaver formalism can be encoded as a
prefix-free set of programs capable of generating any finite
nonempty binary string.

Definition 4 (execution of a Turing machine). Let 7 € (n,2)
be a Turing machine. We denote by 7(i) the execution of 7
over an infinite tape filled with 7 (a blank symbol), where i €
{0, 1}. We write (i) | if 7(¢) halts and 7(i) T otherwise. We
write 7(i) = s if

@) @)

(ii) sis the output string of 7(i), defined as the concatena-
tion of the symbols in the tape of T which were visited
at some instant of the execution 7(i).

As Definition 4 establishes, we are only considering
machines running over a blank tape with no input. Observe
that the output of 7(i) considers the symbols in all cells of
the tape written on by 7 during the computation, so the
output contains the entire fragment of the tape that was used.
To produce a symmetrical set of strings, we consider both
symbols 0 and 1 as possible blank symbols.

Definition 5 (program). A program p is a triplet (n,i,t),
where

(i) n > 1 is a natural number,
(i) i € {0, 1},
(iii) 0 < ¢ < (4n +2)*".

We say that the output of p is s if and only if 7;'(i) = s.

Programs can be executed by a universal Turing machine
that reads a binary encoding of (n,i,t) (Definition 6) and
simulates 7;'(i). Trivially, for each finite binary string s with
length |s| > 0, there is a program p that outputs s.

Now that we have a formal definition of programs, we
show that the set of valid programs can be represented as a
prefix-free set of binary strings.

Definition 6 (binary encoding of a program). Let p = (n,1,t)
be a program (Definition 5). The binary encoding of p is a
binary string with the following sequence of bits:

(i) First, there is 17710, that is, n — 1 repetitions of 1
followed by 0. This way we encode 7.

(ii) Second, a bit with value i encodes the blank symbol.

(iii) Finally, t is encoded using [log, ((4n + 2)*M)1 bits.

The use of [log,((4n + 2)*")] bits to represent t ensures
that all programs with the same 7 are represented by strings
of equal size. As there are (4n + 2)*" machines in (1,2),
with these bits we can represent any value of ¢. The process
of reading the binary encoding of a program p = (n,i,t)

and simulating 77’ (i) is computable, given the enumeration of
Turing machines.

As an example, this is the binary representation of the
program (2,0, 185).

[1 0[0[]00O0OO0O0O01011T100 1]

The proposed encoding is prefix-free; that is, there is no
pair of programs p and p' such that the binary encoding of p
is a prefix of the binary encoding of p’. This is because the n
initial bits of the binary encoding of p = (n,i,t) determine
the length of the encoding. So p' cannot be encoded by a
binary string having a different length but the same 7 initial
bits.

Proposition 7 (programming by coin flips). Every source
producing an arbitrary number of random bits generates a
unique program (provided it generates at least one 0).

Proof. The bits in the sequence are used to produce a unique
program following Definition 6. We start by producing the
first n part by selecting all bits until the first 0 appears. Then
the next bit gives i. Finally, as we know the value of n, we take
the following [log, ((4n + 2)’™)] bits to set the value of ¢. It is
possible that, constructing the program in this way, the value
of t is greater than the maximum (4n+2)*"—1 in the enumera-
tion, in which case we associate the program with some trivial
nonhalting Turing machine, for example, a machine with the
initial transition staying at the initial state. O

The idea of programming by coin flips is very common
in Algorithmic Information Theory. It produces a prefix-
free coding system; that is, there is no string w encoding
a program p which is a prefix of a string wz encoding a
program p' # p. These coding systems make longer programs
(for us, Turing machines with more states) exponentially less
probable than short programs. In our case, this is because of
the initial sequence of n — 1 repetitions of 1, which are pro-
duced with probability 1/2"~". This observation is important
because when we later use machines in Uﬁzl(n, 2) to reach
a finite approximation of our measure, the greater k is, the
exponentially smaller the error we will be allowing: the prob-
ability of producing by coin flips a random Turing machine
with more than k states decreases exponentially with k [8].

4. A Levin-Style Algorithmic Measure

Definition 8. Given a Turing machine &/ accepting a prefix-
free set of programs, the probability distribution of & is
defined as

1

Py()= Y (6)

p:A(p)=s

where o/(p) is equal to s if and only if </ halts with input p
and produces s. The length in bits of program p is represented

by [pl.

If &/ is a universal Turing machine, P_,(s) measures how
frequently the output s is generated when running random

programs at /. Given that the sum of P,(s) for all strings
is not 1 (nonhalting programs not producing any strings are
counted in 2'7), it is said to be a semimeasure, also known as
Levin’s distribution [3]. The distribution is universal in the
sense that the choice of &/ (among all the infinite possible
universal reference Turing machines) is only relevant up to
a multiplicative constant and that the distribution is based on
the universal model of Turing computability.

Definition 9 (distribution m(s)). Let . be a Turing machine
executing the programs introduced in Definition 5. Then,
m(s) is defined by

m(s) =Py (s). 7)

Theorem 10. For any binary string s,

m(s)

_Slrem)ir@=dirlircmrm =g
n=1

2n+1+[10g2((4n+2)2")]

Proof. By Definition 6, the length of the encoding of program
p={ni,t)yisn+1+/[log,((4n+ 2)2")]. It justifies the denom-
inator of (8), as (6) requires it to be 2/Pl. For the numerator,
observe that the set of programs producing s with the same n
value corresponds to all machines in (1, 2) producing s with
either 0 or 1 as blank symbol. Note that if a machine produces
s both with 0 and 1, it is counted twice, as each execution is
represented by a different program (that differ only as to the
i digit). O

4.1. Finite Approximations to m. The value of m(s) for any
string s depends on the output of an infinite set of Turing
machines, so we have to manage ways to approximate it.
The method proposed in Definition 11 approximates m(s) by
considering only a finite number of Turing machines up to a
certain number of states.

Definition 11 (finite approximation 1 (s)). The finite approx-
imation to m(s) bound to k states, m1,(s), is defined as

my (s)

on+1+(log, ((4n+2)*)]

_lircmdlr@=slslrcm)lrm=si
n=1

Proposition 12 (convergence of m1,(s) to m(s)).

1
Z |m(s) —my (5)| < % (10)
se(0+1)*

Proof. By (8) and (9),

Z |m(s)—mk(s)|= Z m(s) — Z my (s)

se(0+1)* se(0+1)* se(0+1)*

i 2 (4n +2)*"

n=k+1 m

Complexity

i 2(4n+2)*"
S 2n 2 2logs (42
— \ 1 1
ke 2" 2k*
(11)
]

Proposition 12 ensures that the sum of the error in n1,(s)
as an approximation to my(s), for all strings s, decreases
exponentially with k. The question of this convergence was
first broached in [19]. The bound of 1/2* has only theoretical
value; in practice, we can find lower bounds. In fact, the proof
counts all 2(4n + 2)2” programs of size n to bound the error
(and many of them do not halt). In Section 5.1, we provide
a finer error calculation for m; by removing from the count
some very trivial machines that do not halt.

4.2. Properties of m and my. Levin’s distribution is char-
acterized by some important properties. First, it is lower
semicomputable; that is, it is possible to compute lower
bounds for it. Also, it is a semimeasure, because the sum of
probabilities for all strings is smaller than 1. The key property
of Levins distribution is its universality: a semimeasure P is
universal if and only if for every other semimeasure P’ there
exists a constant ¢ > 0 (that may depend only on P and
P') such that, for every string s, ¢ - P(s) > P'(s). That is, a
distribution is universal if and only if it dominates (modulo
a multiplicative constant) every other semimeasure. In this
section, we present some results pertaining to the compu-
tational properties of m and my.

Proposition 13 (runtime bound). Given any binary strings, a

machine with k states producing s runs a maximum of 2'*'-|s| -k
steps upon halting or never halts.

Proof. Suppose that a machine 7 produces s. We can trace
back the computation of 7 upon halting by looking at the
portion of [s| cells in the tape that will constitute the output.
Before each step, the machine may be in one of k possible
states, reading one of the [s| cells. Also, the [s| cells can be
filled in 2'* ways (with a 0 or 1 in each cell). This makes for
2M. |s| - k different possible instantaneous descriptions of the
computation. So any machine may run, at most, that number
of steps in order to produce s. Otherwise, it would produce
a string with a greater length (visiting more than [s| cells) or
enter a loop. O

Observe that a key property of our output convention is
that we use all visited cells in the machine tape. This is what
gives us the runtime bound which serves to prove the most
important property of 1, its computability (Theorem 14).

Theorem 14 (computability of m). Given k and s, the value
of my(s) is computable.

Proof. According to (9) and Proposition 3, there is a finite
number of machines involved in the computation of m,(s).

Complexity

Also, Proposition 13 sets the maximum runtime for any of
these machines in order to produce s. So an algorithm to
compute my (s) enumerates all machines in (n,2), 1 < n <k,
and runs each machine to the corresponding bound. O

Corollary 15. Given a binary string s, the minimum k with
my(s) > 0 is computable.

Proof. Trivially, s can be produced by a Turing machine with
|s| states in just s steps. At each step i, this machine writes the
ith symbol of s, moves to the right, and changes to a new state.
When all symbols of s have been written, the machine halts.
So, to get the minimum k with m,(s) > 0, we can enumerate
all machines in (n,2), 1 < n < |s], and run all of them up to
the runtime bound given by Proposition 13. The first machine
producing s (if the machines are enumerated from smaller to
larger size) gives the value of k. O

Now, some uncomputability results of 1 are given.

Proposition 16. Given k, the length of the longest s with
my(s) > 0 is noncomputable.

Proof. We proceed by contradiction. Suppose that such a
computable function as I(k) gives the length of the longest s
with m,.(s) > 0. Then ?I(k), together with the runtime bound
in Proposition 13, provides a computable function that gives
the maximum runtime that a machine in (k, 2) may run prior
to halting. But it contradicts the uncomputability of the Busy
Beaver [18]: the highest runtime of halting machines in (k, 2)
grows faster than any computable function. O

Corollary 17. Given k, the number of different strings s with
my(s) > 0 is noncomputable.

Proof. Also by contradiction, if the number of different
strings with m1,(s) > 0 is computable, we can run in parallel
all machines in (k,2) until the corresponding number of
different strings has been found. This gives us the longest
string, which is in contradiction to Proposition 16. O

Now to the key property of m, its computability is
demonstrated.

Theorem 18 (computability of m). Given any nonempty
binary string, m(s) is computable.

Proof. Aswe argued in the proof of Corollary 15, a nonempty
binary string s can be produced by a machine with |s| states.
Trivially, it is then also produced by machines with more
than [s| states. So, for every nonempty string s, the value
of m(s), according to (8), is the sum of enumerable infinite
many rationals which produce a real number. A real number
is computable if and only if there is some algorithm that, given
n, returns the first n digits of the number. And this is what
my(s) does. Proposition 12 enables us to calculate the value
of k such that m,(s) provides the required digits of m(s), as

m(s) — my(s) is bounded by 1/2k. O

The subunitarity of m and my, implies that the sum of m(s)
(or my(s)) for all strings s is smaller than one. This is because
of the nonhalting machines.

Proposition 19 (subunitarity). The sum of m(s) for all strings
s is smaller than 1; that is,

se(0+1)*
Proof. By using (8),
Z m(s)
se(0+1)*
(13)

_ i {te®2)|7(0) }|+Hre®2)|7(1) U

2n+1+[log2((4n+2)2")]

but [{r € (1,2) | 7(0) [} + {7 € (n,2) | 7(1) |}| is the num-
ber of machines in (1,2) which halt when starting with a
blank tape filled with 0 plus the number of machines in (1, 2)
which halt when starting on a blank tape filled with 1. This
number is at most twice the cardinality of (1, 2), but we know
that it is smaller, as there are very trivial machines that do not
halt, such as those without transitions to the halting state, so

e8] 2n
Z m(s)<z 2(4f’l+2)

= 2n+1+[log2((4n+2)2”)]

se(0+1)*
- iM (14)
— on . 2|'log2((4n+2)2”)'|
n+2)" 1
Z O n+2) &2
]

Corollary 20. The sum of my(s) for all strings s is smaller than
1.

Proof. See Proposition 19, (8), and (9). O

The key property of 1 (s) and m(s) is their computability,
given by Theorems 14 and 18, respectively. So these distribu-
tions cannot be universal, as Levin’s Universal Distribution is
noncomputable. In spite of this, the computability of our dis-
tributions (and the possibility of approximating them with a
reasonable computational effort), as we have shown, provides
us with a tool to approximate the algorithmic probability
of short binary strings. In some sense, this is similar to
what happens with other (computable) approximations to
(uncomputable) Kolmogorov complexity, such as common
lossless compression algorithms, which in turn are estimators
of the classical Shannon entropy rate (e.g., all those based
in LZW) and, unlike 1, (s) and m(s), are not able to find
algorithmic content beyond statistical patterns, not even in
principle, unless a compression algorithm is designed to
seek a specific one. For example, the digital expansion of
the mathematical constant 77 is believed to be normal and
therefore will contain no statistical patterns of the kind that

38 |

36 -

34+

Kps)

32+

30 |

38 40 42 44 46
K.y, (all strings)

Complexity

o
4
20 F PR
w4
15} & 1
5
10 | .
5t ’ -
0 10 15 20 25

K,,,. (first 500 strings)

ms

FIGURE 1: Correlation of rank comparison between K, and Kps).

compression algorithms can detect, yet there will be a (short)
computer program that can generate it or at least finite (and
small) initial segments of 7.

5. Computing 1,

We have explored the sets of Turing machines in (n,2) for
n < 5 in previous papers [4, 5]. For n < 4, the maximum time
that a machine in (#, 2) may run upon halting is known [20].
It allows us to calculate the exact values of m,. For n = 5,
we have estimated [5] that 500 steps cover almost the totality
of halting machines. We have the database of machines
producing each string s for each value of n. So we have applied
(9) to estimate m; (because we set a low runtime).

In previous papers [5, 21], we worked with D(k), a
measure similar to my, but the denominator of (9) is the
number of (detected) halting machines in (k,2). Using
D(5) as an approximation to Levin’s distribution, algorith-
mic complexity is estimated (values can be consulted at
http://www.complexitycalculator.com/. Accessed on June 22,
2017) by means of the algorithmic coding Theorem 1 as
Kps)(s) = —log,D(5)(s). Now, ms provides us with another
estimation: K,,, (s) = —log,m;(s). Table 1 shows the 10 most
frequent strings in both distributions, together with their
estimated complexity.

Figure 1 shows a rank comparison of both estimations of
algorithmic complexity after application of the algorithmic
coding theorem. With minor differences, there is an almost
perfect agreement. So, in classifying strings according to
their relative algorithmic complexity, the two distributions
are equivalent.

The main difference between my; and D(k) is that D(k)
is not computable, because computing it would require us
to know the exact number of halting machines in (k,2),
which is impossible given the halting problem. We work with
approximations to D(k) by considering the number of halting

TaBLE 1: Top 10 strings in mg and D(5) with their estimated

complexity.

s K, (s) Kps)(s)
0 3.7671 2.5143
1 3.7671 2.5143
00 6.8255 3.3274
01 6.8255 3.3274
10 6.8255 3.3274
11 6.8255 3.3274
000 10.4042 5.3962
111 10.4042 5.3962
001 10.4264 5.4458
01 10.4264 5.4458

machines detected. In any case, although m, is computable, it
is computationally intractable, so in practice (approximations
to) the two measures can be used interchangeably.

5.1. Error Calculation. We can make some estimations about
the error in ms with respect to m. “0” and “1” are two very
special strings, both with the maximum mj; value. These
strings are the most frequent outputs in (1, 2) for n < 5, and
we may conjecture that they are the most frequent outputs for
all values of n. These strings then have the greatest absolute
error, because the terms in the sum of #71(“0”) (the argument
for m(“1”) is identical) not included in m5(“0”) are always the
greatest independent of n.

We can calculate the exact value of the terms for m(“0”) in
(8). To produce “0,” starting with a tape filled with i € {0, 1},
a machine in (n,2) must have the transition corresponding
to the initial state and read symbol i with the following
instruction: write 0 and change to the halting state (thus not
moving the head). The other 2n — 1 transitions may have any

http://www.complexitycalculator.com/

Complexity

of the 4n + 2 possible instructions. So there are (4n +)

machines in (n,2) producing “0” when running on a tape
filled with i. Considering both values of i, we have 2(4n +
) programs of the same length n + 1 + [log, ((4n + 2)"M)]
producing “0.” Then, for “0,”

2 (4n +2)*!

00
Z on+1+[log, (((4n+2)>M)1" (15)

This can be approximated by

qn - S 2n+ 2

QX 2(@n+2)!
- ; yn+19[log, (4n+2)*)]

- i (4n +2)!
2n2[10g2 ((4n+2)*")]

2000 (41’1 + 2)2n—1

znz[logz ((4n+2)*")]

QS (4n+2)y!
—_
w501 2n2[log2((4n+2))
2000 (41’1 + 2)211—1
znzlogz((4n+2)2")

(4n +2)! i

nzl znz[logz((4n+2)2")] S0

7
B 2%" (4n +2)>"! Z (4n+2)"""
< gaflog, ((4n+2) 1 WSR2 (4n + 2)™"
2000 (4n+2)2n 1 & 1
- Z on)llog, ((4n+2))1 w5001 2" (4n +2)
= 0.0742024;
(16)

we have divided the infinite sum into two intervals cutting

at 2000 because the approximation of 2Mog (42N o (47 4
2)* is not good for low values of n but has almost no
impact for large n. In fact, cutting at 1000 or 4000 gives
the same result with a precision of 17 decimal places. We
have used Mathematica to calculate both the sum from 1 to
2000 and the convergence from 2001 to infinity. So the value
m(“0”) = 0.0742024 is exact for practical purposes. The value
of ms(“0”) is 0.0734475, so the error in the calculation of
m(“0”) is 0.0007549. If “0” and “1” are the strings with the
highest m value, as we (informedly) conjecture, then this is
the maximum error in m5 as an approximation to .

As a reference, Kms(“O”) is 3.76714. With the real m(“0”)
value, the approximated complexity is 3.75239. The difference
is not relevant for most practical purposes.

We can also provide an upper bound for the sum of the
error in m; for strings different from “0” and “1.” Our way
of proceeding is similar to the proof of Proposition 12, but
we count in a finer fashion. The sum of the error for strings
different from “0” and “1” is

Z l{re(2)[7(0) |,7(0) ¢ {051+ [{r € (m2) [7 (1) |, 7 (1) ¢ {70% "1}

on+1+[log, ((4n+2)*")]

n=6

The numerators of the above sum contain the number
of computations (with blank symbol “0” or “1”) of Turing
machines in (#,2), n > 6, which halt and produce an output
different from “0” and “1.” We can obtain an upper bound
of this value by removing, from the set of computations in
(n,2), those that produce “0” or “1” and some trivial cases of
machines that do not halt.

First, the number of computations in (#, 2) is 2(4n + 2)*",
as all machines in (n, 2) are run twice for both blank symbols
(“0” and “1”). Also, the computations producing “0” or “1” are
4(4n +2)*"'. Now, we focus on two sets of trivial nonhalting
machines:

(i) Machines with the initial transition staying at the
initial state. For blank symbol i, there are 4(4n+ 2)21
machines that when reading i at the initial state do
not change the state (for the initial transition there
are 4 possibilities, depending on the writing symbol

4 (4n +2)*!

—-8(4n+2)""

17)

and direction, and for the other 2n — 1 transitions
there are 4n + 2 possibilities). These machines will
keep moving in the same direction without halting.
Considering both blank symbols, we have 8(4n +

2)*"! computations of this kind

(ii) Machines without transition to the halting state. To
keep the intersection of this and the above set empty,
we also consider that the initial transition moves to
a state different from the initial state. So for blank
symbol i, we have 4(n — 1) different initial transitions
(2 directions, 2 writing symbols, and n — 1 states)
and 4n different possibilities for the other 2n — 1
transitions. This makes a total of 4(n — 1)(4n)*""
different machines for blank symbol i and 8(n —
1)(4n)*"! computations for both blank symbols.

Now, an upper bound for (17) is

-8(n-1)@4n)*!

iz (4n+2)" -

n=6

on+1+[log, ((4n+2)*")]

(18)

The result of the above sum is 0.0104282 (smaller than 1/32,
as guaranteed by Proposition 12). This is an upper bound
of the sum of the error m(s) — ms(s) for all infinite strings
s different from “0” and “1.” Smaller upper bounds can
be found by removing from the above sum other kinds of
predictable nonhalting machines.

6. Algorithmic Complexity of
Integer Sequences

Measures that we introduced based on finite approximations
of algorithmic probability have found applications in areas
ranging from economics [14] to human behavior and cogni-
tion [9, 12,13] to graph theory [15]. We have explored the use
of other models of computation suggesting similar and corre-
lated results in output distribution [22] and compatibility, in
a range of applications, with general compression algorithms
[21, 23]. We also investigated [5] the behavior of the additive
constant involved in the Invariance theorem from finite
approximations to D(5), strongly suggesting fast convergence
and smooth behavior of the invariance constant. In [15,
23], we introduced an AP-based measure for 2-dimensional
patterns, based on replacing the tape of the reference Turing
machine for a 2-dimensional grid. The actual implementation
requires breaking any grid into smaller blocks for which we
then have estimations of their algorithmic probability accord-
ing to the Turing machine formalism described in [15, 23, 24].

Here we introduce an application of AP-based meas-
ures—as described above—to integer sequences. We show
that an AP-based measure constitutes an alternative or com-
plementary tool to lossless compression algorithms, widely
used to find estimations of algorithmic complexity.

6.1. AP-Based Measure. The AP-based method used here is
based on the distribution D(5) and is defined just like 11, (s).
However, to increase its range of applicability, given that D(5)
produces all 2% bit-strings of length 12 except for 2 (that
are assigned maximum values and thus complete the set),
we introduce what we call the Block Decomposition Method
(BDM) that decomposes strings longer than 12 into strings
of maximum length 12 which can be derived from D(5). The
final estimation of the complexity of a string longer than
12 bits is then the result of the sum of the complexities of
the different substrings of length not exceeding 12 in D(5) if
they are different but the sum of only log,(#) if n substrings
are the same. The formula is motivated by the fact that n
strings that are the same do not have n times the complexity
of one of the strings but rather log,(n) times the complexity
of just one of the substrings. This is because the algorithmic
complexity of the n substrings to be considered is the length
of at most the “print(s) n times” program and not the length
of “print(ss...s).” We have shown that this measure is a
hybrid measure of complexity, providing local estimations of
algorithmic complexity and global evaluations of Shannon
entropy [24]. Formally,

k
BDM (X) = Y ms (x;) +log(s;), 19)

Complexity

where s; is the multiplicity of x; and x; are the subsequences
from the decomposition of X into k subsequences, with a
possible remainder sequence y < x if | X]| is not a multiple of
the decomposition length I. More details on error estimations
for this particular measure extending the power of m and on
the boundary conditions are given in [24].

6.2. The On-Line Encyclopedia of Integer Sequences (OEILS).
The On-Line Encyclopedia of Integer Sequences (OEIS) is
a database with the largest collection of integer sequences.
It is created and maintained by Neil Sloane and the OEIS
Foundation.

Widely cited, the OEIS stores information on integer
sequences of interest to both professional mathematicians
and amateurs. As of 30 December 2016, it contained nearly
280,000 sequences, making it the largest database of its kind.

We found 875 binary sequences in the OEIS database,
accessed through the knowledge engine WolframAlpha Pro
and downloaded with the Wolfram Language.

Examples of descriptions found to have the greatest
algorithmic probability include the sequence “a maximally
unpredictable sequence” with associated sequence 010 0 1
101011100010000111101100101001
00111 or A068426, the “expansion of In, in base 2” and
associated sequence 01000110110000010100
1110010111011100 00 0 0. This contrasts with
sequences of high entropy such as sequence A130198, the
single paradiddle, a four-note drumming pattern consisting
of two alternating notes followed by two notes with the same
hand, with sequence010010110100101101001011
0100101101001011 or sequence A108737, found to be
among the less compressible, with the description “start with
S={}.Form =0,1,2,3,..., let u be the binary expansion of
m. If u is not a substring of S, append the minimal number of
0’sand I’s to S to remedy this. Sequence gives S” and sequence
0101100111000101011011110000100101001
10 1. We found that the measure most driven by description
length was compressibility.

The longest description of a binary sequence in the OEIS,
identified as A123594, reads “unique sequence of Os and Is
which are either repeated or not repeated with the following
property: when the sequence is ‘coded’ in writing down a 1
when an element is repeated and a 0 when it is not repeated
and by putting the initial element in front of the sequence thus
obtained, the above sequence appears.”

6.3. Results. We found that the textual description length
as derived from the database is, as illustrated above, best
correlated with the AP-based (BDM) measure, with Spear-
man test statistic 0.193, followed by compression (only the
sequence is compressed, not the description) with 0.17,
followed by entropy, with 0.09 (Figure 2). Spearman rank
correlation values among complexity measures reveal how
these measures are related to each other with BDM versus
compress, 0.21; BDM versus entropy, 0.029; and compress
versus entropy, —0.01, from 875 binary sequences in the OEIS
database.

We noticed that the descriptions of some sequences
referred to other sequences to produce a new one (e.g.,

Complexity

[J .
1000 — - °
‘| @ ()
10 .
| ®e
5000 | : ® 9 o
100 - : []
o ©® g
>~
ES o
I ® ®
l o &° =k
g 1O - o 1000 - ™)
QO : .
500
1- PS 2
otk ¢ :
. LA P
‘et W% .
O o 100 o &
50 | .
20 50 100 200 5 10 50 100 500
Description length
@ BDM versus program length (0.50)
® BDM BDM versus compressed program length (0.39)
Entropy @ Compression versus program length (0.48)
Compress

()

(b)

FIGURE 2: (a) Correlation between the estimated algorithmic complexity (log) by the AP-based measure (BDM) and the length of the text
description of each sequence from the OEIS. Fitted line for highest correlation (BDM) is given by 1064.84 + 7.29x using least squares. (b)
Algorithmic complexity estimation by BDM (log) and of compression on program length (in the Wolfram Language/Mathematica) as coming
from the OEIS. In parenthesis, the Spearman rank correlation values for each case. Further compressing the program length using "compress”
resulted in a lower correlation value and BDM outperformed lossless compression.

“A051066 read mod 2”). This artificially made some sequence
descriptions look shorter than they should be. When avoiding
all sequences referencing others, all Spearman rank values
increased significantly, with values 0.25, 0.22, and 0.12 for
BDM, compression, and entropy, respectively.

To test whether the AP-based (BDM) measure captures
some algorithmic content that the best statistical measures
(compress and entropy) may be missing, we compressed
the sequence description and compared again against the
sequence complexity. The correlation between the com-
pressed description and the sequence compression came
closer to that of the AP-estimation by BDM, and BDM itself
was even better. The Spearman values after compressing text-
ual descriptions were 0.27, 0.24, and 0.13 for BDM, compress,
and entropy, respectively.

We then looked at 139,546 integer sequences from the
OEIS database, avoiding other noninteger sequences in the
database. Those considered represent more than half of the
database. Every integer was converted into binary, and for
each binary sequence representing an integer an estimation of
its algorithmic complexity was calculated. We compared the
total sum of the complexity of the sequence (first 40 terms)
against its text description length (both compressed and
uncompressed) by converting every character into its ASCII
code, program length, and function lengths, these latter in
the Wolfram Language (using Mathematica). While none of
those descriptions can be considered as the shortest possible,

their lengths are upper bounds of the maximum possible
lengths of the shortest versions. As shown in Figure 2, we
found that the AP-based measure (BDM) performed best
when comparing program size and estimated complexity
from the program-generated sequence.

7. Conclusion

Computable approximations to algorithmic information
measures are certainly useful. For example, lossless com-
pression methods have been widely used to approximate K,
despite their limitations and their departure from algorithmic
complexity. Most of these algorithms are closer to entropy-
rate estimators rather than algorithmic ones, for example,
those based on LZ and LZW algorithms such as zip, gzip,
and png. In this paper, we have studied the formal properties
of a computable algorithmic probability measure m and of
finite approximations m, to m. These measures can be used
to approximate K by means of the Coding Theorem Method
(CTM), despite the invariance theorem, which sheds no light
on the rate of convergence to K. Here we compared m
and D(5) and concluded that for practical purposes the two
produce similar results. What we have reported in this paper
are the first steps toward a formal analysis of finite approxi-
mations to algorithmic probability-based measures based on
small Turing machines. The results shown in Figure 2 strongly
suggest that AP-based measures are not only an alternative

10

to lossless compression algorithms for estimating algorithmic
(Kolmogorov-Chaitin) complexity but may actually capture
features that statistical methods such as lossless compression,
based on popular algorithms such as LWZ and entropy,
cannot capture.

All calculations can be performed and reproduced by
using the Online Algorithmic Complexity Calculator avail-
able at http://www.complexitycalculator.com/.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors wish to thank the members of the Algorithmic
Nature Group. Hector Zenil also wishes to acknowledge the
support of the Swedish Research Council (Vetenskapsradet)
(Grant no. 2015-05299).

References

[1] A.N.Kolmogorov, “Three approaches to the quantitative defini-
tion of information,” International Journal of Computer Mathe-
matics, vol. 2, no. 1-4, pp. 157-168, 1968.

[2] G. J. Chaitin, “On the length of programs for computing
finite binary sequences: statistical considerations,” Journal of the
ACM, vol. 16, pp. 145-159, 1969.

[3] L. A. Levin, “Laws on the conservation (zero increase) of infor-
mation, and questions on the foundations of probability theory;’
Akademiya Nauk SSSR. Institut Problem Peredachi Informatsii
Akademii Nauk SSSR. Problemy Peredachi Informatsii, vol. 10,
no. 3, pp. 30-35, 1974.

[4] J.-P. Delahaye and H. Zenil, “Numerical evaluation of algorith-
mic complexity for short strings: A glance into the innermost
structure of randomness,” Applied Mathematics and Computa-
tion, vol. 219, no. 1, pp. 63-77, 2012.

[5] E Soler-Toscano, H. Zenil, J.-P. Delahaye, and N. Gauvrit, “Cal-
culating Kolmogorov complexity from the output frequency
distributions of small turing machines,” PLoS ONE, vol. 9, no.
5, Article ID 96223, 2014.

[6] R.]. Solomonoff, “A formal theory of inductive inference. Part
11 Information and Control, vol. 7, no. 2, pp. 224-254, 1964.

[7] W. Kirchherr, M. Li, and P. Vitanyi, “The miraculous universal
distribution,” The Mathematical Intelligencer, vol. 19, no. 4, pp.
7-15,1997.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory,
John Wiley & Sons, New York, NY, USA, 1991.

[9] N. Gauvrit, H. Zenil, E Soler-Toscano, J. Delahaye, P. Brugger,
and E. C. Santos, “Human behavioral complexity peaks at age
257 PLoS Computational Biology, vol. 13, no. 4, p. 1005408, 2017.

[10] N. Gauvrit, H. Zenil, J.-P. Delahaye, and E Soler-Toscano, “Algo-
rithmic complexity for short binary strings applied to psychol-
ogy: A primer;” Behavior Research Methods, vol. 46, no. 3, pp.
732-744, 2014.

N. Gauvrit, H. Singmann, E Soler-Toscano, and H. Zenil, “Algo-
rithmic complexity for psychology: a user-friendly implemen-
tation of the coding theorem method,” Behavior Research
Methods, vol. 48, no. 1, pp. 314-329, 2016.

(11

Complexity

[12] N. Gauvrit, E Soler-Toscano, and H. Zenil, “Natural scene sta-
tistics mediate the perception of image complexity;” Visual Cog-
nition, vol. 22, no. 8, pp. 1084-1091, 2014.

[13] V. Kempe, N. Gauvrit, and D. Forsyth, “Structure emerges
faster during cultural transmission in children than in adults,”
Cognition, vol. 136, pp. 247-254, 2015.

[14] H. Zenil and J.-P. Delahaye, “An algorithmic information theo-
retic approach to the behaviour of financial markets,” Journal of
Economic Surveys, vol. 25, no. 3, pp. 431-463, 2011.

[15] H. Zenil, E Soler-Toscano, K. Dingle, and A. A. Louis, “Cor-
relation of automorphism group size and topological proper-
ties with program-size complexity evaluations of graphs and
complex networks,” Physica A: Statistical Mechanics and its
Applications, vol. 404, pp. 341-358, 2014.

[16] H. Zenil, N. A. Kiani, and J. Tegnér, “Methods of information
theory and algorithmic complexity for network biology;” Semi-
nars in Cell & Developmental Biology, vol. 51, pp. 32-43, 2016.

(17] H. Zenil, N. A. Kiani, and J. Tegnér, “Low-algorithmic-com-
plexity entropy-deceiving graphs,” Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, vol. 96, no. 1, 2017.

[18] T. Radd, “On non-computable functions,” Bell Labs Technical
Journal, vol. 41, pp. 877-884,1962.

[19] J.-P. Delahaye and H. Zenil, Towards a stable definition of Kol-
mogorov-Chaitin complexity, arXiv, 0804.3459, 2007, arXiv:
0804.3459.

[20] A.H.Brady, “The determination of the value of Rado’s noncom-
putable function X(k) for four-state Turing machines,” Mathe-
matics of Computation, vol. 40, no. 162, pp. 647-665, 1983.

[21] E Soler-Toscano, H. Zenil, J.-P. Delahaye, and N. Gauvrit, “Cor-
respondence and independence of numerical evaluations of
algorithmic information measures,” Computability. The Journal
of the Association CiE, vol. 2, no. 2, pp. 125-140, 2013.

[22] H. Zenil and J.-P. Delahaye, “On the algorithmic nature of the
world,” in Information and Computation, vol. 2 of World Sci. Ser.
Inf. Stud., pp. 477-496, World Sci. Publ., Hackensack, NJ, 2011.

[23] H. Zenil, E Soler-Toscano, J. Delahaye, and N. Gauvrit, “Two-
dimensional Kolmogorov complexity and an empirical valida-
tion of the coding theorem method by compressibility;” Peer]
Computer Science, vol. 1, article €23, 2015.

[24] H. Zenil, F. Soler-Toscano, N. A. Kiani, S. Hernfindez-Orozco,
A. Rueda-Toicen, and S. Hernandez-Orozco, “A Decomposi-
tion Method for Global Evaluation of Shannon Entropy and
Local Estimations of Algorithmic Complexity,” https://arxiv
.org/abs/1609.00110.

http://www.complexitycalculator.com/
https://arxiv.org/abs/1609.00110
https://arxiv.org/abs/1609.00110

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization

