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Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble
a non-functional apoptosome
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Under nitroxidative stress, a minor fraction of cytochrome c can be modified by tyrosine nitration.
Here we analyze the specific effect of nitration of tyrosines 46 and 48 on the dual role of cytochrome
c in cell survival and cell death. Our findings reveal that nitration of these two solvent-exposed resi-
dues has a negligible effect on the rate of electron transfer from cytochrome c to cytochrome c oxidase,
but impairs the ability of the heme protein to activate caspase-9 by assembling a non-functional apop-
tosome. It seems that cytochrome c nitration under cellular stress counteracts apoptosis in light of the
small amount of modified protein. We conclude that other changes such as increased peroxidase
activity prevail and allow the execution of apoptosis.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Living cells obtain energy through oxidative phosphorylation, or
mitochondrial respiration, which involves the transfer of electrons
from NADH and FADH 2 to oxygen and the subsequent synthesis of
ATP. The incomplete oxygen reduction leads to the formation of
intermediate radicals, the so-called reactive nitrogen and/or oxy-
gen species (RNOS) [1–3], which are usually eliminated by cellular
detoxifying systems. Such mechanisms may fail during cell aging
or under stress conditions, thereby increasing RNOS concentration.

One of the most deleterious reactive species is the strong oxidant
peroxynitrite, which is formed by reaction between superoxide an-
ion and nitric oxide. Peroxynitrite serves as an in vivo nitrating agent
[4] that mainly promotes nitration of tyrosines in mitochondrial
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proteins [5–8], but its lifetime is long enough to cross the membrane
and react with biomolecules in other compartments [5,6]. Actually,
the cumulative protein tyrosine nitration might be responsible for
alterations in protein function, turnover and localization, with the
concomitant implication in the pathogenesis of diseases [9–13]
undergoing nitroxidative stress.

Respiratory cytochrome c (Cc) is one of the main targets for RNOS
– and, in particular, for peroxynitrite – in mitochondria, where the
heme protein is both nitrated and nitrosylated [14,15]. Under
homeostasis, C c acts as an electron shuttle between the cytochrome
bc1 and cytochrome c oxidase (C cO) membrane-embedded com-
plexes [16]. However, the pro-apoptotic stimuli make C c bind to
and oxidize the mitochondria-specific phospholipid cardiolipin
(CL) [17], which in turn allows the translocation of C c into the cyto-
plasm so as to trigger the apoptosis signalling pathway upon binding
to the apoptosis protease-activation factor (Apaf-1) and apopto-
some assembly [18,19]. In vitro nitration of human C c tyrosine
residues at positions 67, 74 and 97 impairs the two antagonist func-
tions of C c in cell life (respiration) and cell death (apoptosis) [20,21],
in agreement with previous data obtained in vivo with Tyr67-
nitrated C c [22]. In contrast, tyrosine nitration can increase the
peroxidase activity of C c [21,23,24], an example of gain-of-function
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modification that sheds light to the biological significance of nitra-
tion since a small fraction of nitrated C c may be sufficient to elicit
a substantive biological signal.

Most physicochemical and functional studies of C c have been
performed with the horse protein modified by tyrosine chemical
nitration at positions 67, 74 and 97 [20–27]. Significant differences
are observed depending on whichever the nitrated residue is. Actu-
ally, previous reports describe how nitration of Tyr74 modulates the
Cc functions, whereas nitration of Tyr97 has no any functional effect
[20,21].

In the case of Tyr46 and Tyr48 of human C c, which are solvent-
exposed and easily nitrated in vitro [28], the mechanism by which
the –NO 2 radical alters the C c functions remains unclear. Here we
have designed two human C c mutants with all but one of their
tyrosine residues – at position 46 or 48 – replaced by phenylala-
nines. Our experimental data demonstrate that in vitro nitration
of either Tyr48 (which is a highly conserved residue in all organ-
isms) or Tyr46 (which is only present in human and plant C c) leads
to the assembly of a non-functional apoptosome, which fails in
caspases activation.
2. Materials and methods

2.1. Sample preparation

Recombinant human respiratory C c, either the WT species or the
monotyrosine mutants in which only Tyr46 or Tyr48 is present (the
herein called h-Y46 or h-Y48 variants), were expressed in Escherichia
coli DH5a strain and further purified by ionic exchange chromatog-
raphy, as previously described [20,21]. Peroxynitrite synthesis and
nitration of monotyrosine C c mutants were performed as previously
described [20,21,28] with the following modifications: Fe 3+-EDTA
concentration and the number of peroxynitrite additions were in-
creased up to 1.5 mM and 10 bolus additions, respectively. The nitra-
tion reaction was performed under acidic conditions (pH 5.0).

The nitrated C c species were intensively washed in 10 mM potas-
sium phosphate at pH 6 and purified to 95% homogeneity, as
reported in Ref. [20]. Purity of nitrated C c preparations, as well as
molecular mass and specific nitrated tyrosine of each mutant, were
confirmed by tryptic digestion and MALDI-TOF (Bruker-Daltonics,
Germany) analyses. Western Blotting Solution (Amersham) with
antibodies anti-nitrotyrosine (Biotem) was used to confirm the pres-
ence of –NO 2 groups in the C c samples upon nitration. Samples were
concentrated to 0.2–2.0 mM in 5 mM sodium phosphate buffer
(pH 6). The pyridine hemochrome assay was used to estimate the
extinction coefficients of the nitrated and non-nitrated forms of
monotyrosine mutants [29]. When oxidation of methionine residues
was detected, the samples were discarded.

Recombinant human Apaf-1 was expressed and purified as
described in Refs. [30,31]. Recombinant pro-caspase 9 (PC9) was
produced and purified as in Ref. [21]. Horse cytochrome c oxidase
(CcO) was purified as reported in Ref. [20]. C cO concentration was
estimated by using a differential extinction coefficient De604–630 of
17 mM �1 cm�1 for the reduced minus oxidized protein [32].

2.2. Kinetic analysis

The kinetics of electron transfer from the non-nitrated and
nitrated C c species to horse C cO were analyzed by laser flash spec-
troscopy by following the absorbance change at 550 nm. The redox
reactions were induced by EDTA-photoreduced FMN, as previously
reported [20]. All experiments were performed under pseudo-first
order conditions, with the concentration of oxidized C cO well
exceeding that of reduced C c per flash. Further kinetic analyses
were carried out to estimate the bimolecular rate constant ( k2) for
the nitrated and non-nitrated mutants, as well as the association
(KA) and effective electron transfer rate ( k0et) constants for WT C c
[20].

2.3. Apaf-1/Cc cross-linking, light scattering and caspase-9 activation

To detect the interaction between C c and Apaf-1 in Jurkat T cell
extracts, the cross-linking, light scattering and caspase-9 assays
were run as described in Ref. [21].
3. Results

3.1. Nitration of monotyrosine mutants of Cc

Nitrated monotyrosine C c mutants in which only Tyr46 or Tyr48
is present were separated from non-nitrated protein in a CM-cellu-
lose column equilibrated with 1.5 mM borate, pH 9.0, using a
0–100 mM NaCl gradient. Nitrated C c eluted at a much lower salt
concentration than native protein because of the extra negative
charge of deprotonated tyrosyl anions, whose p Ka is modified by
the strong electron-withdrawing effect of the substituent –NO 2

group at the 3-position [24]. The purity to homogeneity of nitrated
Cc preparations was corroborated by SDS–PAGE and Western Blot
using antibodies anti-nitrotyrosine (Biotem) to detect the presence
of the –NO 2 group (Fig. 1). In addition, the molecular mass and the
specifically nitrated tyrosine residue of each mutant were confirmed
by tryptic digestion and MALDI-TOF (Bruker-Daltonics, Germany)
analyses, as recently reported [28].

3.2. Electron transfer between oxidized Cc mutants and CcO

Cc serves as a one-electron carrier between cytochrome bc1

complex and C cO at the end of the mitochondrial electron trans-
port chain. In a previous report [20], the kinetics of horse C cO
reduction by the nitrated and non-nitrated species of the h-Y67,
h-Y74 and h-Y97 mutants were studied by laser flash spectroscopy.
Here, we have analyzed the effect of nitration of C c at positions 46
and 48 using the h-Y46 and h-Y48 variants to reduce C cO. As can be
seen in Fig. 2, WT C c shows a non-linear dependence of the
observed pseudo-first-order rate constant ( kobs) upon C cO concen-
tration at pH 6.5, thus indicating the formation of a kinetically
detectable transient C c–CcO electron transfer complex, as previ-
ously observed at pH 7.5 [20]. However, the kobs values at pH 6.5
with the non-nitrated and nitrated forms of h-Y46 and h-Y48 show
in all cases a linear dependence on C cO concentration. This
suggests that electron transfer is much faster than complex disso-
ciation, in agreement with a collisional reaction mechanism [33].
The resulting values for the bimolecular rate constant (k2)
estimated with the two C c mutants show that nitration slightly
decreases the ability of h-Y46 to donate electrons to C cO and has
an even lower effect on h-Y48 (Table 1). At pH 7.5, the effect of
nitration on the k2 values with h-Y46 and h-Y48 is practically neg-
ligible (not-shown).

3.3. Cc-dependent activation of caspases

To check how the nitration of C c alters the apoptotic process,
the apoptosome was first reconstituted in vitro by incubating
recombinant Apaf-1 with either the nitrated or non-nitrated spe-
cies of h-Y46 and h-Y48. The subsequent addition of PC9 allowed
to follow its activation to caspase-9 by fluorometric methods.

The cross-linking and light-scattering assays demonstrated that
Cc binds to Apaf-1 independently of whichever tyrosine residue –
Tyr46 or Tyr48 – is modified (Fig. 3). In fact, the light scattering of
Apaf-1 increases upon addition of any of the C c mutants (Fig. 3B).



Fig. 1. Determination of purity of nitrated C c samples. (A) SDS–PAGE electrophoresis of non-nitrated and nitrated h-Y46 and h-Y48 mutants. Each protein (1.3 lg) was loaded
onto a 12% SDS–PAGE gel. (B) Immunodetection of nitrated C c mutants by Western blot analysis using anti Tyr-NO 2 antibodies. Upper – Transfer of non-nitrated and nitrated
h-Y46 and h-Y48 samples to the nitrocellulose membrane as corroborated by Ponceau S solution staining. Lower – Detection of Tyr-NO 2 just in the h-Y46:N and h-Y48:N
samples previously submitted to the nitration protocol.

Fig. 2. Dependence of kobs for oxidation of h-Y46 and h-Y48, in their non-nitrated or
nitrated forms, upon C cO concentration. The reaction mixture contained (in a final
volume of 0.8 mL) 10 mM Tris–HCl, pH 6.5, 2 mM EDTA, 0.07% dodecyl b-maltoside,
50 mM KCl, 100 lM FMN, and 40 lM Cc. All the experiments were performed at
room temperature. Other experimental conditions were as described under Section
2. The resulting kinetic parameters are summarized in Table 1.

Table 1
Kinetic parameters for oxidation by horse C cO of different human C c species at pH 6.5.

Cc
species

k2 � 10�6

(M�1 s�1)
KA � 10�4

(M�1)a
k0et
(s�1)a

h-WT – 3.7 232
h-Y46 7.0 – –
h-Y46:N 5.2 – –
h-Y48 6.3 – –
h-Y48:N 5.6 – –

a KA and k0et values were estimated as in Ref. [20].
The inability of the two nitrated C c variants to activate caspase-9
(Fig. 4) suggests that they yield a non-functional apoptosome. The
tyrosine-by-phenylalanine mutations themselves do not alter the
ability of C c to activate caspase-9 at pH 7.5. Therefore, these two
tyrosine residues are not essential for triggering apoptosis in vitro
(Fig. 4). In contrast, nitration at positions 46 or 48 fully inhibits
caspase-9 activation. At the highest C c concentration, only h-
Y46:N retains 20% of its ability to activate caspase-9, as was shown
for the h-Y74:N species [21]. Therefore, the inhibitory effect on cas-
pase-9 activation observed with the polynitrated h-WT species
could be ascribed to the specific nitration of Tyr46 and/or Tyr48
rather than to any cooperative effect among different Tyr-NO 2

groups [20].
4. Discussion

Cc is involved in two opposite biological functions: cell life
(mitochondrial respiration) and cell death (apoptosis), which are
regulated by post-translational modifications such as nitration
[20,34]. Actually, the addition of a –NO 2 group to any tyrosine
residue yields different effects depending on the position of the
modified residue at the heme protein structure.

In this context, it is worth noting that C c becomes a high-spin
species upon Tyr46 or Tyr48 nitration at physiological pH although
the overall folding remains unaltered [28], a finding that may
explain the drop of ca. 100 mV in the midpoint redox potential
value of the nitrated C c species [20]. Such a drop in redox potential
may roughly disrupt the cellular respiration. As inferred from the
k2 values for C cO reduction by non-nitrated and nitrated proteins
at physiological pH, nitration at positions 46 and 48 barely affects
the C c reactivity. However, C c nitrated at these two positions is no
longer isopotential with cytochrome c1 and may thus be unable to
accept electrons from the cytochrome bc1 complex. Actually, the
excess in RNOS yielded from the first complexes of the respiratory
chain under nitroxidative stress could lead to a positive nitration-
driven feedback cycle, with cytochrome b c1 promoting the increase
in RNOS and nitrated C c.

Upon leaving the mitochondria under nitroxidative stress, C c
nitrated at positions 46 and 48 could inhibit the apoptosis signal
by forming a non-functional apoptosome. However, the binding
affinity of nitrated C c species towards Apaf-1 is substantially lower
than those of native C c (data not shown). Nitration of Tyr46 and
Tyr48 rearranges the H-bond network and turns the alkaline transi-
tion into a physiologically relevant process [32]. Actually, the alka-
line transition p Ka is shifted towards neutral pH values, with the
concomitant replacement of Met80 by Lys73 or Lys79 as heme axial
ligand. As a consequence, the alkaline form of nitrated C c is predom-
inant at pH 7.5, which is the optimal pH value for caspase activation.
In the low-spin, alkaline structure of C c, the X-loop – which has
previously been reported to be key for the interaction with Apaf-1
through residues Lys72 and/or Lys73 [20,35,36] – undergoes a
substantial conformational change. This explains the assembly of a
non-functional apoptosome, which would be unable to activate
caspases and to drive cells to apoptosis.

It has recently been reported that tyrosine 48 gets phosphory-
lated under homeostatic conditions [37,38], with the concomitant
effect on the availability of C c to activate caspases [39,40]. Nitra-
tion and phosphorylation of C c at the same tyrosine residue are
mutually exclusive [41] but inhibit C c-dependent caspases activa-
tion with a similar efficiency. In the case of Tyr48 phosphorylation,
the electron transfer is also inhibited [39]. In summary, Tyr48



Fig. 3. Interaction between Apaf-1 and oxidized C c variants. (A) Cross-linking between Apaf-1 and the non-nitrated or nitrated h-Y46 and h-Y48 mutants, as detected by
Western blot using antibodies against C c. (B) Formation of the complex between Apaf-1 and the non-nitrated (continuous line) or nitrated (dashed line) C c mutants, as
determined by light scattering. The arrows stand for addition of Apaf-1 (solid line) and C c (dashed line) to the buffer solution.

Fig. 4. Cc-dependent activation of caspase-9 upon interaction of Apaf-1 with
oxidized C c mutants. Caspase activation was determined by following the increase
in fluorescence after substrate (Ac-LEHD-AFC) cleavage subsequent to incubation of
Apaf-1 and PC9 with nitrated or non-nitrated C c mutant. C c concentrations were: 0
(white), 20 nM (grey) and 40 nM (black).
phosphorylation under homeostasis [37,38] and Tyr48 nitration
under oxidative stress may act as anti-apoptotic switches that
make C c fail in assembling a functional apoptosome.
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