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Abstract

A general purpose in Graph Theory is to describe any graph structure and

provide all the information about it as possible. The study of invariants, properties

and graph families of interest has been the aim of many researches in last years.

There exist several classical lines of research in Graph Theory which have been

extensively investigated. The connectivity is one of them.

The connectivity of a graph represents the minimum number of vertices whose

removal disconnects the graph. This notion becomes more relevant when it is applied

to networks. The structure of a graph can model whichever type of network so that

the reliability of the network is related to the study of the vulnerability of the graph.

We propose one graph family, called strong product graph, and several para-

meters of great interest as the connectivity, the superconnectivity, the average con-

nectivity, the Menger number, the generalized connectivity and the mean distance.

In the present work, we study the mentioned indices on the strong product graph

in terms of known invariants of the involved factors and we give some general sharp

bounds which are best possible.
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Summary

A general purpose in Graph Theory is to describe any graph structure and provide

all the information about it as possible. The study of invariants, properties and

graph families of interest has been the aim of many researches in last years.

There exist several classical lines of research in Graph Theory which have been

extensively investigated. The connectivity is one of them.

The connectivity of a graph represents the minimum number of vertices

whose removal disconnects the graph. This notion becomes more relevant when

it is applied to networks. The structure of a graph can model whichever type

of network so that the reliability of the network is related to the study of the

vulnerability of the graph.

We propose one graph family, called strong product graph, and several

parameters of great interest as connectivity-type invariants. In the present work,

we study the vulnerability of the strong product graph in terms of the mentioned

parameters.
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Introduction

A known line of research in Graph Theory is the study of the vulnerability in

graphs. It is usually related to the reliability in networks. Transport and com-

munication, physical, biologic or social networks can be modelled by a graph. For

instance, a multiprocessor system, that is, processors communicated by exchan-

ging messages, can be modelled by a graph, where every vertex represents a

processor and every edge corresponds to a communication link. To study pro-

perties on the graph can provide useful information about the working efficiency

of the system.

To select or design a network, many of the requirements correspond to

known measures in a graph as the order, the size, the average degree, the dia-

meter or the connectivity, among others. Since it is almost impossible to design

an optimal network for all conditions, the selection criteria must be established

previously.

One of the most desirable criteria to construct a large interconnection net-

work is joining together the requirements of high reliability and small maximum

transmission delay between the nodes of the network. Hence, the priority aim

is to get a strong connectivity joint to a suitable diameter in such large graphs.

Another important feature or fundamental principle in networks design is its

extendability, that is, the possibility of building larger structures of a network

preserving desirable properties.
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The graphs products are useful to obtain large graphs from smaller ones

whose invariants are known or can be easily calculated. It is well known that

the product of graphs are an important topic of research in Graph Theory [12,

13, 59, 60, 77, 83, 49] due to the different applications that one can find in many

theoretical contexts.

For instance, graphs that have a product-like structure are used in com-

putational engineering for the formation of finite element models or construction

of localized self-equilibrating systems [62, 63, 64]. They are used in a biological

context [39, 46, 80, 93] for describing the relationships between genotypes and

phenotypes and estimating which combinations of properties are interconvertible

over short evolutionary time-scales. The graphs products are also used in com-

puter graphics and theoretical computer science [2, 3], where it is provided a

framework, called TopoLayout, to draw undirected graphs based on the topologi-

cal features they contain. Topological features are detected recursively, and their

subgraphs are collapsed into single nodes, forming a graph hierarchy. The graphs

products have a well understood structure, that can be drawn in an effective way.

Then, for an extension of this framework, they are of interest.

In general, for all the applications of a practical interest, the analysis of the

reliability in networks pursues to guarantee a certain robustness in the network

against inaccuracies and perturbations in the data. However, this analysis have

to be obtained from computer simulations or they need to be estimated from

measured data. In both cases, they are known only approximately. In order to

deal with such inaccuracies, exact solutions based on theoretical mathematical

reasonings need to be obtained.

From the point of view of Graph Theory, a natural and interesting question

is what can be said about a graph invariant in a product of graphs if it is known

the corresponding invariants in the factors.



iii

There are many works treating this problem [23, 52, 53, 54, 75, 91]. With

this thesis we want to contribute in this line of research presenting new results

about several vulnerability parameters which have been studied on a graph pro-

duct family called strong product.

Among the different types of graphs products that exist, the strong pro-

duct of two graphs, or simply, the strong product graph, is one of the most popular

products of graphs together with the cartesian product, the direct product and

the lexicographic product. All of them are constructed by a similar way. Given

two connected graphs, one of them has the role of main graph and the another

one has the role of the copy graph. Then these products consist on taking as

many copies of the latter graph as vertices the main graph has and to establish

certain adjacencies between the copies (different adjacencies for each product),

whenever they exist in the main graph.

The cartesian product may be the more studied product of graphs and

some of a lot of papers are [25, 65, 67, 69, 71, 77, 90, 99, 100]. In last years, the

researches have been also interested in the strong product graph and it is possible

to find some works related to a wide range of subjects, as the connectivity [23, 91],

geodetic [26], bandwidth [66] and independency [92], among others. This thesis

is focused on this family of graphs. More precisely, we study the vulnerability

of the strong product graph from different points of view, attending to several

parameters as the connectivity, the superconnectivity, the average connectivity,

the Menger number, the generalized connectivity and the mean distance, in terms

of known invariants of the involved factors.

The classical measures of reliability in a network have been the connectivity

and edge-connectivity, which represent the minimum number of nodes or links that

must fail to disrupt the connection in the network. Namely, for any connected

graphG, the connectivity (resp. edge-connectivity), denoted by κ(G) (resp. λ(G))
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is the minimum number of vertices (resp. edges) whose removal separates the

graph. These parameters have been extensively studied and there exist lots of

papers treating connectivity-type problems. A well known upper bound for these

parameters was given by Whitney in [95], who proved that κ(G) ≤ λ(G) ≤ δ(G),

where δ(G) represents the minimum degree of G. It comes from the fact that

to disconnect a graph it is sufficient to remove the set of adjacent vertices to

any vertex or the set of incident edges in any vertex of G. When the previous

inequalities become equalities, the graph is called maximally connected. Sufficient

conditions for a graph to be maximally connected are given in terms of relevant

invariants in a graph, such as the number of vertices, the minimum and maximum

degrees, the diameter or the girth. Chartrand [27] proved that if G is a graph

with n vertices and minimum degree δ(G) ≥ ⌊n/2⌋ then λ(G) = δ(G). Soneoka et

al. [89] proved that a graph with girth g is maximally connected if its diameter is

at most g−3 for even girth g, and g−2 for odd girth g. For more information and

references we remit the reader to an interesting survey by Hellwig and Volkmann

in [55].

Connectivity and edge-connectivity have been frequently used to describe

the reliability of a network, but these parameters present a weakness: they do

not take into account what remains after the graph is disconnected. One can ask

other questions as, for instance, how many components appear after disrupting

the graph or what is the size of the smallest remaining connected component.

To deal with these problems, a stronger measure of connectivity is the supercon-

nectivity, which was introduced in 1984 by Boesch and Tindell [20]. A graph is

called superconnected if every minimum disconnecting set is the neighborhood

of a vertex. Sufficient conditions for a bipartite graph to be superconnected in

terms of the diameter and the order can be found in [7]. Meng [78] treated this

parameter in line graphs, providing necessary and sufficient conditions for the

line graph of a connected regular graph to be superconnected. Balbuena et al.
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in [8] studied the superconnectivity in graphs with given girth. There exist more

different works (see for instance [6, 9, 10, 11, 44]).

Connectivity and superconnectivity have been also studied in products

of graphs, as the cartesian product of graphs [90], the permutation graphs [84],

the product of Bermond of graphs [14], the direct product of graphs [24], the

Kronecker product of graphs [47] and the matched sum graphs [15]. In most of

these papers, general bounds on the index of connectivity are obtained in terms of

the connectivity, the order and the minimum degree of the factors. These bounds

show us that the graphs product structure generally produces a large and more

reliable network without a strong increase of links.

Concerning the strong product graph, its connectivity was studied in 2010

by Špacapan [91]. The author gave a lower bound involving the connectivities

and the minimum degrees of the graphs. In this thesis we show that this lower

bound can be improved. Indeed, we give a general lower bound which is sharp

under certain requirements on the factors. In addition, we prove that the strong

product of two maximally connected graphs is not only maximally connected but

also superconnected.

The connectivity, the maximal connectivity and the superconnectivity are

worst-case measures on graphs and they do not always reflect what really happens

throughout the graph. For instance, consider a tree and a complete graph joint

to a pendant vertex. They are two graphs with connectivity one. However, the

first graph is clearly more vulnerable than the second one, since in this last graph

only the fail of a particular vertex may disrupt it, while in the tree, there exists

several possibilities for disconnecting it removing just a vertex. Thus, it is of

interest to extend the study of the connectivity between every pair of vertices of

a graph, using other measures of vulnerability [4], which provide a more suitable

information about the global connectedness of a graph.
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Whitney in 1932 was inspired by the well-known theorems of Menger [79]

and he established an equivalency [95] between the connectivity of a graph and

the existence of internally disjoint paths. More precisely, he proved that a graph

is r-connected, that is, the connectivity is at least r, if and only if every pair of

vertices is connected by at least r pairwise disjoint paths.

Thanks to this characterization, Beineke, Oellermann and Pippert in [16]

introduced the average connectivity, defined as the mean on the number of pair-

wise disjoint paths that exists between any two vertices in a graph. This index

represents the expected number of vertices that must fail to separate the graph.

There are two papers where the average connectivity has been treated in depth.

In the first one, Beineke, Oellermann and Pippert [16] gave upper and lower

bounds on the average connectivity of any connected graph in terms of its order,

its size and the degree sequence of its vertices. They deduced that the average

connectivity is upper bounded by the average degree just as the connectivity is

upper bounded by the minimum degree, as well as they determined the maximum

value of the average connectivity in a graph with given order and size. In the

second one, Dankelmann and Oellermann [34] obtained new sharp bounds on the

average connectivity of a graph involving its order, its size, its average degree

and its chromatic number. They also obtained several bounds for some families

of graphs, such as planar and outerplanar graphs and the cartesian product of

two connected graphs.

The average connectivity has not been as extensively investigated as the

classical connectivity, but one can find some other interesting works (see for

instance [5, 56, 57, 61]). Concerning the graphs products, as far as we know,

results on average connectivity are proved for the cartesian product of two graphs

in [34] by Dankelmann and Oellermann. Namely, a sharp lower bound involving

the average connectivity, the order and the size of the factor graphs is given.

In this thesis we study the average connectivity of the strong product graph.



vii

A general lower bound in terms of the order, the average connectivity and the

average degree of the involved graphs is determined. In addiction, we prove

a sufficient condition which assures that the average connectivity of the strong

product graph attains its maximum value, that is, it is equal to its average degree.

Another index close to the average connectivity is the Menger number,

which is defined as the minimum number of pairwise disjoint paths of bounded

length between any two vertices in a connected graph. In a parallel computing

system, the efficiency can be analyzed in terms of the number of disjoint routes

of information which are able to connect two points in a short period of time.

In a real-time system, the information delay must be limited since any message

obtained beyond the bound may be worthless. Hence, a natural question is how

many routes ensure the transmission of information in an effective time. For this

aim, the Menger number can be an interesting measure of the communication

efficiency in an information system modelled by a graph, since after a certain

length, a route may be inefficient.

Lovász, Neumann-Lara and Plummer [74] introduced in 1978 the Menger

number by proposing initially the following problem. They defined two indices

on a connected graph. One index, denoted by Aℓ, is the maximum number of

vertex-disjoint paths connecting any two vertices in the graph whose lengths do

not exceed a certain quantity ℓ, it is the now called Menger number between two

vertices in a graph. The another one, denoted by Vℓ, is the minimum number

of vertices whose deletion disrupt all the paths of length at most ℓ joining two

vertices in the graph. In general, Aℓ ≤ Vℓ and when Aℓ = Vℓ, it is the Menger’s

theorem properly. The authors in [74] focused on studying the ratio Vℓ/Aℓ, for

which it is trivial that 1 ≤ Vℓ/Aℓ ≤ ℓ − 1. They showed that Vℓ/Aℓ ≤ ⌊ℓ/2⌋, for

every pair of vertices in the graph and any positive integer ℓ, giving a family of

graphs for which this bound is sharp. Since then, many Mengerian-type results

have been obtained [17, 51, 86, 88, 102]. In 1983 Chung [30] deduced the lower



viii

bound ⌊(ℓ+1)/3⌋ ≤ Vℓ/Aℓ. In [42] the authors proved that if a graph with order n

and minimum degree at least ⌊(n − k + 2)/⌊(ℓ + 4)/3⌋⌋ + k − 2 is k-connected,

then such graph has k vertex-disjoint paths of length at most ℓ between any

pair of vertices. Hsu and Luczak in [58] treated a related parameter called the

k-diameter of a graph, that is, the minimum on the k-distances in a connected

graph, being the k-distances the minimum value on the lengths of the internally

disjoint paths with length at most k, between any pair of vertices in the graph.

They studied the k-diameter of k-regular and k-connected graphs, proving that

every k-regular k-connected graph on n vertices has k-diameter at most ⌊n/2⌋.

About the graphs products, in 2011 Ma, Xu, and Zhu [77] proved that

the Menger number of the cartesian product of two connected graphs is lower

bounded by the sum of the Menger numbers of the factor graphs. In this thesis,

we study the Menger number of the strong product graph, giving two sharp lower

bounds depending on the permitted length of the paths. In addition, we give the

exact Menger number for strong products of paths, of cycles and of path with

cycle. We complete this part by studying the average Menger number, which

represents, in any connected graph, the expected number of pairwise disjoint

paths with a prescribed length that exist between any two vertices.

It is usually interesting to know, not only how connected two vertices are

in a graph but also, in general, how connected k vertices are, for every integer

k ≥ 2. The index to measure such local connectivity is he so-called generalized

k-connectivity. This parameter is a natural extension of the classical connectivity.

The generalized k-connectivity, roughly speaking, can be defined as the capability

of a network to connect any set of k nodes themselves.

If one wants to connect a pair of vertices in a graph, then the minimal

structure to join them is a path. However, if one wants to connect a set of k

vertices, then the minimal structure that must be used is a tree. This kind of
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tree for connecting a set of vertices in a graph is called a spanning tree.

The generalized k-connectivity was introduced in 2010 by Chartrand,

Okamoto and Zhang [29]. A graph is generalized k-connected if and only there

exist at least k pairwise disjoint trees connecting any set of k vertices in the

graph.

Some results concerning this parameter have been published recently.

In [29] it was proved that the generalized k-connectivity of a complete graph

on n vertices is exactly equal to n − ⌈k/2⌉ and besides, this notion is related to

the rainbow trees in a connected graph. Li, Li and Zhou [72] focused on the gene-

ralized 3-connectivity and its relationship with the classical connectivity. They

stated that the generalized 3-connectivity of any graph is upper bounded by its

connectivity. Moreover, they proved that the generalized 3-connectivity of a pla-

nar graph G is always the value κ(G) or κ(G)−1. The generalized k-connectivity

in complete bipartite graphs was treated in [81]. The authors first obtained the

number of edge-disjoint spanning trees of a complete bipartite graph and de-

termined specifically such trees. Then, based on these results, they obtained

the generalized k-connectivity of complete bipartite graphs, for any k. Recently,

Li and Li [70] in 2012 analyzed the complexity of determining the generalized

k-connectivity in any connected graph, proving that the corresponding computa-

tional problem of deciding if a graph is generalized k-connected is NP-complete.

The only paper treating the generalized k-connectivity on graphs products

is [71], where Li, Li and Sun obtained two sharp lower bounds on the generalized

3-connectivity of the cartesian product graph, depending on a certain condition

in the main graph. In any case, they proved that the generalized 3-connectivity of

the cartesian product graph is lower bounded either by the sum of the generalized

3-connectivities of the factor graphs or the same sum minus one unity. In this

thesis we study the generalized 3-connectivity of the strong product graph.
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We obtain sharp lower bounds, depending on the considered assumptions,

in terms of the classical connectivity and the generalized 3-connectivity of the

involved graphs.

An essential requirement in a realtime communication network, for ins-

tance, in a travel or the sending of a message, is to have a certain control on the

commuting time. For this reason, we finish this thesis by studing the Wiener

index, parameter directly related to the average distance.

The diameter, the radius and the eccentricity are well studied notions in

Graph Theory related to the distances in a graph. However, sometimes this con-

cepts may not be meaningful in a graph description. For instance, the diameter

of a graph represents the maximum of the distances between every pair of vertices

in the graph. One could think that in a graph with a large diameter, most of the

distances are large too. Nevertheless, it is not true in general. This is a reason

for which it is of interest the study of other parameters which leads us to have a

better idea on the distances in a graph.

The Wiener index or Wiener number of a connected graph G, denoted by

W (G), is defined as the total sum of the distances between every the unordered

pair of vertices in a connected graph. The study of this parameter began with the

chemist Wiener in his chemical work [96]. Wiener noticed that, in a molecular

network, the melting point of certain hydrocarbons is proportional to the sum

of the distances between the unordered pairs of vertices in the corresponding

connected graph which models such network.

This graphical invariant has been studied by many researchers under diffe-

rent names such as total status or sum of all distances. In 1976, Entringer, Jackson

and Snyder published [40], the first mathematical paper about the Wiener index,

although the authors did not give it this name, they just called it the distance of

a graph. The most relevant results were the sharp lower and upper bounds which
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were found. They deduced that the Wiener index of a connected graph is lower

bounded by the Wiener index of a complete graph with the same order and upper

bounded by the Wiener index of a path with the same order. Moreover, these

bounds are just attained when the graph is exactly the complete graph and the

path, respectively. This means that, fixed an order, the Wiener index are greater

for sparse graphs than for dense graphs. They also gave the exact values of this

parameter in paths, cycles, complete graphs and complete bipartite graphs.

In [94] several lower and upper bounds on the Wiener index of a graph are

obtained in terms of the order, the size, the radius, the diameter, the independence

number, the connectivity or the chromatic number. For instance, it was proved

that the Wiener index of a connected graph with n vertices, m edges and diameter

at most two is, exactly, n2 − n − m, and if the diameter is at least three, it is

at least n2 − n − m + 1. Gutman and Zhang [50] determined the only graphs

on n vertices and a given (vertex or edge) connectivity k having minimum Wiener

index. This graph is Kk + (K1 ∪Kn−k−1), which is the graph obtained by joining

every vertex of the complete graph Kk to one isolated vertex and every vertex of

the complete graph Kn−k−1. Wu [97] showed that the Wiener index of the line

graph of G is greater than or equal to the Wiener index of G, for any connected

graph with minimum degree at least two. For more information, we refer the

reader to two interesting surveys [36, 73]. The first one is mainly focused on

the Wiener index in trees, but it contains other general results as well as many

references about this topic. The second one collects the most recent results on

the Wiener index.

Considering the arithmetic mean on the total sum of the distances between

all the ordered pairs of vertices in a connected graph, one can obtain the average

distance or the mean distance. This parameter was introduced in 1977 by Doyle

and Graver [38] and it can be seen as a natural measure of the graph compactness.
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The average distance have many applications. For instance, to indicate the

average delay of the messages in the processors interconnections or to compare

the compactness of architectural plans. This is a extensive topic of research (see

for instance [1, 31, 32, 33, 43, 68]). It is evident the direct relationship between

the average distance and the Wiener index. To obtain the average distance of

a graph on n vertices it is sufficient to consider twice the Wiener index (this

quantity is usually called transmission) and to divide by n(n − 1), that is, the

number of ordered pairs of vertices in the graph. Hence, the real difficulty in this

issue is to determine the Wiener index of the considered graph.

For small graphs, one can compute directly the exact values of this pa-

rameter. Indeed, for families of graphs as the complete graphs, the paths and

the cycles, the exact values of the Wiener index and the average distance were

obtained, as well as general bounds [40]. Concerning graphs products, it was

proved in [49] that the Wiener index of the cartesian product of two connected

graphs G1 and G2 is exactly |V (G2)|
2W (G1) + |V (G1)|

2W (G2). Concerning the

strong product, in [37] it was studied relationship between the Wiener index and

the clique number and the stability number of the factors. Pattabiraman and

Paulraja in [83] gave several exact values of the Wiener index of the strong pro-

duct of a complete r-multipartite graph and any connected graph in terms of the

order and the size of the involved graphs.

In this thesis we find bounds on the Wiener index of the strong product of

two connected graphs. We also give the exact values for certain strong products,

as paths and cycles, only in terms of their orders. Moreover, we prove that the

Wiener index of the strong product of two connected graphs is upper bounded by

the Wiener index of the strong product of two paths which have the same orders

as the factors.

This thesis has been structured in six chapters as follows.
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Chapter 1 is devoted to introduce several basic notations and general re-

sults on Graph Theory which will be useful throughout this memory.

In Chapter 2 we deal with the connectivity and superconnectivity of the

strong product graph. The known lower bound on the connectivity of this family

of graphs is improved and we give sufficient conditions for the strong product of

two connected graphs to be maximally connected and superconnected.

In Chapter 3 we pay attention to the Menger number, the average con-

nectivity and the average Menger number. Some sharp lower bounds for these

parameters are given. We also prove sufficient conditions to guarantee that the

average connectivity and the average Menger number attain their maximum value.

Chapter 4 is focused on the generalized 3-connectivity of the strong pro-

duct of two graphs. We give a sharp lower bound, which is best possible when a

factor has generalized 3-connectivity equal to one.

In Chapter 5 we give general bounds for the Wiener index of the strong

product of two graphs and the exact value when the factors have diameter not

too large.

In Chapter 6 we summarize the main conclusions of this thesis and more-

over, some open problems are described.

Finally, at the end of this thesis, the reader can find the bibliography

which has been the source of support and inspiration for the development of this

research work.
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Chapter 1

Preliminaries

This chapter is devoted to introduce basic notions which will be used

throughout this thesis. First, we recall some classical concepts on

Graph Theory and fix the notation. Second, we make a brief intro-

duction about the product graphs topic.

1.1 Basic notions

Those elemental notions not explicitly included here can be found in the books by

Chartrand and Lesniak [28] and by Diestel [35]. Special notations and definitions

will be presented where needed.

A graph G is a pair (V,E) where V = V (G) is a nonempty set of vertices,

E = E(G) is a set of edges and where every edge joins a non ordered pair of

vertices in G. Their cardinalities, denoted by |V (G)| and |E(G)|, are called the

order and the size of G, respectively. Two vertices of G, x and y, are adjacent if

there exists an edge joining them. Such edge is denoted by e = xy or e = yx and

then, it is said that e and x are incident (also e and y are incident). Two non

1
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adjacent vertices or edges are called independent.

Throughout this thesis we only consider finite graphs, that is, the sets V (G)

and E(G) are finite, simple graphs, that means, at most one edge e = xy can exist

in G for every pair x, y ∈ V (G) (we consider no loops), and also undirected graphs,

graphs for which every edge joins an unordered pair of vertices of G.

Given a graph G = (V,E), a subgraph of G is any graph G′ = (V ′, E ′)

such that V ′ ⊆ V and E ′ ⊆ E. If E ′ = {xy ∈ E : x, y ∈ V ′}, then G′ is said to

be induced by V ′ and we write G′ = G[V ′]. When V ′ = V , the subgraph (not

necessarily induced) is a spanning subgraph of G. Given two graphs G and G′,

their union is the graph G ∪ G′ = (V ∪ V ′, E ∪ E ′). If V ∩ V ′ = ∅, then G and

G′ are vertex disjoint. If E ∩ E ′ = ∅, then G and G′ are edge disjoint.

Let x, y ∈ V (G) be two distinct vertices. A path from x to y, also called

an xy-path, is a subgraph P with vertex set V (P) = {x = u0, u1, . . . , ur = y}

and edge set E(P) = {u0u1, . . . , ur−1ur}, such that ui 6= uj, for all i, j = 0, . . . , r

with i 6= j. This path is usually denoted by P : u0u1 . . . ur and r is the length of

P, denoted by l(P). We also use Pr to denote such path. Vertices u0 and ur are

called the end vertices and vertices of {u1, . . . , ur−1} are called internal vertices.

Two given xy-paths P and Q such that V (P) ∩ V (Q) = {x, y} are said

to be internally disjoint (see Figure 1.1). A cycle in G of length r is a path

C : u0u1 . . . ur such that u0 = ur. The girth of a graph G, denoted by g(G), is

the length of a shortest cycle in G. If G contains no cycles, then g(G) = ∞ is

adopted.

The distance between two vertices x, y ∈ V (G), denoted by dG(x, y), is

the length of a shortest xy-path. If there is no xy-path in G, dG(x, y) = ∞ is

assumed. The eccentricity of a vertex x in G is the maximum of the distances

from x to every vertex of G, that is, eccG(x) = max{dG(x, y) : y ∈ V (G)}.
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bc bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

b

bx

y

Figure 1.1: Three internally disjoint xy-paths in a connected graph.

The diameter of G is defined as D(G) = max{dG(x, y) : x, y ∈ V (G)}, the

maximum of the distances between every pair of vertices in G. In other words,

the diameter of G is the maximum value of the eccentricities of every vertex in G.

The i-neighborhood of x in G is N i
G(x) = {y ∈ V (G) : dG(x, y) = i}, with

i ≥ 1 (see Figure 1.2). For i = 1 we directly write N1
G(x) = NG(x) and it is called

the neighborhood of x ∈ V (G). By NG[x] we denote the closed neighborhood of x

in G, that is, NG(x)∪{x}. For any subset W ⊆ V (G), NG(W ) =
⋃

x∈W

NG(x) \W

and NG[W ] = NG(W ) ∪W .

b b bc

b bc b bc

b b bc

x

u

v

w

Figure 1.2: A graph G with D(G) = 3 and N2
G(x) = {u, v, w}.

The degree of a vertex x in G is dG(x) = |NG(x)|, where the minimum

degree of G is δ(G) = min{dG(x) : x ∈ V (G)} and the maximum degree of G is
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∆(G) = max{dG(x) : x ∈ V (G)}. The average degree of G is defined as

d(G) =
1

|V (G)|

∑

x∈V (G)

dG(x).

Clearly, δ(G) ≤ d(G) ≤ ∆(G) (see Figure 1.3). When δ(G) = ∆(G) = d,

the graph G is called d-regular.

b

b b

b b

b

Figure 1.3: A graph G with δ(G) = 2, ∆(G) = 5 and d(G) = 3.

It is well-known that any graph G without loops verifies the equality

∑

x∈V (G)

dG(x) = 2|E(G)|.

Therefore,

d(G) =
2|E(G)|

|V (G)|
.

Given a graph G = (V,E) and a subset S ⊂ V , we denote by G − S

the induced subgraph G[V \ S], that is, G − S is obtained from G by removing

the vertex set S and their incident edges (see Figure 1.4). Similarly, for any

given subset W ⊂ E(G), the deletion of W from G yields another graph G−W

obtained by removing all the edges of W (see Figure 1.5).

A graph G is said to be connected if for every pair of vertices there exists a

path connecting them or, in other words, when G has finite diameter. A connected

graph containing no cycles (acyclic graph) is called a tree. The vertices of degree
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bc bcx1
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x2

x4

G

S = {x1, x2, x3, x4}

b

bb

b

b b

G− S

Figure 1.4: Deletion of a vertex set S in a graph G.

b

bb
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b b

b
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b b

e1 e2

e3

e4e5

e6

G

W = {e1, e2, e3, e4, e5, e6}

b

bb

b

b b

b

b

b b

G−W

Figure 1.5: Deletion of an edge set W in a graph G.

one in a tree are called leaves. Observe that every tree having more than one

vertex has at least two leaves. Since trees are acyclic graphs, every two vertices

of a tree can be joined by an unique path. Sometimes it is interesting to consider

one vertex r of a tree T as special. Such vertex is called the root of T and T is

said to be an r-rooted tree.

A cut set of a connected graph G is a set S of vertices such that G− S is

not connected or is an isolated vertex. The different parts in which G is separated

after removing a cut set S are called components. Then a component C of G−S

is a maximal connected subgraph of G− S, where maximal means that no other



6 Chapter 1. Preliminaries

connected subgraph of G− S contains C as subgraph.

A connected graph is called k-connected if every cut set has cardinality at

least k. The connectivity of a graph G is the maximum integer κ such that G is

κ-connected. It is denoted by κ(G) and defined as

κ(G) = min{|S| : S ⊆ V (G) and G− S is not connected or an isolated vertex}.

In other words, the connectivity of a graph G is the smallest number of vertices

whose deletion from G produces a disconnected or a trivial graph (see Figure 1.6).

Complete graphs, Kn, n ≥ 1, are the only graphs which cannot be separated in

two or more components after removing any set of vertices. Thus, κ(Kn) = n−1

is adopted.

b b bc b

b bc b bx1

x2

G

S = {x1, x2}

b b

b b

b

b

G− S

Figure 1.6: A 2-connected graph and its components after deleting S.

The minimum cut sets of a graph G, also called the κ-sets, are those

having cardinality κ = κ(G). A subset S of vertices of G is a minimal cut set

if and only if S − {x}, for every x ∈ S, is not a cut set of G. If S is a minimal

cut set of a graph G, then every vertex in S must be adjacent to some vertex of

each component of G− S. Observe that every minimum cut set is a minimal cut

set. Notice also that the neighborhood of any vertex x ∈ V (G) is a cut set of G.

Thus, κ(G) ≤ δ(G) clearly holds. A graph G is called maximally connected if

κ(G) = δ(G).
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Going one step further, a graph G is superconnected if it is maximally connected

and every minimum cut set consists of the neighborhood of some vertex of degree

δ(G) which does not belong to the cut set (see Figure 1.7).

bb

b

b

bb

bb

Figure 1.7: A superconnected graph.

From the theorem of Menger [79], Whitney [95] deduced the following

characterization on the k-connected graphs. A graph G is called k-connected,

that is, κ(G) ≥ k, if and only if every pair of vertices is connected by at least k

internally disjoint paths. The connectivity between two distinct vertices x and y

in G, is denoted by κG(x, y) and represents the maximum number of pairwise

internally disjoint xy-paths in G (see Figure 1.8). Thus, the connectivity of a

graph can be seen as

κ(G) = min{κG(x, y) : x, y ∈ V (G)}.

b

bb

b

b b

x y

Figure 1.8: κC(x, y) = 2, for any two vertices x, y in a cycle C.
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If n is the order of a connected graph G, the average connectivity of G is

the mean of the connectivities between all the pairs of vertices in G. It is denoted

by κ(G) and defined as

κ(G) =
1(
n
2

)
∑

x,y∈V (G)

κG(x, y),

where the pair of vertices are taken non ordered and K(G) =
∑

x,y∈V (G)

κG(x, y) is

called the total connectivity of G.

Given two distinct vertices x, y of G, the xy-Menger number with respect

to a positive integer ℓ, denoted by ζℓ(x, y), is the maximum number of internally

disjoint xy-paths in G whose lengths are at most ℓ. The Menger number of G

with respect to ℓ is defined as

ζℓ(G) = min{ζℓ(x, y) : x, y ∈ V (G)}.

Similarly to the average connectivity, if n is the order of a connected graph

G, the average Menger number of G with respect to ℓ is defined as

ζℓ(G) =
1(
n
2

)
∑

x,y∈V (G)

ζℓ(x, y),

where the pair of vertices are also taken non ordered and Zℓ(G) =
∑

x,y∈V (G)

ζℓ(x, y)

is called the total Menger number of G.

Consider a subset of vertices S = {x1, x2, . . . , xk} ⊆ V (G), of a connected

graph G. A tree T in G is called an S-tree in G (or a {x1, x2, . . . , xk}-tree)

if S ⊆ V (T ). Trees T1, T2, . . . , Tr are r internally disjoint S-trees in G when

E(Ti) ∩ E(Tj) = ∅ and V (Ti) ∩ V (Tj) = S for any pair of integers i and j, with

1 ≤ i < j ≤ r. For instance, in Figure 1.9 we depict a Tutte’s wheel on seven

vertices, denoted by W1,6. If we choose the set of vertices S = {x, y, z}, then we

can obtain at most three internally disjoint S-trees.
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Denoting by κ(S) the greatest number of internally disjoint S-trees in G, for an

integer k with 2 ≤ k ≤ n, the generalized k-connectivity of G, κk(G), is defined

as

κk(G) = min{κ(S) : S ⊆ V (G) and |S| = k}.

bc

bbc

b

bc bc

bx

y

z

Figure 1.9: Three {x, y, z}-trees in the Tutte’s wheel W1,6.

For any connected graph G, the Wiener index of G, denoted by W (G), is

defined as

W (G) =
1

2

∑

x,y∈V (G)

dG(x, y),

where the sum is taken through all ordered pairs of vertices of G.

The average distance of a connected graph G is defined as the mean on

the distances between all the ordered pairs of vertices of G, that is,

µ(G) =
1

2
(
n
2

)
∑

x,y∈V (G)

dG(x, y) =
1

n(n− 1)

∑

x,y∈V (G)

dG(x, y).

Finally, the hyper-Wiener index of G is defined as

WW (G) =
1

4

∑

x,y∈V (G)

(
dG(x, y) + d2G(x, y)

)
,

where the sum is also taken through all ordered pairs of vertices of G.
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1.2 Graph products

The construction of new graphs from two given ones is not unusual at all. Basi-

cally, the method consists on joining together several copies of one graph accor-

ding to the structure of another one, the latter is usually called the main graph of

the construction and both of them are called the generator graphs of the product.

Cartesian product b b b b b

Direct product b b b b b

Strong product b b b

Lexicographic product
⊗b b b

Figure 1.10: Main graphs products.

Bermond et al. introduced in [18] a compound graph G[Γ] on the graphs

Γ and G which is obtained by replacing each vertex of Γ by a copy of G plus one

edge between the copies Gx, Gy (corresponding to vertices x, y ∈ V (Γ)) whenever

x, y are adjacent vertices in Γ. Other similar types of compound graphs have been
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proposed (see for example [45, 60]), the difference between them coming from the

number of edges between the copies graphs.

One of these types of compound graphs is the strong product of two given

graphs, which is subject of study in this thesis. The strong product graph is

one of the four standard graph products, together with the cartesian product, the

direct product and the lexicographic product of two graphs (see Figure 1.10).

The cartesian product of two connected graphs G1 = (V (G1), E(G1)) and

G2 = (V (G2), E(G2)), denoted by G1�G2, has V (G1)×V (G2) as vertex set, such

that two distinct vertices (x1, x2) and (y1, y2) of G1�G2 are adjacent if x1 = y1

and x2y2 ∈ E(G2) or x1y1 ∈ E(G1) and x2 = y2. This family of graphs has been

extensively studied [25, 65, 67, 69, 71, 77, 90, 99, 100].

It is easy to deduce from the definition of the cartesian product some basic

properties, as we show in next remark. The first one is on the degree of a vertex

of G1�G2 and the second one is about the distance between two vertices.

Remark 1.2.1. Let (x1, x2), (y1, y2) be two distinct vertices in V (G1�G2).

(i) dG1�G2((x1, x2)) = dG1(x1)+dG2(x2). Then δ(G1�G2) = δ(G1)+δ(G2) and

∆(G1�G2) = ∆(G1) + ∆(G2).

(ii) dG1�G2((x1, x2), (y1, y2)) = dG1(x1, y1) + dG2(x2, y2). Then, it follows that

D(G1�G2) = D(G1) +D(G2).

For instance, in the cartesian product P3�P5, where P3 and P5 are paths

of length 3 and 5, respectively, it is clear that

δ(P3�P5) = 2 (see the green vertex in Figure 1.11),

∆(P3�P5) = 4 (see the red vertex in Figure 1.11) and

D(P3�P5) = 8 (see the pair of blue vertices (x1, x2) and (y1, y2) in Figure 1.11).
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b b b

b b b b

b b b b b

bc

bc

bc

bc

(x1, x2)

(y1, y2)

Figure 1.11: The cartesian product of two paths of length 3 and 5.

In last years many researches have been interested in the strong product of

graphs. There are several works where different invariants and properties of this

family are treated [23, 26, 66, 91, 92]. The strong product of two connected graphs,

or simply, the strong product graph, was introduced in 1960 by Sabidussi [87] as

follows.

Definition 1.2.1. ([87]) Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2))

be two connected graphs. The strong product G1⊠G2 of G1 and G2 has as vertex

set V (G1)× V (G2), so that two distinct vertices (x1, x2) and (y1, y2) of G1 ⊠G2

are adjacent if x1 = y1 and x2y2 ∈ E(G2), or x1y1 ∈ E(G1) and x2 = y2, or

x1y1 ∈ E(G1) and x2y2 ∈ E(G2).

In this family of graphs, two kinds of edges are distinguished: the copy edges,

which are the internal edges of every copy of G2, and the intercopy edges, which

are the external edges between the copies of G2. Notice that for every edge

x1y1 ∈ E(G1) and every vertex x2 ∈ V (G2), the vertex (x1, x2) is adjacent to

(y1, x2) in G1 ⊠ G2 (see the red edge in Figure 1.12), and also to each vertex of
⋃

v∈NG2
(x2)

(y1, v), and reciprocally, the vertex (y1, x2) is adjacent to each vertex of

⋃

v∈NG2
(x2)

(x1, v) (see the blue edges in Figure 1.12). The former intercopy edges

are called the cartesian edges (red edge) and the other intercopy edges are called

the non cartesian edges (blue edges).
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b b

Gx1
2 Gy1

2

(x1, x2) (y1, x2)

Figure 1.12: Two kinds of intercopy edges in the strong product graph.

Notice that the cartesian product graph is a subgraph of the strong product

graph. In addition, from Definition 1.2.1, it clearly follows that the strong product

of two graphs is commutative (see Figure 1.13).

b

bb

b

b b

b

bb

b

b b

b

bb

b

b b

Figure 1.13: The strong product of a path and a cycle of order 3 and 6, respec-

tively.

Observe that for every x2 ∈ V (G2), the subgraph of G1 ⊠ G2 induced by

the set {(u, x2) : u ∈ V (G1)} is isomorphic to G1. This subgraph will be denoted

by Gx2
1 . Analogously, for each x1 ∈ V (G1), the set {(x1, v) : v ∈ V (G2)} induces

a subgraph isomorphic to G2, which will be denoted by Gx1
2 . Thus, G1 ⊠G2 can



14 Chapter 1. Preliminaries

be constructed by considering |V (G1)| copies of G2, G
x1
2 , . . . , Gxn

2 , corresponding

to the set of vertices V (G1) = {x1, . . . , xn}, which are interconnected according

to the definition.

Some relationships between the minimum degree and the maximum degree

of G1 ⊠G2 in terms of the corresponding parameters of G1 and G2 can be found

in [60]. We present some of them in the following remark, which directly comes

from the definition.

Remark 1.2.2. ([60]) Let G1 and G2 be two connected graphs. Let ∆(Gi) and

δ(Gi) be the maximum and the minimum degree of Gi, for i = 1, 2. Let (x1, x2)

be any vertex of G1 ⊠G2. Then

dG1⊠G2((x1, x2)) = dG1(x1)dG2(x2) + dG1(x1) + dG2(x2).

As a consequence, it follows that δ(G1 ⊠G2) = δ(G1)δ(G2) + δ(G1) + δ(G2) and

∆(G1 ⊠G2) = ∆(G1)∆(G2) + ∆(G1) + ∆(G2).

It is important to know the distances between the vertices in G1 ⊠G2 in

terms of the distances in the generator graphs G1 and G2. The following result

was also proved in [60] and will be used in this thesis.

Lemma 1.2.1. ([60]) For any pair of vertices (x1, x2) and (y1, y2) of G1 ⊠G2,

dG1⊠G2((x1, x2), (y1, y2)) = max{dG1(x1, y1), dG2(x2, y2)}.

As a consequence of the previous lemma, we deduce that the diameter of

the strong product graph is D(G1 ⊠G2) = max{D(G1), D(G2)}.

For instance, in the strong product P3 ⊠ P5, where P3 and P5 are the

paths of length 3 and 5, respectively, we can easily observe that

δ(P3 ⊠ P5) = 3 (see the green vertex in Figure 1.14),

∆(P3 ⊠ P5) = 8 (see the red vertex in Figure 1.14) and
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D(P3⊠P5) = max{3, 5} = 5 (see the blue vertices (x1, x2), (y1, y2) in Figure 1.14).

b b b

b b b

b

b b b b

bc

bc

bc

bc

(x1, x2)

(y1, y2)

Figure 1.14: The strong product of two paths of length 3 and 5.
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Chapter 2

Superconnectivity

We first give a lower bound for the connectivity of the strong product of two

connected graphs, which is an improvement of a previous one. In addition,

we prove that the strong product of two maximally connected graphs with

minimum degree at least two and girth at least five is superconnected.

2.1 Introduction

The connectivity of a graph G, denoted by κ(G), is one of the best studied

measures of the vulnerability in graphs. It represents the minimum number of

vertices whose deletion from G separates the graph in two or more components

or produces an isolated vertex.

Recall that a cut set of a connected graph G is a set S of vertices such

that G− S is not connected or is an isolated vertex. Then, the parameter κ(G)

is defined as the minimum cardinality of a cut set of G.

As we mentioned in Introduction, the connectivity parameter has been

17
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studied in several products of graphs. For instance, the connectivity of the direct

product G1 × G2 of two connected graphs, G1 and G2, was upper bounded in

2008 by Brešar and Špacapan [24], who proved that

κ(G1 ×G2) ≤ min{κb(G1)|V (G2)|, |V (G1)|κb(G2), κb(G1)κb(G2)},

where κb(Gi) is the smallest size of a set Si ⊆ V (Gi) such that Gi − Si is a

bipartite graph, for i = 1, 2.

The lexicographic product graph, denoted by G1 ⊗G2, has been recently

studied in 2013 by Yang and Xuin [101], who prove that κ(G1⊗G2) = κ(G1)|V (G2)|,

whenever G1 is a non complete graph. The connectivity of the cartesian product

G1�G2 of two connected graphs, G1 and G2, was studied in 2008 by Špacapan

in [90]. The author proved that

κ(G1�G2) = min{κ(G1)|V (G2)|, |V (G1)|κ(G2), δ(G1�G2)}.

Focus on the strong product graph, in 2010 Špacapan [91] proved the

following lower bound

κ(G1 ⊠G2) ≥ min{κ(G1)(1 + δ(G2)), κ(G2)(1 + δ(G1))}, (2.1)

which will be improved in this chapter. Before that, we present the description

of certain vertex sets which was introduced in [91] and gives us an idea on the

structure of the minimal cut sets in G1 ⊠G2.

Definition 2.1.1. ([91]) Let G1 and G2 be two connected graphs. Let S1 and S2

be a cut set of the generator graphs G1 and G2, respectively. Then

S1 × V (G2) and V (G1)× S2

are cut sets of G1 ⊠G2 and each of them is called an I-set (see Figure 2.1).
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V (G1) V (G1)

V (G2) V (G2)IC I

C

S1

S2

Figure 2.1: An I-set in G1 ⊠G2. C denotes a component of (G1 ⊠G2)− I.

Definition 2.1.2. ([91]) Let G1 and G2 be two connected graphs. Let S1 be a

cut set of G1 and set A1, . . . , Ak the components of G1 − S1. Similarly, let S2 be

a cut set of G2 and set B1, . . . , Bℓ the components of G2 − S2. Then for every

i ∈ {1, . . . , k} and every j ∈ {1, . . . , ℓ}, the set

(S1 × V (Bj)) ∪ (S1 × S2) ∪ (V (Ai)× S2)

is also a cut set of G1 ⊠G2 called an L-set (see Figure 2.2).

S1 × V (Bj)

V (Ai) × S2

S1 × S2

V (G1)

V (G2)

C

S1

S2

Ai

Bj

Figure 2.2: An L-set in G1 ⊠G2. C denotes a component of (G1 ⊠G2)− L.

Let us see an example for clarifying the definitions of I-sets and L-sets.

Let us consider the strong product P3⊠C4 of a path and a cycle of order 4. Let us

denote the path by P3 = u0u1u2u3, being its vertex set V (P3) = {u0, u1, u2, u3}.

Let V (C4) = {v0, v1, v2, v3} be the vertex set of C4.

Consider the cut set S1 = {u1} of P3 whose removal produces two compo-

nents, the isolated vertex u0, which is denoted by A1 and the edge u2u3, which is
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denoted by A2 (see Figure 2.3).

b bc b b
u0 u1 u2 u3

P3

b b b
u0

A1

u2 u3

A2

P3 − S1

Figure 2.3: A cut set S1 = {u1} of P3 and the components of P3 − S1.

Similarly, let S2 = {v0, v2} be a cut set of C4 whose removal produces also

two components, the isolated vertices v1 and v3, which are denoted by B1 and

B2, respectively (see Figure 2.4).

b bc

bbcv0 v1

v2v3

C4

b

b v1
B1

v3
B2

C4 − S2

Figure 2.4: A cut set S2 = {v0, v2} of C4 and the components of C4 − S2.

Notice that the set of red vertices in Figure 2.5 is the I-set S1×V (G2) and

also that the set of red vertices in Figure 2.6 is the I-set V (G1)× S2 in P3 ⊠ C4.

b b

bb

bc

bc

bc

bc

b b

b b

b b

b b

Figure 2.5: The I-set S1 × V (G2) in P3 ⊠ C4.
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b bc

bbc

b

bc

bc

b

b bc

bc b

b bc

bc b

Figure 2.6: The I-set V (G1)× S2 in P3 ⊠ C4.

Observe in Figure 2.7 that the blue vertices correspond to the set V (A1) × S2,

the red vertices correspond to the set S1 × S2 and the green vertex corresponds

to the set S1 × V (B1). Furthermore,

(V (A1)× S2) ∪ (S1 × S2) ∪ (S1 × V (B1))

is an L-set of P3 ⊠ C4. Indeed, it separates the isolated vertex A1 × B1 from the

rest of the resultant graph by removing the L-set.

b bc

bbc

b

bc

bc

bc

b b

b b

b b

b b

Figure 2.7: An L-set of P3 ⊠ C4.

The following theorem proves that every minimum cut set in G1 ⊠ G2 is

induced by cut sets of its generator graphs.

Theorem 2.1.1. ([91]) Let G1 and G2 be two connected graphs. Then every

cut set in G1 ⊠G2 of minimum cardinality is either an I-set or an L-set.

The cardinality of an I-set in G1 ⊠G2 can be easily computed. Indeed, if

S is a cut set of G1 ⊠G2 of minimum cardinality and S is also an I-set, then

κ(G1 ⊠G2) = |S| = min{κ(G1)|V (G2)|, |V (G1)|κ(G2)}.
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Nevertheless, the cut sets S1 and S2 which define an L-set of minimum

cardinality need not to be κ-sets in G1 and G2 respectively. We only can affirm

that if an L-set

(V (Ai)× S2) ∪ (S1 × S2) ∪ (S1 × V (Bj))

is a κ-set of G1 ⊠ G2, then Bj is a smallest component of G2 − S2 and Ai is a

smallest component of G1−S1. Hence, as we know neither the size of the smallest

component Ai of G1 − S1 nor the smallest component Bj of G2 − S2, we cannot

compute the cardinality of such L-set.

Our aim in the next section is to get a more refined lower bound for

κ(G1 ⊠ G2). We will complete this study by showing that the strong product of

two non necessarily superconnected graphs may be superconnected.

2.2 News results on connectivity and supercon-

nectivity

We first focus on the connectivity. The following definition will be used in this

chapter.

Definition 2.2.1. Let G1 and G2 be two connected graphs and G = G1⊠G2. Let

S ⊂ V (G) be a cut set of G. A copy Gxi

2 of G2 in G corresponding to a vertex

xi ∈ V (G1) is split by S if there exist at least two distinct components C and C ′

of G− S such that

V (Gxi

2 ) ∩ V (C) 6= ∅ and V (Gxi

2 ) ∩ V (C ′) 6= ∅.

The following remark comes from the definition of strong product of two

graphs.
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Remark 2.2.1. Let G1 and G2 be two connected graphs and G = G1⊠G2. Given

any vertex xi ∈ V (G1) and any subset W ⊆ V (Gxi

2 ), for every xj ∈ NG1(xi), it

follows that

|NG
xi
2
[W ]| = |NG(W ) ∩ V (G

xj

2 )|.

Our first result gives sharp bounds on the connectivity parameter of the

strong product G1 ⊠G2 of two connected graphs G1 and G2.

Theorem 2.2.1. Let G1 and G2 be two connected graphs and G = G1 ⊠ G2. If

G1 has girth at least 4, then

min{|V (G1)|κ(G2), κ(G1)|V (G2)|, δ(G1)κ(G2) + δ(G1) + κ(G2)} ≤ κ (G) ≤ δ(G).

Proof. It is well known that κ(G) ≤ δ(G) holds. Then we must prove the another

inequality. Let S ⊂ V (G) be a κ-set of G, that is |S| = κ(G).

First, suppose that there is no split copy by S in G. Then, by applying Theo-

rem 2.1.1, the cut set S must be an I-set, yielding that

|S| ≥ min{|V (G1)|κ(G2), κ(G1)|V (G2)|}.

Second, assume that there is some split copy by S inG. Set V (G1) = {x1, . . . , xn}.

For each vertex xi ∈ V (G1), denote by

Sxi
= V (Gxi

2 ) ∩ S.

Let U ⊆ V (G1) be the subset of vertices xi for which the copy Gxi

2 is split

by S in G. Without loss of generality, assume that U = {x1, . . . , xℓ}, with

1 ≤ ℓ ≤ |V (G1)|.

Notice that

|Sxi
| ≥ κ(G2), for every xi ∈ U. (2.2)
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If ℓ = |V (G1)|, we have U = V (G1) and by (2.2),

|S| ≥
ℓ∑

j=1

|Sxj
| ≥ κ(G2)|V (G1)|.

Otherwise, assume that 1 ≤ ℓ ≤ |V (G1)| − 1. For every i = 1, . . . , ℓ, let us denote

by

ki = min{|V (Gxi

2 )∩V (C)| : C is a component of G−S and V (Gxi

2 )∩V (C) 6= ∅}.

Clearly, ki ≥ 1 for all i = 1, . . . , ℓ.

Given a vertex xq ∈ V (G1) such that xq 6∈ U , since the copy G
xq

2 is not split by S,

there exists a component Ĉ of G− S such that V (G
xq

2 ) ⊂ V (Ĉ) ∪ S.

Assume that xixq ∈ E(G1) for some i ∈ {1, . . . , ℓ}. Then, for every component C

of G− S different from Ĉ, observe that

NG (V (Gxi

2 ) ∩ V (C)) ∩ V (G
xq

2 ) ⊆ Sxq
.

Thus, by Remark 2.2.1, we have

|Sxq
| ≥ |NG (V (Gxi

2 ) ∩ V (C)) ∩ V (G
xq

2 )| = |NG
xi
2
[V (Gxi

2 ) ∩ V (C)]|. (2.3)

Since NG
xi
2
(V (Gxi

2 ) ∩ V (C)) ⊆ Sxi
, for each component C 6= Ĉ, if it occurs that

V (Gxi

2 )∩ V (C) 6= ∅ and NG
xi
2
(V (Gxi

2 ) ∩ V (C)) 6= Sxi
then NG

xi
2
(V (Gxi

2 ) ∩ V (C))

is a cut set of Gxi

2 , which means by (2.2) that

|NG
xi
2
(V (Gxi

2 ) ∩ V (C)) | ≥ min{|Sxi
|, κ(G2)} = κ(G2).

Hence, from (2.3) it follows that

|Sxq
| ≥ |NG

xi
2
[V (Gxi

2 ) ∩ V (C)]| ≥ ki + κ(G2). (2.4)

Let r = min{|NG1(xi)∩U | : i = 1, . . . , ℓ}. Clearly, 0 ≤ r ≤ ℓ−1. Two cases need

to be distinguished:
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Case 1. Suppose that r = 0. That is, there exists i ∈ {1, . . . , ℓ} such that

NG1(xi) ∩ U = ∅. Then, from (2.2) and (2.4) it follows that

|S| ≥
ℓ∑

j=1

|Sxj
|+

∑

xq∈NG1
(xi)

|Sxq
| ≥ ℓκ(G2) + δ(G1) (ki + κ(G2)) .

Since ℓ ≥ 1 and ki ≥ 1, we obtain

|S| ≥ κ(G2) + δ(G1) (1 + κ(G2)) = δ(G1)κ(G2) + δ(G1) + κ(G2).

Case 2. Assume that r ≥ 1. Since U 6= V (G1), there exist vertices xi, xj ∈ U such

that xixj ∈ E(G1) and | (NG1(xi) ∪NG1(xj)) \ U | ≥ 1 because G1 is connected.

Moreover, we know that NG1(xi) ∩NG1(xj) = ∅, due to g(G1) ≥ 4.

Hence, from inequalities (2.2) and (2.4) we have

|S| ≥
∑

x∈NG1
(xi)∩U

|Sx|+
∑

x∈NG1
(xj)∩U

|Sx|+
∑

x∈NG1
(xi)\U

|Sx|+
∑

x∈NG1
(xj)\U

|Sx|

≥ |NG1(xi) ∩ U | κ(G2) + |NG1(xj) ∩ U | κ(G2)

+|NG1(xi) \ U | (ki + κ(G2)) + |NG1(xj) \ U | (kj + κ(G2)) .

Since ki ≥ 1 and kj ≥ 1, we deduce that

|S| ≥ (dG1(xi)+dG1(xj))κ(G2)+ |NG1(xi)\U |+ |NG1(xj)\U | ≥ 2δ(G1)κ(G2)+1.

As δ(G1) ≥ 1 and κ(G2) ≥ 1, using that ab+ 1 ≥ a + b, for all integers a, b ≥ 1,

we finally have

|S| ≥ δ(G1)κ(G2) + δ(G1)κ(G2) + 1 ≥ δ(G1)κ(G2) + δ(G1) + κ(G2),

which finishes the proof.

In order to present next result, let us denote by ni, κi and δi the order,

the connectivity and the minimum degree of Gi, for i = 1, 2. From Theorem 2.2.1

and the commutativity of the strong product graph, it follows this consequence

whose proof is straightforward.
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Corollary 2.2.1. Let G1 and G2 be two connected graphs of girth at least 4 and

G = G1 ⊠G2. Then

min{n1κ2, κ1n2,max{δ1κ2 + δ1 + κ2, κ1δ2 + κ1 + δ2}} ≤ κ (G) ≤ δ(G).

Let us continue with a result which gives sufficient conditions for the strong

product of two maximally connected graphs to be maximally connected. These

conditions are addressed in terms of the minimum degree and the girth of the

generator graphs.

To do that we use the well-known Moore bound (see [21] p. 105) which

says that every graph with girth g ≥ 3 and minimum degree δ ≥ 2 has at least

n0(δ, g) vertices, where

n0(δ, g) =





1 + δ

(g−3)/2∑

i=0

(δ − 1)i, if g is odd

2

g/2−1∑

i=0

(δ − 1)i, if g is even

(2.5)

Theorem 2.2.2. Let G1 and G2 be two connected graphs with at least 3 vertices

and girth at least 4. Then G1 ⊠G2 is maximally connected if both G1 and G2 are

maximally connected and one of the following assertions holds:

(i) One graph has minimum degree 1 and the other one has girth at least 5.

(ii) Both G1 and G2 have minimum degree at least 2.

Proof. Let G = G1 ⊠ G2. To prove both points, we will apply Theorem 2.2.1,

that is,

min{|V (G1)|κ(G2), κ(G1)|V (G2)|, δ(G1)κ(G2) + δ(G1) + κ(G2)} ≤ κ (G) ≤ δ(G).
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Since G1 and G2 are maximally connected graphs, then we have, in fact, that

min{|V (G1)|δ(G2), δ(G1)|V (G2)|, δ(G)} ≤ κ (G) ≤ δ(G).

(i) Without loss of generality, we may assume that G1 has minimum degree 1

and G2 has girth at least 5. The another case is analogous.

First, suppose that δ(G2) = 1. Since δ(G1) = 1, we have δ(G1 ⊠G2) = 3. Hence,

min{|V (G1)|, |V (G2)|, 3} ≤ κ (G) ≤ 3.

Also, |V (G1)| ≥ 3 = δ(G) and |V (G2)| ≥ 3 = δ(G), because both G1 and G2

have order at least 3. Therefore, κ(G) = 3 = δ(G) and we are done.

Second, suppose that δ(G2) ≥ 2. As G1 has at least 3 vertices and δ(G1) = 1, we

have

|V (G1)|δ(G2) ≥ 3δ(G2) > δ(G1)δ(G2) + δ(G1) + δ(G2) = δ (G) .

Since g(G2) ≥ 5, from the Moore bound (2.5) it follows that |V (G2)| ≥ 1+δ(G2)
2

and also, using that a2 ≥ 2a for all integer a ≥ 2,

δ(G1)|V (G2)| = |V (G2)| ≥ 1 + δ(G2)
2 ≥ 1 + 2δ(G2)

= δ(G1)δ(G2) + δ(G1) + δ(G2) = δ (G) .

Therefore, κ (G) = δ (G), that is, G1 ⊠G2 is maximally connected.

(ii) Assume that δ(G1) ≥ 2 and δ(G2) ≥ 2. Due to g(G1) ≥ 4 and g(G2) ≥ 4,

from the Moore bound (2.5) it follows that

|V (G1)| ≥ 2δ(G1) and |V (G2)| ≥ 2δ(G2).

Using that ab ≥ a+ b for all integers a, b ≥ 2, we have

|V (G1)|δ(G2) ≥ 2δ(G1)δ(G2) = δ(G1)δ(G2) + δ(G1)δ(G2)

≥ δ(G1)δ(G2) + δ(G1) + δ(G2) = δ(G).
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Similarly, δ(G1)|V (G2)| ≥ δ(G1)δ(G2) + δ(G1) + δ(G2) = δ(G). Hence,

κ (G) = δ(G),

and the result follows, that is, G1 ⊠G2 is maximally connected.

Theorem 2.2.2 is best possible in the sense that the hypothesis cannot be

relaxed. On the one hand, observe that the hypothesis of girth at least 4 in both

graphs is necessary. For instance, consider the strong product of a cycle Cg of

length g, with g ≥ 4, and any complete graph Kn with order n ≥ 3, which has

girth 3. We can disconnect Cg ⊠Kn by removing two copies of Kn corresponding

to two nonadjacent vertices of Cg (see the red copies in Figure 2.8). Hence,

κ(Cg ⊠Kn) ≤ 2n < 2 + n− 1 + 2(n− 1) = δ(Cg ⊠Kn).

bc bc

bcbc

bc bc

bcbc

Figure 2.8: A cut set of the strong product C6 ⊠K4.

On the other hand, we also check that the hypothesis of point (i) and (ii)

of Theorem 2.2.2 cannot be relaxed. It suffices to consider the strong product

of a path Pr of length r, with r ≥ 2, and a cycle Cg of length g, with g ≤ 4.

Both Pr and Cg are maximally connected graphs. Observe that by removing

one copy of Cg corresponding to whichever vertex of degree 2 in Pr (see the red

copy in Figure 2.9), the resultant graph is disconnected. However, Pr ⊠ Cg is not

maximally connected, due to κ(Pr ⊠ Cg) ≤ g ≤ 4 < 5 = δ(Pr ⊠ Cg).
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bc

bc bc

Figure 2.9: A cut set of the strong product P3 ⊠ C3.

Finally, we can go one step further. We prove a sufficient condition on the

generator graphs which permits us to know the structure of any κ-set. Namely, the

next theorem shows that the strong product G1⊠G2 of two maximally connected

graphs is superconnected if both G1 and G2 have girth at least 5 and minimum

degree at least 2.

Theorem 2.2.3. Let G1 and G2 be two maximally connected graphs of girth at

least 5 and minimum degree at least 2. Then G1 ⊠G2 is superconnected.

Proof. Let us set G = G1 ⊠ G2. Due to G1 and G2 are maximally connected

graphs and δ(G1), δ(G2) ≥ 2, from Theorem 2.2.2, we know that G is maximally

connected, that is, κ(G) = δ(G). Then, we must just prove that every minimum

cut set isolates some vertex of G.

We reason by contradiction supposing that there exists a cut set S in G with

|S| = δ(G) such that every component C of G− S has order |V (C)| ≥ 2.

We proceed in a similar way as in the proof of Theorem 2.2.1. For this goal,

set V (G1) = {x1, . . . , xn}, and for each vertex xi ∈ V (G1), let us denote by

Sxi
= V (Gxi

2 ) ∩ S.

If there is no split copy by S in G, then by applying Theorem 2.1.1, the cut set

S must be an I-set, yielding that

|S| ≥ min{|V (G1)|κ(G2), κ(G1)|V (G2)|} = min{|V (G1)|δ(G2), δ(G1)|V (G2)|}.

By using the Moore bound (2.5) on the order of a graph with girth at least 5 and
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minimum degree at least 2, and also the inequality ab ≥ a + b + 2 for all a ≥ 4,

b ≥ 2, we have

|V (G1)|δ(G2) ≥ (1 + δ(G1)
2)δ(G2)

= δ(G2) + δ(G1)δ(G2)δ(G1)

≥ δ(G1)δ(G2) + δ(G1) + δ(G2) + 2

> δ(G1 ⊠G2).

Analogously, we obtain that δ(G1)|V (G2)| > δ(G1 ⊠G2).

We arrive at a contradiction in both cases, and therefore, we deduce that there

must exist some split copy by S in G.

Let U ⊆ V (G1) be the subset of vertices xi for which the copy Gxi

2 is split by S

in G. Without loss of generality, assume that U = {x1, . . . , xℓ}, with 1 ≤ ℓ ≤ n.

For every i = 1, . . . , ℓ, let us also denote by

ki = min{|V (Gxi

2 )∩V (C)| : C is a component of G−S and V (Gxi

2 )∩V (C) 6= ∅}.

Notice that, ki ≥ 1 for all i = 1, . . . , ℓ.

Let r = min{|NG1(xi) ∩ U | : i = 1, . . . , ℓ}. Clearly, 0 ≤ r ≤ ℓ− 1.

Suppose that r ≥ 1. By repeating the reasoning of Case 2 in the proof of Theo-

rem 2.2.1, we get |S| ≥ 2δ(G1)κ(G2) + 1. Since G2 is maximally connected and

δ(G1), δ(G2) ≥ 2, using the inequality ab ≥ a + b for all a ≥ 2, b ≥ 2, we arrive

at the following contradiction

|S| ≥ 2δ(G1)δ(G2) + 1 ≥ δ(G1)δ(G2) + δ(G1) + δ(G2) + 1 > δ(G1 ⊠G2).

Thus, necessarily r = 0, which means that there exists i ∈ {1, . . . , ℓ} such that

NG1(xi)∩U = ∅. Then similarly to the Case 1 of the proof of Theorem 2.2.1, we
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have

|S| ≥
ℓ∑

j=1

|Sxj
|+

∑

xq∈NG1
(xi)

|Sxq
|

≥ ℓδ(G2) + δ(G1) (ki + δ(G2))

≥ δ(G2) + δ(G1) (1 + δ(G2))

= δ(G1)δ(G2) + δ(G1) + δ(G2),

yielding that all the previous inequalities become equalities, due to G2 is maxi-

mally connected. Therefore, we get ℓ = 1, that is, i = 1 and U = {x1}. Moreover,

|Sx1 | = δ(G2) and k1 = 1.

Thus, there exists a component C ′ of G−S such that V (Gx1
2 )∩V (C ′) = {(x1, z)},

for some z ∈ V (G2). Furthermore, NG
x1
2
((x1, z)) = Sx1, because |Sx1| = δ(G2)

and G is maximally connected.

Since Gx1
2 is a split copy by S in G, there is a component C 6= C ′ such that

V (Gx1
2 ) ∩ V (C) 6= ∅. Indeed, we can assure that |V (Gx1

2 ) ∩ V (C)| ≥ 2, because

otherwise, that is, if V (Gx1
2 ) ∩ V (C) = {(x1, z

∗)}, then NG
x1
2
((x1, z

∗)) = Sx1 and,

this fact together with the hypothesis that δ(G2) ≥ 2 yields that G2 contains a

cycle of length 4, being a contradiction with the assumption of g(G2) ≥ 5. Hence,

|V (Gx1
2 ) ∩ V (C)| ≥ 2.

As we suppose by contradiction that G is not superconnected, there exists at

least one vertex (xp, z
∗) ∈ NG

x1
2
((x1, z)) ∩ V (C ′). Clearly, x1 6= xp, because

V (Gx1
2 ) ∩ V (C ′) = {(x1, z)}, which means that x1xp ∈ E(G1). Since r = 0,

xp /∈ U and therefore the copy G
xp

2 is not split by S in G, yielding that

V (G
xp

2 ) = (V (G
xp

2 ) ∩ V (C ′)) ∪ Sxp
.

Hence, NG(V (Gx1
2 ) ∩ V (C)) ∩ V (G

xp

2 ) ⊆ Sxp
, since x1xp ∈ E(G1). From Re-



32 Chapter 2. Superconnectivity

mark 2.2.1, it follows that

|Sxp
| ≥ |NG(V (Gx1

2 ) ∩ V (C)) ∩ V (G
xp

2 )|

= |NG
x1
2
[V (Gx1

2 ) ∩ V (C)]|

= |V (Gx1
2 ) ∩ V (C)|+ |NG

x1
2
(V (Gx1

2 ) ∩ V (C))|.

(2.6)

Due to NG
x1
2
(V (Gx1

2 ) ∩ V (C)) ⊆ Sx1 , if it occurs NG
x1
2
(V (Gx1

2 ) ∩ V (C)) 6= Sx1

then NG
x1
2
(V (Gx1

2 ) ∩ V (C)) is a cut set of Gx1
2 of cardinality less than |Sx1|. This

contradicts the fact that |Sx1| = δ(G2) and G2 is maximally connected.

Therefore, NG
x1
2
(V (Gx1

2 ) ∩ V (C)) = Sx1 and from (2.6), we deduce that

|Sxp
| ≥ |NG

x1
2
[V (Gx1

2 ) ∩ V (C)]|

= |V (Gx1
2 ) ∩ V (C)|+ |Sx1|

= |V (Gx1
2 ) ∩ V (C)|+ δ(G2).

(2.7)

Then, from (2.7) we finally obtain that

|S| ≥ |Sx1|+ |Sxp
|+

∑

xq∈NG1
(x1)\{xp}

|Sxq
|

≥ δ(G2) + |V (Gx1
2 ) ∩ V (C)|+ δ(G2) + (δ(G1)− 1) (1 + δ(G2))

≥ 2δ(G2) + 2 + (δ(G1)− 1) (1 + δ(G2))

= δ(G1)δ(G2) + δ(G1) + δ(G2) + 1 > δ(G),

which is a contradiction. Hence, G is superconnected and this finishes the proof.

Theorem 2.2.3 is best possible in the sense that the hypothesis cannot be

relaxed. First, the minimum degree at least 2 for each generator graph must be

assumed. Otherwise, the strong product of a path Pr of length r, with r ≥ 2,

and a cycle Cg of length g = 5 would be a counterexample. In this case, both Pr

and Cg are maximally connected graphs and κ(Pr ⊠ Cg) = 5 = δ(Pr ⊠ Cg).
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However, the deletion of one copy of Cg corresponding to any vertex of

degree 2 in Pr (see the red copy in Figure 2.10), produces a disconnected graph

and every component is not an isolated vertex. Therefore, Pr ⊠ Cg is not super-

connected.

bc

bc

bcbc

bc

Figure 2.10: A cut set of the strong product P2 ⊠ C5.

Second, the hypothesis of girth at least 5 for the generator graphs must be

also assumed. Otherwise, the strong product of a cycle Cg of length g, with g ≥ 5

and a cycle C4 of length 4 is a counterexample. Observe that the connectivity

is κ(Cg ⊠ C4) = 8 = δ(Cg ⊠ C4) and we can disconnect Cg ⊠ C4 by removing two

copies of C4 corresponding to two nonadjacent vertices of Cg (see the red copies

in Figure 2.11).

bc bc

bcbc

bc bc

bcbc

Figure 2.11: A cut set of the strong product C5 ⊠ C4.
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Chapter 3

Connectivity and Distances

We focus on three new indices of reliability in the strong product of two

graphs: the average connectivity, the Menger number and the average

Menger number. The average connectivity analyzes the reliability of a

graph not focusing on the worst case, but providing a measure of the ex-

pected number of vertices that must fail to disrupt a graph. The Menger

number and the average Menger number give us an information on the

number of routes of bounded length. Sharp lower bounds on these para-

meters are obtained.

3.1 Introduction

As we mentioned in Chapter 1, from the relationship between the connectivity

of a graph and the existence of internally disjoint paths given by Whitney [95],

it makes sense to measure the connectivity between two distinct vertices x and y

of G, denoted by κG(x, y), as the maximum number of pairwise internally disjoint

35
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xy-paths in G. By this way, the connectivity of a graph can be seen as

κ(G) = min{κG(x, y) : x, y ∈ V (G)}.

The classical connectivity is a measure which focuses on the worst case and

it cannot provide a complete information about the vulnerability of the graph.

For example, Figure 3.1 shows two graphs with connectivity 1. Nevertheless,

the former graph appears much more connected than the last one. Then it is

interesting to consider different vulnerability parameters in graphs which give us

a suitable information about their reliability.

b

G1 G2

Figure 3.1: Two graphs with equal connectivity and distinct vulnerability.

In this chapter we pay attention to three of them. The average connec-

tivity, defined by Beineke, Oellermann and Pippert in [16], represents the ex-

pected number of vertices that must been removed to disconnect a graph. By the

theorem of Menger [79], it is related to the number of internally disjoint paths

that exist between any two vertices. Another index in which we are interested is

the Menger number, introduced by Lovász, Neumann-Lara and Plummer in [74].

This parameter takes into account, not only the pairwise disjoint paths between

two vertices, but also their lengths. Finally, we also study the average Menger

number, which reflects a mean on the number of pairwise disjoint paths with

a bounded length between two vertices. We develop the study of these three

parameters in Section 3.3, Section 3.4 and Section 3.5 of this chapter.
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3.2 Previous Results

In this section we present some technical results which are necessary to approach

the average connectivity and the Menger number of the strong product of two

connected graphs. On the one hand, we are interested in guaranteeing a minimum

number of internally disjoint paths between any two vertices in the strong product

graph. On the other hand, we want to fix a maximum length for such paths. To

study these indices, we need to introduce some previous notation.

Let G be a connected graph and consider two distinct vertices x, y ∈ V (G).

Let ℓ be a positive integer. Let us denote by ζℓ(x, y) the maximum number of

internally disjoint xy-paths of length at most ℓ in G, and by

ζℓ(G) = min{ζℓ(x, y) : x, y ∈ V (G)}.

For instance, consider a cycle C6 of length 6 as in Figure 3.2. Observe

that ζ3(x, y) = 2, meanwhile ζ3(u, v) = 1. It is easy to check that the maximum

number of internally disjoint paths of length at most 3 in C6 is always 1 or 2, for

any pair of vertices in C6. Hence, in this case, we conclude that ζ3(C6) = 1.

x y

u v

Figure 3.2: A cycle C6 verifies that ζ3(C6) = 1.

Let G1 and G2 be two connected graphs and let ℓ be a positive integer.

Denote by ζi = ζℓ(Gi), for i = 1, 2. Given vertices (x1, x2), (y1, y2) ∈ V (G1⊠G2),
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let P1, . . . , Pζ1 be ζ1 internally disjoint x1y1-paths in G1 and let Q1, . . . , Qζ2 be ζ2

internally disjoint x2y2-paths in G2, all of them of length at most ℓ.

Without loss of generality assume that l(P1) = min{l(Pi) : i = 1, . . . , ζ1}

and l(Q1) = min{l(Qj) : j = 1, . . . , ζ2}. Also, for every x1y1-path Pi in G1 and

x2y2-path Qj in G2 of length at least 2, we denote by P̈i and Q̈j, respectively, the

new path obtained from Pi and Qj by removing their end vertices (see Figure 3.3).

b b b

b

Pi

P̈i

Figure 3.3: A path Pi and its corresponding P̈i.

As we mentioned in Chapter1, for every x2 ∈ V (G2), the subgraph of

G1 ⊠ G2 induced by the set {(u, x2) : u ∈ V (G1)} is isomorphic to G1 and it is

denoted by Gx2
1 . Analogously, for each x1 ∈ V (G1), the set {(x1, v) : v ∈ V (G2)}

induces a subgraph isomorphic to G2 and it is denoted by Gx1
2 .

Thus, each x1y1-path Pi in G1 induces an (x1, x2)(y1, x2)-path in Gx2
1 ,

which will be denoted by P x2
i , with vertex set V (P x2

i ) = {(u, x2) : u ∈ V (Pi)}

and edge set E(P x2
i ) = {(u1, x2)(u2, x2) : u1u2 ∈ E(Pi)}. Similarly, each x2y2-

path Qj in the graph G2 also induces an (x1, x2)(x1, y2)-path in Gx1
2 , which will

be denoted by Qx1
j , with vertex set V (Qx1

j ) = {(x1, v) : v ∈ V (Qj)} and edge set

E(Qx1
j ) = {(x1, v1)(x1, v2) : v1v2 ∈ E(Qj)} (see Figure 3.4).

For computing the total number of internally disjoint paths that exist be-

tween any two distinct vertices in the strong product graph G1⊠G2, the position

of such vertices is necessary to be considered.
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bc

bc bc

x1

y1
Pi

G1

bc bc

bcbc

bc

x2 y2

G2

Qj

G1 ⊠G2

b

bb

bc

b b

x2 b

b

b

b

b

b

Gy1
2

x2

b

b

bc

b

b

bc

Gx1
2

x2
y2Qx1

j

P x2
i

b

b

b

b

b

b

Figure 3.4: The induced paths P x2
i and Qx1

j in C4 ⊠ C6.

Two vertices may belong to the same copy of G2 and two different copies

of G1 (see the pair of green vertices in Figure 3.5). Also, two vertices may belong

to the same copy of G1 and different copies of G2 (see the pair of blue vertices in

Figure 3.5). These two situations will be analyzed in Lemma 3.2.1.

Finally, two vertices may be in different copies of G1 and different copies of G2

(see the pair of red vertices in Figure 3.5). This situation will be studied in

Lemma 3.2.2 and Lemma 3.2.3.

First result gives a lower bound on the number of internally disjoint paths

that exist between two distinct vertices (x1, x2), (y1, y2) in G1 ⊠ G2 such that
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either x1 = y1 or x2 = y2, that is, two vertices of G1 ⊠ G2 which come from a

single vertex of G1 or a single vertex in G2.

bc

bc

bc bc

bc

bc

Figure 3.5: Possible positions of pairs of vertices in P3 ⊠ C4.

Lemma 3.2.1. Let G1 and G2 be two connected graphs with at least 3 vertices.

Let ℓ ≥ max{D(G1), D(G2), 2} be an integer and xi, yi ∈ V (Gi) be two distinct

vertices, for i = 1, 2. Then the following assertions hold:

(i) There exist at least (δ(G1)+1)ζℓ(G2) internally disjoint (x1, x2)(x1, y2)-paths

of length at most ℓ in G1⊠G2. Furthermore, if G1 has girth at least 5, then

there exist at least δ(G1) additional internally disjoint (x1, x2)(x1, y2)-paths

of length at most ℓ+ 2.

(ii) There exist at least (δ(G2)+1)ζℓ(G1) internally disjoint (x1, x2)(y1, x2)-paths

of length at most ℓ in G1 ⊠ G2. Moreover, if G2 has girth at least 5, then

there exist at least δ(G2) additional internally disjoint (x1, x2)(y1, x2)-paths

of length at most ℓ+ 2.

Proof. By the commutativity of the strong product of two graphs, it suffices to

prove (i). Let ζ2 = ζℓ(G2). Consider any vertex x1 ∈ V (G1) and two distinct

vertices x2, y2 ∈ V (G2). Then, by hypothesis, there are at least ζ2 internally

disjoint x2y2-paths, Q1, . . . , Qζ2 , of length at most ℓ in G2.

First, we introduce some general constructions of (x1, x2)(x1, y2)-paths in G1⊠G2.

Consider u ∈ NG1(x1) and any Qj , for j ∈ {1, . . . , ζ2}. Notice that if l(Qj) ≥ 2,

then vertices (x1, x2) and (x1, y2) are adjacent to the first and to the last internal
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vertex of Qu
j , respectively. Hence, it makes sense to consider the following path

in G1 ⊠G2 of length at most ℓ (see Figure 3.6),

Ruj : (x1, x2)Q̈
u
j (x1, y2).

G
x1
2

b b

Gu
2

bc bc
x2 y2

bc bcbc bc

Figure 3.6: Construction of path Ruj in Lemma 3.2.1.

When there exists a vertex wu ∈ NG1(u) \ {x1}, by hypothesis there also exist ζ2

internally disjoint x2y2-paths, Q
wu

1 , . . . , Qwu

ζ2
, of length at most ℓ in Gwu

2 . Then,

only for one but whichever Qwu

j verifying that l(Qwu

j ) ≥ 2, for j ∈ {1, . . . , ζ2}, we

can consider the (x1, x2)(x1, y2)-path

Rwu
: (x1, x2)(u, x2)Q̈

wu

j (u, y2)(x1, y2)

of length at most ℓ+ 2 (see Figure 3.7).

G
x1
2

b b

Gu
2 G

wu
2

bc bcbcbc
x2 y2

bc bc bc bcbcbc

Figure 3.7: Construction of path Rwu
in Lemma 3.2.1.

Observe that Ruj and Rwu
are internally disjoint paths, for every u ∈ NG1(x1),

every wu ∈ NG1(u) \ {x1} and every j ∈ {1, . . . , ζ2} (see Figure 3.8).

Second, we obtain the (δ(G1) + 1)ζ2 internally disjoint (x1, x2)(x1, y2)-paths of

length at most ℓ and the δ(G1) internally disjoint (x1, x2)(x1, y2)-paths of length
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G
x1
2

b b

Gu
2 G

wu
2

bc bcbcbcbc bc bcbcbc bc

Figure 3.8: Both paths Ruj and Rwu
in Lemma 3.2.1.

at most ℓ + 2 in G1 ⊠ G2. Observe that vertices (x1, x2) and (x1, y2) belong to

the same copy Gx1
2 of G1 ⊠ G2. Then, Qx1

1 , . . . , Qx1
ζ2

are ζ2 internally disjoint

(x1, x2)(x1, y2)-paths in G1 ⊠ G2 of length at most ℓ. To construct the other

δ(G1)ζ2 + δ(G1) paths, we distinguish whether x2y2 is an edge of G2 or not.

Assume that x2y2 ∈ E(G2), that is, l(Q1) = 1. Let u ∈ NG1(x1). The paths

R′
u : (x1, x2)(u, x2)(x1, y2) and R′′

u : (x1, x2)(u, y2)(x1, y2)

are contained in G1 ⊠ G2 and they have length 2 ≤ ℓ. Moreover, since G2 is a

simple graph, for j = 2, . . . , ζ2, the paths Qj have length at least 2 and it makes

sense to consider the paths Ruj, for j = 2, . . . , ζ2. Hence, we deduce that

Qx1
1 , . . . , Qx1

ζ2
, R′

u, R
′′
u, Ru2, . . . , Ruζ2,

for every u ∈ NG1(x1), are

ζ2+2dG1(x1)+dG1(x1)(ζ2−1) ≥ ζ2+2δ(G1)+δ(G1)(ζ2−1) = (δ(G1)+1)ζ2+δ(G1)

internally disjoint (x1, x2)(x1, y2)-paths of length at most ℓ in G1 ⊠G2.

Now, suppose that x2y2 /∈ E(G2). For j = 1, . . . , ζ2 and u ∈ NG1(x1), we con-

sider the paths Qx1
j and Ruj . Thus, we have (dG1(x1) + 1)ζ2 internally disjoint

(x1, x2)(x1, y2)-paths of length at most ℓ.
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Assume that g(G1) ≥ 5. If there exists a vertex u ∈ NG1(x1) such that dG1(u) = 1,

then dG1(x1) ≥ 2 necessary, since G1 has order at least 3. Hence

(dG1(x1) + 1)ζ2 ≥ 3ζ2 ≥ 2ζ2 + 1 = (δ(G1) + 1)ζ2 + δ(G1).

Otherwise, there exists a vertex wu ∈ NG1(u) \ {x1} for every u ∈ NG1(x1). As

g(G1) ≥ 5, then wu 6= wv for all u, v ∈ NG1(x1) with u 6= v. Therefore, the paths

Rwu
, for each u ∈ NG1(x1), are at least δ(G1) internally disjoint (x1, x2)(x1, y2)-

paths of length at most ℓ+ 2 in G1 ⊠G2. Hence, in this case,

Qx1
1 , . . . , Qx1

ζ2
, Ru1, . . . , Ruζ2, Rwu

are at least (δ(G1)+1)ζ2+δ(G1) internally disjoint (x1, x2)(x1, y2)-paths of length

at most ℓ+ 2 in G1 ⊠G2, which finishes the proof.

Next two lemmas provide the number of internally disjoint paths between

two vertices in G1 ⊠G2 which come from x1, y1, two distinct vertices of G1, and

x2, y2, two different vertices of G2.

For this goal, we introduce the following description of the paths Pi and

Qj in G1 and G2, respectively. For i ∈ {1, . . . , ζ1} and j ∈ {1, . . . , ζ2}, denote

by Pi : u
i
0u

i
1 . . . u

i
ri

and Qj : vj0v
j
1 . . . v

j
sj
, where notice that (ui

0, v
j
0) = (x1, x2)

and (ui
ri
, vjsj) = (y1, y2). Thus, the length of each path Pi and Qj is ri and sj ,

respectively.

Using paths of length at most ℓ in the generator graphs G1 and G2, next

lemma shows constructions of paths in G1⊠G2 whose lengths are also at most ℓ.

Lemma 3.2.2. Let G1 and G2 be two connected graphs with at least 3 vertices

and ℓ ≥ max{D(G1), D(G2)} be an integer. For every two distinct vertices

x1, y1 ∈ V (G1) and every two distinct vertices x2, y2 ∈ V (G2), there exist at

least ζℓ(G1)ζℓ(G2) internally disjoint (x1, x2)(y1, y2)-paths in G1⊠G2 of length at

most ℓ.
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Proof. The ζℓ(G1)ζℓ(G2) paths in G1 ⊠ G2 are constructed considering all the

possible combinations of pairs of paths, one from G1 and other from G2. Hence,

for each i ∈ {1, . . . , ζ1} and each j ∈ {1, . . . , ζ2}, associated to the x1y1-path Pi

in G1 and to the x2y2-path Qj in G2, we consider the (x1, x2)(y1, y2)-path Rij in

G1 ⊠G2 as follows:

(i) If Pi is shorter than Qj, that is, if ri < sj then (see Figure 3.9)

Rij :





(ui
0, v

j
0)(u

i
1, v

j
1) . . . (u

i
1, v

j
sj
), if ri = 1

(ui
0, v

j
0) . . . (u

i
ri−1, v

j
ri−1) . . . (u

i
ri−1, v

j
sj−1)(u

i
ri
, vjsj), if ri ≥ 2.

G
y1
2

G
x1
2

bcx2
y2

G
ri−1

2

bc bc bc bbcb bc bc bc bcbc

bc bc bc bc bcbc bc bc bc bc bcbc bc bc bc bc bcbc

Figure 3.9: Construction of path Rij when ri < sj and ri ≥ 2 in Lemma 3.2.2.

(ii) If Pi is longer than Qj , that is, if ri ≥ sj then (see Figure 3.10)

Rij :





(ui
0, v

j
0)(u

i
1, v

j
1) . . . (u

i
ri
, vj1), if sj = 1

(ui
0, v

j
0) . . . (u

i
sj−1, v

j
sj−1) . . . (u

i
ri−1, v

j
sj−1)(u

i
ri
, vjsj ), if sj ≥ 2.

To complete the proof, notice that l(Rij) = max{ri, sj} ≤ ℓ and all these paths

are internally disjoint in G1⊠G2, since each path Rij is associated to specific and

different paths Pi in G1 and Qj in G2.

Notice that Lemma 3.2.2 provides a tight bound and it is not difficult to

find several families of graphs which achieve it. For example, the strong product
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G
y1
2G

x1
2

x2 y2

G
sj−1

2

b bc bc bc bc bc bc b

bc bc bc bc bc bc bc bc bc bc bc bc

Figure 3.10: Construction of path Rij when ri ≥ sj and sj ≥ 2 in Lemma 3.2.2.

of two paths, of two cycles or the strong product of a path and a cycle, are some

of them.

We have just constructed ζℓ(G1) ζℓ(G2) internally disjoint paths in G1⊠G2

of length at most ℓ which join two given vertices of G1⊠G2, using paths of length

at most ℓ in the generator graphs G1 and G2. But if we allow the length of the

paths in G1 ⊠ G2 to be at most ℓ + 2, it is possible to construct more paths as

we prove in next result.

Lemma 3.2.3. Let G1 and G2 be two connected graphs with at least 3 vertices

and girth at least 5. Let ℓ ≥ max{D(G1), D(G2)} be an integer. For every two

distinct vertices x1, y1 ∈ V (G1) and every two distinct vertices x2, y2 ∈ V (G2)

there exist at least

ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2)

internally disjoint (x1, x2)(y1, y2)-paths of length at most ℓ + 2 in G1 ⊠G2.

Proof. Let us denote by ζ1 = ζℓ(G1) and ζ2 = ζℓ(G2). Let x1, y1 ∈ V (G1) and

x2, y2 ∈ V (G2) be two pairs of distinct vertices. Let P1, . . . , Pζ1 be ζ1 internally

disjoint x1y1-paths of length at most ℓ in G1 and let Q1, . . . , Qζ2 be ζ2 internally

disjoint x2y2-paths of length at most ℓ in G2. We need to find ζ1ζ2 + ζ1 + ζ2

internally disjoint (x1, x2)(y1, y2)-paths in G1 ⊠G2 of length at most ℓ+ 2.
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(I) First, by considering the x1y1-path P1 in G1 and the x2y2-path Q1

in G2, we construct three pairwise disjoint (x1, x2)(y1, y2)-paths in G1 ⊠ G2 of

length at most ℓ + 2. These paths are denoted by R11, R
′
11 and R∗ and their

construction is done according to the length of the paths P1 and Q1.

(a) Assume that r1 = 1 and s1 = 1. Thus P1 : x1y1 ∈ E(G1), Q1 : x2y2 ∈ E(G2).

Then, the three internally disjoint (x1, x2)(y1, y2)-paths of length at most ℓ in

G1 ⊠G2 are

R11 : (x1, x2)(x1, y2)(y1, y2),

R′
11 : (x1, x2)(y1, x2)(y1, y2) and

R∗ : (x1, x2)(y1, y2).

Their lengths are l(R11) = l(R′
11) = 2 and l(R∗) = 1.

(b) Assume that r1 = 1 and s1 ≥ 2. Then, the first two (x1, x2)(y1, y2)-paths are

R11 : (u
1
0, v

1
0)(u

1
1, v

1
1) . . . (u

1
1, v

1
s1
) and

R′
11 : (u

1
0, v

1
0) . . . (u

1
0, v

1
s1−1)(u

1
1, v

1
s1).

Notice that l(R11) = l(R′
11) = s1 ≤ ℓ. In this case, it is impossible to construct

in G1 ⊠G2 the third path induced only by P1 and Q1. We solve this problem in

two different ways depending on the value ζ1.

First, suppose that ζ1 = 1. Since x1y1 ∈ E(G1) and G1 is a connected graph

with at least three vertices, there exists a vertex u ∈ V (G1) such that either

ux1 ∈ E(G1) or uy1 ∈ E(G1).

Without loss of generality, we may assume that ux1 ∈ E(G1). In such case,

observe that the first and the last internal vertex of the path Qu
1 are adjacent

in G1 ⊠ G2 to (x1, x2) and (x1, y2), respectively. Then we obtain the third
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(x1, x2)(y1, y2)-path as follows (see Figure 3.11):

R∗ : (x1, x2)Q̈
u
1(x1, y2)(y1, y2),

which has length 1 + s1 − 2 + 1 + 1 ≤ ℓ+ 1.

G
y1
2

G
x1
2

x2 bc bcbc
y2bc bc bbc

bc bc bcbc

b

Gu
2

Figure 3.11: Path R∗ when r1 = 1, s1 ≥ 2 and ζ1 = 1 in Lemma 3.2.3.

Second, suppose that ζ1 ≥ 2. Then there exists at least one path P2 in G1.

Moreover, since g(G1) ≥ 5 and r1 = 1, the path P2 has length r2 ≥ 4. Then

observe that u1
0 = u2

0 = x1, u
1
1 = u2

r2
= y1, v

1
0 = x2 and v1s1 = y2. In this case, we

construct the third path as follows:

If s1 = 2, then (see Figure 3.12)

R∗ : (u1
0, v

1
0)(u

1
1, v

1
0)(u

2
r2−1, v

1
0)(u

2
r2−2, v

1
1) . . . (u

2
2, v

1
1)(u

2
1, v

1
2)(u

1
0, v

1
s1
)(u1

1, v
1
s1
).

If r2 > s1 and s1 ≥ 3, then (see Figure 3.13)

R∗ : (u1
0, v

1
0)(u

1
1, v

1
0)(u

2
r2−1, v

1
0) . . . (u

2
r2−s1

, v1s1−1) . . . (u
2
1, v

1
s1−1)(u

1
0, v

1
s1
)(u1

1, v
1
s1
).

If r2 ≤ s1 and s1 ≥ 3, then (see Figure 3.14)

R∗ : (u1
0, v

1
0)(u

1
1, v

1
0)(u

2
r2−1, v

1
1) . . . (u

2
r2−1, v

1
s1−r2+1) . . . (u

2
1, v

1
s1−1)(u

1
0, v

1
s1
)(u1

1, v
1
s1
).
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Gy1
2

Gx1
2

bc bc

P1

P2 bc

x2 y2
bc bbcb bcbc

b bcbc bc bcbc bc bcbc

Figure 3.12: Path R∗ when ζ1 ≥ 2, r1 = 1 and s1 = 2 in Lemma 3.2.3.

G
y1
2G

x1
2

P1

P2

G
r2−s1
2

b bc bc bc bc bc bc bc

b bc bc bc bc bc bc b

bc bc bc bc bc bc bc bc

x2
y2

Figure 3.13: Path R∗ when ζ1 ≥ 2, r2 > s1 and s1 ≥ 3 in Lemma 3.2.3.

Notice that l(R∗) = max{s1, r2} + 2 ≤ ℓ + 2, in either case. The design of R∗

is very special and different with respect to the previous ones since it must be

combined with the paths that will be described in (III).
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G
y1
2G
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2
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P2

vs1−r2+1

bcbcbcbcbc bc

bbcbcbcbc bcbcbcbcbcb bc

bcbcbcbcbc bcbcbcbcbcbc bcbcbcbcbcbc bc

y2x2

Figure 3.14: Path R∗ when ζ1 ≥ 2, r2 ≤ s1 and s1 ≥ 3 in Lemma 3.2.3.

(c) The case r1 ≥ 2 and s1 = 1 is symmetric to the previous one due to the

commutativity of the strong product of graphs.

(d) Assume that r1 ≥ 2 and s1 ≥ 2. Then, the (x1, x2)(y1, y2)-paths are

R11 :





(u1
0, v

1
0) . . . (u

1
0, v

1
s1−r1+1) . . . (u

1
r1−1, v

1
s1
)(u1

r1
, v1s1), if r1 ≤ s1

(u1
0, v

1
0)(u

1
0, v

1
1) . . . (u

1
s1−1, v

1
s1) . . . (u

1
r1, v

1
s1), if r1 > s1,

R′
11 :





(u1
0, v

1
0)(u

1
1, v

1
0) . . . (u

1
r1
, v1r1−1) . . . (u

1
r1
, v1s1), if r1 ≤ s1

(u1
0, v

1
0) . . . (u

1
r1−s1+1, v

1
0) . . . (u

1
r1, v

1
s1−1)(u

1
r1, v

1
s1), if r1 > s1,

and

R∗ :





(u1
0, v

1
0) . . . (u

1
r1−1, v

1
r1−1) . . . (u

1
r1−1, v

1
s1−1)(u

1
r1
, v1s1), if r1 ≤ s1

(u1
0, v

1
0) . . . (u

1
s1−1, v

1
s1−1) . . . (u

1
r1−1, v

1
s1−1)(u

1
r1
, v1s1), if r1 > s1.

In this case, observe that l(R11) = l(R′
11) = max{r1, s1} + 1 ≤ ℓ + 1, whereas

l(R∗) ≤ ℓ. Hence, these three paths constructively prove the desired result when

ζ1 = ζ2 = 1.
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(II) If ζ2 ≥ 2, then there exist the x2y2-paths Q2, . . . , Qζ2 of length at

most ℓ in G2 and sj ≥ 3, for j ∈ {2, . . . , ζ2}, since g(G2) ≥ 5. Then associated to

the only x1y1-path P1 in G1 and to the x2y2-paths Q2, . . . , Qζ2 in G2 we construct

two (x1, x2)(y1, y2)-paths R1j and R′
1j , for j ∈ {2, . . . , ζ2} in G1 ⊠G2 of length at

most ℓ+ 2 in G1 ⊠G2 as follows, distinguishing two cases.

R1j :





(u1
0, v

j
0) . . . (u

1
0, v

j
sj−r1) . . . (u

1
r1−1, v

j
sj−1)(u

1
r1, v

j
sj
), if r1 < sj

(u1
0, v

j
0)(u

1
0, v

j
1) . . . (u

1
sj−2, v

j
sj−1) . . . (u

1
r1−1, v

j
sj−1)(u

1
r1
, vjsj), if r1 ≥ sj ,

R′
1j :





(u1
0, v

j
0) . . . (u

1
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j
r1−1)(u

1
r1, v

j
r1) . . . (u

1
r1, v

j
sj
), if r1 < sj

(u1
0, v

j
0)(u

1
1, v

j
1) . . . (u

1
r1−sj+2, v

j
1) . . .

. . . (u1
r1−1, v

j
sj−2)(u

1
r1, v

j
sj−1)(u

1
r1, v

j
sj
), if r1 ≥ sj.

The lengths of the paths R1j and R′
1j are at most max{r1, sj} + 1 ≤ ℓ + 1 and

observe that all these paths are internally disjoint with the three paths described

in (I) in either case, since they depend on each path Qj for j ∈ {2, . . . , ζ2}.

If ζ1 = 1 and ζ2 ≥ 2, then (I) and (II) provide 3 + 2(ζ2 − 1) = 2ζ2 + 1 internally

disjoint (x1, x2)(y1, y2)-paths of length at most ℓ+ 2 in G1 ⊠G2 and the proof is

finished.

(III) If ζ1 ≥ 2 then there exist the x1y1-paths P2, . . . , Pζ1 of length at

most ℓ in G1 and ri ≥ 3, for i ∈ {2, . . . , ζ1}, since g(G1) ≥ 5. Then associated to

the only x2y2-path Q1 in G2 and to each x1y1-path Pi in G1, for i ∈ {2, . . . , ζ1},

we construct two (x1, x2)(y1, y2)-paths Ri,1 and R′
i,1 of length at most ℓ + 2 in

G1 ⊠ G2. Observe that the difficulty to construct the paths Ri1 and R′
i1 takes

root in the fact that they must be internally disjoint with the path R∗ considered

in (I). For this reason, we need to distinguish different cases depending on the

length of the path Q1.
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(a) If s1 = 1 then

Ri1 : (u
i
0, v

1
0) . . . (u

i
ri−1, v

1
0)(u

i
ri
, v11),

R′
i1 : (u

i
0, v

1
0)(u

i
1, v

1
1) . . . (u

i
ri
, v11).

(b) If s1 = 2 then
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i
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1
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i
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1
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1
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i
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1
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1
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1
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i
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, v12).

(c) If ri = 3 and s1 ≥ 3, then
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1
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i
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1
1) . . . (u

i
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1
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i
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)(ui
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),
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i
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1
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i
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1
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i
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1
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i
3, v

1
s1).

(d) If ri > s1 ≥ 3 then
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R′
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



(ui
0, v

1
0) . . . (u

i
ri−s1+1, v

1
0) . . .

. . . (ui
ri−1, v

1
s1−2)(u

i
ri−1, v

1
s1−1)(u

i
ri
, v1s1), if s1 is odd
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1
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1
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i
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(e) If s1 ≥ ri > 3 then

Ri1 :





(ui
0, v

1
0)(u

i
1, v

1
1) . . . (u

i
1, v

1
s1−ri+3) . . . (u

i
ri−2, v

1
s1
) . . . (ui

ri
, v1s1), if ri is odd
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R′
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i
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, v1s1), if ri is even.
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The lengths of the paths Ri1 and R′
i1 are at most max{ri, s1}+2 ≤ ℓ+2. Notice

that they are internally disjoint with all the paths described in (I) and (II).

If ζ2 = 1 and ζ1 ≥ 2, then (I) and (III) provide 3+2(ζ1− 1) = 2ζ1+1 internally

disjoint (x1, x2)(y1, y2)-paths of length at most ℓ + 2 in G1 ⊠ G2, as we have

desired.

(IV) If ζ1 ≥ 2 and ζ2 ≥ 2, there exist the x1y1-paths P2, . . . , Pζ1 and the

x2y2-paths Q2, . . . , Qζ2 of length at most ℓ in G1 and G2, respectively. Moreover,

as g(G1) ≥ 5 and g(G2) ≥ 5, ri ≥ 3 and sj ≥ 3, for every i ∈ {2, . . . , ζ1} and

every j ∈ {2, . . . , ζ2}.

Then, for i ∈ {2, . . . , ζ1} and j ∈ {2, . . . , ζ2}, associated to each x1y1-path Pi inG1

and to each x2y2-path Qj in G2, we consider the path described in Lema 3.2.2

(see Figure 3.9 and Figure 3.10):

Rij :





(ui
0, v

j
0) . . . (u

i
ri−1, v

j
ri−1) . . . (u

i
ri−1, v

j
sj−1)(u

i
ri
, vjsj), if ri < sj

(ui
0, v

j
0) . . . (u

i
sj−1, v

j
sj−1) . . . (u

i
ri−1, v

j
sj−1)(u

i
ri
, vjsj), if ri ≥ sj .

It is easy to check that l(Rij) = max{ri, sj} ≤ ℓ and that these (ζ1 − 1)(ζ2 − 1)

paths Rij are internally disjoint with all the previous paths because they are

associated to different paths in the generator graphs G1 and G2. If ζ1 ≥ 2 and

ζ2 ≥ 2, then (I) to (IV) provide

3 + 2(ζ2 − 1) + 2(ζ1 − 1) + (ζ1 − 1)(ζ2 − 1) = ζ1ζ2 + ζ1 + ζ2

pairwise internally disjoint (x1, x2)(y1, y2)-paths in G1 ⊠ G2 of length at most

ℓ+ 2, which finishes the proof.

This section has been devoted to present the results which will be the key

point for next sections of this chapter. We have studied the number of internally

disjoint paths that exists between any two vertices in the strong product of two

connected graphs as well as their lengths.
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3.3 The Menger number

The Menger number is the first of the three parameters that we study in this

chapter. Given two distinct vertices x, y of a connected graph G, the xy-Menger

number with respect to a positive integer ℓ, denoted by ζℓ(x, y), is the maximum

number of internally disjoint xy-paths in G whose lengths are at most ℓ. The

Menger number of G with respect to ℓ is defined as

ζℓ(G) = min{ζℓ(x, y) : x, y ∈ V (G)}.

Observe that ζℓ(G) is an increasing function on ℓ and ζℓ(G) ≤ κ(G) ≤ δ(G)

for every positive integer ℓ. Clearly, if ℓ < D(G) then ζℓ(G) = 0 and also, for

every integer ℓ ≥ |V (G)| − 1, the Menger number is ζℓ(G) = κ(G). Thus, the

determination of ζℓ(G) when D(G) ≤ ℓ ≤ |V (G)| − 2 is an open and interesting

problem.

Ma, Xu, and Zhu in [77] studied the Menger number of the cartesian pro-

duct of two connected graphs G1 and G2. Namely, for two integers ℓ1 ≥ 2 and

ℓ2 ≥ 2, they proved that

ζℓ1+ℓ2(G1�G2) ≥ ζℓ1(G1) + ζℓ2(G2),

which is an equality when both G1 and G2 are paths and, therefore, G1�G2 is a

grid.

In this section we focus on ζℓ(G1 ⊠G2), the Menger number of the strong

product of two connected graphs G1 and G2 with respect to a positive integer ℓ.

We have mentioned that for any connected graph G, the Menger number

ζℓ(G) = 0 for all ℓ < D(G). Hence, since the diameter of the strong product

graph is D(G1 ⊠G2) = max{D(G1), D(G2)}, from now on, we will consider only

integers ℓ ≥ max{D(G1), D(G2)}.
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To estimate the Menger number ζℓ(G1 ⊠ G2), we make use of the lower

bounds on the number of internally disjoint paths of length at most ℓ that join

any two arbitrary vertices in G1 ⊠G2, provided in Section 3.2.

Theorem 3.3.1. Let G1 and G2 be two connected graphs with at least 3 vertices

and ℓ ≥ max{D(G1), D(G2)} be an integer. The following assertions hold:

(i) ζℓ(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2).

(ii) ζℓ+2(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2), if g(Gi) ≥ 5 for i = 1, 2.

Proof. Let us consider vertices x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2).

(i) If ℓ = 1, then G1 and G2 are complete graphs, yielding that G1 ⊠ G2 is a

complete graph and ζ1(G1 ⊠G2) = ζ1(G1) = ζ1(G2) = 1. Thus, point (i) directly

holds.

Hence, assume that ℓ ≥ 2. If x1 = y1 and x2 6= y2, then, by applying point

(i) of Lemma 3.2.1, there exist at least (δ(G1) + 1)ζℓ(G2) > ζℓ(G1)ζℓ(G2) in-

ternally disjoint (x1, x2)(x1, y2)-paths of length at most ℓ in G1 ⊠ G2. Analo-

gously, if x1 6= y1 and x2 = y2, by point (ii) of Lemma 3.2.1, there exist at

least (δ(G2)+ 1)ζℓ(G1) > ζℓ(G1)ζℓ(G2) internally disjoint (x1, x2)(y1, x2)-paths of

length at most ℓ in G1 ⊠ G2. If x1 6= y1 and x2 6= y2 then, by Lemma 3.2.2,

there exist at least ζℓ(G1)ζℓ(G2) internally disjoint (x1, x2)(y1, y2)-paths of length

at most ℓ in G1 ⊠G2. Therefore, ζℓ(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2).

(ii) Assume also that both G1 and G2 have girth at least 5. If x1 = y1 and

x2 6= y2, then by point (i) of Lemma 3.2.1, there exist at least

(δ(G1) + 1)ζℓ(G2) + δ(G1) ≥ ζℓ(G1)ζℓ(G2) + ζℓ(G2) + ζℓ(G1)

internally disjoint (x1, x2)(y1, y2)-paths of length at most ℓ+ 2 in G1 ⊠G2.
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The same conclusion is obtained when x1 6= y1 and x2 = y2, due to point (ii) of

Lemma 3.2.1.

If x1 6= y1 and x2 6= y2 then, by Lemma 3.2.3, there exist at least

ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2)

internally disjoint (x1, x2)(y1, y2)-paths of length at most ℓ+ 2 in G1 ⊠G2.

Hence, ζℓ+2(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2), which finishes the proof.

Theorem 3.3.1 (i) provides a tight bound. There exist several examples

for which equality ζℓ(G1 ⊠ G2) = ζℓ(G1)ζℓ(G2) holds, for instance, when both

G1 and G2 are isomorphic to the path Pℓ of length ℓ, when both G1 and G2

are isomorphic to the cycle C2ℓ+1 of length 2ℓ + 1 and also when G1 = Pℓ and

G2 = C2ℓ+1.

For example, consider the case G1 = P2 and G2 = C5, and ℓ = 2. It is

clear that ζ2(P2) = 1 and ζ2(C5) = 1. Also, it is easy to check in this case that

ζ2(P2 ⊠ C5) = 1, because there are pairs of vertices in P2 ⊠ C5 for which there

exists only one path of length at most 2 (see Figure 3.15).

Theorem 3.3.1 (ii) is also best possible in the sense that both hypothesis

cannot be relaxed. On the one hand, the bound in Theorem 3.3.1 (ii) may not be

attained when at least one of the generator graphs has two vertices. For example,

by considering the paths P1 and P2 whose lengths are 1 and 2, respectively, if

ℓ ≥ 2, observe that

ζℓ(P1 ⊠ P2) ≤ κ(P1 ⊠ P2) = 2 < 3 = ζℓ(P1)ζℓ(P2) + ζℓ(P1) + ζℓ(P2).

On the other hand, the same bound may fail when the hypothesis of girth

at least five is not fulfilled. For example, let C4 ⊠ C4 be the strong product of
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(x1,x2)

(y1,y2)

Figure 3.15: Unique (x1, x2)(y1, y2)-path of length 2 in P2 ⊠ C5.

two cycles of length 4 and consider any integer ℓ > D(C4) = 2, for instance,

ℓ = 3. Clearly ζ3(C4) = 2. From Theorem 3.3.1 (ii) there should exist at least 8

internally disjoint paths between whichever pair of vertices in C4 ⊠ C4. However,

if we choose two vertices, (x1, x2), (y1, y2), in C4⊠C4 such that dG1(x1, y1) = 1 and

dG2(x2, y2) = 2, then it is only possible to construct just 7 internally disjoint paths

of length at most ℓ+ 2 = 5 between such vertices as we can see in Figure 3.16.

b

b

b

b

b

b

bc

bc

bc

bc

bc bcbc

bcbc bc

(x1, x2)

(y1, y2)

Figure 3.16: Pair of vertices in C4 ⊠ C4 for which the lower bound (ii) of Theo-

rem 3.3.1 is not attained after relaxing the hypothesis.
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The first consequence of Theorem 3.3.1 is the following result. It gives a

sufficient condition to guarantee the maximum possible value of ζℓ+2(G1 ⊠ G2),

for certain ℓ.

Corollary 3.3.1. Let G1 and G2 be two maximally connected graphs with at

least 3 vertices and girth at least 5. If ℓ is a positive integer such that ζℓ(G1) =

κ(G1) and ζℓ(G2) = κ(G2), then

ζℓ+2(G1 ⊠G2) = δ(G1 ⊠G2).

Proof. Inequality ζℓ+2 (G1 ⊠G2) ≤ δ(G1 ⊠ G2) clearly holds. We just need to

prove the another one. From Theorem 3.3.1, we have

ζℓ+2 (G1 ⊠G2) ≥ ζℓ(G1) ζℓ(G2) + ζℓ(G1) + ζℓ(G2).

Since ζℓ(G1) = κ(G1) and ζℓ(G2) = κ(G2),

ζℓ+2 (G1 ⊠G2) ≥ κ(G1) κ(G2) + κ(G1) + κ(G2).

Also we know that both graphs are maximally connected graphs, hence

ζℓ+2 (G1 ⊠G2) ≥ δ(G1) δ(G2) + δ(G1) + δ(G2) = δ(G1 ⊠G2),

and the desired result is proved.

As we mentioned above, ζℓ(G) is an increasing function on ℓ, therefore

ζℓ(G) ≤ κ(G) ≤ δ(G) for every positive integer ℓ. In fact, for every con-

nected graph G there exists a positive integer ℓ ≤ |V (G)| − 1 for which equality

ζℓ(G) = κ(G) holds. Hence, from this fact and Theorem 3.3.1, it follows the next

consequence whose proof is straightforward.

Corollary 3.3.2. Let G1 and G2 be two maximally connected graphs with at

least 3 vertices and girth at least 5. Then G1 ⊠G2 is maximally connected.
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We finish this section determining the exact Menger number of the strong

product of two graphs G1 ⊠ G2 when both G1 and G2 are paths, when both of

them are cycles and if one of them is a path and the another one is a cycle, for

certain values of ℓ and their orders. First, observe that:

If both G1 and G2 are paths, Pr1 and Pr2, with lengths r1 and r2, respectively,

being r1 ≥ r2, then ζr1(Pr1) = ζr1(Pr2) = 1.

If both G1 and G2 are cycles, Cr1 and Cr2 , with lengths r1 and r2, respectively,

being r1 ≥ r2, then ζr1−1(Cr1) = ζr1−1(Cr2) = 2.

Hence, by applying point (ii) of Theorem 3.3.1 and taking into account

the previous observations, next result can be proved directly.

Corollary 3.3.3. For integers r1 ≥ r2 ≥ 2, the following assertions hold.

(i) If Pr1 and Pr2 are paths, with lengths r1 and r2, respectively, then

ζr1+2(Pr1 ⊠ Pr2) = 3.

(ii) If Pr1 is a path and Cr2 is a cycle, with lengths r1 and r2, respectively, such

that r2 ≥ 5, then

ζr1+2(Pr1 ⊠ Cr2) = 5.

(iii) If Cr1 and Cr2 are cycles, with lengths r1 and r2, respectively, such that

r2 ≥ 5, then

ζr1+1(Cr1 ⊠ Cr2) = 8.

3.4 The average connectivity

The average connectivity is the next vulnerability parameter which is studied in

this chapter. For a connected graph G of order n, recall that the connectivity
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between two distinct vertices x and y in G, denoted by κG(x, y), is the maximum

number of pairwise internally disjoint xy-paths in G. Then, the average connec-

tivity, denoted by κ(G), is defined as the mean of the connectivities between all

the non ordered pairs of vertices in G, that is,

κ(G) =
1(
n
2

)
∑

x,y∈V (G)

κG(x, y).

Sometimes, in order to avoid fractions, we also consider the total connec-

tivity of G, denoted by

K(G) =
∑

x,y∈V (G)

κG(x, y).

The difference between the classical connectivity and the average connec-

tivity is that, while the connectivity is the minimum number of vertices whose

removal separates at least one connected pair of vertices, the average connecti-

vity is a measure for the expected number of vertices that have to be removed to

separate a randomly chosen pair of vertices. For instance, in Figure 3.17 there are

two graphs with connectivity 1, but it is obvious the graph G2 is more vulnerable

than G2. In fact, κ(G1) = 2.2 and κ(G2) = 1.

b

G1 G2

Figure 3.17: Two graphs with equal connectivity but κ(G1) > κ(G2).

To estimate the average connectivity of the strong product of two con-

nected graphs G1 and G2, we must compute the number of pairwise disjoint

paths connecting two arbitrary vertices in G1 ⊠G2.



60 Chapter 3. Connectivity and Distances

In Section 3.2 we have proved that if both G1 and G2 have at least three

vertices and girth at least 5, for any two vertices x1, y1 ∈ V (G1), x2, y2 ∈ V (G2)

and ℓ ≥ max{D(G1), D(G2)}, there exist at least ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2)

internally disjoint (x1, x2)(y1, y2)-paths of length at most ℓ+ 2 in G1 ⊠G2.

When the length of the paths between vertices (x1, x2), (y1, y2) of G1⊠G2

is not decisive and we are only interested in computing how many paths are

internally disjoint, the (x1, x2)(y1, y2)-Menger number with respect to a large

enough value of ℓ leads us to study the connectivity between (x1, x2) and (y1, y2)

in G1 ⊠G2. Namely, for ℓ ≥ |V (G1 ⊠G2)| − 1, we have

κG1⊠G2((x1, x2), (y1, y2)) = ζℓ((x1, x2), (y1, y2)),

which means that Lemma 3.2.1 and Lemma 3.2.3 can be applied as we see in the

following remark.

Remark 3.4.1. Let G1 and G2 be two connected graphs with at least 3 vertices

and girth at least 5. Let xi, yi ∈ V (Gi) be two distinct vertices, for i = 1, 2. The

following assertions hold:

(i) There exist at least (δ(G1) + 1)κG2(x2, y2) + δ(G1) internally disjoint

(x1, x2)(x1, y2)-paths in G1 ⊠G2.

(ii) There exist at least κG1(x1, y1)(δ(G2) + 1) + δ(G2) internally disjoint

(x1, x2)(y1, x2)-paths in G1 ⊠G2.

(iii) There exist at least κG1(x1, y1)κG2(x2, y2) + κG1(x1, y1) + κG2(x2, y2) inter-

nally disjoint (x1, x2)(y1, y2)-paths in G1 ⊠G2.

Remark 3.4.1 leads us to get a lower bound for the average connectivity

of the strong product of two connected graphs, as we will see below.
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Let G1 and G2 be two connected graphs of order n1 and n2, size e1 and e2,

average connectivity κ(G1) and κ(G2), and average degree d(G1) and d(G2), res-

pectively. We will obtain such lower bound on κ (G1 ⊠G2) in terms of the afore-

mentioned parameters of G1 and G2.

Theorem 3.4.1. Let G1 and G2 be two connected graphs with order n1, n2 ≥ 3,

respectively, and girth at least 5. Then

κ (G1 ⊠G2) ≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))κ(G1) + (n2 − 1)(n1 + d(G1))κ(G2)

+(n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.

Proof. Let G = G1 ⊠G2. Let xi, yi ∈ V (Gi) be two distinct vertices, for i = 1, 2,

and denote by x = (x1, x2) and y = (y1, y2).

Let P(G1 ⊠ G2) be the set of non ordered pairs of vertices of G1 ⊠ G2. Then

P(G1 ⊠G2) can be partitioned into the following sets:

A =
⋃

x2,y2∈V (G2)

{{(u, x2), (u, y2)} : u ∈ V (G1)} ,

B =
⋃

x1,y1∈V (G1)

{{(x1, v), (y1, v)} : v ∈ V (G2)} ,

C =
⋃

x,y∈V (G1⊠G2)

{{(x1, x2), (y1, y2)} : x1 6= y1 and x2 6= y2} .

Moreover, their cardinalities are

|V (G1 ⊠G2)| = n1n2,

|A| = n1

(n2

2

)
,

|B| = n2

(n1

2

)
and

|C| = 2

(n1

2

)(n2

2

)
.
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Hence,

κ (G1 ⊠G2) =
1(
n
2

)
∑

P(G1⊠G2)

κG ((x1, x2), (y1, y2))

=
1(
n
2

)
[
∑

A

κG ((u, x2), (u, y2)) +
∑

B

κG ((x1, v), (y1, v))

+
∑

C

κG ((x1, x2), (y1, y2))

]
.

(3.1)

To get the desired lower bound of the average connectivity of the strong product

graph, we start computing the three sums of equality (3.1).

Since the elements of A satisfy the hypothesis of Remark 3.4.1, it follows that

∑

A

κG ((u, x2), (u, y2)) ≥
∑

A

[(1 + dG1(u))κG2(x2, y2) + dG1(u)]

=
∑

x2,y2∈V (G2)

κG2(x2, y2)
∑

u∈V (G1)

(1 + dG1(u))

+

(n2

2

) ∑

u∈V (G1)

dG1(u)

=
∑

x2,y2∈V (G2)

κG2(x2, y2)(n1 + 2e1) + 2e1

(n2

2

)

= (n1 + 2e1)K(G2) + 2e1

(n2

2

)
.

Similarly, as the elements of B satisfy the hypothesis of Remark 3.4.1 and by the

commutativity of the strong product of graphs, we also deduce that

∑

B

κG ((x1, v), (y1, v)) ≥ (n2 + 2e2)K(G1) + 2e2

(n1

2

)
.

Since the elements of C satisfy the hypothesis of Remark 3.4.1, we have
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∑

C

κG ((x1, x2), (y1, y2)) ≥
∑

C

[κG1(x1, y1)κG2(x2, y2) + κG1(x1, y1) + κG2(x2, y2)]

=
∑

C

[(κG1(x1, y1) + 1) (κG2(x2, y2) + 1)− 1]

= 2
∑

x1,y1∈V (G1)

(κG1(x1, y1) + 1)
∑

x2,y2∈V (G2)

(κG2(x2, y2) + 1)

−|C|

= 2K(G1)K(G2) + 2
(n2

2

)
K(G1) + 2

(n1

2

)
K(G2).

Thus, from the partition of P(G1 ⊠G2) into the sets A, B, C, we deduce that

K(G1 ⊠G2) =
∑

P(G1⊠G2)

κG ((x1, x2), (y1, y2)) =
∑

A

κG ((u, x2), (u, y2))

+
∑

B

κG ((x1, v), (y1, v)) +
∑

C

κG ((x1, x2), (y1, y2))

≥ (n1 + 2e1)K(G2) + 2e1

(n2

2

)
+ (n2 + 2e2)K(G1) + 2e2

(n1

2

)

+2K(G1)K(G2) + 2

(n2

2

)
K(G1) + 2

(n1

2

)
K(G2)

= (n2
2 + 2e2)K(G1) + (n2

1 + 2e1)K(G2) + 2K(G1)K(G2)

+2e1

(n2

2

)
+ 2e2

(n1

2

)
.

Hence,

κ (G1 ⊠G2) =
2

n1n2(n1n2 − 1)
K (G1 ⊠G2)

≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))κ(G1)

+(n2 − 1)(n1 + d(G1))κ(G2) + (n1 − 1)(n2 − 1)κ(G1)κ(G2)

+(n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.
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Theorem 3.4.1 is best possible in the sense that the hypothesis of girth

at least 5 cannot be relaxed. Indeed, let G1 be the graph formed by two cycles

of length 5 which share a common vertex z, and let G2 be a cycle of length 4.

Clearly G1 is 1-connected, since z is a cut vertex of G1, and G2 is 2-connected.

Let us consider two distinct vertices x1, y1 ∈ V (G1)\{z} such that any x1y1-path

in G1 pass through z. For any two vertices x2, y2 ∈ V (G2), it is impossible to

find five internally disjoint (x1, x2)(y1, y2)-paths in G1⊠G2, because each of these

paths must contain a vertex of the subgraph Gz
2. But this graph has only four

vertices (see Figure 3.18).

b b

b b

bb

bb

b b

b b

bb

bb

b b

bb

bb

b b

b b

bb

bb

b b

bc

bc

bc

bc

(x1, x2)

(y1, y2)

Gz
2

Gx1

2

Gy1
2

Figure 3.18: It is not possible to construct 5 internally disjoint paths between

(x1, x2) and (y1, y2) in G1 ⊠G2.

We finish this section, giving an upper bound on the average connectivity

of the strong product graph which es optimal under certain requirements. To do

that, we use the following result, proved in [16].

Theorem 3.4.2. ([16]) Let G be a graph on n vertices and e edges with e ≥ n,

and let r = 2e− n⌊2e/n⌋. Then

κ(G) ≤ d(G)−
r(n− r)

n(n− 1)
.

The following result is a directly consequence from the Theorem 3.4.2.
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Corollary 3.4.1. Let G be a connected graph. Then κ(G) ≤ d(G).

Proof. If |E(G)| ≥ |V (G)| then we are done, due to the Theorem 3.4.2.

Otherwise, G must be a tree, since it is connected. In such case, observe that

κG(x, y) = 1, for every x, y ∈ V (G), which means that κ(G) = 1.

Furthermore, dG(x) ≥ 1, for every x, y ∈ V (G), thus d(G) ≥ 1 and therefore,

κ(G) = d(G).

Finally, from Theorem 3.4.1 and Corollary 3.4.1, we give a sufficient con-

dition for the average connectivity of the strong product graph to be equal to its

average degree.

Corollary 3.4.2. Let G1 and G2 be two connected graphs with at least 3 vertices

and girth at least 5. If κ(Gi) = d(Gi), for i = 1, 2, then

κ (G1 ⊠G2) = d (G1 ⊠G2) .

Proof. We know that κ (G1 ⊠G2) ≤ d (G1 ⊠G2). Thus we must prove the an-

other inequality. By applying Corollary 3.4.1 to the lower bound of Theorem 3.4.1,

we deduce that

κ (G1 ⊠G2) ≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))κ(G1) + (n2 − 1)(n1 + d(G1))κ(G2)

+(n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)
]

≥
1

n1n2 − 1
[(n1 − 1)(n2 + κ(G2))κ(G1) + (n2 − 1)(n1 + κ(G1))κ(G2)

+(n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)κ(G1) + (n1 − 1)κ(G2)]

=
1

n1n2 − 1
[(n1n2 + (n1 − 1)κ(G2)− 1)κ(G1)

+(n1n2 + (n2 − 1)κ(G1)− 1)κ(G2)

+(n1n2 − n1 − n2 + 1)κ(G1)κ(G2)] .



66 Chapter 3. Connectivity and Distances

Hence,

κ (G1 ⊠G2) ≥
1

n1n2 − 1
[(n1n2 − 1)κ(G1)κ(G2) + (n1n2 − 1)κ(G1)

+(n1n2 − 1)κ(G2)]

= κ(G1)κ(G2) + κ(G1) + κ(G2).

By applying the hypothesis κ(G1) = d(G1) and κ(G2) = d(G2), we have

κ (G1 ⊠G2) ≥ d(G1)d(G2) + d(G1) + d(G2) = d (G1 ⊠G2) ,

obtaining the desired result.

3.5 The average Menger number

Similarly to the average connectivity, when the requirement of the lengths of the

disjoint paths has to be considered, it may be interesting to study the Menger

number not as a worst-case measure but also as a measure of the expected number

of pairwise disjoint paths with an upper bounded length.

Let G be a connected graph on n vertices. Let ℓ be a positive integer and

x, y ∈ V (G) be two distinct vertices. We have denoted by ζℓ(x, y) the maximum

number of internally disjoint xy-paths of length at most ℓ in G. The average

Menger number of G with respect to ℓ is defined as

ζℓ(G) =
1(
n
2

)
∑

x,y∈V (G)

ζℓ(x, y),

where the pair of vertices are taken non ordered and being the total Menger

number of G

Zℓ(G) =
∑

x,y∈V (G)

ζℓ(x, y).
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Lemmas proved in Section 3.3 lead us to get lower bounds on the average

Menger number of the strong product of two connected graphs, similarly to the

bounds on the average connectivity obtained in Section 3.4.

Let G1 and G2 be two connected graphs with order n1 and n2, size e1

and e2, average Menger number ζℓ(G1) and ζℓ(G2), and average degree d(G1) and

d(G2), respectively. Next we present the analogous result to Theorem 3.4.1 for

the average Menger number of the strong product graph, but now we distinguish

two cases depending on the permitted length of the paths, as we have taken into

account in Theorem 3.3.1.

Theorem 3.5.1. Let G1 and G2 be two connected graphs with order n1, n2, res-

pectively. Let ℓ be a positive integer. The following assertions hold:

(i) If both G1 and G2 have order at least 3, then

ζℓ (G1 ⊠G2) =
1

n1n2 − 1

[
(n1 − 1)(1 + d(G2))ζℓ(G1)

+ (n2 − 1)(1 + d(G1))ζℓ(G2) + (n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2)
]
.

(ii) If both G1 and G2 have order at least 3 and girth at least 5, then

ζℓ (G1 ⊠G2) ≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))ζℓ(G1) + (n2 − 1)(n1 + d(G1))ζℓ(G2)

+(n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.

Proof. Let xi, yi ∈ V (Gi) be two distinct vertices, for i = 1, 2, and denote by

x = (x1, x2) and y = (y1, y2).

Let P(G1 ⊠ G2) be the set of unordered pairs of vertices of V (G1 ⊠ G2), and

consider the following partition of P(G1 ⊠G2):

A =
⋃

x2,y2∈V (G2)

{{(u, x2), (u, y2)} : u ∈ V (G1)} ,

B =
⋃

x1,y1∈V (G1)

{{(x1, v), (y1, v)} : v ∈ V (G2)} ,

C =
⋃

x,y∈V (G1⊠G2)

{{(x1, x2), (y1, y2)} : x1 6= y1 and x2 6= y2} .
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Their cardinalities are |V (G1 ⊠ G2)| = n1n2, |A| = n1

(n2

2

)
, |B| = n2

(n1

2

)
and

|C| = 2
(n1

2

)(n2

2

)
.

Then the following equality holds:

ζℓ (G1 ⊠G2) =
1(
n
2

)
∑

P(G1⊠G2)

ζℓ ((x1, x2), (y1, y2))

=
1(
n
2

)
[
∑

A

ζℓ ((u, x2), (u, y2)) +
∑

B

ζℓ ((x1, v), (y1, v))

+
∑

C

ζℓ ((x1, x2), (y1, y2))

]
.

(3.2)

We firstly prove case (i). To do that, we begin computing the sums of equa-

lity (3.2).

By applying Lemma 3.2.1 to the elements of A, it follows that

∑

A

ζℓ ((u, x2), (u, y2)) ≥
∑

A

[(1 + dG1(u))ζℓ(x2, y2)]

=
∑

x2,y2∈V (G2)

ζℓ(x2, y2)
∑

u∈V (G1)

(1 + dG1(u))

= (n1 + 2e1)
∑

x2,y2∈V (G2)

ζℓ(x2, y2)

= (n1 + 2e1)Zℓ(G2).

By Lemma 3.2.1 and the commutativity of the strong product of two graphs, we

also obtain that

∑

B

ζℓ ((x1, v), (y1, v)) ≥ (n2 + 2e2)Zℓ(G1).

Since the elements of C satisfy the hypothesis of Lemma 3.2.2, we have

∑

C

ζℓ ((x1, x2), (y1, y2)) ≥
∑

C

[ζℓ(x1, y1)ζℓ(x2, y2)]

= 2
∑

x1,y1∈V (G1)

ζℓ(x1, y1)
∑

x2,y2∈V (G2)

ζℓ(x2, y2)

= 2Zℓ(G1)Zℓ(G2).
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From the partition of P(G1 ⊠G2) we deduce that

Zℓ (G1 ⊠G2) ≥ (n1 + 2e1)Zℓ(G2) + (n2 + 2e2)Zℓ(G1) + 2Zℓ(G1)Zℓ(G2).

Hence,

ζℓ (G1 ⊠G2) =
2

n1n2(n1n2 − 1)
Zℓ (G1 ⊠G2)

=
1

n1n2 − 1

[
(n1 − 1)(1 + d(G2))ζℓ(G1)

+ (n2 − 1)(1 + d(G1))ζℓ(G2) + (n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2)
]
.

We secondly prove case (ii). Assume that both G1 and G2 have girth at least 5.

Again, from Lemma 3.2.1 and Lemma 3.2.3 applied to inequality (3.2), it follows

that:

∑

A

ζℓ ((u, x2), (u, y2)) ≥
∑

A

[(1 + dG1(u))ζℓ(x2, y2) + dG1(u)]

=
∑

x2,y2∈V (G2)

ζℓ(x2, y2)
∑

u∈V (G1)

(1 + dG1(u))

+

(n2

2

) ∑

u∈V (G1)

dG1(u)

= (n1 + 2e1)
∑

x2,y2∈V (G2)

ζℓ(x2, y2) + 2e1

(n2

2

)

= (n1 + 2e1)Zℓ(G2) + 2e1

(n2

2

)
.

(3.3)

∑

B

ζℓ ((x1, v), (y1, v)) ≥ (n2 + 2e2)Zℓ(G1) + 2e2

(n1

2

)
. (3.4)
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∑

C

ζℓ ((x1, x2), (y1, y2)) ≥
∑

C

[ζℓ(x1, y1)ζℓ(x2, y2) + ζℓ(x1, y1) + ζℓ(x2, y2)]

=
∑

C

[(ζℓ(x1, y1) + 1) (ζℓ(x2, y2) + 1)− 1]

= 2
∑

x1,y1∈V (G1)

(ζℓ(x1, y1) + 1)
∑

x2,y2∈V (G2)

(ζℓ(x2, y2) + 1)

−|C|

= 2Zℓ(G1)Zℓ(G2) + 2
(n2

2

)
Zℓ(G1) + 2

(n1

2

)
Zℓ(G2).

(3.5)

From inequalities (3.3), (3.4), and (3.5) and taking into account that the sets A,

B and C form a partition of P(G1 ⊠G2), it follows that

Zℓ (G1 ⊠G2) ≥ (n1 + 2e1)Zℓ(G2) + 2e1

(n2

2

)

+ (n2 + 2e2)Zℓ(G1) + 2e2

(n1

2

)

+ 2Zℓ(G1)Zℓ(G2) + 2

(n2

2

)
Zℓ(G1)

+ 2
(n1

2

)
Zℓ(G2).

Therefore,

ζℓ (G1 ⊠G2) =
2

n1n2(n1n2 − 1)
Zℓ (G1 ⊠G2)

≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))ζℓ(G1)

+(n2 − 1)(n1 + d(G1))ζℓ(G2)

+(n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2)

+(n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.
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We finish this section with a consequence on the average Menger number

of the strong product of two connected graphs. Under certain hypothesis, we

guarantee that the average Menger number is as large as possible. From Theo-

rem 3.4.2 inequalities ζℓ(G) ≤ κ(G) ≤ d(G) clearly hold. Thus, the proof of the

next corollary is straightforward.

Corollary 3.5.1. Let G1 and G2 be two connected graphs with at least 3 vertices

and girth at least 5. Let ℓ be a positive integer. If ζℓ(Gi) = d(Gi), for i = 1, 2,

then

ζℓ (G1 ⊠G2) = d (G1 ⊠G2) .
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Chapter 4

Generalized 3-connectivity

In this chapter a natural extension of the connectivity parameter is

treated, called the generalized k-connectivity. It is oriented to quan-

tify how connected any set of k vertices in a graph is. We focus

on studying the case of the generalized 3-connectivity of the strong

product of two connected graphs. A lower bound is given, being best

possible when the generalized 3-connectivity of a factor graph is one.

4.1 Introduction

The generalized k-connectivity was introduced by Chartrand, Okamoto and Zhang

in [29]. Briefly, a graph is said generalized k-connected if and only if there exists

at least k pairwise disjoint trees connecting any set of k vertices in such graph. Let

us define it formally. Let G be a connected graph and S = {x1, . . . , xk} ⊆ V (G).

A tree T is called an S-tree (or an {x1, x2, . . . , xk}− tree) if S ⊆ V (T ). A family

of trees T1, T2, . . . , Tr are internally disjoint S-trees if E(Ti) ∩ E(Tj) = ∅ and

V (Ti) ∩ V (Tj) = S, for any pair of integers i and j, with 1 ≤ i < j ≤ r.

73
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Denote by κ(S) the greatest number of internally disjoint S-trees. For an integer k

with 2 ≤ k ≤ n, the generalized k-connectivity κk(G) of G is defined as

κk(G) = min{κ(S) : S ⊆ V (G) and |S| = k}.

Clearly, when |S| = 2, we have κ2(G) = κ(G), the classical connectivity of G.

If G has less than k vertices, κk(G) = 1 is adopted. In [72] was proved that

κ3(G) ≤ κ(G), for any connected graph G. Thus, κ(G) ≥ 1 if and only if

κ3(G) ≥ 1.

Some papers and partial results have appeared in last years using this

parameter. Regarding the graphs products, Li, Li and Sun in [71], studied the

generalized 3-connectivity of the cartesian product graph. They gave sharp lower

bounds in terms of the generalized 3-connectivity of the factor graphs. More

precisely, they proved the following theorem.

Theorem 4.1.1 ([71]). Let G and H be two connected graphs such that κ3(G) ≥

κ3(H). The following assertions hold:

(i) If κ(G) = κ3(G) then κ3(G�H) ≥ κ3(G) + κ3(H) − 1. Moreover, the bound

is sharp.

(ii) If κ(G) > κ3(G) then κ3(G�H) ≥ κ3(G) + κ3(H). Moreover, the bound is

sharp.

In this chapter, we study the generalized 3-connectivity of the strong pro-

duct graphG1⊠G2 when κ3 = 1, that is, when there exists only a tree joining some

subset of three vertices in one of the factor graphs. We give sharp lower bounds

of κ3(G1 ⊠G2) in terms of the connectivity and the generalized 3-connectivity of

G1 and G2.
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4.2 Specific notation and remark

Before proceeding with the main results of this chapter, we need to introduce

some basic definitions, specific notation as well as a useful observation.

Let T be a tree and x, y, z ∈ V (T ). When x, y and z are end vertices of

T , we say that T is an r-rooted tree, for certain particular vertex r ∈ V (T ) called

the root of T . Moreover, given an {x, y, z}-tree T , simply deleting extra vertices,

we can construct an {x, y, z}-tree T̃ ⊂ T with the minimum number of vertices

(see [71]). This tree T̃ is called a minimal {x, y, z}-tree. The tree T is called an

xyz-path when T is an xz-path with y as an internal vertex. When an specific

order need not to be specified among the vertices x, y, z in such path T we call it

an {x, y, z}-path.

Next, we introduce a kind of trees which will play an important role in

this study.

Definition 4.2.1. Let G be a connected graph and x, y, z three distinct vertices

of G. An {x, y, z}-tree T of G is said to be special if either T is an r-rooted

{x, y, z}-tree with edge set E(T ) = {rx, ry, rz} or T is a {x, y, z}-path such that

dT (x, y) ≤ 2 or dT (y, z) ≤ 2 or dT (x, z) ≤ 2.

Remark 4.2.1. Let G be a connected graph and x, y, z three distinct vertices

of G. If g(G) ≥ 5 and κ3(G) ≥ 2, let us notice that:

(i) If G contains an r-rooted {x, y, z}-tree T with edge set E(T ) = {rx, ry, rz},

then any other {x, y, z}-tree T ′ of G is not special.

(ii) If there exist T1 and T2 special xyz-paths in G such that dT1(x, y) ≤ 2 and

dT2(y, z) ≤ 2, combining T1 and T2, we can find another pair of xyz-paths

T ′
1 and T ′

2 such that only T ′
1 is special (see the first case in Figure 4.1).
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(iii) If there exist three special {x, y, z}-paths T1, T2 and T3 in G such that

dT1(x, y) ≤ 2, dT2(y, z) ≤ 2 and dT3(x, z) ≤ 2, combining these paths, we

can consider another set of paths T ′
1, T

′
2 and T ′

3 verifying that

V (T ′
1 ∪ T ′

2 ∪ T ′
3) = V (T1 ∪ T2 ∪ T3)

and such that at most two of these paths are special (see the second case in

Figure 4.1).

b b bbc bc

bc bc

b b bbc bc

bc bc

x y z x y z

bc bc

bc bc

bc bc

b b b

bc bc

bc bc

bc bc

b b b
x y z x y z

T1

T2

T ′
1

T ′
2

T1

T2

T3

T ′
1

T ′
2

T ′
3

Figure 4.1: It can be considered that there exist at most two special {x, y, z}-trees

in a connected graph with girth at least five.

To illustrate some constructions in Section 4.3 we will use the structure

of Figure 4.2, which represents two special {x, y, z}-paths, when they need to be

considered.

To fix notation, let us consider three vertices, x1, y1, z1 ∈ V (G1) and

x2, y2, z2 ∈ V (G2) in each factor graph. Our goal is to study the maximum

number of internally disjoint trees that connect vertices x = (x1, x2), y = (y1, y2)

and z = (z1, z2) in V (G1 ⊠G2).
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b

b

b
bc

bc

Figure 4.2: Representation of two special {x, y, z}-paths in a connected graph

with girth at least five.

To do that, throughout the proofs of next results, P1, . . . , Pℓ1 denote in-

ternally disjoint minimal {x1, y1, z1}-trees in G1 while Q1, . . . , Qℓ2 internally dis-

joint minimal {x2, y2, z2}-trees in G2. We always assume that P1, . . . , Pℓ1 and

Q1, . . . , Qℓ2 contain the minimum number of special trees. Without loss of gene-

rality, in cases (i) and (ii) of Remark 4.2.1 we denote by P1 (or Q1, respec-

tively) the unique special tree, whereas in case (iii), we consider that Q1 and

Q2 are the special trees of G2, and the same consideration holds for P1 and

P2. Otherwise, we consider that |V (P1)| = min{|V (Pi)| : i = 1, . . . , ℓ1} and

|V (Q1)| = min{|V (Qj)| : j = 1, . . . , ℓ2}, when no tree is special.

Let us also give a general idea of the notation used to describe the trees. If

Pi is an x1y1z1-path, we denote it as Pi : x1x
i
1 . . . y

i
1
y1y

i
1 . . . z

i
1z1 (see Figure 4.3).

b b b

x1 xi
1

yi
1

y1 yi1 zi1 z1

Figure 4.3: Description of an x1y1z1-path Pi.

If Pi is an ri-rooted {x1, y1, z1}-tree formed by three paths, we write it as

Pi : r
i . . . xi

1x1 ∪ ri . . . yi
1
y1 ∪ ri . . . zi1z1 (see Figure 4.4).
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b

b

b

b

x1

xi
1

yi
1

y1

zi1z1

ri

Figure 4.4: Description of an ri-rooted {x1, y1, z1}-tree Pi.

Similarly, when Qj is an x2y2z2-path, we denote it Qj : x2x
j
2 . . . y

j
2
y2y

j
2 . . . z

j
2z2

taking into account that xj
2 6= yj

2
and yj2 6= zj2 for j ≥ 3, whenever g(G2) ≥ 5. If

Qj is an sj-rooted tree formed by three paths, we write

Qj : s
j . . . xj

2x2 ∪ sj . . . yj
2
y2 ∪ sj . . . zj2z2

and, in this case, at least one element of the set {xj
2, y

j
2
, zj2} is not equal to sj

for j ≥ 2. Moreover, we say that a tree Tij in G1⊠G2 is associated to trees Pi in G1

and Qj in G2 when every vertex (u, v) ∈ V (Tij) is such that u ∈ Pi and v ∈ Qj.

4.3 Lower bounds on κ3(G1 ⊠G2)

To estimate κ3(G1 ⊠ G2), we construct internally disjoint trees connecting any

three distinct vertices x, y, z ∈ V (G1⊠G2) based on trees of the generator graphs

G1 and G2. To do that, for u ∈ V (G1), notice that every {x2, y2, z2}-tree Qj of

G2 induces an {(u, x2), (u, y2), (u, z2)}-tree Q
u
j in the copy Gu

2 taking into account

that V (Qu
j ) = {(u, v) : v ∈ V (Qj)} and E(Qu

j ) = {(u, v1)(u, v2) : v1v2 ∈ E(Qj)}

are the vertex and edge set, respectively.

Depending on the copies of G1 and G2 to which x, y, z belong, we distin-

guish four cases.
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First, we assume that x, y, z belong to a unique copy Gx1
2 , and hence, x1 = y1 = z1.

Lemma 4.3.1. Let G1 and G2 be two connected graphs with at least 3 vertices.

Consider distinct vertices x = (x1, x2), y = (x1, y2) and z = (x1, z2) of G1 ⊠G2.

(i) There exist at least (δ(G1) + 1)κ3(G2) internally disjoint {x, y, z}-trees in

G1 ⊠G2.

(ii) If g(G1) ≥ 5, there exist at least (δ(G1)+1)κ3(G2)+δ(G1) internally disjoint

{x, y, z}-trees in G1 ⊠G2.

Proof. Since the vertices x, y, z belong to a unique copy Gx1
2 in G1 ⊠ G2 and

x2, y2, z2 are connected at least by ℓ2 = κ3(G2) internally disjoint trees Q1, . . . , Qℓ2

in G2, then trees Qx1
1 . . . , Qx1

ℓ2
are ℓ2 internally disjoint {x, y, z}-trees in G1 ⊠G2.

To construct another δ(G1)κ3(G2) trees, we define next an {x, y, z}-tree T u
j for

each u ∈ NG1(x1) and j ∈ {1, . . . , ℓ2}. To do that, we distinguish if none, one or

two trees of the family Q1, . . . , Qℓ2 contain direct edges between the vertices of

the set {x2, y2, z2}.

For each tree Qj such that x2y2 /∈ E(Qj), y2z2 /∈ E(Qj) and x2z2 /∈ E(Qj), let

us denote

Q̈u
j : Qu

j − {(u, x2), (u, y2), (u, z2)}.

If Q1 is an x2y2z2-path such that x2y2 and/or y2z2 belong to E(Q1), then

Q̈u
1 : Qu

1 − {(u, x2), (u, z2)}.

If Q2 also contains a direct edge between two vertices of the set {x2, y2, z2}, we

assume that x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2) and then

Q̈u
2 : Qu

2 − {(u, x2), (u, y2)}.
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By the definition of the strong product of graphs, for j ∈ {1, . . . , ℓ2}, each end

vertex of Q̈u
j is adjacent to at least one vertex of the set {x, y, z}. We define T u

j as

a tree contained in G1 ⊠G2 such that (see Figure 4.5, Figure 4.6 and Figure 4.7)

V (T u
j ) = V (Q̈u

j ) ∪ {x, y, z}.

Therefore Qx1
1 , . . . , Qx1

ℓ2
, T u

1 , . . . , T
u
ℓ2

are at least κ3(G2) + δ(G1)κ3(G2) internally

disjoint {x, y, z}-trees in G1 ⊠G2 and item (i) is proved.

If there exists u ∈ NG1(x1) such that dG1(u) = 1, then dG1(x1) ≥ 2, and the

previous bound leads to

(1 + dG1(x1))κ3(G2) ≥ 3κ3(G2) ≥ 2κ3(G2) + 1 = (1 + δ(G1))κ3(G2) + δ(G1),

which proves (ii).

bc

bc

bcbc
bc

bc

bc
bc

bc

bcb

b

b

x2

y2

z2

Gx1
2 Gu

2 Gwu

2

T u
j

Twu

Figure 4.5: Trees T u
j and Twu

for every x2y2z2-path Qj such that x2y2 /∈ E(Qj),

y2z2 /∈ E(Qj) and x2z2 /∈ E(Qj).

Otherwise, let us assume that g(G1) ≥ 5. For each u ∈ NG1(x1), we consider

wu ∈ NG1(u)\{x1}. Clearly, wu 6= wv for all u, v ∈ NG1(x1) with u 6= v, and this

fact makes feasible the construction of another {x, y, z}-tree denoted by Twu
, for

each u ∈ NG1(x1), internally disjoint with all the previous ones and such that

Twu
∩ Twv

= {x, y, z}.
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Figure 4.6: Trees T u
j and Twu

for every x2y2z2-path Qj such that x2y2 /∈ E(Qj),

y2z2 /∈ E(Qj) and x2z2 /∈ E(Qj).
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b
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bc

bc

bc

bc
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(u, y2)

(u, x2)

(u, z2)

Gx1
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2 Qx1
1

Qx1
2

T u
1

T u
2

Twu

Figure 4.7: Five {x, y, z}-trees in G1⊠G2 when x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2).

If x2y2 /∈ E(Q1 ∪ Q2), y2z2 /∈ E(Q1 ∪ Q2) and x2z2 /∈ E(Q1 ∪ Q2), then (see

Figure 4.5 and Figure 4.6)

Twu
: Qwu

1 ∪ (x1, x2)(u, x2)(wu, x2)∪ (x1, y2)(u, y2)(wu, y2)∪ (x1, z2)(u, z2)(wu, z2).

In case Q1 is an x2y2z2-path such that x2y2 ∈ E(Q1), then

Twu
: Qwu

1 ∪ (x1, x2)(u, x2)(wu, x2) ∪ (x1, y2)(u, x2) ∪ (x1, z2)(u, z2)(wu, z2).

A similar tree can be constructed in the symmetrical case y2z2 ∈ E(Q1).

If x2y2 ∈ E(Q1) and x2z2 ∈ E(Q2), then the vertex (u, x2) is adjacent to the
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three vertices x, y, z, (see Figure 4.7), and therefore, we consider

Twu
: (x1, x2)(u, x2) ∪ (x1, y2)(u, x2) ∪ (x1, z2)(u, x2).

Hence, when g(G1) ≥ 5, the trees Twu
, for u ∈ NG1(x1) are at least δ(G1) addi-

tional {x, y, z}-trees internally disjoint with Qx1
1 , . . . , Qx1

ℓ2
, T u

1 , . . . , T
u
ℓ2
.

Now, we consider that x, y, z belong to two copies of G1 and to two copies of G2.

Lemma 4.3.2. Let G1 and G2 be two connected graphs with at least three vertices.

For distinct vertices x = (x1, x2), y = (x1, z2) and z = (z1, z2) of G1 ⊠ G2, the

following assertions hold:

(i) If g(G2) ≥ 5, there exist at least 2κ(G2) internally disjoint {x, y, z}-trees in

G1 ⊠G2.

(ii) If g(G1) ≥ 5, there exist at least 2κ(G1) internally disjoint {x, y, z}-trees in

G1 ⊠G2.

(iii) If g(G1) ≥ 5 and g(G2) ≥ 5, there exist at least κ(G1) + κ(G1)κ(G2) +

κ(G1)− 1 internally disjoint {x, y, z}-trees in G1 ⊠G2.

Proof. Notice that x, y belong to the copy Gx1
2 while z ∈ Gz1

2 . By the theorem of

Menger (see [79]),there exist k1 = κ(G1) internally disjoint x1z1-paths P1, ..., Pk1

in G1 and k2 = κ(G2) internally disjoint x2z2-paths Q1, . . . , Qk2 in G2. Without

loss of generality we may assume that |V (P1)| = min{|V (Pi)| : i = 1, . . . , ℓ1} and

|V (Q1)| = min{|V (Qj)| : j = 1, . . . , ℓ2}. Then x1
1 = z1, x

1
2 = z2 may occur.

(i) Associated to paths P1 and Q1, we construct trees (see Figure 4.8)

T11 : Q
x1
1 ∪ (x1, z2) . . . (z1, z2) and

T ′
11 :





Qz1
1 ∪ (z1, x2) . . . (x1, x2) ∪ (x1, x2)(x1, z2), if Q1 : x2z2

Qz1
1 ∪ (z1, x2) . . . (x1, x2) ∪ (z1, z2) . . . (x1, z2)(x1, z2), if x2z2 /∈ E(Q1).
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Figure 4.8: Trees T11, T
′
11 associated to paths P1 and Q1 such that x2y2 /∈ E(Q1).

If k2 ≥ 2, we consider that g(G2) ≥ 5 to guarantee that xj
2 6= zj2 for j ≥ 2.

Associated to paths P1 and Qj we construct the following two {x, y, z}-trees T1j ,

T ′
1j in G1 ⊠G2, for each j ∈ {2, . . . , k2}.

If x1z1 ∈ E(P1), for j = 2, . . . , k2, then

T1j : Q
x1
j ∪ (x1, z

j
2)(z1, z2) and

T ′
1j : (x1, x2)(z1, x

j
2) . . . (z1, z2) ∪ (z1, z

j
2)(x1, z2).

If x1z1 /∈ E(P1), for j = 2, . . . , k2, then (see Figure 4.9)

T1j : (x1, x2) . . . (x1, z
j
2
)(x1

1, z
j
2) . . . (z

1
1, z

j
2)(z1, z2) ∪ (x1

1, z
j
2)(x1, z2) and

T ′
1j : (x1, x2)(x

1
1, x

j
2) . . . (z1, x

j
2) . . . (z1, z2) ∪ (x1

1, x
j
2) . . . (x

1
1, z

j
2
)(x1, z

j
2)(x1, z2),

Therefore, trees T11, . . . T1k2 , T
′
11, . . . T

′
1k2

are 2k2 internally disjoint {x, y, z}-trees

in G1 ⊠G2 and (i) is proved.

(ii) It directly follows from item (i) due to the symmetrical position of vertices

x, y, z in V (G1 ⊠G2) and the commutativity of the strong product graph.

(iii) Let us assume that g(G1) ≥ 5 and g(G2) ≥ 5. If k1 = 1 and/or k2 = 1, the

proof is finished.
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Figure 4.9: Trees T1j , T
′
1j associated to paths P1 and Qj such that x1z1 /∈ E(P1),

for j ∈ {2, . . . , k2}.

Otherwise, it remains to construct (k1 − 1)(k2 − 1) additional trees. To do that,

for every i ∈ {2, . . . , k1} and every j ∈ {2, . . . , k2}, associated to paths Pi and

Qj , we consider the tree

Tij : (x1, x2)(x
i
1, x

j
2) . . . (x

i
1, z

j
2)(x1, z2) ∪ (xi

1, z
j
2) . . . (z

i
1, z

j
2)(z1, z2).

Next, we consider that x, y, z belong to two copies of G1 and to three copies of G2.

Lemma 4.3.3. Let G1 and G2 be connected graphs with at least three vertices.

For distinct vertices x = (x1, x2), y = (x1, y2) and z = (z1, z2) in G1 ⊠ G2, the

following assertions hold:

(i) If g(G2) ≥ 5, there exist at least 2κ3(G2) internally disjoint {x, y, z}-trees

in G1 ⊠G2.

(ii) If g(G1) ≥ 5, there exist at least 2κ(G1) internally disjoint {x, y, z}-trees in

G1 ⊠G2.

Proof. Notice that x, y belong to the copy Gx1
2 while z ∈ Gz1

2 . Since G1 and G2 are

connected graphs with at least three vertices, κ3(Gi) ≥ 1, i = 1, 2, clearly holds.

Let us consider k1 = κ(G1) internally disjoint x1z1-paths P1, . . . , Pk1 in G1, for
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which we assume that |V (P1)| = min{|V (Pi)| : i = 1, . . . , k1}. Let ℓ2 = κ3(G2)

be internally disjoint {x2, y2, z2}-trees Q1, . . . , Qℓ2 in G2, such that at most Q1

and Q2 are special trees.

(i) First, assume that at most Q1 is an special tree. In this case, associated to

P1 and Q1, we consider the trees (see Figure 4.10)

T11 : Q
x1
1 ∪ (x1, z2) . . . (z1, z2) and

T ′
11 : Q

z1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (x1, y2) . . . (z1, y2).
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Figure 4.10: Trees T11, T
′
11 associated to trees P1, Q1 when Q1 is an special tree.

If κ3(G2) = 1, item (i) is proved. If κ3(G2) ≥ 2, we assume that g(G2) ≥ 5. In

case both Q1 and Q2 are special trees, we construct four trees associated to P1,

Q1 and Q2 as depict Figure 4.11, depending on whether both x, y have the same

degree or not.
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Figure 4.11: Four {x, y, z}-trees in G1 ⊠ G2 associated to paths P1, Q1 and Q2,

when both Q1 and Q2 are special trees.

For each j ∈ {2, . . . , ℓ2} such that Qj is not an special tree, we construct two

{x, y, z}-trees T1j , T
′
1j in G1 ⊠G2 associated to P1 and Qj.

First, we focus on a particular case. Assume that x1z1 /∈ E(P1) and that Qj is an

sj-rooted tree such that dQj
(sj, x2) ≥ 2, sjy2 ∈ E(Qj), s

jz2 ∈ E(Qj). It means

that Qj : s
j . . . xj

2
xj
2x2 ∪ sjy2 ∪ sjz2 where xj

2
may be equal to sj. Then

T1j : (x1, x2)(x
1
1, x

j
2)(x1, x

j
2
) . . . (x1, y2) ∪ (x1

1, x
j
2) . . . (z1, x

j
2) . . . (z1, z2) and

T ′
1j : (x1, x2)(x1, x

j
2)(x

1
1, x

j
2
) . . . (x1

1, s
j)(x1, y2) ∪ (x1

1, s
j) . . . (z11, s

j)(z1, z2).

Notice that a symmetrical construction holds when sjx2 ∈ E(Qj), dQj
(sj, y2) ≥ 2

and sjz2 ∈ E(Qj).

In any other case, the tree T1j is any tree contained in G1 ⊠G2 such that
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V (T1j) = {x, y, z} ∪ V (Qx1
j − (x1, z2))∪

{(u, v) : u ∈ P1 − {x1, z1}, v ∈ NQj
(z2)}.

Similarly, T ′
1j is such that (see Figure 4.12)

V (T ′
1j) = {x, y, z} ∪ V (Qz1

j − {(z1, x2), (z1, y2) })∪

{(u, v) : u ∈ P1 − {x1, z1}, v ∈ NQj
(x2) ∪NQj

(y2)}.

Then, if g(G2) ≥ 5, we have constructed 2κ3(G2) internally disjoint {x, y, z}-trees

in G1 ⊠G2.
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Figure 4.12: General construction of trees T1j , T
′
1j associated to P1 and Qj , for

j ∈ {2, . . . , ℓ2}.

(ii) Let us assume that g(G1) ≥ 5. We consider Pi : x1x
i
1 . . . z

i
1z1 an x1z1-path

in G1, for i ∈ {1, . . . , k1}. Notice that x1 6= xi
1 6= zi1 6= z1 for i ≥ 2.
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If κ(G1) = 1, then trees T11 and T ′
11 provide the desired result. Otherwise,

κ(G1) ≥ 2 and associated to Pi and Q1, for i ∈ {2, . . . , k1}, we construct two

{x, y, z}-trees Ti1, T
′
i1 in G1 ⊠G2.

If Q1 is an x2y2z2-path such that x2y2 ∈ E(Q1), then

Ti1 : (x1, x2)(x
i
1, y2)(x1, y2) ∪ (xi

1, y2) . . . (x
i
1, z2) . . . (z1, z2) and

T ′
i1 : (x1, x2)(x

i
1, x2)(x1, y2) ∪ (xi

1, x2) . . . (z
i
1, x2) . . . (z

i
1, z

1
2)(z1, z2).

In any other case, we have

V (Ti1) = {x, y, z} ∪ V (Q
xi1
1 − {(xi

1, x2), (x
i
1, y2)} )∪

{(u, z2) : u ∈ Pi − {x1, z1}}

and

V (T ′
i1) = {x, y, z} ∪ V (Q

zi1
1 − (zi1, z2) )∪

{(u, v) : u ∈ Pi − {x1, z1}, v ∈ {x2, y2}}

Trees T11, . . . , Tk11, T
′
11, . . . , T

′
k11

prove item (ii).

The bounds of Lemmas 4.3.2 and 4.3.3 are sharp. To see that, it is enough

to check out that κ3(P2 ⊠ P2) = 2, where P2 denotes a path of length two (see

Figure 4.13.)

b

bc

b

bc

bc

bc

bc

b

bc

x

y

z

Figure 4.13: There exist 2 internally disjoint trees connecting vertices x, y, z in

P2 ⊠ P2.



4.3. Lower bounds on κ3(G1 ⊠G2) 89

Finally, we assume that x, y, z belong to three distinct copies of G1 and

to three distinct copies of G2. Next lemma shows a lower bound of κ3(G1 ⊠ G2)

which is attained when κ3(G1) = 1.

Lemma 4.3.4. Let G1 and G2 be two connected graphs with at least three vertices

and such that g(G2) ≥ 5. For distinct vertices x1, y1, z1 ∈ V (G1) and distinct

vertices x2, y2, z2 ∈ V (G2), there exist at least 2κ3(G2) + 1 internally disjoint

trees connecting vertices x = (x1, x2), y = (y1, y2) and z = (z1, z2) in G1 ⊠G2.

Proof. Notice that vertices x, y, z belong to different copies Gx1
2 , Gy1

2 , Gz1
2 , respec-

tively. Associated to one {x1, y1, z1}-tree P1 in G1 and to ℓ2 = κ3(G2) internally

disjoint {x2, y2, z2}-trees Q1, . . . , Qℓ2 in G2, we construct 2ℓ2 + 1 internally dis-

joint {x, y, z}-trees in G1 ⊠G2. Without loss of generality, when P1 is a path, we

assume that it is an x1y1z1-path described as P1 : x1x1 . . . y1y1y1 . . . z1z1 (where

x1 = y1, y1 = x1, y1 = z1 and/or z1 = y1 are possible).

(I) Associated to trees P1 and Q1, we construct three trees T11, T
′
11 and

T ∗ in G1 ⊠G2.

a) If P1 is a path and Q1 is a tree with leaves x2, y2, z2, (see Figure 4.14), denoting

Q̈y1
1 = Qy1

1 − {(y1, x2), (y1, z2)}, we consider

T11 : Q
x1
1 ∪ (x1, y2) . . . (y1, y2) ∪ (x1, z2) . . . (z1, z2),

T ′
11 : Q

z1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (y1, y2) . . . (z1, y2) and

T ∗ : Q̈y1
1 ∪ (x1, x2)(x1, x

1
2) . . . (y1, x

1
2) ∪ (y1, z

1
2) . . . (z1, z

1
2)(z1, z2).

b) If both P1 and Q1 are paths, we need to distinguish several cases depending

on the position of the vertices in the grid defined by P1 and Q1.

b1) If Q1 is an x2y2z2-path described as Q1 : x2x
1
2 . . . y

1
2
y2y

1
2 . . . z

1
2z2 and
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Figure 4.14: Three trees in G1 ⊠G2 associated to a path P1 and a tree Q1.

taking into account that it may occur that x1
2 = y2, y

1
2
= x2, y

1
2 = z2 or z12 = y2,

(see Case b1 in Figure 4.15), we consider

T11 : Q
x1
1 ∪ (x1, y2) . . . (y1, y2)(y1, y2) ∪ (x1, z2) . . . (z1, z2),

T ′
11 : Q

z1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (z1, y2) . . . (y1, y2)(y1, y2) and

T ∗ : (x1, x2)(x1, x
1
2) . . . (y1, x

1
2) . . . (y1, z

1
2) . . . (z1, z

1
2)(z1, z2).

b2) Now, we assume that Q1 is an x2z2y2-path. If y1z1 ∈ E(P1) and

y2z2 ∈ E(Q1), (see Case b2 in Figure 4.15) and therefore, we consider

T11 : Q
x1
1 ∪ (x1, y2) . . . (y1, y2)(z1, z2),

T ′
11 : Q

z1
1 ∪ (x1, x2) . . . (z1, x2) ∪ (y1, y2)(z1, y2) and

T ∗ : (x1, x2)(x1, x
1
2) . . . (y1, x

1
2) . . . (y1, z2)(y1, y2) ∪ (y1, z2)(z1, z2).

b3) Otherwise, dP1(y1, z1) ≥ 2 or dQ1(z2, y2) ≥ 2. Both cases are symmetri-

cal and hence we assume without loss of generality that dQ1(z2, y2) ≥ 2. It means

that Q1 : x2x
1
2 . . . z2z

1
2 . . . y2 with z2 6= z12 6= y2, (see Case b3 in Figure 4.15). In

this case,

T11 : (x1, x2) . . . (x1, z2)(x1, z
1
2) . . . (z1, z

1
2)(z1, z2) ∪ (y1, z

1
2) . . . (y1, y2),

T ′
11 : Qz1

1 ∪ (x1, x2) . . . (z1, x2) ∪ (y1, y2) . . . (z1, y2) and



4.3. Lower bounds on κ3(G1 ⊠G2) 91

T ∗ : (x1, x2)(x1, x
1
2) . . . (x1, z2)(x1, z

1
2) . . . (x1, y2) . . . (y1, y2) ∪ (x1, z2) . . . (z1, z2).
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Figure 4.15: Three {x, y, z}-trees in G1 ⊠G2 associated to P1 and Q1 paths.

c) Assume that P1 is an r-rooted tree and that Q1 is also a rooted tree. Denoting

by Q̈r
1 = Qr

1 − {(r, x2), (r, y2), (r, z2)}, (see Figure 4.16), we consider

T11 : Q
x1
1 ∪ (x1, y2) . . . (r, y2) . . . (y1, y2) ∪ (x1, z2) . . . (r, z2) . . . (z1, z2),

T ′
11 : (x1, x2) . . . (r, x2) . . . (y1, x2) . . . (y1, y2) ∪ (r, x2) . . . (z1, x2) . . . (z1, z2) and

T ∗ : Q̈r
1∪(r, x

1
2) . . . (x1, x

1
2)(x1, x2)∪(r, y

1
2
) . . . (y

1
, y1

2
)(y1, y2)∪(r, z

1
2) . . . (z1, z

1
2)(z1, z2).

d) The case P1 being a tree and Q1 being a path is symmetrical to a) due to the

commutativity of the strong product of graphs.
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Figure 4.16: Three {x, y, z}-trees in G1 ⊠G2 associated to trees P1 and Q1.

Notice that the desired result is proved when κ3(G2) = 1. From now on,

we assume that ℓ2 = κ3(G2) ≥ 2 and we must consider whether Q2 is an special

tree or not.

(II) Assume that both Q1 and Q2 are special trees. In this case, we

construct five trees associated to P1, Q1 and Q2. First, we assume that P1 is a

path. If dQ1(x2) = dQ2(x2) = 1, then the five trees can be constructed with the

help of Figure 4.17. As a consequence of the symmetry of the path P1, similar

constructions hold when dQ1(z2) = dQ2(z2) = 1.

We consider the remaining case dQ1(y2) = dQ2(y2) = 1. If x2y2 ∈ E(Q1), then

Figure 4.18 helps us to construct the five trees associated to P1, Q1 and Q2.
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Figure 4.17: Five {x, y, z}-trees in G1 ⊠G2 associated to paths P1, Q1 and Q2 .
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Figure 4.18: Five {x, y, z}-trees in G1 ⊠ G2 associated to paths P1, Q1 and Q2,

when x2y2 ∈ E(Q1).
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Figure 4.19: Five {x, y, z}-trees in G1 ⊠ G2 associated to paths P1, Q1 and Q2,

when x2y2 /∈ E(Q1) and y2z2 /∈ E(Q2).

Symmetrical solution holds when y2z2 ∈ E(Q2).

Otherwise, x2y2 /∈ E(Q1), y2z2 /∈ E(Q2) and Figure 4.19 shows the vertices con-
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tained in each of the desired five trees. Finally, when P1 is a tree, see Figure 4.20.
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Figure 4.20: Five {x, y, z}-trees in G1 ⊠G2 associated to a tree P1 and paths Q1

and Q2.

(III) For each j ∈ {2, . . . , ℓ2} such that Qj is not an special tree, we

construct two trees T1j , T
′
1j in G1 ⊠ G2 associated to trees P1 and Qj . We need

to distinguish three cases:

a) Assume that P1 is an x1y1z1-path and Qj is an x2z2y2-path. Then
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T1j : (x1, x2)(x1, x
j
2) . . . (z1, x

j
2) . . . (z1, z2) . . . (z1, y

j
2
) . . . (y1, y

j
2
)(y1, y2) and

T ′
1j : (x1, x2) . . . (x1, z

j
2) . . . (z1, z

j
2)(z1, z2)(z1, z

j
2) . . . (y1, z

j
2) . . . (y1, y2).

b) Assume that P1 is an x1y1z1-path and Qj is an sj-rooted tree. As usual,

Qj : sj . . . xj
2x2 ∪ sj . . . yj

2
y2 ∪ sj . . . zj2z2. Since j 6= 1, at least one element of

{xj
2, y

j
2
, zj2} is different to sj.

If dP1(x1, y1) ≥ 2 and xj
2 = yj

2
= sj, then

T1j : (x1, x2) . . . (x1, z
j
2) . . . (y1, z

j
2) . . . (y1, y2) ∪ (y1, z

j
2) . . . (z1, z

j
2)(z1, z2) and

T ′
1j : (x1, x2)(x1, s

j) . . . (y
1
, sj)(y1, y2)(y1, s

j) . . . (z1, s
j) . . . (z1, z2).

Similar constructions hold for dP1(y1, z1) ≥ 2 and zj2 = yj
2
= sj .

c) In any other case, to unify the description of the trees T1j and T ′
1j , without

loss of generality we provide an specific role to the vertex y = (y1, y2). As usual,

if P1 is a path, then we consider that P1 is an x1y1z1-path. If P1 is an r-rooted

tree, we assume either that dQj
(sj , y2) ≥ 2 or that Qj is an x2y2z2-path. Also, we

consider that yj2 = yj
2
when Qj is a tree. Under these assumptions, to construct

the tree T1j it is enough to consider that

V (T1j) = Qy1
j − {(y1, x2), (y1, z2)}∪

{(u, v) : u ∈ P1 − {x1, z1}, v ∈ NQj
(x2) ∪NQj

(z2)}∪

{x, y, z}

Similarly, T ′
1j is such that

V (T ′
1j) = {(x1, x2), . . . , (x1, y2)}∪

{(z1, z2), . . . , (z1, y2)}∪

{(u, v) : u ∈ P1 − {x1, z1}, v ∈ NQj
(y2)}∪

{x, y, z}
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If ℓ2 ≥ 2 and Q1 is the unique special tree, (I) and (III) provide

3 + 2(ℓ2 − 1) = 2ℓ2 + 1

internally disjoint {x, y, z}-trees, as desired. Otherwise, (II) and (III) provide

5 + 2(ℓ2 − 2) = 2ℓ2 + 1 such trees.

The bounds of Lemmas 4.3.1 and 4.3.4 are sharp. In fact, applied to P1

and P2 paths with at least three vertices, they provide three internally disjoint

trees connecting any three vertices x, y, z of G1 ⊠ G2 and this bound is sharp

because κ3(P1 ⊠ P2) ≤ δ(P1 ⊠ P2) = 3.

Due to the commutativity of the strong product of graphs, it is not neces-

sary to study the remaining positions of three vertices x, y, z in G1 ⊠G2. In fact,

as a consequence of Lemma 4.3.1, it follows the existence of at least 2κ3(G2) + 1

internally disjoint trees joining vertices (x1, x2), (y1, x2), (z1, x2) when g(G2) ≥ 5.

Also, from Lemma 4.3.3, it follows the existence of at least 2κ3(G2) internally

disjoint trees connecting vertices (x1, x2), (y1, x2), (z1, z2) when g(G2) ≥ 5.

Now, we are ready to prove the main result of this chapter.

Theorem 4.3.1. Let G1 and G2 be two connected graphs with at least 3 vertices

and such that g(G2) ≥ 5. Then κ3(G1 ⊠G2) ≥ 2κ3(G2). The bound is sharp.

Proof. The bound κ3(G1⊠G2) ≥ 2κ3(G2) is consequence of the inequality δ(G2) ≥

κ(G2) ≥ κ3(G2) and Lemmas 4.3.1, 4.3.2, 4.3.3 and 4.3.4. Notice that the given

bound is only attained when we consider vertices x = (x1, x2), y = (y1, y2),

z = (z1, z2) in G1 ⊠G2 such that x1 = y1 6= z1 or x2 = y2 6= z2.

When the generator graphs G1 and G2 are such that κ(G1) = δ(G1) = 1

and κ3(G2) = δ(G2), the generalized 3-connectivity of the strong product of G1

and G2 is almost determined, as we show in next result.
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Corollary 4.3.1. Let G1 and G2 be two graphs with at least three vertices and

such that κ(G1) = δ(G1) = 1 and κ3(G2) = δ(G2). Assume also that g(G2) ≥ 5.

Then δ(G1 ⊠G2)− 1 ≤ κ3(G1 ⊠G2) ≤ δ(G1 ⊠G2).

Proof. Since κ3(G) ≤ κ(G) ≤ δ(G) for every connected graph G, it remains only

to prove the given lower bound of κ3(G1 ⊠ G2). Taking into account that the

minimum degree of the strong product of G1 and G2 is

δ(G1 ⊠G2) = δ(G1)δ(G2) + δ(G1) + δ(G2) = 2κ3(G2) + 1,

from Theorem 4.3.1, it follows that κ3(G1⊠G2) ≥ 2κ3(G2) = δ(G1⊠G2)−1.
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Chapter 5

The Wiener index

This chapter deals with a parameter related to the control on the distances

in a connected graph, called the Wiener index. Sharp lower and upper

bounds on the Wiener index of the strong product of two connected graphs

are given and the exact value for the strong product of some families of

graphs is determined.

5.1 Introduction

Classical parameters on distance in graphs, as the diameter, the radius or the

eccentricity, are very studied in Graph Theory. However, sometimes these indices

cannot provide a suitable information about the graph description. Let us see

an example. Consider the graph G obtained by a complete graph and a path

P sharing a common vertex (see Figure 5.1). In this case, notice that there are

|V (G)|− (l(P)+1) pairs of vertices separated at diametral distance (for example,

x and y in Figure 5.1), which is small if the length of P is large enough, but there

are many pairs of vertices in the graph directly communicated.

99
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b

b

b b

b b b bx y

Figure 5.1: A graph G with a big difference between its diameter and its average

distance.

Then, it is interesting to search another type of parameters to obtain a

more comprehensive information about the distances in a graph. We focus on

the Wiener index of the strong product of two connected graphs. As we saw

in Introduction, the Wiener index was introduced in [96] and for any connected

graph G, it is denoted by W (G) and defined as

W (G) =
1

2

∑

x,y∈V (G)

dG(x, y),

where the sum is taken through all the ordered pairs of vertices of G.

The Wiener index is related to the average distance, introduced by Doyle

and Graver in [38] and denoted by µ(G). The average distance of a connected

graph G is the expected distance between a randomly chosen pair of distinct

vertices, namely, the mean on the distances between all the ordered pairs of

vertices of G, that is,

µ(G) =

∑

x,y∈V (G)

dG(x, y)

2

(n
2

) =
2W (G)

n(n− 1)
.

Therefore, studying the Wiener index of any connected graph, we could obtain

directly the average distance of such graph. This is a reason for which we consider

interesting the Wiener index.
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One can compute directly the exact values of this kind of parameters in

small graphs, see for instance the graph G of Figure 5.2. It is easy to check that

W (G) = 21 and µ(G) = 1.4.

b b

b

b b

b

Figure 5.2: A graph G with W (G) = 21 and µ(G) = 1.4.

Indeed, as we mentioned in Introduction, for complete graphs, paths or

cycles, the Wiener index and the average distance were deduced, as well as certain

general bounds [40] as the following ones.

n(n− 1)

2
≤ W (G) ≤

n3 − n

6
,

for every graph G of order n. This bound comes from inequality

W (K) ≤ W (G) ≤ W (P),

respectively, where K and P are the complete graph and the path on n vertices.

Our aim is to find bounds of W (G1 ⊠ G2) for any two connected graphs

G1 and G2. First, we need to introduce some general notations that we will use

throughout this chapter.

Let G1 and G2 be two connected graphs with order n1, n2, size e1, e2, Wiener

indices

W1 = W (G1) =
1

2

∑

x1,y1∈V (G1)

dG1(x1, y1)

and

W2 = W (G2) =
1

2

∑

x2,y2∈V (G2)

dG2(x2, y2),
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where all the sums are taken through all the ordered pairs of vertices of G1 and

G2, respectively.

First of all, we introduce a sets of ordered pairs of vertices of G1 and G2 which

will play an important role in the development of this study. For every i =

0, . . . , D(G1) and every j = 0, . . . , D(G2), let us denote

Ri = {x1, y1 ∈ V (G1) : dG1(x1, y1) = i}, with cardinality ri = |Ri|

and

Sj = {x2, y2 ∈ V (G2) : dG2(x2, y2) = j}, with cardinality sj = |Sj|.

Notice that the sets Ri and Sj form a partition of the sets of ordered pairs of

vertices of G1 and G2, respectively. That is

D(G1)⋃

i=0

Ri = V (G1)× V (G1) and

D(G2)⋃

j=0

Sj = V (G2)× V (G2).

Observe also that
D(G1)∑

i=0

iri =
∑

x1,y1∈V (G1)

dG1(x1, y1),

and similarly,
D(G2)∑

j=0

jsj =
∑

x2,y2∈V (G2)

dG2(x2, y2).

Attending to this notation, we have the following equalities:

r0 = n1, r1 = 2e1 and s0 = n2, s1 = 2e2 (5.1)

D(G1)∑

i=0

ri = n2
1 and

D(G2)∑

j=0

sj = n2
2 (5.2)

1

2

D(G1)∑

i=1

iri = W1 and
1

2

D(G2)∑

j=1

jsj = W2. (5.3)
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Given any two vertices (x1, x2) and (y1, y2) of G1 ⊠G2, recall that

dG1⊠G2((x1, x2), (y1, y2)) = max{dG1(x1, y1), dG2(x2, y2)}. (5.4)

Instead of working properly with the distance matrix of V (G1⊠G2), we consider

more useful to regroup the original distances in boxes depending on the distance

between the ordered pair of vertices in the generator graphs G1 and G2. We will

denote this new matrix as D = [dij] (see Table 5.1).

S0 S1 Sj SD(G2)

R0

R1

Ri

RD(G1)

dij

d00

d10

d01

d11

dD(G1)D(G2)

.

.

.

.

.

.

· · · · · ·

Table 5.1: Matrix D = [dij].

The entrances of this matrix D are the sets Ri and Sj described above, for

i = 0, . . . , D(G1) and j = 0, . . . , D(G2). Each element dij of D represents the

distance between any pair {(x1, x2), (y1, y2)} and {(y1, y2), (x1, x2)} of the set of

ordered pairs of vertices of G1 ⊠ G2 such that x1, y1 ∈ Ri and x2, y2 ∈ Sj . In

fact, the value of each cell is dij = max{i, j} and the number of ordered pairs of

vertices which are at distance dij in G1 ⊠G2 is exactly risj .
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Moreover, denoting by x = (x1, x2) and y = (y1, y2) two any vertices in V (G1 ⊠

G2), observe that

∑

x,y∈V (G1⊠G2)

dG1⊠G2(x, y) =

D(G2)∑

j=0

D(G1)∑

i=0

dijrisj , (5.5)

where the sum is taken through all the ordered pairs of vertices of G1 ⊠G2.

We want to clarify it through an example. Consider any two connected graphs

G1 and G2 such that D(G1) ≤ D(G2). Table 5.2 is the matrix of distances D

described above. This table represents the distances between any ordered pair of

vertices in G1 ⊠G2 from the point of view of the distances between the vertices

in each generator graph. For example, two distinct vertices (x1, x2), (y1, y2) ∈

V (G1⊠G2) coming from x1, y1 ∈ R2 and x2, y2 ∈ S5, are at distance 5 in G1⊠G2,

which is the value that exists in the cell (2, 5) of Table 5.2.

S0 S1 S2 S3 S4 S5 S6

R0

R1

R2

R3

0

1

2

3

1

1

2

3

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

Table 5.2: Matrix D for G1 ⊠G2 with D(G1) = 3 and D(G2) = 6.
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5.2 General equality of W (G1 ⊠ G2) and lower

bounds

We start this section with a result which provides a general equality for the Wiener

index of the strong product graph W (G1 ⊠G2) in terms of known parameters of

the generator graphs G1 and G2, as their orders, their Wiener indices and their

cardinalities ri and sj, which were defined in Section 5.1 as follows:

ri = |Ri| where Ri = {x1, y1 ∈ V (G1) : dG1(x1, y1) = i}

and

sj = |Sj| where Sj = {x2, y2 ∈ V (G2) : dG2(x2, y2) = j}.

Theorem 5.2.1. Let Gk be a connected graph with order nk and Wiener in-

dex Wk, for k = 1, 2, such that D(G1) ≤ D(G2). Let ri and sj be defined in

Section 5.1. The following assertions hold:

(i) If D(G1) = 1 then

W (G1 ⊠G2) = n2W1 + n2
1W2.

(ii) If 2 ≤ D(G1) ≤ D(G2) then

W (G1 ⊠G2) = n2W1 + n2
1W2 +

1

2

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j)risj.

Proof. Let x = (x1, x2), y = (y1, y2) be two vertices in V (G1 ⊠ G2). By the

definition of the Wiener index and applying equality (5.5), we deduce that

W (G1 ⊠G2) =
1

2

∑

x,y∈V (G1⊠G2)

dG1⊠G2(x, y) =
1

2

D(G1)∑

i=0

D(G2)∑

j=0

dijrisj,

where, ri and sj are the cardinalities of the sets Ri and Sj, as well as dij are

the distances of the matrix D defined in Section 5.1, for 0 ≤ i ≤ D(G1) and

0 ≤ j ≤ D(G2).
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Furthermore, since dij = max{i, j}, we may describe

dijrisj = max{i, j}risj =





jrisj , for i ≤ j

(i− j + j)risj , otherwise.

(5.6)

Then, by applying the definition of the Wiener index and by (5.6), observe that

W (G1 ⊠G2) =
1

2

∑

(x,y)∈V (G1⊠G2)

dG1⊠G2(x, y) =
1

2

D(G2)∑

j=0

D(G1)∑

i=0

dijrisj

=
1

2

D(G1)−1∑

j=0

D(G1)∑

i=0

dijrisj +
1

2

D(G2)∑

j=D(G1)

D(G1)∑

i=0

dijrisj .

(5.7)

(i) Assume that D(G1) = 1. Then, by (5.7), we have

W (G1 ⊠G2) =
1

2
s0

1∑

i=0

iri +
1

2

D(G2)∑

j=1

jsj

1∑

i=0

ri.

Taking into account equalities (5.1), (5.2) and (5.3), we know that

s0 = n2,
1

2

D(G1)∑

i=0

iri = W1,

D(G1)∑

i=0

ri = n2
1 and

1

2

D(G2)∑

j=1

jsj = W2,

yielding that

W (G1 ⊠G2) = n2W1 + n2
1W2.
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(ii) Assume that D(G1) ≥ 2. From equality (5.7), we deduce that

W (G1 ⊠G2) =
1

2

D(G1)−1∑

j=0




j∑

i=0

jrisj +

D(G1)∑

i=j+1

(i− j + j)risj)




+
1

2

D(G2)∑

j=D(G1)

D(G1)∑

i=0

jrisj

=
1

2

D(G1)−1∑

j=0




D(G1)∑

i=0

jrisj +

D(G1)∑

i=j+1

(i− j)risj)




+
1

2

D(G2)∑

j=D(G1)

D(G1)∑

i=0

jrisj

=
1

2

D(G1)−1∑

j=0

D(G1)∑

i=0

jrisj +
1

2

D(G1)−1∑

j=0

D(G1)∑

i=j+1

(i− j)risj

+
1

2

D(G2)∑

j=D(G1)

D(G1)∑

i=0

jrisj

=
1

2

D(G2)∑

j=0

jsj

D(G1)∑

i=0

ri +
1

2

D(G1)−1∑

j=0

D(G1)∑

i=j+1

(i− j)risj

=
1

2

D(G2)∑

j=0

jsj

D(G1)∑

i=0

ri + s0
1

2

D(G1)∑

i=1

iri +
1

2

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j)risj.

Again, from equalities (5.1), (5.2) and (5.3), it follows that

1

2

D(G2)∑

j=0

jsj = W2,

D(G1)∑

i=0

ri = n2
1, s0 = n2 and

1

2

D(G1)∑

i=0

iri = W1,

leading to

W (G1 ⊠G2) = n2W1 + n2
1W2 +

1

2

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j)risj .

Equality (ii) of Theorem 5.2.1 leads us to deduce several lower bounds on

W (G1 ⊠ G2) in terms of known invariants as the order, the size, the minimum

degree and the Wiener index of the generator graphs, as the next theorem shows.
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Theorem 5.2.2. Let Gk be a connected graph with order nk, size ek, minimum

degree δk and Wiener index Wk, for k = 1, 2, such that 2 ≤ D(G1) ≤ D(G2).

The following assertions hold:

(i) If D(G1) ≥ 2 then

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + e2

(
2W1 − n2

1 + n1

)
,

with equality if and only if D(G1) = 2.

(ii) If D(G1) ≥ 3 then

W (G1 ⊠G2) ≥ n2W1+n2
1W2+e2

(
2W1 − n2

1 + n1

)
+s2

(
W1 − n2

1 + n1 + e1
)
,

with equality if and only if D(G1) = 3.

(iii) If D(G1) ≥ 3 and G2 has minimum degree at least 2 and girth at least 5,

then

W (G1 ⊠G2) ≥ n2W1+n2
1W2+2δ2e2W1+2e1e2(δ2−1)−e2(2δ2−1)(n2

1−n1),

with equality if and only if D(G1) = 3 and G2 is regular.

Proof. (i) Assume that D(G1) ≥ 2. Then, by Theorem 5.2.1, we have

W (G1 ⊠G2) = n2W1 + n2
1W2 +

1

2

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j)risj

≥ n2W1 + n2
1W2 + s1

1

2

D(G1)∑

i=2

(i− 1)ri

= n2W1 + n2
1W2 + s1

1

2




D(G1)∑

i=2

iri −

D(G1)∑

i=2

ri




= n2W1 + n2
1W2 + 2e2


1

2

D(G1)∑

i=2

iri −
1

2

D(G1)∑

i=2

ri


 .

From (5.2) and (5.3), it follows that

1

2

D(G1)∑

i=2

iri = W1 −
1

2
r1 = W1 − e1
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and
D(G1)∑

i=2

ri = n2
1 − r0 − r1 = n2

1 − n1 − 2e1,

yielding that

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + 2e2

(
(W1 − e1)−

1

2
(n2

1 − n1 − 2e1)

)

= n2W1 + n2
1W2 + e2 (2W1 − n2

1 + n1) .

Further, observe that the previous equality becomes equality if and only if ri = 0

for i ≥ 3, that is, when D(G1) = 2, since r0 = n1, r1 = 2e1 and

r2 = n2
1 − r0 − r1 = n2

1 − n1 − 2e1.

(ii) Suppose that D(G1) ≥ 3. Similarly to the first case, by Theorem 5.2.1, we

have

W (G1 ⊠G2) = n2W1 + n2
1W2 +

1

2

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j)risj

≥ n2W1 + n2
1W2 + s1

1

2

D(G1)∑

i=2

(i− 1)ri + s2
1

2

D(G1)∑

i=3

(i− 2)ri

= n2W1 + n2
1W2 + s1


1

2

D(G1)∑

i=2

iri −
1

2

D(G1)∑

i=2

ri




+s2


1

2

D(G1)∑

i=3

iri −

D(G1)∑

i=3

ri


 .

As

D(G1)∑

i=0

ri = n2
1, it follows that

1

2

D(G1)∑

i=2

ri =
1

2
(n2

1 − r0 − r1) =
1

2
(n2

1 − n1 − 2e1) =
n2
1 − n1

2
− e1
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and
D(G1)∑

i=3

ri = n2
1 − r0 − r1 − r2 = n2

1 − n1 − 2e1 − r2,

yielding that

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + s1


1

2

D(G1)∑

i=2

iri −

(
n2
1 − n1

2
− e1

)


+s2


1

2

D(G1)∑

i=3

iri − (n2
1 − n1 − 2e1 − r2)


 .

As
1

2

D(G1)∑

i=1

iri = W1, we have

1

2

D(G1)∑

i=2

iri = W1 −
1

2
r1 = W1 − e1

and

1

2

D(G1)∑

i=3

iri = W1 −
1

2
r1 − r2 = W1 − e1 − r2,

which means, together with s1 = 2e2, that

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + s1

(
(W1 − e1)−

(
n2
1 − n1

2
− e1

))

+s2
(
(W1 − e1 − r2)− (n2

1 − n1 − 2e1 − r2)
)

= n2W1 + n2
1W2 + e2

(
2W1 − n2

1 + n1

)
+ s2

(
W1 − n2

1 + n1 + e1
)
.

(5.8)

Observe that the equality is attained if and only if D(G1) = 3, due to

1

2

2∑

j=1

(
3∑

i=j+1

(i− j)ri

)
sj =

(r2
2
+ r3

)
s1 +

r3
2
s2

and r0, r1, r2 and r3 satisfy equations: r0 = n1, r1 = 2e1, r0 + r1 + r2 + r3 = n2
1

and
1

2
(r1 + 2r2 + 3r3) = W1, that is,

r2
2
+ r3 = W1 −

n2
1 − n1

2
and

r3
2

= W1 − n2
1 + n1 + e1.
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(iii) Assume that G2 has minimum degree δ2 ≥ 2 and girth at least 5. Then

the neighborhood of each vertex v ∈ V (G2) is an independent set and there are

2

(
dG2(v)

2

)
ordered pairs of vertices at distance 2. Moreover, any two vertices in

G2 at distance 2 have exactly one common neighbor v. Therefore,

s2 =
∑

v∈V (G2)

2

(
dG2(v)

2

)
=

∑

v∈V (G2)

(
dG2(v)

2 − dG2(v)
)

=
∑

v∈V (G2)

dG2(v)
2 −

∑

v∈V (G2)

dG2(v) =
∑

v∈V (G2)

dG2(v)dG2(v)− 2e2

≥ δ2
∑

v∈V (G2)

dG2(v)− 2e2 ≥ δ22e2 − 2e2 = 2e2(δ2 − 1),

with equality if and only if dG2(v) = δ2 for every vertex v ∈ V (G2), that is, when

the graph G2 is regular. Then, we obtain another lower bound of W (G1 ⊠G2)

only in terms of known parameters of the generator graphs just replacing s2 by

2e2(δ2 − 1) in (5.8), as follows.

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + e2

(
2W1 − n2

1 + n1

)

+(2δ2e2 − 2e2) (W1 − n2
1 + n1 + e1) .

That is,

W (G1 ⊠G2) ≥ n2W1 + n2
1W2 + 2δ2e2W1 + 2e1e2(δ2 − 1)− e2(2δ2 − 1)(n2

1 − n1),

obtaining the desired lower bound, which is an equality if and only if G2 is regular

and D(G1) = 3.

Point (i) of Theorem 5.2.2 generalizes Theorem 1 of Pattabiraman and

Paulraja in [83], as we see in the next remark.

Remark 5.2.1. (Theorem 1 of [83]) Let G1 = Km1,...,mr
be a complete bipartite

graph with n1 =

k∑

i=1

mi vertices and e1 edges. Let G2 be a connected graph on n2

vertices and e2 edges. Then

W (Km1,...,mk
⊠G2) = n2(n

2
1 − n1 − e1) + n2

1W2 + e2(n
2
1 − n1 − 2e1).
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5.3 Wiener index of the strong products of paths

and cycles

We provide the exact value of the Wiener index of the strong products of paths

and cycles in terms of their orders. For this aim, we use equality (ii) of Theo-

rem 5.2.1, due to the cardinalities ri, i = 1, . . . , D(G1) and sj, j = 1, . . . , D(G2)

can be easily determined.

We start with the strong product of two any paths. Notice that a path P of

order n has diameter n − 1, Wiener index
n3 − n

6
and admits 2n − 2i ordered

pairs of vertices at distance i, for i = 1, . . . , n− 1.

Corollary 5.3.1. Let P1,P2 be two paths on n1, n2 vertices, respectively, such

that 2 ≤ n1 ≤ n2. Then

W (P1 ⊠ P2) =
n2
1n2

2

(
n2
1

6
+

n2
2

3
−

1

2

)
−

n1

3

(
n4
1

20
−

n2
1

4
+

1

5

)
.

Proof. By the hypothesis, D(P1) ≤ D(P2). We apply equality (ii) of Theo-

rem 5.2.1 with G1 = P1 and G2 = P2. Observe that ri = 2n1 − 2i, for

i = 1, . . . , n1 − 1 and sj = 2n2 − 2j, for j = 1, . . . , n2 − 1. Hence,

W (P1 ⊠ P2) = n2W1 + n2
1W2 +

1

2

n1−2∑

j=1

(
(2n2 − 2j)

n1−1∑

i=j+1

(i− j)(2n1 − 2i)

)

=
n3
1 − n1

6
n2 +

n3
2 − n2

6
n2
1

+
n1n2

3

(
n3
1

4
−

n2
1

2
−

n1

4
+

1

2

)
−

n5
1

60
+

n3
1

12
−

n1

15

=
n2
1n2

2

(
n2
1

6
+

n2
2

3
−

1

2

)
−

n1

3

(
n4
1

20
−

n2
1

4
+

1

5

)
.

Next result shows the Wiener index of the strong product of any two cycles.
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Observe that a cycle C of order n has diameter D(C) =

⌊
n

2

⌋
and Wiener index

W (C) =





n3

8
, if n is even.

n3 − n

8
, if n is odd.

If n is odd, it is easy to check that C admits 2n ordered pairs of vertices at

distance i, for i = 1, . . . , D(C). If n is even, then C admits 2n ordered pairs of

vertices at distance i, for i = 1, . . . , D(C) − 1 and n ordered pairs of vertices at

distance D(C).

Corollary 5.3.2. Let C1, C2 be two cycles with n1, n2 vertices, respectively, such

that 3 ≤ n1 ≤ n2. Then

W (C1 ⊠ C2) =





n2
1n2

2

(
n2
1

12
+

n2
2

4
+

1

6

)
, if n1 and n2 are even.

n2
1n2

2

(
n2
1

12
+

n2
2

4
−

1

3

)
, if n1 and n2 are odd.

n2
1n2

2

(
n2
1

12
+

n2
2

4
−

1

12

)
, otherwise.

Proof. By the hypothesis, D(C1) ≤ D(C2). Then we use equality (ii) of Theo-

rem 5.2.1 taking G1 = C1 and G2 = C2. First, observe that for graph C1, we have

ri = 2n1, for i = 1, . . . , D(C1)− 1 and

rD(C1) =





n1, if n1 is even.

2n1, if n1 is odd.

Analogously, for C2, we have sj = 2n2, for j = 1, . . . , D(C2)− 1 and

sD(C2) =





n2, if n2 is even.

2n2, if n2 is odd.

We must distinguish two cases depending on the parity of the number of vertices

of the shortest cycle C1.
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Case 1. Suppose that n1 is even. Then D(C1) =
n1

2
, W1 =

n3
1

8
and rD(C1) = n1.

By applying equality (ii) of Theorem 5.2.1, we get

W (C1 ⊠ C2) =
n3
1

8
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

1

2

n1
2
−1∑

j=1

2n2



(n1

2
− j
)
n1 +

n1
2
−1∑

i=j+1

(i− j)2n1




=
n3
1

8
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

n2
1n2

4

(
n2
1

6
−

n1

2
+

1

3

)

=





n2
1n2

2

(
n2
1

12
+

n2
2

4
+

1

6

)
, if n2 is even.

n2
1n2

2

(
n2
1

12
+

n2
2

4
−

1

12

)
, if n2 is odd.

Case 2. Assume that n1 is odd. Then D(C1) =
n1 − 1

2
and W1 =

n3
1 − n1

8
.

Similarly to the previous case, we obtain

W (C1 ⊠ C2) =
n3
1 − n1

8
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

1

2

n1−3

2∑

j=1

2n2




n1−1

2∑

i=j+1

(i− j)2n1




=
n3
1 − n1

8
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

n2
1n2

8

(
n3
1

3
− n2

1 −
n1

3
+ 1

)

=





n2
1n2

2

(
n2
1

12
+

n2
2

4
−

1

12

)
, if n2 is even.

n2
1n2

2

(
n2
1

12
+

n2
2

4
−

1

3

)
, if n2 is odd.

Last, we finish with the Wiener index of the strong product of any path

and any cycle.

Corollary 5.3.3. Let P, C be a path and a cycle with n1 and n2 vertices, respec-

tively, such that n1, n2 ≥ 3. The following assertions hold:
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(i) If n1 ≤

⌊
n2

2

⌋
+ 1 then

W (P ⊠ C) =





n2
1n2

4

(
n2
1

3
+

n2
2

2
−

1

3

)
, if n2 is even.

n2
1n2

4

(
n2
1

3
+

n2
2

2
−

5

6

)
, if n2 is odd.

(ii) If n1 >

⌊
n2

2

⌋
+ 1 then

W (C ⊠ P) =





n2
2n1

6

(
n2
1 +

n2
2

4
−

1

2

)
−

n3
2

48

(
n2
2

4
− 1

)
, if n2 is even.

n2
2n1

6

(
n2
1 +

n2
2

4
−

5

4

)
−

n3
2

48

(
n2

4
−

5

2

)
−

3n2

64
, if n2 is odd.

Proof. As D(P) = n1 − 1 and D(C) =

⌊
n2

2

⌋
, it follows that D(P) ≤ D(C) if and

only if n1 ≤

⌊
n2

2

⌋
+ 1. Thus, two cases need to be distinguished.

Case 1. Suppose that n1 ≤

⌊
n2

2

⌋
+1. Then D(P) ≤ D(C) and we apply equality

(ii) of Theorem 5.2.1 with G1 = P and G2 = C.

We know that ri = 2n1 − 2i holds in P, for i = 1, . . . , n1 − 1 and sj = 2n2 holds

in C, for j = 1, . . . ,

⌊
n2

2

⌋
− 1. Then, we deduce that

W (P ⊠ C) =
n3
1 − n1

6
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

1

2

n1−2∑

j=1

2n2

(
n1−1∑

i=j+1

(i− j)(2n1 − 2i)

)

=
n3
1 − n1

6
n2 +

⌊
n2
2

8

⌋
n2
1n2 +

n1n2

6

(
n3
1

2
− n2

1 −
n1

2
+ 1

)

=





n2
1n2

4

(
n2
1

3
+

n2
2

2
−

1

3

)
, if n2 is even.

n2
1n2

4

(
n2
1

3
+

n2
2

2
−

5

6

)
, if n2 is odd.

obtaining the equality (i).
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Case 2. Suppose that n1 >

⌊
n2

2

⌋
+1. Then D(C) < D(P) and we use the equal-

ity (ii) of Theorem 5.2.1 with G1 = C and G2 = P. Now, we have sj = 2n1 − 2j

in P, for j ∈ {1, . . . , n1 − 1} and we have ri = 2n2 in C, for i ∈ {1, . . . , D(C)− 1}

and rD(C) =





n2, if n2 even.

2n2, if n2 odd.

If n2 is even, then

W (C ⊠ P) =
n3
2

8
n1 +

n3
1 − n1

6
n2
2

+
1

2

n2−2
2∑

j=1

(2n1 − 2j)



(n2

2
− j
)
n2 +

n2−2
2∑

i=j+1

(i− j)2n2




=
n3
2

8
n1 +

n3
1 − n1

6
n2
2 +

n1n
2
2

4

(
n2
2

6
−

n2

2
+

1

3

)
−

n3
2

16

(
n2
2

12
−

1

3

)

=
n2
2n1

6

(
n2 +

n2
2

4
−

1

2

)
−

n3
2

48

(
n2
2

4
− 1

)
.

If n2 is odd, then

W (C ⊠ P) =
n3
2 − n2

8
n1 +

n3
1 − n1

6
n2
2 +

1

2

n2−3
2∑

j=1

(2n1 − 2j)




n2−1
2∑

i=j+1

(i− j)2n2




=
n3
2 − n2

8
n1 +

n3
1 − n1

6
n2
2 +

n1n
4
2

24
−

n1n
3
2

8
−

n1n
2
2

24

+
n1n2

8
−

n5
2

192
+

5n3
2

96
−

3n2

64

=
n2
2n1

6

(
n2
1 +

n2
2

4
−

5

4

)
−

n3
2

48

(
n2

4
−

5

2

)
−

3n2

64
.

This proves (ii) and the result.
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5.4 An upper bound for W (G1 ⊠G2)

Entringer, Jackson and Snyder in [40] proved that W (G) ≤
n3 − n

6
, for any

connected graph G on n vertices, with equality if and only if G is a path on n

vertices. This upper bound comes from inequality W (G) ≤ W (T ), where T is a

spanning tree of G, with equality if and only if G = T . In this subsection, this

upper bound is extended to the strong product graph.

It is clear that if G is a connected graph and H ⊆ G is a subgraph of G

such that |V (G)| = |V (H)|, then W (G) ≤ W (H). Hence,

W (G1 ⊠G2) ≤ W (G1�G2) = |V (G2)|
2W (G1) + |V (G1)|

2W (G2).

In this section we provide a sharp upper bound. We first prove that

W (G1 ⊠G2) ≤ W (P1 ⊠G2), for any two connected graphs G1 and G2 on n1 and

n2 vertices, respectively, and where P1 is the path with the same order as G1.

Then, as consequence, the upper bound W (G1 ⊠ G2) ≤ W (P1 ⊠ P2), where P1

and P2 are the paths on n1 and n2 vertices, respectively, clearly holds.

Theorem 5.4.1. Let Gk be a connected graph with order nk, for k = 1, 2. Let

P1 be the path on n1 vertices. Then

W (G1 ⊠G2) ≤ W (P1 ⊠G2),

with equality if and only if G1 is the path P1.

Proof. Let G1 and G2 any two connected graphs with n1 and n2 vertices, respec-

tively. Notice that it is sufficient to prove that W (T1 ⊠ G2) ≤ W (P1 ⊠ G2),

where T1 is a spanning tree of G1, due to T1 ⊠ G2 ⊆ G1 ⊠ G2 and hence,

W (G1 ⊠G2) ≤ W (T1 ⊠G2).

Without loss of generality, we may suppose that n1 ≥ 3, since if n1 = 1 or n1 = 2,

then T1 = K1 or T1 = K2 and the result directly holds.
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We apply induction on n1. If n1 = 3, then T1 is exactly a path on 3 vertices,

yielding the upper bound. Assume that the result holds for n1 − 1. That is,

suppose that W (T ′
1 ⊠G2) ≤ W (P ′

1 ⊠G2), being T ′
1 and P ′

1 a tree and the path

on n1 − 1 vertices. We will prove it for n1.

Let us denote by x = (x1, x2) and y = (y1, y2) any two vertices in V (T1 ⊠ G2).

By (5.5), we have

W (T1 ⊠G2) =
1

2

∑

x,y∈V (T1⊠G2)

dT1⊠G2(x, y) =
1

2

D(T1)∑

i=0

D(G2)∑

j=0

dijrisj,

where the sum is taken through all ordered pairs of vertices of T1 ⊠G2, ri and sj

are the cardinalities of the sets Ri and Sj and dij = max{i, j} are the distances

of matrix D defined in Section 5.1, for 0 ≤ i ≤ D(T1) and 0 ≤ j ≤ D(G2).

Let u be a leaf of T1 and let Gu
2 the copy of G2 in T1⊠G2 corresponding to vertex

u ∈ V (T1). Let us consider a partition of the set of ordered pairs of vertices of

T1 ⊠G2 into the following two sets:

A = {x, y ∈ V (T1 ⊠G2) : x1 6= u and y1 6= u}

and

B = {x, y ∈ V (T1 ⊠G2) : x1 = u or y1 = u}.

Namely, on the one hand, A is the set of ordered pairs of vertices of T1⊠G2 such

that x /∈ Gu
2 and y /∈ Gu

2 . On the other hand, B is the set of ordered pairs of

vertices of T1 ⊠G2 such that x ∈ Gu
2 or y ∈ Gu

2 or x, y ∈ Gu
2 .

Hence,

W (T1 ⊠G2) =
1

2

∑

x,y∈V (T1⊠G2)

dT1⊠G2(x, y)

=
1

2

∑

x,y∈A

dT1⊠G2(x, y) +
1

2

∑

x,y∈B

dT1⊠G2(x, y).
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First, we bound
1

2

∑

x,y∈A

dT1⊠G2(x, y). Let us denote by T ′
1 = T1−{u}. Since u is a

leaf of T1, observe that dT1(x1, y1) = dT ′

1
(x1, y1), for any two vertices x1, y1 of T ′

1.

Then for any two vertices x, y ∈ V (T1 ⊠G2) we deduce that

dT1⊠G2(x, y) = max{dT1(x1, y1), dG2(x2, y2)}

= max{dT ′

1
(x1, y1), dG2(x2, y2)} = dT ′

1⊠G2
(x, y).

Hence, applying the induction hypothesis, it directly follows that

1

2

∑

x,y∈A

dT1⊠G2(x, y) =
1

2

∑

x,y∈V (T ′

1⊠G2)

dT ′

1⊠G2
(x, y)

≤
1

2

∑

x,y∈V (P ′

1⊠G2)

dP ′

1⊠G2
(x, y).

(5.9)

Second, we estimate
1

2

∑

x,y∈B

dT1⊠G2(x, y). Denote by eu = eccT1(u) the eccentricity

of vertex u in V (T1). Let us define the next subsets of ordered pairs of vertices

of the sets Ri,

Ru
i = {(x1, y1) ∈ Ri : x1 = u or y1 = u},

for every i = 0, . . . , eu, due to Ru
i = ∅, for i = eu+1, . . . , D(T1). The cardinalities

of these subsets are denoted by rui = |Ru
i |. Observe that ru0 = 1 and also that

rui = 2|N i
T1
(u)|, for every i = 1, . . . , eu. Moreover,

eu∑

i=1

rui = 2(n1 − 1).

Hence, by (5.5), we get

1

2

∑

x,y∈B

dT1⊠G2(x, y) =
1

2

eu∑

i=0

D(G2)∑

j=0

dijr
u
i sj.
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Due to dij = max{i, j}, it follows that

1

2

∑

x,y∈B

dT1⊠G2(x, y) =
1

2

eu∑

i=0

rui




D(G2)∑

j=0

dijsj




=
1

2

eu∑

i=0

rui




i∑

j=0

isj +

D(G2)∑

j=1

jsj −
i∑

j=0

jsj




=

eu∑

i=0

rui

(
1

2

i∑

j=0

(i− j)sj +W (G2)

)
,

where fi =
1

2

i∑

j=0

(i − j)sj + W (G2) is a increasing function on i thanks to the

cardinalities sj are positive for all j = 0, . . . , D(G2). Hence,

1

2

∑

x,y∈B

dT1⊠G2(x, y) =
eu∑

i=0

rui fi.

Now, we distinguish two cases depending on the eccentricity of u in T1. Suppose

that eu = n1 − 1. Then rui = 2, for all i = 0, . . . , n1 − 1 and therefore, T1 = P1,

which finishes the proof.

Assume that eu < n1 − 1. Then T1 6= P1 and hence, there exists i0 ∈ {0, . . . , eu}

such that |N i0
T1
(u)| ≥ 2. Indeed, at least one vertex of N i0

T1
(u) is a leaf. In such

case, we make the following transformation on the tree T1.

Between all the possible vertices of N i0
T1
(u), we delete a leaf and add it to a vertex

at distance eu from u in T1. For instance, in Figure 5.3 we illustrate a possible

case, where for i = 3, there are three vertices, and two of them are leaves. Then

we delete vertex v (the red vertex) and we add it to a vertex at distance eu from

u (the blue vertex).

By this way, if we represent the cardinalities (rui )
eu
i=1 in a list of length n1 − 1, we

have initially

(ru1 , .., r
u
i0
, .., rueu, 0, . . . , 0)
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b b b

bc

bc b b b bc bcu u

v

v

Figure 5.3: Transformation in T1.

and after the transformation we get

(ru1 , .., r
u
i0 − 2, .., rueu , 2, 0, . . . , 0).

Notice that both lists have the same length n1−1 and the same sum of elements,

2(n1 − 1).

Moreover, due to the function fi is an increasing function on i, we have

eu∑

i=1

rui fi <

i0−1∑

i=1

rui fi + (rui0 − 2)fi0 +

eu∑

i=i0+1

rui fi + 2feu+1. (5.10)

Using iteratively the previous transformation, from the sequence

(ru0 , r
u
1 , .., r

u
i0, .., r

u
eu , 0, . . . , 0)

we obtain the sequence

(1, 2, . . . , 2, 2, . . . , 2)

which is, in fact, the sequence of neighborhoods of u in a path P1 of n1 vertices,

being u one of the two end vertices of P1.



122 Chapter 5. The Wiener index

Hence, by (5.10), we deduce that

1

2

∑

x,y∈B

dT1⊠G2(x, y) =

eu∑

i=0

rui fi

= ru0f0 +
eu∑

i=1

rui fi

= f0 +
eu∑

i=1

rui fi

< f0 +

n1−1∑

i=1

2fi

=
1

2

∑

(x1=u)∨(y1=u)

dP1⊠G2(x, y),

(5.11)

being u one of the two end vertices of P1.

Finally, from (5.9) and (5.11), it follows that

W (T1 ⊠G2) =
1

2

∑

x,y∈V (T1⊠G2)

dT1⊠G2(x, y)

=
1

2

∑

x,y∈A

dT1⊠G2(x, y) +
1

2

∑

x,y∈B

dT1⊠G2(x, y)

≤
1

2

∑

x,y∈V (P ′

1⊠G2)

dP ′

1⊠G2
(x, y) +

1

2

∑

(x1=u)∨(y1=u)

dP1⊠G2(x, y)

=
1

2

∑

x,y∈V (P1⊠G2)

dP1⊠G2(x, y)

= W (P1 ⊠G2).

with equality if and only if T1 = P1, which finishes the proof.

To end this subsection, we present the following corollary which directly comes

from Theorem 5.4.1, thanks to the commutativity of the strong product graph

and whose proof is straightforward.

Corollary 5.4.1. Let Gk be a connected graph with order nk, for k = {1, 2}.

Let P1 and P2 be two paths on n1 and n2 vertices, respectively. Then

W (G1 ⊠G2) ≤ W (P1 ⊠ P2),
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with equality if and only if G1 = P1 and G2 = P2.

Notice also that if we suppose that G1 and G2 are two connected graphs with

order n1 and n2, respectively, such that 2 ≤ n1 ≤ n2, then Corollary 5.3.1 and

Corollary 5.4.1, lead us to get the upper bound

W (G1 ⊠G2) ≤
n2
1n2

2

(
n2
1

6
+

n2
2

3
−

1

2

)
−

n1

3

(
n4
1

20
−

n2
1

4
+

1

5

)
.

5.5 Hyper-Wiener index of the strong product

graph

This last section is devoted to present some results on the hyper-Wiener index of

the strong product graph. It was introduced by Randié [85] in 1993 with the aim

to search new optimal molecular descriptors or invariants of a relatively simple

structural interpretation which can describe molecular properties of interest. For

any connected graph G, it is denoted by WW (G) and defined as

WW (G) =
1

4

∑

x,y∈V (G)

(
dG(x, y) + d2G(x, y)

)
,

where the sum is taken through all the ordered pairs of vertices of G. Hence, it

is clear that the Wiener and the hyper-Wiener indices are directly related by the

equality

WW (G) =
1

2
W (G) +

1

4

∑

x,y∈V (G)

d2G(x, y).

Similar bounds those obtained in [40] for the Wiener index have been

deduced for the hyper-Wiener index. For any connected graph G on n vertices,

Gutman et al. in [48] proved that

n(n− 1)

2
≤ WW (G) ≤

n4 + 2n3 − n2 − 2n

24
,
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which comes from the fact that WW (K) ≤ WW (G) ≤ WW (P), where K and

P are the complete graph and the path on n vertices, respectively.

Since the hyper-Wiener index has a high correlation to the Wiener index,

it is possible to establish analogous results for WW (G1 ⊠ G2) to the obtained

ones for W (G1 ⊠G2), as we show below. Thus, the proofs are omitted.

Continuing with similar notations, we use WW1 and WW2 to denote the

hyper-Wiener index of G1 and G2, respectively. That is,

WW1 =
1

4

∑

x1,y1∈V (G1)

(
dG1(x1, y1) + d2G1

(x1, y1)
)
=

1

4

D(G1)∑

i=1

(i+ i2)ri, (5.12)

and

WW2 =
1

4

∑

x2,y2∈V (G2)

(
dG2(x2, y2) + d2G2

(x2, y2)
)
=

1

4

D(G2)∑

j=1

(j + j2)sj, (5.13)

where both sums are taken through all the ordered pairs of vertices of G1 and

G2, respectively.

Theorem 5.5.1. Let Gk be a connected graph with order nk, Wiener index and

hyper-Wiener index Wk and WWk, for k = 1, 2, such that D(G1) ≤ D(G2). Let

ri and sj be defined as above. The following assertions hold:

(i) If D(G1) = 1 then

WW (G1 ⊠G2) = n2WW1 + n2
1WW2.

(ii) If 2 ≤ D(G1) ≤ D(G2) then

WW (G1 ⊠G2) = n2WW1 + n2
1WW2 +

1

4

D(G1)−1∑

j=1

D(G1)∑

i=j+1

(i− j + i2 − j2)risj .

Theorem 5.5.2. Let Gk be a connected graph with order nk, size ek, minimum

degree δk and hyper-Wiener index WWk, for k = 1, 2. Let 2 ≤ D(G1) ≤ D(G2).

The following assertions hold:
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(i) If D(G1) ≥ 2 then

WW (G1 ⊠G2) ≥ n2WW1 + n2
1WW2 + e2

(
2WW1 − n2

1 + n1

)
,

with equality if and only if D(G1) = 2.

(ii) If D(G1) ≥ 3 then

WW (G1 ⊠G2) ≥ n2WW1 + n2
1WW2 + e2

(
2WW1 − n2

1 + n1

)

+ s2

(
WW1 −

3

2
(n2

1 − n1) + 2e1

)
,

with equality if and only if D(G1) = 3.

(iii) If D(G1) ≥ 3 and G2 has minimum degree at least 2 and girth at least 5,

then

WW (G1 ⊠G2) ≥ n2WW1 + n2
1WW2 + 2δ2e2WW1

+4e1e2(δ2 − 1)− e2(3δ2 − 2)(n2
1 − n1),

with equality if and only if D(G1) = 3 and G2 is regular.

Finally, we present an upper bound for the hyper-Wiener index WW (G1⊠

G2) of the strong product of two connected graphs.

Theorem 5.5.3. Let Gk be a connected graph with order nk, for k = 1, 2. Let

P1 be the path on n1 vertices. Then

WW (G1 ⊠G2) ≤ WW (P1 ⊠G2)

with equality if and only if G1 is the path P1.

Thanks to the commutativity of the strong product graph we present the next

corollary which directly comes from Theorem 5.5.3.

Corollary 5.5.1. Let Gk be a connected graph with order nk, for k = {1, 2}.

Let P1 and P2 be the paths on n1 and n2 vertices, respectively. Then

WW (G1 ⊠G2) ≤ WW (P1 ⊠ P2)

with equality if and only if G1 = P1 and G2 = P2.
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Chapter 6

Conclusions and Open problems

This chapter is devoted to summarize the main results of this the-

sis, as well as to propose some open problems whose solution would

be an advance in the research of vulnerability parameters in graphs

products.

6.1 Superconnectivity (Chapter 2)

In Chapter 2 we have focused on the connectivity and superconnectivity in the

strong product of two connected graphs. We have obtained the bound

min{n1κ2, κ1n2,max{δ1κ2 + δ1 + κ2, κ1δ2 + κ1 + δ2}} ≤ κ (G) ≤ δ(G),

being G = G1 ⊠G2 and ni, δi, κi the order, the minimum degree and the connec-

tivity of Gi, for i = 1, 2.

Then sufficient conditions for this family to be maximally connected have

been given in Theorem 2.2.2. Namely, we have proven that if G1 and G2 are two

connected graphs with at least 3 vertices and such that at least one of them has

127
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girth at least 4, then G1 ⊠ G2 is maximally connected if both G1 and G2 are

maximally connected and either one graph has minimum degree 1 and the other

one has girth at least 5 or the minimum degree is at least 2 in both graphs.

In addition, we have proven that the strong product of two maximally

connected graphs with girth at least 5 and minimum degree at least 2 is super-

connected.

After this brief summary, some possible lines of future work are:

• On the restricted connectivity of the strong product graph.

The connectivity is a very extensively studied parameter, as we saw in

Introduction, and it has given rise to many others connectivity-type indices

last years. Two of them are the restricted connectivity and the restricted

edge-connectivity, denoted by κ′ and λ′, respectively. There exist some

works which deal with these parameters in graphs products [12, 13, 82].

Our proposal is to find sufficient conditions for the strong product of two

connected graphs to be λ′-optimal, that is, λ′(G1⊠G2) = ξ(G1⊠G2), where

ξ(G1 ⊠G2) is the minimum edge degree.

• On the toughness of the strong product graph.

Another interesting parameter of the resilience in graphs is the socalled

toughness which pays special attention to the relationship between the car-

dinality of a cut set in a graph and the number of components after deletion.

For any connected graph G, this parameter is denoted by τ(G) and defined

as

τ(G) = min {|S|/ω(G− S) : S ⊆ J(G)} ,

where J(G) = {S ⊂ V (G) : S is a cutset of G or G−S is an isolated vertex},

and ω(G−S) denotes the number of components in the resultant graphG−S

by removing S. We have started the study of the toughness in some graphs
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products as the corona and the cartesian product of graphs. For this last

family we have proved the following result:

Theorem 6.1.1. Let G be a connected graph with minimum degree δ and

independence number β. Then

min

{
τ(G),

|V (G)|

1 + β

}
≤ τ(K2�G) ≤ min

{
2τ(G),

δ + 1

2

}
.

We consider interesting to generalize this result to the cartesian product of

two arbitrary connected graphs.

6.2 Connectivity and Distances (Chapter 3)

In Chapter 3 sharp lower bounds on the average connectivity, the Menger number

and the average Menger number of the strong product family have been given.

For the average connectivity of the strong product graph, κ (G1 ⊠G2), in

Theorem 3.4.1 we have shown that if G1 and G2 are two connected graphs, with

orders n1, n2 ≥ 3 and girth at least 5, then

κ (G1 ⊠G2) ≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))κ(G1) + (n2 − 1)(n1 + d(G1))κ(G2)

+(n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.

Moreover, in Corollary 3.4.2 we gave sufficient conditions to guarantee that if G1

and G2 are two connected graphs with at least 3 vertices, girth at least 5 and

κ(Gi) = d(Gi), for i = 1, 2, then

κ (G1 ⊠G2) = d (G1 ⊠G2) .

In the case of the Menger number of this family of graphs, ζℓ(G1⊠G2), we

found in Theorem 3.3.1 two different lower bounds depending on the permitted
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lengths in the paths. For any two connected graphs, G1 and G2, with at least 3

vertices and ℓ ≥ max{D(G1), D(G2)}, it follows that

(i) ζℓ(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2).

(ii) ζℓ+2(G1 ⊠G2) ≥ ζℓ(G1)ζℓ(G2) + ζℓ(G1) + ζℓ(G2), if g(Gi) ≥ 5 for i = 1, 2.

Similarly to the average connectivity, in Corollary 3.3.1 we proved that if G1 and

G2 are two maximally connected graphs with at least 3 vertices, girth at least 5

and ℓ is a positive integer such that ζℓ(G1) = κ(G1) and ζℓ(G2) = κ(G2), then

ζℓ+2(G1 ⊠G2) = δ(G1 ⊠G2).

Finally we also provided bounds on the expected number of pairwise dis-

joint paths with a maximum fixed length in the strong product graph. That is,

the average Menger number, ζℓ (G1 ⊠G2). For two connected graphs, G1 and

G2, with n1, n2 vertices, respectively, in Theorem 3.5.1 we have proved that

(i) If both G1 and G2 have order at least 3, then

ζℓ (G1 ⊠G2) =
1

n1n2 − 1

[
(n1 − 1)(1 + d(G2))ζℓ(G1)

+ (n2 − 1)(1 + d(G1))ζℓ(G2) + (n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2)
]
.

(ii) If both G1 and G2 have order at least 3 and girth at least 5, then

ζℓ (G1 ⊠G2) ≥
1

n1n2 − 1

[
(n1 − 1)(n2 + d(G2))ζℓ(G1) + (n2 − 1)(n1 + d(G1))ζℓ(G2)

+(n1 − 1)(n2 − 1)ζℓ(G1)ζℓ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)
]
.

Again, we have shown that

ζℓ (G1 ⊠G2) = d (G1 ⊠G2) ,

when G1 and G2 are two connected graphs with at least 3 vertices, girth at least 5

and ζℓ(Gi) = d(Gi), for i = 1, 2.

To continue this line of research, some other parameters are of interest.
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• On the persistence of the strong product graph.

The diameter is often taken as a measure of efficiency in a network. An in-

teresting question is how many edges at most can be removed from a graph

without increasing the diameter of the remaining graph. This question is

called the edge-deletion problem. One of parameter related to the edge-

deletion problems is the edge-persistence, introduced by Boesch et al. [19]

and by Exoo [41]. The edge-persistence of a connected graph G, denoted

by D+(G), is the minimum number of edges whose deletion from G in-

creases the diameter. In 2001, Xu [98] generalized this notion to the socalled

bounded edge-connectivity. For any connected graph G, a positive integer k

and x, y ∈ V (G), the xy-bounded edge-connectivity, denoted by λk(G; x, y)

with respect to k is the minimum number of edges whose deletion from G

destroys all xy-paths of length at most k. The bounded edge-connectivity of

G with respect to k is defined as

λk(G) = min{λk(G; x, y) : x, y ∈ V (G)}.

A natural question is whether the persistence (edge-persistence) is equal to

the Menger number. For any connected graph G, does ζD(G)(G) = D+(G)

holds? The answer is negative. Bondy and Hell gave in [22] several coun-

terexamples. Recently, Lu, Xu, and Hou [76] deduced bounds on the

bounded edge-connectivity and the edge-persistence for the cartesian pro-

duct graph. More precisely, they showed that for any two connected graphs,

G1 and G2, and two positive integers, k1, k2 ≥ 2,

λk1+k2(G1 ×G2) ≥ λk1(G1) + λk2(G2).

We propose to study the bounded edge-connectivity in the strong product

graph, trying to give a sharp lower bound as well as to study the particular

case of the edge-persistence.
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• On the average connectivity and the Menger number in other graphs pro-

ducts.

The average connectivity and the Menger number are parameters not very

extensively studied in graphs products. Thus, it may be of interest to

continue the findness of bounds for some families, as the lexicographic and

the Kronecker products.

6.3 Generalized 3-connectivity (Chapter 4)

In Chapter 4 we have focused on the generalized 3-connectivity of the strong

product graph, κ3(G1 ⊠ G2). We gave some sharp lower bounds in terms of the

connectivity and generalized 3-connectivity of the generator graphs, depending on

the additional constraints over G1 and G2. Finally, in Theorem 4.3.1 we deduced

that κ3(G1 ⊠ G2) ≥ 2κ3(G2), for G1 and G2 two connected graphs with at least

3 vertices and girth at least 5. Moreover, this bound is sharp when κ3(G1) = 1.

To complete this study on the generalized 3-connectivity of the strong

product graph, we describe some of the problems which are still open:

• To obtain a sharp lower bound on κ3(G1⊠G2), for any two connected graphs.

From Chapter 4, one can suppose that the number of cases to be studied to

obtain a sharp lower bound on κ3(G1 ⊠G2), for any two connected graphs,

is high and difficult to describe. We have the following conjecture anyway.

Conjecture 6.3.1. For any connected graphs G1 and G2 with at least 3

vertices and girth at least 5, it holds

κ3(G1 ⊠G2) ≥ κ3(G1)κ3(G2) + κ3(G1) + κ3(G2)− 1.
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If Conjecture 6.3.1 is true, it would follow that the generalized 3-connectivity

of the strong product graph is almost determined:

δ(G1 ⊠G2)− 1 ≤ κ3(G1 ⊠G2) ≤ δ(G1 ⊠G2)

for graphs Gi, with at least 3 vertices, with girth g(Gi) ≥ 5 and such that

κ3(Gi) = δ(Gi), for i ∈ {1, 2}.

• To deduce conditions to assure that κ3(G1⊠G2) attains its maximum value.

As for connectivity, it is always an interesting open problem to determine

additional conditions on the factor graphs G1 and G2 that guarantee the

equality κ3(G1 ⊠G2) = δ(G1 ⊠G2).

• On the generalized k-connectivity.

As far as we know, there are a lot of lines of research still open for this

parameter. For instance, to study κk(G), for k ≥ 4 and G a connected

graph. In particular, we consider specially interesting the case k = |V (G)|,

that is, how connected all the vertices of a graph are.

• On the generalized k-connectivity in graphs products.

It would be also interesting to approach κk(G1 ⊠G2), for k ≥ 4, as well as

the generalized k-connectivity, for k ≥ 3, in other products of graphs for

which this parameter has not been studied yet.
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[13] C. Balbuena, X. Marcote and P. Garćıa-Vázquez. On restricted connectivi-

ties of permutation graphs. Networks 45 (2005) 113–118.
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