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Catedrática de Escuela Universitaria

Dpto. Matemática Aplicada II

Universidad de Sevilla

Sevilla, 17 de Diciembre de 2014





A mis padres,

Rosario y José Salvador
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Chapter1
Introduction

Although there is some earlier research on two-person games, it is generally considered that game

theory was born as a field of mathematics with the paper published by John von Neumann [66] in 1928.

Some years later, in 1944, the bases of this theory were established with the publication of Theory

of Games and Economic Behavior, written by Oskar Morgenstern and John von Neumann [67]. In

this book, it was shown that many social and economic situations can be described through strategic

games, and these games can be studied by using tools of mathematical analysis.

In a general way, it can be said that game theory studies cooperation and conflict situations, using

mathematical methods. This leads to the development of cooperative and noncooperative models.

This research is focused on cooperative models.

1.1 Preliminaries and notation

Cooperative game theory deals with groups of players that aim to share the benefits derived from

their cooperation. The cooperative model abstracts away from some details of the interaction among

the players and describes only the outcomes that result when players cooperate within different

coalitions. At this point we can consider two different approaches. In some situations, the outcome

of each coalition is described by a real number. The games used in these cases are called transferable

utility (TU) games. The adjective transferable refers to the assumption that a player can losslessly

transfer any part of his utility to another player, usually through money, and that the players’ utilities

are linear in money with the same scale for all players. So we can think that the number assigned to

a coalition in a TU game expresses an amount of money. If there is no possibility of transferring the

utility between players by using money or, if there is, the utilities are not linear with the same scale

1



2 CHAPTER 1. INTRODUCTION

with respect money, then we use nontransferable utility (NTU) games. In NTU games the possibilities

of each coalition are represented by a set of utility vectors indexed by the members of the coalition.

1.1.1 Transferable utility games

A transferable utility game or TU game is a pair (N, v), where N is a set of cardinality n with

n ∈ N and v : 2N → R is a function satisfying that v(∅) = 0. The elements of N are called players,

and the subsets of N are called coalitions. For each coalition E, the number v(E), that is called

the worth of E, can be interpreted as the maximal gain or minimal cost that the players in E can

achieve when they decide to cooperate. Throughout this work, we interpret v(E) as the maximal

gain of each coalition. The function v is called characteristic function of the game. Usually, the TU

game (N, v) is identified with the characteristic function v.

Depending on the properties of the characteristic function we can distinguish different types of

games. A detailed description of these can be seen in Driessen [34]. Here, only those which are used

throughout this work are defined.

If v (E) ≤ v (F ) for all E ⊆ F ⊆ N then the game v is said to be monotonic. If, in addition, v only

takes values in the set {0, 1}, then the game is called simple.

A game v is convex if for any coalitions E,F ⊆ N the following inequality is satisfied

v (E ∪ F ) + v (E ∩ F ) ≥ v (E) + v (F ) .

Equivalently, a game v is convex if and only if for any coalitions E,F ⊆ N, such that E ⊆ F and

for all i ∈ N \ F, it holds that

v (E ∪ {i})− v (E) ≤ v (F ∪ {i})− v (F ) .

Convex games were introduced by Shapley [64] and they are useful in several situations in economic

sciences.

The set of all TU games on N is denoted by GN . Given v, w ∈ GN the game v + w is defined

by (v +w)(E) = v(E) +w(E) for all E ⊆ N . If c ∈ R the game cv is defined by (cv)(E) = c v(E)

for all E ⊆ N . With respect to these operations, GN is a 2n − 1-dimensional real vector space. A

Values for games with authorization structure



1.1. PRELIMINARIES AND NOTATION 3

well-known basis of this vector space is given by the set

{
uF : F ∈ 2N \ {∅}

}
,

where

uF (E) =

{
1 if F ⊆ E,

0 otherwise.

For each nonempty F ⊆ N the game uF is called the unanimity game of F . Every game v ∈ GN

can be written as a linear combination of unanimity games. Thus,

v =
∑

F∈2N\{∅}

△v (F )uF

where each coordinate △v (F ) of the game v with respect to the basis of the unanimity games is

called dividend of the coalition F in the game v. For all E ∈ 2N \ {∅} we have that

v (E) =
∑

{F∈2N\{∅}:F⊆E}

△v (F ) .

Therefore, for each E ∈ 2N \ {∅} it holds that

△v (E) = v (E)−
∑

{F∈2N\{∅}:F$E}

△v (F ) .

Solutions for TU games

Given a TU game (N, v), a problem that arises is how to assign a payoff to each player in

a fair way. An allocation rule or value assigns to each game (N, v) a payoff vector ψ(v) ∈ RN .

Many allocation rules have been defined in literature. The best known of them is the Shapley value,

introduced by Shapley [62] in 1953. Given v ∈ GN , the Shapley value of v, denoted by ϕ(v), is

defined by

ϕi (v) =
∑

{E⊆N : i∈E}

pE [v (E)− v (E \ {i})] for all i ∈ N,

where

pE =
(n− |E|)! (|E| − 1)!

n!
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and |E| denotes the cardinality of E.

The Banzhaf value, introduced by Owen [58] in 1975, arises from considering that each player

is equally likely to join any coalition. Given v ∈ GN , the Banzhaf value of v, denoted by β(v), is

defined by

βi (v) =
1

2n−1

∑
{E⊆N : i∈E}

[v (E)− v (E \ {i})] for all i ∈ N.

Some desirable properties for a value ψ : GN → RN are the following.

EFFICIENCY. For all v ∈ GN it holds that

∑
k∈N

ψk (v) = v (N) .

ADDITIVITY. For all v1, v2 ∈ GN it holds that

ψ (v1 + v2) = ψ (v1) + ψ (v2) .

A player i ∈ N is said to be a null player in v ∈ GN if v (E) = v(E \ {i}) for all E ⊆ N.

NULL PLAYER PROPERTY. If i ∈ N is null player in v ∈ GN it holds that

ψi (v) = 0.

A player i is said to be a necessary player in v ∈ GN if v (E) = 0 for E ⊆ N \ {i}.

NECESSARY PLAYER PROPERTY. If i is a necessary player in a monotonic game v ∈ GN it holds that

ψi (v) ≥ ψj (v) for all j ∈ N.

Let (N, v) be a TU game. Given two different players i and j, the amalgamation of i and j

defines a new player denoted by
⌢
ij. Let N ij = (N \ {i, j}) ∪ {

⌢
ij} and vij : 2N

ij → R defined by

vij(E) =

 v (E) if
⌢
ij ̸∈ E,

v
((
E \ {

⌢
ij}
)
∪ {i, j}

)
if

⌢
ij ∈ E.

Values for games with authorization structure



1.1. PRELIMINARIES AND NOTATION 5

AMALGAMATION. For all v ∈ GN it holds that

ψi (v) + ψj (v) = ψ⌢
ij

(
vij
)

for all i, j ∈ N.

The Shapley value satisfies all these properties except amalgamation whereas the Banzhaf value

satisfies all of them except efficiency.

1.1.2 Non-transferable utility games

A cooperative game with nontransferable utility or NTU game is a pair (N,V ) where N is a set

of cardinality n ∈ N and V is a correspondence that assigns to each nonempty E ⊆ N a nonempty

subset V (E) ⊆ RE . The set valued function V is called the characteristic function of the NTU game

(N,V ). Usually, the NTU game (N,V ) is identified with the characteristic function V .

If V andW are NTU games, the NTU game V +W is defined by (V +W ) (E) = V (E)+W (E)

for every nonempty E ⊆ N . If α ∈ RN the NTU game α∗V is defined by (α ∗ V ) (E) = αE ∗V (E)

for every nonempty E ⊆ N where αE is the restriction of α to E and ∗ denotes the Hadamard

product. Given v ∈ GN the NTU game corresponding to v is defined by

Vv(E) =

{
x ∈ RE :

∑
k∈E

xk 6 v(E)

}
for every nonempty E ⊆ N.

Solutions for NTU games

The Shapley NTU correspondence was introduced by Shapley [63] and it was characterized by

Aumann [7]. Aumann considered the NTU games V satisfying the following conditions:

(i) V (E) is a convex comprehensive proper subset of RE for all nonempty E ⊆ N .

(ii) V (N) is smooth, i.e., it has a unique supporting hyperplane at each point of its boundary.

(iii) For every x ∈ ∂(V (N)) it holds {y ∈ RN : y > x} ∩ V (N) = {x}.

(iv) There exists x ∈ RN such than V (E)× {0}N\E ⊆ x+ V (N) for every nonempty E ⊆ N .

We denote by Γ̂N the set of NTU games satisfying (i), (ii), (iii) and (iv).
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Let V ∈ Γ̂N . A vector x ∈ RN is a Shapley NTU payoff vector of V if there exists λ ∈ RN
++

such that

1. x ∈ V (N),

2. The set
{
λE · z : z ∈ V (E)

}
is bounded above for every nonempty E ⊆ N ,

3. λ ∗ x = ϕ (vλ) where vλ is the TU game defined by

vλ (E) = sup
{
λE · z : z ∈ V (E)

}
for every nonempty E ⊆ N.

Let SH : Γ̂N → 2R
N

be the mapping that assigns to each V ∈ Γ̂N the set of Shapley NTU

payoff vectors of V . The correspondence SH is called the Shapley NTU correspondence (on N).

Aumann [7] proved that the Shapley NTU correspondence satisfies the following properties.

EFFICIENCY. For every V ∈ Γ̂N it holds that

SH (V ) ⊆ ∂ (V (N)) .

CONDITIONAL ADDITIVITY. For every V,W ∈ Γ̂N such that V +W = U ∈ Γ̂N it holds that

(SH (V ) + SH (W )) ∩ ∂ (U (N)) ⊆ SH (U) .

SCALE COVARIANCE. For every V ∈ Γ̂N and α ∈ RN
++ it holds that

SH (α ∗ V ) = α ∗ SH (V ) .

INDEPENDENCE OF IRRELEVANT ALTERNATIVES. For every V,W ∈ Γ̂N such that V (N) ⊆ W (N) and

V (E) =W (E) for every nonempty E $ N , it holds that

SH (W ) ∩ V (N) ⊆ SH (V ) .

The Harsanyi configuration correspondence for NTU games was introduced by Harsanyi [42]

and it was characterized by Hart [43]. Hart considered the NTU games V satisfying the following

conditions:

Values for games with authorization structure



1.1. PRELIMINARIES AND NOTATION 7

(i) V (E) is closed, convex and comprehensive for all nonempty E ⊆ N .

(ii) V (N) is smooth.

(iii) For every x ∈ ∂(V (N)) it holds {y ∈ RN : y > x} ∩ V (N) = {x}.

We denote by ΩN the set of NTU games satisfying (i), (ii) and (iii).

A payoff configuration for N is an element (xE)E∈2N\{∅} ∈
∏

E∈2N\{∅}RE . Let V ∈ ΩN . A

payoff configuration (xE)E∈2N\{∅} is a Harsanyi solution of V if there exists λ ∈ RN
++ such that

1. xE ∈ ∂ (V (E)) for every nonempty E ⊆ N ,

2. λ · xN = max {λ · z : z ∈ V (N)},

3. λE∗xE = ϕ(w|E) for every nonempty E ⊆ N , where w is the TU game given by w(F ) = λF ·xF
for every nonempty F ⊆ N .

The mapping that assigns to each V ∈ ΩN the set of Harsanyi solutions of V is called the

Harsanyi configuration correspondence for NTU games (on N) and is denoted by H. Hart [43]

proved that H satisfies the following properties.

CONDITIONAL ADDITIVITY. For every V,W ∈ ΩN such that V + W = U ∈ ΩN and

(xE)E∈2N\{∅} ∈ H (V ) + H (W ) such that xE ∈ ∂ (U (E)) for every nonempty E ⊆ N , it holds

that

(xE)E∈2N\{∅} ∈ H (U) .

SCALE COVARIANCE. For every V ∈ ΩN and α ∈ RN
++ it holds that

H (α ∗ V ) =
{(
αE ∗ xE

)
E∈2N\{∅} : (xE)E∈2N\{∅} ∈ H (V )

}
.

INDEPENDENCE OF IRRELEVANT ALTERNATIVES. Given V,W ∈ ΩN such that V (E) ⊆ W (E) for every

nonempty E ⊆ N and (xE)E∈2N\{∅} ∈ H(W ) such that xE ∈ V (E) for every nonempty E ⊆ N , it

holds that

(xE)E∈2N\{∅} ∈ H(V ).
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1.1.3 Permission structures and restrictions

Permission structures were introduced by Gilles, Owen and van den Brink [40] to model

hierarchical organizations. A permission structure on N is a mapping S : N → 2N . Given i ∈ N the

players in S(i) are called the successors of i in S. The players in PS(i) = {j ∈ N : i ∈ S(j)} are

called the predecessors of i in S. Let Ŝ : N → 2N denote the transitive closure of S, i.e., j ∈ Ŝ(i) if

and only if there exists a sequence {ip}qp=0 such that i0 = i, iq = j and ip ∈ S (ip−1) for all 1 ≤ p ≤ q.

The players in Ŝ(i) are called the subordinates of i in S. We denote P̂S (i) =
{
j ∈ N : i ∈ Ŝ(j)

}
.

The players in P̂S (i) are called the superiors of i in S. The collection of all permission structures

on N is denoted by SN . A permission structure S on N can be identified with a directed graph

(digraph) on N . The vertex set is N and the pair (i, j) is a link if j ∈ S (i).

If v ∈ GN and S ∈ SN the pair (v, S) is said to be a game with permission structure. Different

assumptions can be made about how a permission structure restricts the formation of coalitions. In

the conjunctive approach, Gilles, Owen and van den Brink [40] assumed that every player needs the

permission from all his superiors. So, if a coalition E is formed, a player in E is allowed to play if

and only if all his superiors belong to E. The set of players who are allowed to play within coalition

E is called the conjunctive sovereign part of E and is denoted by AS
c (E), i.e.,

AS
c (E) =

{
i ∈ E : P̂S (i) ⊆ E

}
.

In the disjunctive approach, van den Brink [24] assumed that each player only needs the permission

from one of his predecessors (if he has any). In this case, a coalition is autonomous if for any player

in the coalition either he does not have any predecessors or at least one of his predecessors is in

the coalition. The disjunctive sovereign part of a coalition E, denoted by AS
d (E), is the largest

autonomous subset of E.

In order to find reasonable payoff vectors for games with permission structure, van

den Brink and Gilles [27] proposed to modify the characteristic function v ∈ GN taking

account of the limited possibilities of cooperation determined by the permission structure

S ∈ SN . The conjunctive and disjunctive restricted games are defined, respectively, as

vSc (E) = v
(
AS

c (E)
)
and vSd (E) = v

(
AS

d (E)
)
for every coalition E ⊆ N. A value for games

with permission structure on N is a mapping ψ : GN × SN → RN . The conjunctive permission

value and the disjunctive permission value are defined as ϕc (v, S) = ϕ
(
vSc
)
and ϕd (v, S) = ϕ

(
vSd
)

Values for games with authorization structure



1.1. PRELIMINARIES AND NOTATION 9

respectively. In a similar way, van den Brink [26] introduced Banzhaf permission values. A complete

description of permission structures can be seen in van den Brink [23].

Derks and Peters [33] generalized the model proposed by van den Brink. They considered the

concept of restriction, that is defined as a mapping ρ : 2N → 2N satisfying

1. ρ(E) ⊆ E for any E ⊆ N ,

2. If E ⊂ F then ρ(E) ⊆ ρ(F ),

3. ρ(ρ(E)) = ρ(E).

They interpreted the coalitions in the image of ρ as the only coalitions in which all the players can

cooperate freely. We could also interpret ρ(E) as the set of players that are allowed to play within

coalition E. With each restriction ρ, they associated the so-called restricted Shapley value ψρ, defined

by ψρ(v) = ϕ (v ◦ ρ) for every v ∈ GN .

1.1.4 Fuzzy sets. The Choquet integral

Fuzzy sets were introduced by Zadeh [71]. A fuzzy subset of N is an element of [0, 1]N . Given

e a fuzzy subset of N and i ∈ N , the number ei is called the grade of membership of i in e. The

support of e is the set supp (e) = {i ∈ N : ei > 0}. For every t ∈ [0, 1] the t-cut of e is the set

[e]t = {i ∈ N : ei > t}.

Given e, f ∈ [0, 1]N , the fuzzy sets e ∪ f and e ∩ f are defined, respectively, as

(e ∩ f)i = min (ei, fi) for every i ∈ N,

and

(e ∪ f)i = max (ei, fi) for every i ∈ N.

The fuzzy subset e is contained in f , which is denoted by e ⊆ f , if ei 6 fi for every i ∈ N .

A fuzzy relation on N is a fuzzy subset of N ×N .

In cooperative game theory, Aubin [6] defined a fuzzy coalition in N to be a fuzzy subset of N ,

where for all i ∈ N the number ei ∈ [0, 1] is regarded as the degree of participation of player i in e.



10 CHAPTER 1. INTRODUCTION

Every coalition E ⊆ N can be identified with the fuzzy coalition 1E ∈ [0, 1]N defined by

(1E)i =

{
1 if i ∈ E,

0 otherwise.

The Choquet integral was introduced by Choquet [32] to deal with capacities. Later on it was

extended to set functions by Schmeidler [61]. Given v : 2N → R and e ∈ [0, 1]N , the Choquet

integral of e with respect to v is

∫
e dv =

q∑
p=1

(sp − sp−1) v
(
[e]sp

)
,

where {s0, . . . , sq} = {ei : i ∈ N} ∪ {0} with 0 = s0 < . . . < sq.

1.2 Historical background

1.2.1 Games with restricted cooperation

In a general model of cooperative games it is assumed that there are no restrictions in the

cooperation among the players, and, therefore, every subset of players can form a coalition. In real

life, however, political, social or economic circumstances may impose certain restraints on coalition

formation. This idea has led several authors to develop models of cooperative games with partial

cooperation.

One of the first approximations to partial cooperation is due to Aumann and Maschler [9]. They

used coalition structures to define some solution notions for TU games. A coalition structure is a

partition B = {B1, . . . , Bk} of the set N of players such that the cooperation is possible only among

the players that belong to an element Bi. Later, in 1974, Aumann and Dréze [8] introduced the

concept of value for games with coalition structure. Other authors who have developed this line

of research are Owen [59], Hart and Kurz [44], Levy and McLean [48], Winter [68] [69] [70] and

McLean [50].

In 1977, Myerson [53], in his seminal work Graphs and Cooperation in Games, presented a new

class of games with partial cooperation structure. He considered a TU game (N, v) and a graph G

on the set of players. The links of G represent the bilateral agreements among the players. The pair

Values for games with authorization structure



1.2. HISTORICAL BACKGROUND 11

(v,G) is called a communication situation. Given a coalition E, two players in E will be able to

cooperate within the coalition only if they are connected in E, that is, if there is a path between the

players that stays within E. In order to get together the information from the game and the graph,

a new characteristic function vG is defined

vG(E) =
∑

F∈E/G

v(F ) for all E ⊆ N,

where E/G is the set of connected components of the subgraph of G induced by E. The number

vG(E) represents the worth of E when we consider the game v and the requirement that players can

only communicate along links in G. By considering the Shapley value of this new game, Myerson

obtains an allocation rule for communication situations, known as the Myerson value

µ(v,G) = ϕ(vG).

Myerson characterized this allocation rule through certain properties of fairness and stability. The

model of partial cooperation introduced by Myerson gave rise to a line of research that was followed,

amongst others, by Owen [60], Hamiache [41], van den Nouweland [55], van den Nouweland and

Borm [56], Carreras [30], van den Nouweland, Borm and Tijs [57], Borm, Owen and Tijs [22],

Bergantiños, Carreras and Garćıa Jurado [10], Calvo and Lasaga [29] and Fernández, Algaba, Bilbao,

Jiménez-Losada, Jiménez and López [37].

In 1980, in his work Conference Structures and Fair Allocation Rules, Myerson [54] proposed a

generalization of his model of partial cooperation. This generalization arises from the fact that the

graph of a communication situation divides the set of coalitions into two classes. If the subgraph

induced by a coalition E is connected, then E is a feasible coalition, in the sense that all the

players in E can join together and cooperate regardless of the actions taken by the rest of players.

If the subgraph induced by E is not connected, then E is a non-feasible coalition. Abstracting away

from the graph, Myerson considered a structure that just indicates whether a coalition is feasible or

not. In this way, he covered a wider range of games with partial cooperation. Following this idea,

Bilbao [11] and López [49] developed a model of partial cooperation based on the so called systems of

feasible coalitions and partition systems, which generalized the communication situations. A system

of feasible coalitions is a collection F of subsets of N that contains the empty set and the singletons.

A partition system is a system of feasible coalitions such that for every coalition E the maximal
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elements in the collection of feasible coalitions contained in E form a partition of E. If a pair (v,F)

is considered, where v is a TU game on N and F is a partition system on N , a new characteristic

function that collects the information from both the game and the structure is introduced. This

characteristic function, called the restricted game, is defined as

vF (E) =
∑

F∈CF
E

v(F ) for all E ⊆ N,

where CF
E denotes the partition of E formed by the maximal elements in the collection of feasible

coalitions contained in E. Similarly as in the definition of the Myerson value, Bilbao and López

considered the Shapley value of the restricted game, thus obtaining an allocation rule for games with

partition system.

Notice that in the models proposed by Myerson and Bilbao the values of the game v on the non

feasible coalitions are irrelevant. This is connected to another model of partial cooperation that was

initiated by Faigle [36]. In this model, a game with restricted cooperation is a pair (F , v) where F
is the set of feasible coalitions, without any a priori structure, and v is a real function defined on

F . Although Faigle extended v to a collection possibly larger than F , he does not necessarily get

a characteristic function on 2N . This is an essential difference with respect to the previous models,

which are based on obtaining a new game (from 2N into R) gathering the information from the

original game and the structure.

Faigle’s work gave rise to a new line of research, in which his model is assumed and, additionally,

it is supposed that the family of feasible coalitions has a certain combinatorial structure. In this

line of research different types of combinatorial structures have been considered, like closure spaces

(see Bilbao [12], Jiménez [46], Bilbao, Lebrón and Jiménez [21]), convex geometries (see Bilbao and

Edelman [15], Bilbao, Jiménez-Losada and López [18] and Bilbao, Lebrón and Jiménez [20], [19]) or

matroids (see Jiménez-Losada [47], Bilbao, Jiménez-Losada, Lebrón and Tijs [17], Bilbao, Jiménez-

Losada and Lebrón [16] and Bilbao, Driessen, Jiménez-Losada and Lebrón [14]).

In 1992, Gilles, Owen and van den Brink [40] presented another type of cooperation restriction.

They considered situations in which some players have veto power over the actions undertaken

by some other players. In order to model these situations, they introduced games with permission

structure, that consist of a cooperative TU game and a mapping that assigns to each player a subset

Values for games with authorization structure
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of direct subordinates. Depending on the interpretation of the superior-subordinate relationship, they

considered two different approaches. In the conjunctive approach [40] it is assumed that every player

needs the permission from all his superiors, whereas in the disjunctive approach [24] the permission

from any of his superiors is sufficient. In each case, proceeding in a similar way as Myerson did

with communication situations, they defined a new characteristic function, gathering the information

given by the game and the structure, that allowed them to define a value for games with conjunctive

or, respectively, disjunctive permission structures. They provided intuitive characterizations for each

case, showing in this way that the values obtained are reasonable (see van den Brink and Gilles [27]

and van den Brink [24], [26] ).

Algaba, Bilbao, van den Brink and Jiménez-Losada [3], [4], [5] and Chacón [31] studied games

on antimatroids as a generalization of the model of Gilles, Owen and van den Brink. In Bilbao [13],

games on antimatroids are considered as a particular case of games on augmenting systems.

In order to calculate the values introduced by Gilles, Owen and van den Brink, what we really

need to know about the corresponding permission structure is the so called sovereign part of each

coalition, that is, the set of players that are allowed to play within each coalition. Considering this

fact, Derks and Peters [33] abstracted away from the hierarchical nature of permission structures and

introduced the more general concept of restriction, which is a monotonic projection ρ : 2N → 2N

assigning to each coalition E the subcoalition ρ(E) of players who can play when coalition E is

formed. Given a TU game (N, v) and a restriction ρ : 2N → 2N they considered the restricted game

v◦ρ. By applying the Shapley value to this new game they obtained a value for games with restricted

coalitions.

1.2.2 Fuzzy coalitions

In the previous models, the dependency relationships are complete in the sense that, when a

coalition is formed, a player in the coalition either can fully cooperate within the coalition or he

cannot cooperate at all. However, there are situations in which a player has a degree of freedom to

cooperate within a coalition. The concept of fuzzy coalition, introduced by Aubin [6], is useful for

modelling this kind of dependency relationships.

A critical issue arises when dealing with TU games and fuzzy coalitions: how to assign a worth to

a fuzzy coalition. In his seminal paper, Aubin proposed an optimal value, also studied by Jiaquan and
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Qiang [45]. Butnariu [28] assumed that different players should have the same membership grade

in order to cooperate and provided a different way to assign a gain to a fuzzy coalition. Tsurumi,

Tanino and Inuiguchi [65], by using the Choquet integral, came up with a reasonable method to

extend a game to the set of fuzzy coalitions.

1.3 Synthesis of contents

Our aim in this work is to propose a new model of games with restricted cooperation.

In chapter 2 we present the so called authorization structures, which extend the concept of

restriction introduced by Derks and Peters [33]. We define and characterize a Shapley value and a

Banzhaf value for games with authorization structure.

In chapter 3 we aim to model situations in which the dependency relationships among the players

are not complete. To that end we introduce fuzzy authorization structures. A Shapley value and a

Banzhaf value for games with fuzzy authorization structure are obtained and characterized. To do

this, we follow the approach described by Tsurumi, Tanino and Inuiguchi [65], using the Choquet

integral to define a new auxiliary game that combines the information from the original game and

from the fuzzy dependency relationships.

In chapter 4 the power in authorization structures is studied. Using the Shapley value and the

Banzhaf value we measure how favorable the situation of each agent in an authorization structure is. In

both cases, a fuzzy digraph is assigned to each authorization structure, measuring the dependence or

the dominance relationship between any two agents. Moreover, a characterization of those measures

is given. In a similar way, the power in fuzzy authorization structures is also discussed.

In chapter 5 a particular type of authorization structure, called interior operator structure,

is analyzed. Interior operator structures are characterized in terms of transitivity of the veto

relationships, and a Shapley value for games with interior operator structure is studied. Because

of the transitivity of the veto relationships, this value turns out to satisfy a property of structural

monotonicity. Finally, fuzzy interior operator structures are studied.

In chapter 6 we focus on the most simple authorization structures: conjunctive authorization

structures. We characterize them by proving that an authorization structure is conjunctive if and

only if all the dependency relationships induced are bilateral. A simplified expression of the Shapley

Values for games with authorization structure
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power measures defined in chapter 4 is given for these structures. We give a Shapley value and a

Banzhaf value for games with conjunctive authorization structure. We also study fuzzy conjunctive

authorization structures.

In chapter 7 we deal with NTU games. NTU games with authorization structure are introduced,

and a Shapley solution is obtained. We analyze the fuzzy case as well. Lastly, a Harsanyi solution for

NTU games with interior operator structure is presented.





Chapter2
Games with authorization structure

Different approaches have been developed to model games with permission relationships among

the agents. In 1992, Gilles, Owen and van den Brink [40] introduced conjunctive permission structures.

Later, van den Brink [24] introduced disjunctive permission structures. Subsequently, van den Brink

and Gilles [27] and van den Brink [24] provided and characterized a Shapley value for, respectively,

conjunctive and disjunctive permission structures. Derks and Peters [33] generalized those approaches

by abstracting away from hierarchies and considering the so called restrictions. On the one hand, the

model considered by Derks and Peters is more general, but on the other hand the axiomatizations

given in [27] and [24] are somewhat more intuitive than that given in [33]. Our aim in this chapter

will be to provide a new model for games with permission relationships among the players. This

new model will fulfill two requirements. Firstly, it will more general than the one given in [33]. And,

secondly, it will allow us to define and characterize a sharing value in a similar way as in [27] and [24].

2.1 Authorization structures

Let n ∈ N and let N be a set of cardinality n. We think of N as a set of players in a cooperative

game.

Definition 2.1 An authorization operator on N is a mapping A : 2N → 2N that satisfies the

following conditions:

1. A(E) ⊆ E for any E ⊆ N,

2. If E ⊂ F then A(E) ⊆ A(F ).

17
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The pair (N,A) is called an authorization structure. The set of all authorization operators on N is

denoted by AN .

If A ∈ AN and E ⊆ N we interpret A(E) as the set of players that will be allowed to play

when coalition E is formed. Bearing this in mind, the two conditions considered in the definition of

authorization operator seem to be reasonable.

Definition 2.2 An authorization operator A is said to be normal if A(N) = N . The set of normal

authorization operators is denoted by ÃN .

Note that the concept of authorization operator is more general than that of restriction introduced

by Derks and Peters [33]. If A is a restriction on N then the coalitions A(E) are actually autonomous,

that is, A(A(E)) = A(E) for any E ⊆ N , which, in general, is not true for authorization operators.

Therefore, restrictions are special cases of authorization operators.

Example 2.3 Imagine the following situation. A consumer electronics company wants to make a

new product. To do this, the company needs several components from various suppliers. We will

focus on three of those suppliers. For i = 1, 2, 3, supplier i produces component i. The company has

signed an agreement with the three suppliers that establishes the following:

- The company will pay i dollars to supplier i for every unit of component i delivered before the

deadline.

- The company will pay a total of 2(i+ j) dollars to suppliers i and j for every pair made up of

a unit of component i and a unit of component j delivered before the deadline.

- The company will pay a total of 20 dollars to the three suppliers for every set made up of a

unit of each component delivered before the deadline.

Each supplier has calculated that it would be able to produce one million units of the

corresponding component before the deadline. This situation can be modeled with a cooperative

game (N, v), where N = {1, 2, 3} and, for every E ⊆ N , v(E) is the revenue (in millions) obtained

by coalition E,

Values for games with authorization structure
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v ({1}) = 1, v ({2}) = 2, v ({3}) = 3,

v ({1, 2}) = 6, v ({1, 3}) = 8, v ({2, 3}) = 10,

v ({1, 2, 3}) = 20.

Imagine now the following. Supplier 2 finds out that supplier 1 makes use, in the production of

component 1, of a technology developed and patented by 2. So 2 sues 1 for violation of patent rights.

Supplier 3 preferred to avoid a patent war, but, in view of the maneuvers of 2, decides to sue 2. The

final scenario is this: supplier 1 cannot use or sell the component they make without the authorization

from supplier 2, and the latter cannot use or sell their component without the authorization from

supplier 3. Let us consider an operator A that assigns to each coalition E ⊆ N the set of players in

E that don’t need the authorization from a player in N \E. We can represent A with the following

table

E {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

A(E) ∅ ∅ {3} {1} {3} {2, 3} {1, 2, 3}

It is clear that A is a normal authorization operator and is not a restriction. Notice that only player

1 would be allowed to play within coalition {1, 2}. But observe that player 1 needs the permission

from player 2. In other words, the key point is that within coalition {1, 2} player 2 cannot play but

gives authorization to play. That role would not be possible in the case of a restriction.

We know that both conjunctive and disjunctive permission structures are particular cases of

restrictions, and hence authorization structures. Look at the following example.

Example 2.4 On the table below we have defined three different authorization operators A, B and

C on N = {1, 2, 3, 4}.
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E A(E) B(E) C(E)

E : 4 /∈ E E E E

{4} ∅ ∅ ∅
{1, 4} {1} {1, 4} {1}
{2, 4} {2} {2, 4} {2}
{3, 4} {3} {3, 4} {3}
{1, 2, 4} {1, 2} {1, 2, 4} {1, 2, 4}
{1, 3, 4} {1, 3} {1, 3, 4} {1, 3, 4}
{2, 3, 4} {2, 3} {2, 3, 4} {2, 3, 4}
{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

Let us consider the following digraph

4

2 31

It is plain to see that, for any E ⊆ N , A(E) is equal to the sovereign part of E in the conjunctive

hierarchy represented by the digraph above. Similarly, B(E) is equal to the sovereign part of E in

the disjunctive hierarchy represented by the same digraph. Finally, the structure determined by C is

also hierarchical (and induced by the digraph above), but neither conjunctive nor disjunctive. In this

structure, a coalition is autonomous (note that C is, as well as A and B, a restriction) if for any

element in the coalition, the majority of his predecessors are in the coalition too.

Values for games with authorization structure
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Definition 2.5 A game with authorization structure on N is a pair (v,A) where v ∈ GN and

A ∈ AN .

Given a game with authorization structure, we can define a characteristic function that gathers

the information from the game and the structure in a reasonable way.

Definition 2.6 Let v ∈ GN and A ∈ AN . The restricted game of (v,A) is the game vA ∈ GN given

by

vA(E) = v(A(E)) for all E ⊆ N.

The number vA(E) is the worth of E in the game with authorization structure (v,A).

Example 2.7 Let us calculate the restricted game of the game with authorization structure (v,A)

given in Example 2.3.

vA ({1}) = v (∅) = 0,

vA ({2}) = v (∅) = 0,

vA ({3}) = v ({3}) = 3,

vA ({1, 2}) = v ({1}) = 1,

vA ({1, 3}) = v ({3}) = 3,

vA ({2, 3}) = v ({2, 3}) = 10,

vA ({1, 2, 3}) = v ({1, 2, 3}) = 20.

Let us finish this section with another example. We study the following situation proposed by

van den Brink [25].

Example 2.8 Let N = {1, 2, 3, 4, 5} be the set of employees of a firm. This firm is hierarchically

structured. The firm structure S : N → 2N describes the hierarchical structure of the firm,

S(1) = {2, 5}, S(2) = {3, 4}, S(3) = S(4) = S(5) = ∅.

This firm structure is illustrated in the following digraph
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4 5

1

2

3

The employees 3, 4 and 5 are referred to as the workers. We assume that they operate the production

process in the firm. The other employees are the managers or coordinators, who do not actively

produce but coordinate. In order to produce, a worker must be coordinated by all his superiors in the

structure. The set of workers is denoted by WS , and the set of managers is denoted by MS . So we

have that

WS = {3, 4, 5}, MS = {1, 2}.

Finally we have a production game w : 2WS → R+ that describes the potential production possibilities

of the workers in the firm. The value w(E) is the nonnegative production output value that can be

generated if exactly the workers in E ⊆WS are active in the production process. In this example we

consider the production game given by

w(E) = |E|2 for all E ⊆WS .

We aim to give a fair payoff vector, that will be used to determine the wages of the employees of

the firm. The situation described can be modeled with a game with authorization structure (v,A),

where v : 2N → R is given by

v(E) = w(E ∩WS) for all E ⊆ N,

and the authorization structure A is given by

A(E) =
{
i ∈W : Ŝ−1(i) ⊆ E

}
for all E ⊆ N,

Values for games with authorization structure
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where, for each i ∈ N , Ŝ−1(i) denotes the set of superiors of i in the firm structure.

Notice that the restricted game vA is given by

vA(E) = w(A(E)) for all E ⊆ N.

So we have that

vA ({1, 5}) = w ({5}) = 1,

vA ({1, 2, 3}) = w ({3}) = 1,

vA ({1, 2, 4}) = w ({4}) = 1,

vA ({1, 2, 5}) = vA ({1, 3, 5}) = vA ({1, 4, 5}) = w ({5}) = 1,

vA ({1, 2, 3, 4}) = w ({3, 4}) = 4,

vA ({1, 2, 3, 5}) = w ({3, 5}) = 4,

vA ({1, 2, 4, 5}) = w ({4, 5}) = 4,

vA ({1, 3, 4, 5}) = w ({5}) = 1,

vA ({1, 2, 3, 4, 5}) = w ({3, 4, 5}) = 9,

vA (E) = w (∅) = 0 for any other E ⊆ N.

2.2 The Shapley authorization value

An allocation rule for games with authorization structure assigns to every game with authorization

structure a payoff vector. In this section we define and characterize an allocation rule for games with

authorization structure.

Definition 2.9 The Shapley authorization value, denoted by Φ, assigns to each game with

authorization structure (v,A) the Shapley value of vA,

Φ(v,A) = ϕ
(
vA
)

for all v ∈ GN and A ∈ AN .
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We aim to characterize the Shapley authorization value. To that end, we consider the following

properties.

• EFFICIENCY. For every v ∈ GN and A ∈ AN it holds that

∑
k∈N

Ψk(v,A) = v(A(N)).

• ADDITIVITY. For every v, w ∈ GN and A ∈ AN it holds that

Ψ(v + w,A) = Ψ(v,A) + Ψ(w,A).

It is well known that the Shapley value satisfies the so-called null-player property. That is, for

every v ∈ GN and i ∈ N such that i is a null player in v it holds that ϕi(v) = 0. If we want to

determine an “adequate” allocation rule for games with authorization structure, it would not be a

good idea to look for an allocation rule satisfying that property. That is due to the fact that we have

to take the structure as well into consideration, since a player could make profit not only by playing,

but also by giving authorization to play. Suppose that we have v ∈ GN , an authorization structure on

N and i ∈ N a null player in v. There might be other players depending on the authorization from

i, in which case player i could still reasonably expect to be rewarded. But if all players depending

on i are also null players in v, i should not expect anything but a zero-payoff. That is the irrelevant

player property, that we state next. We need some previous definitions.

Definition 2.10 Let A ∈ AN and i, j ∈ N . A player j depends partially on i in (N,A) if there

exists E ⊆ N such that j ∈ A(E) \A (E \ {i}).

Definition 2.11 Let v ∈ GN , A ∈ AN and i ∈ N . A player i is irrelevant in (v,A) if for every j ∈ N

such that j depends partially on i in (N,A) it holds that j is a null player in v.

• IRRELEVANT PLAYER PROPERTY. For every v ∈ GN , A ∈ AN and i ∈ N such that i is an

irrelevant player in (v,A), it holds that

Ψi(v,A) = 0.

Values for games with authorization structure
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Let v ∈ GN and j ∈ N . Recall that the player j is a necessary player in v if v(E) = 0 for every

E ⊆ N \ {j}. We know that for every monotonic game v ∈ GN and j a necessary player in v it

holds that ϕj(v) > ϕk(v) for all k ∈ N . The allocation rule we are looking for should satisfy this

“natural” property too. In fact, it should satisfy something more. Suppose that we have v ∈ GN , an

authorization structure on N , j ∈ N a necessary player in v and i ∈ N such that player j cannot

play without the authorization from player i. It seems logical to expect that no player will receive

more than player i. That is the property we state below.

Definition 2.12 Let A ∈ AN and i, j ∈ N . A player i has veto power over j in (N,A) if

j /∈ A(N \ {i}).

• PROPERTY OF VETO POWER OVER A NECESSARY PLAYER. For every monotonic v ∈ GN , A ∈ AN

and i, j ∈ N such that j is a necessary player in v and i has veto power over j in (N,A), it

holds that

Ψi(v,A) > Ψk(v,A) for all k ∈ N.

Although at first sight the following fairness property might seem a little contrived, it is actually

quite natural and intuitive. Suppose that we have a game and an authorization structure on N ,

T ⊆ N and i ∈ T such that in case coalition T were formed i could not play. Imagine now that

somehow coalition T acquires the power to authorize i to play. It seems reasonable to think that all

the players in T will benefit equally from that fact. That’s what the fairness property states.

Let A ∈ AN , T ∈ 2N \ {∅} and i ∈ T . We define

AT,i : 2N → 2N

E → AT,i(E) =

{
A(E) if T * E,

A(E) ∪ {i} if T ⊆ E.

It is clear that AT,i ∈ AN .

• FAIRNESS. For every v ∈ GN , A ∈ AN , T ∈ 2N \ {∅} and i ∈ T it holds that

Ψj

(
v,AT,i

)
−Ψj(v,A) = Ψi

(
v,AT,i

)
−Ψi(v,A) for all j ∈ T.
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Notice that if i ∈ A(T ) then AT,i = A. Therefore, the expression above is non trivial only if i ̸∈ A(T ).

In the following results we show that the five properties seen before uniquely determine the

Shapley authorization value.

Theorem 2.13 The Shapley authorization value satisfies the properties of efficiency, additivity,

irrelevant player, veto power over a necessary player and fairness.

Proof. We are going to show that the Shapley authorization value satisfies the five properties.

Efficiency. Let v ∈ GN and A ∈ AN . It holds that

∑
k∈N

Φk(v,A) =
∑
k∈N

ϕk
(
vA
)
= vA(N) = v(A(N)).

Additivity. Let v, w ∈ GN and A ∈ AN . It is easy to check that (v + w)A = vA + wA. We can

derive that

Φ(v + w,A) = ϕ
(
(v + w)A

)
= ϕ(vA + wA) = ϕ(vA) + ϕ(wA) = Φ(v,A) + Φ(w,A).

Irrelevant player property. Let v ∈ GN , A ∈ AN and i ∈ N an irrelevant player in (v,A).

We must prove that Φi(v,A) = 0. Taking into consideration that Φi(v,A) = ϕi
(
vA
)
and that ϕ

satisfies the null-player property, it is enough to show that i is a null player in vA. For that, take

E ⊆ N . We have to show that vA(E) = vA (E \ {i}).

First, notice that

A(E) \A(E \ {i}) ⊆ {j ∈ N : j depends partially on i in (N,A)} .

Since i is an irrelevant player in (v,A), every player that depends partially on i in (N,A) is a null

player in v. So we can derive that

A(E) \A(E \ {i}) ⊆ {j ∈ N : j is a null player in v}

Values for games with authorization structure
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and, hence

v(A(E)) = v (A (E \ {i}))

or, equivalently

vA(E) = vA (E \ {i}) .

Property of veto power over a necessary player. Let v ∈ GN be a monotonic game,

A ∈ AN and i, j ∈ N such that j is a necessary player in v and i has veto power over j in (N,A).

We must prove that Φi(v,A) > Φk(v,A) for all k ∈ N . Recall that given a monotonic w ∈ GN and

i ∈ N a necessary player in w it holds that ϕi(w) > ϕk(w) for all k ∈ N . Keeping that in mind and

the fact that Φ(v,A) = ϕ
(
vA
)
, it is enough to prove that vA ∈ GN is a monotonic game and i is

a necessary player in vA. Firstly, the monotonicity of vA derives directly from the monotonicity of v

and the definition of authorization operator. It only remains to prove that i is a necessary player in

vA. Since vA is monotonic it is enough to prove that vA (N \ {i}) = 0. As i has veto power over j

in (N,A), it holds that j ̸∈ A (N \ {i}). From this and the fact that j is necessary in v we obtain

that v (A (N \ {i})) = 0, or, equivalently, vA (N \ {i}) = 0.

Fairness. Let v ∈ GN , A ∈ AN , T ∈ 2N \ {∅} and i, j ∈ T . We must prove that

Φj

(
v,AT,i

)
− Φj(v,A) = Φi

(
v,AT,i

)
− Φi(v,A). (2.1)

Let’s focus on the left-hand side.

Φj

(
v,AT,i

)
− Φj(v,A) = ϕj

(
vA

T,i
)
− ϕj

(
vA
)

=
∑

{E⊆N : j∈E}

pE
[
v
(
AT,i(E)

)
− v

(
AT,i(E \ {j})

)
− v(A(E)) + v(A(E \ {j}))

]
,

where the numbers pE are the coefficients of the Shapley value. As j ∈ T , it is clear, from the

definition of AT,i that AT,i(E \ {j}) = A(E \ {j}) for all E ⊆ N . So the sum above is equal to

∑
{E⊆N : j∈E}

pE
[
v
(
AT,i(E)

)
− v(A(E))

]
.
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Notice that if we take E ⊆ N such that T * E it holds that AT,i(E) = A(E). So we can write the

expression above as ∑
{E⊆N :T⊆E}

pE
[
v
(
AT,i(E)

)
− v(A(E))

]
.

We have shown that

Φj

(
v,AT,i

)
− Φj(v,A) =

∑
{E⊆N :T⊆E}

pE
[
v
(
AT,i(E)

)
− v(A(E))

]
. (2.2)

Following a similar reasoning as above, we can also prove that

Φi

(
v,AT,i

)
− Φi(v,A) =

∑
{E⊆N :T⊆E}

pE
[
v
(
AT,i(E)

)
− v(A(E))

]
. (2.3)

From (2.2) and (2.3) we conclude (2.1). 2

We have already seen that the Shapley authorization value satisfies the five properties. Now we

see that such properties uniquely determine the Shapley authorization value.

Theorem 2.14 An allocation rule for games with authorization structure is equal to the Shapley

authorization value if it satisfies the properties of efficiency, additivity, irrelevant player, veto power

over a necessary player and fairness.

Proof. Let Ψ be an allocation rule for games with authorization structure satisfying the properties

of efficiency, additivity, irrelevant player, veto power over a necessary player and fairness. We must

prove that Ψ = Φ.

Let n ∈ N and let N be a set of cardinality n. Our first goal will be to show that

Ψ(cuE , A) = Φ(cuE , A) for all c > 0, E ∈ 2N \ {∅} and A ∈ AN . So, take c > 0 and E ∈ 2N \ {∅}.
We want to see that

Ψ(cuE , A) = Φ(cuE , A) for all A ∈ AN . (2.4)

Firstly, we define

m(A) =
∑
F⊆N

|A(F )| for every A ∈ AN .

Values for games with authorization structure
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We prove (2.4) by induction on m(A).

1. Base case. Let A ∈ AN be such that m(A) = 0. In this case all players are irrelevant. Since

Ψ and Φ satisfy the irrelevant player property, it holds that Φi(cuE , A) = Ψi(cuE , A) for every

i ∈ N .

2. Inductive step. Let A ∈ AN . We consider the three following sets:

H1= {i ∈ N : i is an irrelevant player in (cuE , A)} ,

H2= {i ∈ N : there exists j ∈ E such that i has veto power over j in (N,A)} ,

H3= N \ (H1 ∪H2).

Since Φ and Ψ satisfy the irrelevant player property it holds that

Φi(cuE , A) = 0 for all i ∈ H1, (2.5)

Ψi(cuE , A) = 0 for all i ∈ H1. (2.6)

And from the property of veto power over a necessary player we can derive that there exist

b, b′ ∈ R such that

Φi(cuE , A) = b for all i ∈ H2, (2.7)

Ψi(cuE , A) = b′ for all i ∈ H2. (2.8)

Now suppose that i ∈ H3. Since i ̸∈ H1 there must exist j ∈ E such that j depends partially

on i in (N,A). This means that there exists F ⊆ N such that j ∈ A(F ) \A(F \ {i}). Notice
that F ̸= N , since otherwise i would have veto power over j and this would contradict i ̸∈ H2.

Take K minimal such that K ⊆ F and j ∈ A(K). It is clear that i ∈ K. We define

B : 2N → 2N

T → B(T ) =

{
A(T ) if T ̸= K,

A(K) \ {j} if T = K.

It is straightforward to check that B ∈ AN and BK,j = A. By using the fairness property we
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obtain

Φi (cuE , A)− Φi(cuE , B) = Φj (cuE , A)− Φj(cuE , B),

Ψi (cuE , A)−Ψi(cuE , B) = Ψj (cuE , A)−Ψj(cuE , B).

Since j ∈ E ⊆ H2 we know that Φj(cuE , A) = b and Ψj(cuE , A) = b′. If we substitute those

values into the equalities above we have

Φi (cuE , A) = b + Φi(cuE , B)− Φj(cuE , B),

Ψi (cuE , A) = b′+ Ψi(cuE , B)−Ψj(cuE , B).

As m(B) = m(A) − 1, it follows by induction hypothesis that Ψ(cuE , B) = Φ(cuE , B).

Therefore,

Φi (cuE , A) = b + Φi(cuE , B)− Φj(cuE , B),

Ψi (cuE , A) = b′+ Φi(cuE , B)− Φj(cuE , B),

and hence

Φi (cuE , A)−Ψi (cuE , A) = b− b′.

So we have proved that

Φi (cuE , A)−Ψi (cuE , A) = b− b′ for all i ∈ H3. (2.9)

Now, on the one hand, from (2.5), (2.6), (2.7), (2.8) and (2.9), we can obtain

∑
i∈N

Φi(cuE , A)−
∑
i∈N

Ψi(cuE , A) = (b− b′)|H2 ∪H3|,

and, on the other hand, as Φ and Ψ are efficient we know that

∑
i∈N

Φi(cuE , A) =
∑
i∈N

Ψi(cuE , A).

Therefore, it follows that (b − b′)|H2 ∪H3| = 0. Since E ⊆ H2, E ̸= ∅, it holds that b = b′,

Values for games with authorization structure
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what leads to Ψ(cuE , A) = Φ(cuE , A).

So we have seen that Ψ(cuE , A) = Φ(cuE , A) for all c > 0, E ∈ 2N \ {∅} and A ∈ AN .

Let c > 0, E ∈ 2N \ {∅} and A ∈ AN . It holds that

Ψ(cuE , A) + Ψ(−cuE , A) = Ψ((c− c)uE , A) = 0,

where we have respectively used additivity and the irrelevant player property. We conclude that

Ψ(−cuE , A) = −Ψ(cuE , A).

We can write

Ψ(−cuE , A) = −Ψ(cuE , A) = −Φ(cuE , A) = Φ(−cuE , A).

So we already know that Ψ(cuE , A) = Φ(cuE , A) for all c ∈ R, E ∈ 2N \ {∅} and A ∈ AN . Finally,

take v ∈ GN and A ∈ AN . It holds that

Ψ(v,A) = Ψ

 ∑
E∈2N\{∅}

∆v(E)uE , A

 =
∑

E∈2N\{∅}

Ψ(∆v(E)uE , A)

=
∑

E∈2N\{∅}

Φ(∆v(E)uE , A) = Φ

 ∑
E∈2N\{∅}

∆v(E)uE , A

 = Φ(v,A).

2

Example 2.15 Let us calculate Φ(v,A) where v and A are those defined in Example 2.3. We

already calculated the restricted game vA in Example 2.7. Now we use the definition of the Shapley

authorization value

Φ(v,A) = ϕ(vA) = (3.5, 7, 9.5).

We can obtain an expression of the Shapley authorization value that does not involve the restricted

game, but the game and the authorization operator separately.
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Corollary 2.16 Let v ∈ GN and A ∈ AN . Then, if Φ(v,A) is considered as a column matrix, it

holds that

Φ(v,A) = ZA ·∆v

where ZA is the matrix in Mn,2n−1(R) defined by (ZA)i,E = Φi(uE , A) for every i ∈ N and

E ∈ 2N \ {∅} and ∆v is the column matrix given by the Harsanyi dividends of v.

Proof. Making use of the linearity of the Shapley authorization value we can write

Φi(v,A) = Φi

 ∑
E∈2N\{∅}

∆v(E)uE , A


=

∑
E∈2N\{∅}

∆v(E)Φi (uE , A)

=
∑

E∈2N\{∅}

(ZA)i,E ∆v(E).

2

Example 2.17 Let us use the expression given in the preceding result to calculate Φ(v,A) in Example

2.3. Firstly we calculate the characteristic function of uAE for each nonempty E ⊆ {1, 2, 3}.

F uA{1}(F ) uA{2}(F ) uA{3}(F ) uA{1,2}(F ) uA{1,3}(F ) uA{2,3}(F ) uA{1,2,3}(F )

{1} 0 0 0 0 0 0 0

{2} 0 0 0 0 0 0 0

{3} 0 0 1 0 0 0 0

{1, 2} 1 0 0 0 0 0 0

{1, 3} 0 0 1 0 0 0 0

{2, 3} 0 1 1 0 0 1 0

{1, 2, 3} 1 1 1 1 1 1 1

Values for games with authorization structure
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We calculate Φ(uE , A) for each nonempty E ⊆ N

Φ
(
u{1}, A

)
= ϕ

(
uA{1}

)
=

(
1

2
,
1

2
, 0

)
Φ
(
u{2}, A

)
= ϕ

(
uA{2}

)
=

(
0,

1

2
,
1

2

)
Φ
(
u{3}, A

)
= ϕ

(
uA{3}

)
= (0, 0, 1)

Φ
(
u{1,2}, A

)
= ϕ

(
uA{1,2}

)
=

(
1

3
,
1

3
,
1

3

)
Φ
(
u{1,3}, A

)
= ϕ

(
uA{1,3}

)
=

(
1

3
,
1

3
,
1

3

)
Φ
(
u{2,3}, A

)
= ϕ

(
uA{2,3}

)
=

(
0,

1

2
,
1

2

)
Φ
(
u{1,2,3}, A

)
= ϕ

(
uA{1,2,3}

)
=

(
1

3
,
1

3
,
1

3

)

and we write ZA

ZA =



1

2
0 0

1

3

1

3
0

1

3

1

2

1

2
0

1

3

1

3

1

2

1

3

0
1

2
1

1

3

1

3

1

2

1

3


.

Now we calculate ∆v

∆v =



∆v ({1})
∆v ({2})
∆v ({3})
∆v ({1, 2})
∆v ({1, 3})
∆v ({2, 3})
∆v ({1, 2, 3})


=



1

2

3

3

4

5

2


.
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Finally,

Φ(v,A) = ZA ·∆v =



1

2
0 0

1

3

1

3
0

1

3

1

2

1

2
0

1

3

1

3

1

2

1

3

0
1

2
1

1

3

1

3

1

2

1

3





1

2

3

3

4

5

2


=



7

2

7

19

2


.

2.3 The Banzhaf authorization value

In the previous section we used the Shapley value to provide an allocation rule for games with

authorization structure. In this section we use the Banzhaf value to give another allocation rule for

these games.

Definition 2.18 The Banzhaf authorization value, denoted by B, assigns to each game with

authorization structure (v,A) the Banzhaf value of vA,

B(v,A) = β
(
vA
)

for all v ∈ GN and A ∈ AN .

In order to characterize the Banzhaf authorization value we consider the following properties for

an allocation rule Ψ : GN ×AN → RN .

• 2-EFFICIENCY. For every v ∈ GN , A ∈ AN and i, j ∈ N such that every player in N \ {i, j} is

an irrelevant player in (v,A), it holds that

∑
k∈N

Ψk(v,A) = v(A(N)).

Values for games with authorization structure
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Suppose |N | > 2. Let i, j be two different players in N . We denote
⌢
ij a new player, i.e.,

⌢
ij ̸∈ N .

Let N ij = (N \ {i, j}) ∪ {
⌢
ij}.

Let A ∈ AN . We define Aij : 2N
ij −→ 2N

ij
as follows

Aij(E) =


A(E) if

⌢
ij ̸∈ E,[

A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

]
∪ {

⌢
ij} if

⌢
ij ∈ E and {i, j} ⊆ A

(
(E \ {

⌢
ij}) ∪ {i, j}

)
,

A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j} if

⌢
ij ∈ E and {i, j} * A

(
(E \ {

⌢
ij}) ∪ {i, j}

)
.

It is easy to check that Aij ∈ AN ij
.

Let v ∈ GN . We define vij ∈ GN ij
as follows

vij(E) =

 v(E) if
⌢
ij ̸∈ E,

v
(
(E \ {

⌢
ij}) ∪ {i, j}

)
if

⌢
ij ∈ E.

Definition 2.19 Let v ∈ GN , A ∈ AN and let i, j be two different players in N . The players i and

j can be amalgamated in (v,A) if for every E ⊆ N such that {i, j} ⊆ E and {i, j} * A(E) it holds

that

v (A(E)) = v (A(E) \ {i, j}) .

• AMALGAMATION. For every v ∈ GN , A ∈ AN and i, j two different players in N such that i, j

can be amalgamated in (v,A), it holds that

Ψi(v,A) + Ψj(v,A) = Ψ⌢
ij
(vij , Aij).

In the following results we characterize the Banzhaf authorization value.

Theorem 2.20 The Banzhaf authorization value satisfies the properties of additivity, irrelevant

player, veto power over a necessary player, fairness, 2-efficiency and amalgamation.



36 CHAPTER 2. GAMES WITH AUTHORIZATION STRUCTURE

Proof. That the Banzhaf authorization value satisfies additivity, irrelevant player, veto power over

a necessary player and fairness can be proved in a similar way as we did for the Shapley authorization

value in Theorem 2.13. Let us see that the Banzhaf authorization value satisfies the properties of

2-efficiency and amalgamation.

2-efficiency. Let v ∈ GN , A ∈ AN and i, j ∈ N be such that every player in N \ {i, j} is an

irrelevant player in (v,A). We distinguish two cases.

Case i = j. We consider two possibilities:

(a) i is a null player in v. The result derives easily from the fact that all players in A(N) are null

players in v.

(b) i is not a null player in v. Taking into consideration that the Banzhaf authorization value

satisfies the irrelevant player property, it suffices to prove that Bi(v,A) = v(A(N)). Since all

players in N \ {i} are irrelevant players in (v,A) and i is not a null player in v, we conclude

that i does not depend partially on any player in N \ {i} in (N,A). From this we conclude

that

A(E) ∩ {i} = A({i}) for all E ⊆ N with i ∈ E. (2.10)

Now, taking into consideration that all players in A(N) \ {i} are null players in v we can write

Bi(v,A) = βi
(
vA
)
=

1

2n−1

∑
{E⊆N : i∈E}

[v(A(E))− v (A (E \ {i}))]

=
1

2n−1

∑
{E⊆N : i∈E}

v(A(E) ∩ {i}),

and, using (2.10), we have that

Bi(v,A) =
1

2n−1

∑
{E⊆N : i∈E}

v(A({i})) = v(A({i})) = v(A(N) ∩ {i}) = v(A(N)).

Case i ̸= j. Taking into consideration that the Banzhaf authorization value satisfies the irrelevant

player property, it suffices to prove that

Bi(v,A) +Bj(v,A) = v(A(N)).

Values for games with authorization structure
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It holds that

Bi(v,A) +Bj(v,A) = βi
(
vA
)
+ βj

(
vA
)

=
1

2n−1

∑
E⊆N\{i}

[v (A (E ∪ {i}))− v(A(E))]

+
1

2n−1

∑
E⊆N\{j}

[v (A (E ∪ {j}))− v(A(E))]

=
1

2n−1

∑
{E⊆N\{i}: j∈E}

[v (A (E ∪ {i}))− v(A(E))]

+
1

2n−1

∑
{E⊆N\{i}: j ̸∈E}

[v (A (E ∪ {i}))− v(A(E))]

+
1

2n−1

∑
{E⊆N\{j}: i∈E}

[v (A (E ∪ {j}))− v(A(E))]

+
1

2n−1

∑
{E⊆N\{j}: i ̸∈E}

[v (A (E ∪ {j}))− v(A(E))] . (2.11)

In order to evaluate this sum, we distinguish several cases:

(a) Neither i nor j is a null player in v. Taking into account that all players in A(N) \ {i, j} are

null players in v, the sum (2.11) is equal to

1

2n−1

∑
{E⊆N\{i}: j∈E}

[v (A (E ∪ {i}) ∩ {i, j})− v (A(E) ∩ {j})]

+
1

2n−1

∑
E⊆N\{i,j}

v (A (E ∪ {i}) ∩ {i})

+
1

2n−1

∑
{E⊆N\{j}: i∈E}

[v (A (E ∪ {j}) ∩ {i, j})− v (A(E) ∩ {i})]

+
1

2n−1

∑
E⊆N\{i,j}

v (A (E ∪ {j}) ∩ {j}) . (2.12)

Since the players in N \ {i, j} are irrelevant players in (v,A) and i and j are not null players

in v, it follows that neither i nor j depends partially on any player in N \ {i, j}. This implies
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that

A(F ) ∩ {i, j} = A ({i, j}) for all F ⊆ N with {i, j} ⊆ F,

A(G) ∩ {i} = A ({i}) for all G ⊆ N with i ∈ G ⊆ N \ {j},

and

A(H) ∩ {j} = A ({j}) for all H ⊆ N with j ∈ H ⊆ N \ {i}.

So the sum (2.12) is equal to

1

2n−1

∑
{E⊆N\{i}: j∈E}

[v (A ({i, j}))− v (A ({j}))] + 1

2n−1

∑
E⊆N\{i,j}

v (A ({i}))

+
1

2n−1

∑
{E⊆N\{j}: i∈E}

[v (A ({i, j}))− v (A ({i}))] + 1

2n−1

∑
E⊆N\{i,j}

v (A ({j}))

=
1

2
[v (A ({i, j}))− v (A ({j}))] + 1

2
v (A ({i}))

+
1

2
[v (A ({i, j}))− v (A ({i}))] + 1

2
v (A ({j}))

= v (A ({i, j})) = v (A(N) ∩ {i, j}) = v(A(N)).

(b) i is not a null player in v and j is a null player in v. Taking into account that all players in

A(N) \ {i} are null players in v, the sum (2.11) is equal to

1

2n−1

∑
{E⊆N\{i}: j∈E}

v (A (E ∪ {i}) ∩ {i})

+
1

2n−1

∑
E⊆N\{i,j}

v (A (E ∪ {i}) ∩ {i})

+
1

2n−1

∑
{E⊆N\{j}: i∈E}

[v (A (E ∪ {j}) ∩ {i})− v (A(E) ∩ {i})] . (2.13)

Since the players in N \ {i, j} are irrelevant players in (v,A) and i is not a null player in v we
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conclude that i does not depend partially on any player in N \ {i, j}. This implies that

A(F ) ∩ {i} = A ({i, j}) ∩ {i} for all F ⊆ N with {i, j} ⊆ F

and

A(G) ∩ {i} = A ({i}) for all G ⊆ N with i ∈ G ⊆ N \ {j}.

So the sum (2.13) is equal to

1

2n−1

∑
{E⊆N\{i}: j∈E}

v (A ({i, j}) ∩ {i}) + 1

2n−1

∑
E⊆N\{i,j}

v (A ({i}))

+
1

2n−1

∑
{E⊆N\{j}: i∈E}

[v (A ({i, j}) ∩ {i})− v (A ({i}))]

=
1

2
v (A ({i, j}) ∩ {i}) + 1

2
v (A ({i})) + 1

2
[v (A ({i, j}) ∩ {i})− v (A ({i}))]

= v (A ({i, j}) ∩ {i}) = v (A(N) ∩ {i}) = v(A(N)).

(c) i is a null player in v and j is not a null player in v. Analogous to the previous case.

(d) i and j are null players in v. The result derives easily from the fact that all players in A(N)

are null players in v.

Amalgamation. Let v ∈ GN , A ∈ AN and let i, j be two different players in N such that i and j

can be amalgamated in (v,A). We must prove that

Bi(v,A) +Bj(v,A) = B⌢
ij
(vij , Aij). (2.14)

Let’s start from the right-hand side.

B⌢
ij
(vij , Aij) =

1

2n−2

∑
E⊆N\{i,j}

[
vij
(
Aij

(
E ∪ {

⌢
ij}
))

− vij
(
Aij (E)

)]

=
1

2n−2

∑
{E⊆N\{i,j}: {i,j}⊆A(E∪{i,j})}

[
vij
(
Aij

(
E ∪ {

⌢
ij}
))

− vij
(
Aij (E)

)]



40 CHAPTER 2. GAMES WITH AUTHORIZATION STRUCTURE

+
1

2n−2

∑
{E⊆N\{i,j}: {i,j}*A(E∪{i,j})}

[
vij
(
Aij

(
E ∪ {

⌢
ij}
))

− vij
(
Aij (E)

)]
=

1

2n−2

∑
{E⊆N\{i,j}: {i,j}⊆A(E∪{i,j})}

[
vij
(
(A (E ∪ {i, j}) \ {i, j}) ∪ {

⌢
ij}
)
− vij (A (E))

]
+

1

2n−2

∑
{E⊆N\{i,j}: {i,j}*A(E∪{i,j})}

[
vij (A (E ∪ {i, j}) \ {i, j})− vij (A (E))

]
=

1

2n−2

∑
{E⊆N\{i,j}: {i,j}⊆A(E∪{i,j})}

[v (A (E ∪ {i, j}))− v (A (E))]

+
1

2n−2

∑
{E⊆N\{i,j}: {i,j}*A(E∪{i,j})}

[v (A (E ∪ {i, j}) \ {i, j})− v (A (E))] .

Now, as i and j can be amalgamated in (v,A), we know that for every E ⊆ N \ {i, j} such that

{i, j} * A (E ∪ {i, j}) it holds

v (A (E ∪ {i, j}) \ {i, j}) = v (A (E ∪ {i, j})) .

Substituting into the sum above we obtain

B⌢
ij
(vij , Aij) =

1

2n−2

∑
{E⊆N\{i,j}: {i,j}⊆A(E∪{i,j})}

[v (A (E ∪ {i, j}))− v (A (E))]

+
1

2n−2

∑
{E⊆N\{i,j}: {i,j}*A(E∪{i,j})}

[v (A (E ∪ {i, j}))− v (A (E))]

=
1

2n−2

∑
E⊆N\{i,j}

[v (A (E ∪ {i, j}))− v (A (E))] .

Now let’s focus on the left-hand side of (2.14). We can write

Bi(v,A) +Bj(v,A) =
1

2n−1

∑
E⊆N\{i}

[v (A (E ∪ {i}))− v(A(E))]

+
1

2n−1

∑
E⊆N\{j}

[v (A (E ∪ {j}))− v(E)]

=
1

2n−1

∑
E⊆N\{i,j}

[v (A (E ∪ {i, j}))− v (A (E ∪ {j}))]
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+
1

2n−1

∑
E⊆N\{i,j}

[v (A (E ∪ {i}))− v (A (E))]

+
1

2n−1

∑
E⊆N\{i,j}

[v (A (E ∪ {i, j}))− v (A (E ∪ {i}))]

+
1

2n−1

∑
E⊆N\{i,j}

[v (A (E ∪ {j}))− v (A (E))]

=
1

2n−2

∑
E⊆N\{i,j}

[v (A (E ∪ {i, j}))− v (A (E))] .

2

We have already seen that the Banzhaf authorization value satisfies the six properties. Now we

see that such properties uniquely determine the Banzhaf authorization value.

Theorem 2.21 An allocation rule for games with authorization structure is equal to the Banzhaf

authorization value if it satisfies the properties of additivity, irrelevant player, veto power over a

necessary player, fairness, 2-efficiency and amalgamation.

Proof. Let Ψ be an allocation rule for games with authorization structure satisfying the properties

of additivity, irrelevant player, veto power over a necessary player, fairness, 2-efficiency and

amalgamation. We must prove that Ψ = B.

Firstly, we show that

Ψ(cuE , A) = B(cuE , A) for all E ∈ 2N \ {∅}, A ∈ AN and c > 0. (2.15)

We proceed by induction on the number of players.

1. Base case. If n = 1 the equality follows directly from the property of 2-efficiency.

2. Inductive step. Let E ∈ 2N \ {∅} and c > 0. We must prove that

Ψ(cuE , A) = B(cuE , A) for all A ∈ AN . (2.16)
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We recall that

m(A) =
∑
F⊆N

|A(F )| for every A ∈ AN .

We prove (2.16) by induction on m(A).

2.1 Base case. Let A ∈ AN be such that m(A) = 0. In this case all players

are irrelevant. Since Ψ and B satisfy the irrelevant player property, it holds that

Ψi(cuE , A) = Bi(cuE , A) = 0 for every i ∈ N .

2.2 Inductive step. Let A ∈ AN . We consider the three following sets:

H1= {i ∈ N : i is an irrelevant player in (cuE , A)} ,

H2= {i ∈ N : there exists j ∈ E such that i has veto power over j in (N,A)} ,

H3= N \ (H1 ∪H2).

Since B and Ψ satisfy the irrelevant player property it holds that

Bi(cuE , A) = 0 for all i ∈ H1, (2.17)

Ψi(cuE , A) = 0 for all i ∈ H1. (2.18)

And from the property of veto power over a necessary player we can derive that there

exist b, b′ ∈ R such that

Bi(cuE , A) = b for all i ∈ H2, (2.19)

Ψi(cuE , A) = b′ for all i ∈ H2. (2.20)

It can be proved, in the same way as in Theorem 2.14, that

Bi (cuE , A)−Ψi (cuE , A) = b− b′ for all i ∈ H3. (2.21)

Now we consider different cases.

(i) Case |E| > 2. Take j and k two different players in E. It is clear that j and k can
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be amalgamated in (cuE , A). We can write

b+ b = Bj(cuE , A) +Bk(cuE , A) = B⌢
jk

(
(cuE)

jk , Ajk
)

= B⌢
jk

(
cu

(E\{j,k})∪
{

⌢
jk

}, Ajk

)
= Ψ⌢

jk

(
cu

(E\{j,k})∪
{

⌢
jk

}, Ajk

)
= Ψ⌢

jk

(
(cuE)

jk , Ajk
)
= Ψj(cuE , A) + Ψk(cuE , A) = b′ + b′,

and we obtain b = b′. Using (2.17), (2.18), (2.19), (2.20) and (2.21) we conclude

Ψ(cuE , A) = B(cuE , A).

(ii) Case |E| = 1 and |(H2 \ E) ∪ H3| > 2. Take j and k two different players in

(H2 \E) ∪H3. It is easy to check that j and k can be amalgamated in (cuE , A). It

holds that

Bj(cuE , A) +Bk(cuE , A) = B⌢
jk

(
(cuE)

jk , Ajk
)
= B⌢

jk

(
cuE , A

jk
)

= Ψ⌢
jk

(
cuE , A

jk
)
= Ψ⌢

jk

(
(cuE)

jk , Ajk
)

= Ψj(cuE , A) + Ψk(cuE , A),

and thus

Bj(cuE , A)−Ψj(cuE , A) = Ψk(cuE , A)−Bk(cuE , A).

Using (2.19), (2.20) and (2.21), the previous equality can be written as b−b′ = b′−b.
So we obtain b = b′, that leads to Ψ(cuE , A) = B(cuE , A).

(iii) Case |E| = 1 and |(H2 \ E) ∪ H3| 6 1. On the one hand, using the 2-efficiency

property, we can write

∑
i∈N

Bi(cuE , A)−
∑
i∈N

Ψi(cuE , A) = cuE(A(N))− cuE(A(N)) = 0,

and, on the other hand, from (2.17), (2.18), (2.19), (2.20) and (2.21) we obtain

∑
i∈N

Bi(cuE , A)−
∑
i∈N

Ψi(cuE , A) = (b− b′)|H2 ∪H3|.
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From both expressions we obtain b = b′ and, therefore, Ψ(cuE , A) = B(cuE , A).

So we have proved (2.15). Now, using additivity and reasoning as we did in the proof of Theorem

2.14 we conclude Ψ = B. 2
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Chapter3
Games with fuzzy authorization structure

In the previous chapter we studied games in which there are dependency relationships among the

players. These dependency relationships were considered to be complete, in the sense that, when a

coalition is formed, a player in the coalition either can fully cooperate within the coalition or cannot

cooperate at all. Nevertheless, in some situations it is possible to consider another option: that a

player has a degree of freedom to cooperate within the coalition. In this chapter we aim to present

a model for these situations.

3.1 Fuzzy authorization structures

In order to deal with fuzzy relationships among the players we extend the concept of authorization

operator.

Definition 3.1 A fuzzy authorization operator on N is a mapping a : 2N → [0, 1]N that satisfies

the following conditions:

1. a(E) ⊆ 1E for any E ⊆ N ,

2. If E ⊂ F then a(E) ⊆ a(F ).

The pair (N, a) is called a fuzzy authorization structure. The set of all fuzzy authorization operators

on N is denoted by FAN .

Suppose that a is a fuzzy authorization operator and v is a game on N . Then, given E ⊆ N and

i ∈ N , we interpret ai(E) as the proportion of the whole operating capacity of player i that he is

45
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allowed to use within coalition E.

Definition 3.2 A fuzzy authorization operator a is said to be normal if a(N) = 1N . The set of

normal fuzzy authorization operators is denoted by F̃A
N
.

Example 3.3 Let us go back to example 2.3. We introduce some changes. Supplier 1 admits that

they use a technology patented by 2. However, 1 demonstrates that they are capable of producing

component 1 without using that technology. But in that case they would only be able to produce

six hundred thousand units before the deadline. Something similar happens with the other dispute.

Supplier 2 can produce component 2 without the technology patented by 3, but if they do so then

they only will be able to produce nine hundred thousand units within the stipulated time.

For any E ⊆ {1, 2, 3} and i ∈ {1, 2, 3} the expression ai(E) denotes the proportion of his

maximum production that supplier i can reach within coalition E. We can represent a with the

following table.

E {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

a(E) (0.6, 0, 0) (0, 0.9, 0) (0, 0, 1) (1, 0.9, 0) (0.6, 0, 1) (0, 1, 1) (1, 1, 1)

Definition 3.4 A game with fuzzy authorization structure on N is a pair (v, a) where v ∈ GN and

a ∈ FAN .

In a similar way as we did in the crisp case, given a game with fuzzy authorization structure we

can define a characteristic function that gathers the information from the game and the structure in

a reasonable way.

Definition 3.5 Let v ∈ GN and a ∈ FAN . The restricted game of (v, a) is the game va ∈ GN

defined as follows

va(E) =

∫
a(E) dv for all E ⊆ N,
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where

∫
a(E) dv denotes the Choquet integral of a(E) with respect to v.

The number va(E) is the worth of E in the game with fuzzy authorization structure (v, a).

Example 3.6 Let us calculate the restricted game of the game with fuzzy authorization structure

(v, a) given in Example 3.3.

va ({1}) = 0.6 v ({1}) = 0.6,

va ({2}) = 0.9 v ({2}) = 1.8,

va ({3}) = v ({3}) = 3,

va ({1, 2}) = 0.9 v ({1, 2}) + 0.1 v ({1}) = 5.5,

va ({1, 3}) = 0.6 v ({1, 3}) + 0.4 v ({3}) = 6,

va ({2, 3}) = v ({2, 3}) = 10,

va ({1, 2, 3}) = v ({1, 2, 3}) = 20.

Suppose we want to determine the worth of a coalition E in a game with fuzzy authorization structure

(v, a). The calculation of the corresponding Choquet integral implies summation over a set of indexed

numbers. A priori, this set depends on the coalition E. Nevertheless the following lemma will allow

us to consider the same set for all the coalitions.

Lemma 3.7 Let v ∈ GN and f ∈ [0, 1]N . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {fi : i ∈ N} with 0 = h0 < . . . < hm. Then it holds that

∫
f dv =

m∑
l=1

(hl − hl−1) v
(
[f ]hl

)
.

where [f ]hl
= {i ∈ N : fi ≥ hl} for l = 1, . . . ,m.
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Proof. Let r ∈ {0, . . . ,m} and l0, . . . , lr ∈ {0, . . . ,m} be such that 0 = l0 < . . . < lr and

{hlk : k = 0, . . . , r} = {fi : i ∈ N}. It holds that

∫
f dv =

r∑
k=1

(hlk − hlk−1
) v
(
[f ]hlk

)

=

r∑
k=1

lk∑
j=lk−1+1

(hj − hj−1) v
(
[f ]hlk

)

=
r∑

k=1

lk∑
j=lk−1+1

(hj − hj−1) v
(
[f ]hj

)

=

lr∑
j=1

(hj − hj−1) v
(
[f ]hj

)
=

m∑
j=1

(hj − hj−1) v
(
[f ]hj

)
.

2

Using the lemma above we can obtain the expression of the restricted game given in the following

remark.

Remark 3.8 Let v ∈ GN and a ∈ FAN . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. It holds that

va(E) =

m∑
l=1

(hl − hl−1) v ([a(E)]hl
) for all E ⊆ N.

Let a ∈ FAN and t ∈ [0, 1]. We define at ∈ AN as follows

at(E) = [a(E)]t = {k ∈ E : ak(E) > t} for all E ⊆ N.

The following expression of the restricted game will turn out to be very useful in order to prove the

results in this chapter.

Remark 3.9 Let v ∈ GN and a ∈ FAN . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that
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{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. Then it holds

that

va =
m∑
l=1

(hl − hl−1) v
ahl .

3.2 The Shapley fuzzy authorization value

An allocation rule for games with fuzzy authorization structure assigns to every game with fuzzy

authorization structure a payoff vector. In this section we define and characterize an allocation rule

for games with fuzzy authorization structure.

Definition 3.10 The Shapley fuzzy authorization value, denoted by φ, assigns to each game with

fuzzy authorization structure (v, a) the Shapley value of va,

φ(v, a) = ϕ (va) for all v ∈ GN and a ∈ FAN .

The Shapley fuzzy authorization value has been studied in Gallardo, Jiménez, Jiménez-Losada and

Lebrón [38]. We give another expression of φ in the following lemma.

Lemma 3.11 Let v ∈ GN and a ∈ FAN . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. It holds that

φ(v, a) =

m∑
l=1

(hl − hl−1) Φ(v, a
hl),

where Φ is the Shapley authorization value.

Proof. Taking into account Remark 3.9 and the linearity of the Shapley value, we have that

φ(v, a) = ϕ (va)

= ϕ

(
m∑
l=1

(hl − hl−1) v
ahl

)
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=
m∑
l=1

(hl − hl−1) ϕ
(
va

hl
)

=

m∑
l=1

(hl − hl−1)Φ(v, a
hl).

2

We aim to characterize the Shapley fuzzy authorization value. To that end, we consider the

following properties.

• EFFICIENCY. For every v ∈ GN and a ∈ FAN with a(N) ∈ {0, 1}N it holds that

∑
k∈N

ψk(v, a) = v(supp(a(N))).

• ADDITIVITY. For every v, w ∈ GN and a ∈ FAN it holds that

ψ(v + w, a) = ψ(v, a) + ψ(w, a).

Definition 3.12 Let a ∈ FAN and i, j ∈ N . A player j depends partially on i in (N, a) if there

exists E ⊆ N such that aj(E) > aj (E \ {i}).

Definition 3.13 Let v ∈ GN , a ∈ FAN and i ∈ N . A player i is irrelevant in (v, a) if for every

j ∈ N such that j depends partially on i in (N, a) it holds that j is a null player in v.

Note that if i is an irrelevant player in (v, a) then, in particular, is a null player in v, since i depends

partially on i in (N, a).

• IRRELEVANT PLAYER PROPERTY. For every v ∈ GN , a ∈ FAN and i ∈ N such that i is an

irrelevant player in (v, a), it holds that

ψi(v, a) = 0.

Definition 3.14 Let a ∈ FAN and i, j ∈ N . A player i has veto power over j in (N, a) if

aj(N \ {i}) = 0.
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• PROPERTY OF VETO POWER OVER A NECESSARY PLAYER. For every monotonic v ∈ GN , a ∈ FAN

and i, j ∈ N such that j is a necessary player in v and i has veto power over j in (N, a), it

holds that

ψi(v, a) > ψk(v, a) for all k ∈ N.

Given a ∈ FAN , T ∈ 2N \ {∅}, i ∈ T and s ∈ [0, 1], we define

aT,i,s : 2N → [0, 1]N

E → aT,i,sk (E) =

{
max(s, ai(E)) if k = i and T ⊆ E,

ak(E) otherwise.

It is clear that aT,i,s ∈ FAN .

• FAIRNESS. For every v ∈ GN , a ∈ FAN , T ∈ 2N \ {∅}, i ∈ T and s ∈ [0, 1] it holds that

ψj

(
v, aT,i,s

)
− ψj(v, a) = ψi

(
v, aT,i,s

)
− ψi(v, a) for all j ∈ T.

Notice that if s 6 ai(T ) then aT,i,s = a. Therefore, the expression above is non trivial only if

s ∈ (ai(T ), 1]. This property is an extension of the fairness property of the Shapley authorization

value. If a coalition acquires the power to increase the capacity of cooperation of one of the players

within the coalition then all the players in the coalition will benefit equally.

• REDUCTION. For every v ∈ GN , a ∈ FAN and t ∈ (0, 1) it holds that

ψ(v, a) = t ψ(v, a[0,t]) + (1− t)ψ(v, a[t,1]),

where, for all i ∈ N and E ⊆ N ,

a
[0,t]
i (E) = min

(
1,
ai(E)

t

)
,

a
[t,1]
i (E) = max

(
0,
ai(E)− t

1− t

)
.

Our aim is to see that the Shapley fuzzy authorization value is uniquely determined by the six

properties seen above.
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Theorem 3.15 The Shapley fuzzy authorization value satisfies the properties of additivity, efficiency,

irrelevant player, veto power over a necessary player, fairness and reduction.

Proof. We prove that φ satisfies the six properties.

Efficiency. Let v ∈ GN and a ∈ FAN with a(N) ∈ {0, 1}N . It holds that

∑
k∈N

φk(v, a) =
∑
k∈N

ϕk (v
a) = va(N) = v (supp(a(N))) .

Additivity. Let v, w ∈ GN and a ∈ FAN . It is easy to check that (v + w)a = va + wa. We can

derive that

φ(v + w, a) = ϕ ((v + w)a) = ϕ(va + wa) = ϕ(va) + ϕ(wa) = φ(v, a) + φ(w, a).

Irrelevant player property. Let v ∈ GN , a ∈ FAN and i ∈ N an irrelevant player in

(v, a). We must prove that φi(v, a) = 0. Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N}
with 0 = t0 < . . . < tr. Taking into consideration that Φ satisfies the irrelevant player property,

it is clear from Remark 3.9 that it is enough to prove that i is an irrelevant player in (v, atl) for

every l = 1, . . . , r. So take l ∈ N with l 6 r. Suppose that j ∈ N depends partially on i in

(N, atl). This means that there exists E ⊆ N such that j ∈ atl(E) \ atl(E \ {i}). Therefore,

aj(E) > tl > aj(E \ {i}). It follows that j depends partially on i in (N, a). Since i is an irrelevant

player in (v, a), we conclude that j is a null player in v. So we have proved that i is an irrelevant

player in (v, atl).

Property of veto power over a necessary player. Let v ∈ GN be a monotonic game,

a ∈ FAN , {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr and i, j ∈ N

be such that j is a necessary player in v and i has veto power over j in (N, a). We must prove

that φi(v, a) > φk(v, a) for all k ∈ N . It follows from Remark 3.9 and the fact that Φ satisfies the

property of veto power over a necessary player that it is enough to prove that i has veto power over

j in (N, atl) for every l = 1, . . . , r. And this is a clear consequence of the fact that i has veto power

over j in (N, a).
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Fairness. Let v ∈ GN , a ∈ FAN , {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with

0 = t0 < . . . < tr, T ∈ 2N \ {∅}, i, j ∈ T and s ∈ [0, 1]. We have to prove that

φj

(
v, aT,i,s

)
− φj(v, a) = φi

(
v, aT,i,s

)
− φi(v, a).

We know that if s 6 ai(T ) then aT,i,s = a and the equality above would be trivial. So we can

suppose that s > ai(T ). Let p, q be such that tp = ai(T ) and s ∈ (tq−1, tq]. It must be p < q.

On the one hand, from Lemma 3.11 we can obtain that

φ(v, aT,i,s) =

p∑
l=1

(tl − tl−1)Φ
(
v,
(
aT,i,s

)tl)+ q−1∑
l=p+1

(tl − tl−1)Φ
(
v,
(
aT,i,s

)tl)
+ (s− tq−1)Φ

(
v,
(
aT,i,s

)s)
+ (tq − s)Φ

(
v,
(
aT,i,s

)tq)
+

r∑
l=q+1

(tl − tl−1)Φ
(
v,
(
aT,i,s

)tl) .
Now we observe that

1.
(
aT,i,s

)tl = atl for every l = 1, . . . , p,

2.
(
aT,i,s

)tl = (atl)T,i for every l = p+ 1, . . . , q − 1,

3.
(
aT,i,s

)s
=
(
atq
)T,i

,

4. (tq − s)Φ
(
v,
(
aT,i,s

)tq) = (tq − s)Φ
(
v, atq

)
. Notice that if s < tq then

(
aT,i,s

)tq = atq ,

5.
(
aT,i,s

)tl = atl for every l = q + 1, . . . , r.

Substituting into the sum above we obtain that

φ(v, aT,i,s) =

p∑
l=1

(tl − tl−1)Φ
(
v, atl

)
+

q−1∑
l=p+1

(tl − tl−1)Φ
(
v,
(
atl
)T,i)

+(s− tq−1)Φ
(
v,
(
atq
)T,i)

+ (tq − s)Φ
(
v, atq

)
+

r∑
l=q+1

(tl − tl−1)Φ
(
v, atl

)
.
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On the other hand it holds that

φ(v, a) =
r∑

l=1

(tl − tl−1)Φ(v, atl)

=

p∑
l=1

(tl − tl−1)Φ
(
v, atl

)
+

q−1∑
l=p+1

(tl − tl−1)Φ
(
v, atl

)
+(s− tq−1)Φ

(
v, atq

)
+ (tq − s)Φ

(
v, atq

)
+

r∑
l=q+1

(tl − tl−1)Φ
(
v, atl

)
.

Subtracting we get

φ(v, aT,i,s)− φ(v, a) =

q−1∑
l=p+1

(tl − tl−1)
(
Φ
(
v,
(
atl
)T,i)− Φ(v, atl)

)
+(s− tq−1)

(
Φ
(
v,
(
atq
)T,i)− Φ(v, atq)

)
.

Now, keeping in mind that Φ satisfies the fairness property, we can write

φj(v, a
T,i,s)− φj(v, a) =

q−1∑
l=p+1

(tl − tl−1)
(
Φj

(
v,
(
atl
)T,i)− Φj(v, a

tl)
)

+(s− tq−1)
(
Φj

(
v,
(
atq
)T,i)− Φj(v, a

tq)
)

=

q−1∑
l=p+1

(tl − tl−1)
(
Φi

(
v,
(
atl
)T,i)− Φi(v, a

tl)
)

+(s− tq−1)
(
Φi

(
v,
(
atq
)T,i)− Φi(v, a

tq)
)

= φi(v, a
T,i,s)− φi(v, a).

Reduction. Let v ∈ GN , a ∈ FAN , t ∈ (0, 1) and, for all i ∈ N and E ⊆ N ,

a
[0,t]
i (E) = min

(
1,
ai(E)

t

)
,

a
[t,1]
i (E) = max

(
0,
ai(E)− t

1− t

)
.
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We must prove that

φ(v, a) = t φ(v, a[0,t]) + (1− t)φ(v, a[t,1]).

Taking into consideration the definition of φ and the linearity of the Shapley value, it suffices to

prove that

va = t va
[0,t]

+ (1− t) va
[t,1]
.

To this end, take {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} ∪ {t} with

0 = t0 < . . . < tr = 1. Let p ∈ N be such that t = tp. For every E ⊆ N it holds that

(
t va

[0,t]
+ (1− t) va

[t,1]
)
(E) = t

p∑
l=1

(
tl
t
− tl−1

t

)
v

([
a[0,t](E)

]
tl
t

)

+ (1− t)

r∑
l=p+1

(
tl − t

1− t
− tl−1 − t

1− t

)
v

([
a[t,1](E)

]
tl−t

1−t

)

= t

p∑
l=1

(
tl
t
− tl−1

t

)
v
(
[a(E)]tl

)
+ (1− t)

r∑
l=p+1

(
tl − t

1− t
− tl−1 − t

1− t

)
v
(
[a(E)]tl

)
= va(E).

2

We have proved that the Shapley fuzzy authorization value satisfies the six properties. We see

that such properties uniquely determine φ.

Theorem 3.16 An allocation rule for games with fuzzy authorization structure is equal to the

Shapley fuzzy authorization value if it satisfies the properties of additivity, efficiency, irrelevant player,

veto power over a necessary player, fairness and reduction.

Proof. Let ψ be an allocation rule for games with fuzzy authorization structure satisfying the

properties of additivity, efficiency, irrelevant player, veto power over a necessary player, fairness and
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reduction. We must prove that

ψ(v, a) = φ(v, a) for every n ∈ N, v ∈ GN and a ∈ FAN .

We proceed by strong induction on ⌈(a) where

⌈(a) = |{ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}| for all a ∈ FAN .

1. Base case. ⌈(a) = 0.

Notice that we can identify AN with the set {a ∈ FAN : im(a) ⊆ {0, 1}N}. From this point

of view, we can say that the restriction of ψ to the set of games with fuzzy authorization

structure (v, a) with ⌈(a) = 0 is an allocation rule for games with authorization structure. It

is easy to check that such restriction satisfies the properties of efficiency, additivity, irrelevant

player, veto power over a necessary player and fairness. Therefore, using Theorem 2.14 we

conclude that

ψ(v, a) = φ(v, a) for every n ∈ N, v ∈ GN and a ∈ FAN with ⌈(a) = 0.

2. Inductive step. Let v ∈ GN and a ∈ FAN with ⌈(a) > 0. We want to prove that

ψ(v, a) = φ(v, a). Take t ∈ {ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}. Since ψ satisfies the reduction

property it holds that

ψ(v, a) = t ψ(v, a[0,t]) + (1− t)ψ(v, a[t,1]).

Since ⌈(a[0,t]) < ⌈(a) and ⌈(a[t,1]) < ⌈(a) it follows by induction hypothesis that

ψ(v, a[0,t]) = φ(v, a[0,t]) and ψ(v, a[t,1]) = φ(v, a[t,1]). Hence

ψ(v, a) = t φ(v, a[0,t]) + (1− t)φ(v, a[t,1]) = φ(v, a).

2

Example 3.17 Let us calculate φ(v, a) where v and a are those defined in Example 3.3. We already

calculated the restricted game va in Example 3.6. Now we calculate the Shapley fuzzy authorization

Values for games with authorization structure
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value

φ(v, a) = ϕ(va) = (4.65, 7.25, 8.1).

In a similar way as we did in the crisp case, we can obtain an expression of the Shapley

fuzzy authorization value that does not involve the restricted game, but the game and the fuzzy

authorization operator separately.

Corollary 3.18 Let v ∈ GN and a ∈ FAN . Then, if φ(v, a) is considered as a column matrix, it

holds that

φ(v, a) = ζa ·∆v

where ζa is the matrix in Mn,2n−1(R) defined by (ζa)i,E = φi(uE , a) for every i ∈ N and

E ∈ 2N \ {∅} and ∆v is the column matrix given by the Harsanyi dividends of v. Moreover, if

{tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr then

ζa =

r∑
l=1

(tl − tl−1)Zatl .

Example 3.19 Let us use the expression given in the preceding result to calculate φ(v, a) in Example

3.17. Firstly we calculate the characteristic function of uaE for each nonempty E ⊆ {1, 2, 3}.

F ua{1}(F ) ua{2}(F ) ua{3}(F ) ua{1,2}(F ) ua{1,3}(F ) ua{2,3}(F ) ua{1,2,3}(F )

{1} 0.6 0 0 0 0 0 0

{2} 0 0.9 0 0 0 0 0

{3} 0 0 1 0 0 0 0

{1, 2} 1 0.9 0 0.9 0 0 0

{1, 3} 0.6 0 1 0 0.6 0 0

{2, 3} 0 1 1 0 0 1 0

{1, 2, 3} 1 1 1 1 1 1 1
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We calculate φ (uE , a) for each nonempty E ⊆ {1, 2, 3}

φ
(
u{1}, a

)
= ϕ

(
ua{1}

)
=

(
4

5
,
1

5
, 0

)
φ
(
u{2}, a

)
= ϕ

(
ua{2}

)
=

(
0,

19

20
,
1

20

)
φ
(
u{3}, a

)
= ϕ

(
ua{3}

)
= (0, 0, 1)

φ
(
u{1,2}, a

)
= ϕ

(
ua{1,2}

)
=

(
29

60
,
29

60
,
1

30

)
φ
(
u{1,3}, a

)
= ϕ

(
ua{1,3}

)
=

(
13

30
,
2

15
,
13

30

)
φ
(
u{2,3}, a

)
= ϕ

(
ua{2,3}

)
=

(
0,

1

2
,
1

2

)
φ
(
u{1,2,3}, a

)
= ϕ

(
ua{1,2,3}

)
=

(
1

3
,
1

3
,
1

3

)

and we write ζa

ζa =



4

5
0 0

29

60

13

30
0

1

3

1

5

19

20
0

29

60

2

15

1

2

1

3

0
1

20
1

1

30

13

30

1

2

1

3


.

Finally,

φ(v, a) = ζa ·∆v =



4

5
0 0

29

60

13

30
0

1

3

1

5

19

20
0

29

60

2

15

1

2

1

3

0
1

20
1

1

30

13

30

1

2

1

3





1

2

3

3

4

5

2


=



93

20

29

4

81

10


.
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Now we give a result regarding the continuity of φ.

Theorem 3.20 The Shapley fuzzy authorization value is a continuous function.

Proof. We intend to prove that

φ : GN ×FAN → RN

(v, a) → ϕ(va)

is continuous. Taking into consideration the continuity of the Shapley value, it is enough to prove

that the application

R : GN ×FAN → GN

(v, a) → va

is continuous. To that end, take v ∈ GN , a ∈ FAN and ε > 0. Let w ∈ GN and b ∈ FAN be such

that

|v(E)− w(E)| < ε for all E ⊆ N,

|ai(E)− bi(E)| < δ =
ε

n2n(2M + ε)
for all E ⊆ N and i ∈ N,

where M = max {|v(E)| : E ⊆ N}. Let

{tl : l = 0, . . . , r} = {ak(E) : E ⊆ N, k ∈ N} ∪ {bk(E) : E ⊆ N, k ∈ N},

with 0 = t0 < . . . < tr = 1. Take F ⊆ N . Let

L = {l ∈ N : 1 6 l 6 r and [a(F )]tl = [b(F )]tl} ,

L′ = {l ∈ N : 1 6 l 6 r and [a(F )]tl ̸= [b(F )]tl} .

Notice that if l ∈ L′ then tl − tl−1 < δ. It holds that

|va(F )− wb(F )| =

∣∣∣∣∣
r∑

l=1

(tl − tl−1) (v ([a(F )]tl)− w ([b(F )]tl))

∣∣∣∣∣
6
∑
l∈L

(tl − tl−1) |v ([a(F )]tl)− w ([b(F )]tl)|
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+
∑
l∈L′

(tl − tl−1) |v ([a(F )]tl)− w ([b(F )]tl)|

6 ε+ rδ(2M + ε)

6 ε+ n2nδ(2M + ε)

6 2ε.

2

3.3 The Banzhaf fuzzy authorization value

We aim to define an allocation rule for games with fuzzy authorization structure that extends

the Banzhaf authorization value defined in the previous chapter.

Definition 3.21 The Banzhaf fuzzy authorization value, denoted by b, assigns to each game with

fuzzy authorization structure (v, a) the Banzhaf value of va,

b(v, a) = β (va) for all v ∈ GN and a ∈ FAN .

In a similar way as we did for the Shapley fuzzy authorization value, we can give another expression

for the Banzhaf fuzzy authorization value.

Lemma 3.22 Let v ∈ GN , a ∈ FAN and {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. It holds that

b(v, a) =
m∑
l=1

(hl − hl−1)B(v, ahl),

where B is the Banzhaf authorization value.

Proof. It is evident taking into account Remark 3.9 and the linearity of the Banzhaf value. 2

Our goal is to characterize the Banzhaf fuzzy authorization value. To that end we consider the

following two properties for an allocation rule for games with fuzzy authorization structure.

Values for games with authorization structure
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• 2-EFFICIENCY. For every v ∈ GN , a ∈ FAN with a(N) ∈ {0, 1}N and i, j ∈ N such that every

player in N \ {i, j} is an irrelevant player in (v, a), it holds that

∑
k∈N

ψk(v, a) = v(supp(a(N))).

Suppose |N | > 2. Let a ∈ FAN and let i, j be two different players in N . We define

aij : 2N
ij −→ [0, 1]N

ij
as follows

aijk (E) =



ak(E) if
⌢
ij ̸∈ E and k ̸=

⌢
ij,

0 if
⌢
ij ̸∈ E and k =

⌢
ij,

ak

((
E \ {

⌢
ij}
)
∪ {i, j}

)
if

⌢
ij ∈ E and k ̸=

⌢
ij,

min
(
ai

((
E \ {

⌢
ij}
)
∪ {i, j}

)
, aj

((
E \ {

⌢
ij}
)
∪ {i, j}

))
if

⌢
ij ∈ E and k =

⌢
ij.

It is easy to check that aij ∈ FAN ij
.

Definition 3.23 Let v ∈ GN , a ∈ FAN and let i, j be two different players in N . The players i and

j can be amalgamated in (v, a) if they can be amalgamated in (v, at) for every t ∈ (0, 1].

• AMALGAMATION. For every v ∈ GN , a ∈ FAN and i, j two different players in N such that i, j

can be amalgamated in (v, a), it holds that

ψi(v, a) + ψj(v, a) = ψ⌢
ij
(vij , aij).

In the following results we give a characterization of the Banzhaf fuzzy authorization value.

Theorem 3.24 The Banzhaf fuzzy authorization value satisfies the properties of additivity, irrelevant

player, veto power over a necessary player, fairness, 2-efficiency, amalgamation and reduction.

Proof. That the Banzhaf fuzzy authorization value satisfies additivity, irrelevant player, veto power

over a necessary player, fairness and reduction can be proved in a similar way as we did for the

Shapley fuzzy authorization value in Theorem 3.15. Let us see that the Banzhaf fuzzy authorization
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value satisfies 2-efficiency and amalgamation.

2-efficiency. Let v ∈ GN , a ∈ FAN and i, j ∈ N be such that a(N) ∈ {0, 1}N and every player

in N \ {i, j} is an irrelevant player in (v, a). If a(N) = 0 the result is trivial. We assume a(N) ̸= 0.

It is easy to check that every player in N \ {i, j} is an irrelevant player in (v, at) for every t ∈ (0, 1].

Take {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr = 1. Using Lemma

3.22 and the fact that the Banzhaf authorization value satisfies 2-efficiency we can write

∑
k∈N

bk(v, a) =
∑
k∈N

r∑
l=1

(tl − tl−1)Bk(v, a
tl) =

r∑
l=1

(tl − tl−1)
∑
k∈N

Bk(v, a
tl)

=
r∑

l=1

(tl − tl−1)v
(
atl(N)

)
=

r∑
l=1

(tl − tl−1)v (supp(a(N))) = v (supp(a(N))) .

Amalgamation. Let v ∈ GN , a ∈ FAN and let i, j be two different players in N such that i

and j can be amalgamated in (v, a). Take {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with

0 = t0 < . . . < tr. It is easy to check that

(at)ij = (aij)t for any t ∈ (0, 1]. (3.1)

Using Lemma 3.22, the fact that the Banzhaf authorization value satisfies amalgamation and (3.1)

we can write

bi(v, a) + bj(v, a) =

r∑
l=1

(tl − tl−1)
(
Bi(v, a

tl) +Bj(v, a
tl)
)

=

r∑
l=1

(tl − tl−1)B⌢
ij
(vij , (atl)ij)

=

r∑
l=1

(tl − tl−1)B⌢
ij
(vij , (aij)tl)

= b⌢
ij
(vij , aij).

Thus, we have proved that the Banzhaf fuzzy authorization value satisfies all the properties stated

in the theorem. 2

Values for games with authorization structure
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Theorem 3.25 An allocation rule for games with fuzzy authorization structure is equal to the

Banzhaf fuzzy authorization value if it satisfies the properties of additivity, irrelevant player, veto

power over a necessary player, fairness, 2-efficiency, amalgamation and reduction.

Proof. Let ψ be an allocation rule for games with fuzzy authorization structure satisfying the

properties of additivity, irrelevant player, veto power over a necessary player, fairness, 2-efficiency,

amalgamation and reduction. We must prove that

ψ(v, a) = b(v, a) for every n ∈ N, v ∈ GN and a ∈ FAN .

We proceed by strong induction on ⌈(a) where

⌈(a) = |{ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}| for all a ∈ FAN .

1. Base case. ⌈(a) = 0.

Notice that we can identify AN with the set {a ∈ FAN : im(a) ⊆ {0, 1}N}. From this point

of view, we can say that the restriction of ψ to the set of games with fuzzy authorization

structure (v, a) with ⌈(a) = 0 is an allocation rule for games with authorization structure.

It is easy to check that such restriction satisfies the properties of additivity, irrelevant player,

veto power over a necessary player, fairness, 2-efficiency and amalgamation. Therefore, using

Theorem 2.21 we conclude that

ψ(v, a) = b(v, a) for every n ∈ N, v ∈ GN and a ∈ FAN with ⌈(a) = 0.

2. Inductive step. Let v ∈ GN and a ∈ FAN with ⌈(a) > 0. We want to prove that

ψ(v, a) = b(v, a). Take t ∈ {ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}. Since ψ satisfies the reduction

property it holds that

ψ(v, a) = t ψ(v, a[0,t]) + (1− t)ψ(v, a[t,1]).

Since ⌈(a[0,t]) < ⌈(a) and ⌈(a[t,1]) < ⌈(a) it follows by induction hypothesis that
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ψ(v, a[0,t]) = b(v, a[0,t]) and ψ(v, a[t,1]) = b(v, a[t,1]). Hence

ψ(v, a) = t b(v, a[0,t]) + (1− t) b(v, a[t,1]) = b(v, a).

2

Values for games with authorization structure



Chapter4
Relational power in authorization structures

If we consider an authorization structure, some agents may be in more advantageous position

than others. On the one hand, some of them will be less autonomous than others, in the sense that

they will need the permission of other agents in order to actively participate in a coalition. And,

on the other hand, some will be more influential than others, in the sense that they will be able to

prevent other agents from cooperating within a coalition. Our goal in this chapter will be to study

how favorable the situation of each agent in an authorization structure is. To do this, we will define

a value that will allow us to measure the influence and the sovereignty of each agent.

4.1 Allocation rules for authorization structures

Firstly we need to recall the concept of set game, which was introduced by Aarts, Funaki and

Hoede [2]. A set game is a triple (N, v, U) where N is a set of cardinality n with n ∈ N, U is a

set and v : 2N → 2U is a mapping satisfying v(∅) = ∅. The mapping v is called the characteristic

function of the set game. Usually, the set game (N, v, U) is identified with the characteristic function

v. The worth v(E) of a coalition E can be interpreted as the set of items that can be obtained by

the players in E if they cooperate. A value ψ for set games is a mapping that assigns to each set

game v an element ψ(v) ∈ (2U )N , where, for any i ∈ N , ψi(v) is interpreted as the set of items

that are given to player i. In 1997, Aarts, Funaki and Hoede [1] defined and characterized a value µ

for monotonic set games, called the marginalistic value. Given a set game v, the marginalistic value

65
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of v is defined as

µi(v) =
∪

{E⊆N : i∈E}

[v(E) \ v(E \ {i})] for every i ∈ N.

Notice that authorization operators are monotonic set games. So, if we are looking for a value for

authorization structures, our first idea might be to use the marginalistic value for monotonic set

games introduced in [2]. However, this value does not seem to be sufficiently sensitive, as we try to

show with the following example.

Example 4.1 Let N = {1, 2, 3, 4}. Let A, B and C be the authorization operators considered in

Example 2.4.

E A(E) B(E) C(E)

E : 4 /∈ E E E E

{4} ∅ ∅ ∅
{1, 4} {1} {1, 4} {1}
{2, 4} {2} {2, 4} {2}
{3, 4} {3} {3, 4} {3}
{1, 2, 4} {1, 2} {1, 2, 4} {1, 2, 4}
{1, 3, 4} {1, 3} {1, 3, 4} {1, 3, 4}
{2, 3, 4} {2, 3} {2, 3, 4} {2, 3, 4}

{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

If W ∈ AN , the marginalistic value of W is the element in (2N )N defined as

µi(W ) =
∪

{E⊆N : i∈E}

[W (E) \W (E \ {i})] for every i ∈ N.

Notice that µ(W ) assigns to each agent the set of agents that depend partially on him in (N,W ).

Values for games with authorization structure
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It is clear that if we calculate µ(A), µ(B) and µ(C) we obtain the following

µ1(A) = {1, 4}, µ1(B) = {1, 4}, µ1(C) = {1, 4},
µ2(A) = {2, 4}, µ2(B) = {2, 4}, µ2(C) = {2, 4},
µ3(A) = {3, 4}, µ3(B) = {3, 4}, µ3(C) = {3, 4},
µ4(A) = {4}, µ4(B) = {4}, µ4(C) = {4}.

The reason why µ does not distinguish between A, B and C is that µ registers whether an agent

depends partially on another one, but not how strong such dependence is.

Suppose that we have σ : AN → (2N )N , A ∈ AN and i, j ∈ N . If we wanted to use σ(A) to

evaluate the dependence of agent j on agent i in (N,A), we would check whether j is in σi(A) or

not. But it is clear that, in general, this evaluation would not inform us about how strongly j depends

on i. If we want to define a more sensitive value, we need to consider degrees of membership. This

is the motive of the following definition.

Definition 4.2 An allocation rule for authorization structures assigns to each authorization operator

on N a mapping in
(
[0, 1]N

)N
.

4.2 The Shapley authorization correspondence

We aim to use the Shapley value to define an allocation rule for authorization structures. Notice

that given A ∈ AN and j ∈ N we can define the simple game

Aj : 2N → {0, 1}
E → Aj(E) = |A(E) ∩ {j}| .

Now we can define the value for authorization structures that we propose.

Definition 4.3 The Shapley authorization correspondence assigns to each authorization operator

A ∈ AN the mapping Ξ(A) ∈
(
[0, 1]N

)N
defined as

Ξi(A) = (ϕi(Aj))j∈N for every i ∈ N,
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where ϕ is the Shapley value.

We denote Ξij(A) = ϕi(Aj). Notice that Ξ (A) can be identified with a matrix in Mn(R).
Furthermore, Ξ(A) is a submatrix of the matrix ZA defined in Corollary 2.16, since for every A ∈ AN

and i, j ∈ N it holds that

Ξij(A) = ϕi(Aj) = ϕi

(
uA{j}

)
= Φi(u{j}, A) = (ZA)i,{j} .

Also notice that Ξ (A) can be interpreted as a fuzzy cognitive map on N , Mordeson and Nair [51],

in the sense that for any i, j ∈ N with i ̸= j the number Ξij(A) measures how much the behavior

of agent i affects agent j, whereas Ξii(A) measures the autonomy of agent i.

Example 4.4 Let N = {1, 2, 3, 4} and A the authorization operator on N defined as

A(E) =


E if {3, 4} ⊆ E,

E \ {3} if {3, 4} * E and 2 ∈ E,

E \ {1, 3} if {3, 4} * E and 2 ̸∈ E.

Notice that, for any E ⊆ {1, 2, 3, 4}, A(E) is equal to the sovereign part of E in the disjunctive

hierarchy represented by the digraph below

1

3

4

2

We proceed to calculate the characteristic functions A1, A2, A3 and A4.

Values for games with authorization structure
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E A1(E) A2(E) A3(E) A4(E)

{1} 0 0 0 0

{2} 0 1 0 0

{3} 0 0 0 0

{4} 0 0 0 1

{1, 2} 1 1 0 0

{1, 3} 0 0 0 0

{1, 4} 0 0 0 1

{2, 3} 0 1 0 0

{2, 4} 0 1 0 1

{3, 4} 0 0 1 1

{1, 2, 3} 1 1 0 0

{1, 2, 4} 1 1 0 1

{1, 3, 4} 1 0 1 1

{2, 3, 4} 0 1 1 1

{1, 2, 3, 4} 1 1 1 1

It holds that

ϕ(A1) =

(
7

12
,
1

4
,
1

12
,
1

12

)
,

ϕ(A2) = (0, 1, 0, 0) ,

ϕ(A3) =

(
0, 0,

1

2
,
1

2

)
,

ϕ(A4) = (0, 0, 0, 1) .
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So we have obtained that

Ξ(A) =



7

12
0 0 0

1

4
1 0 0

1

12
0

1

2
0

1

12
0

1

2
1


.

Rounding to the nearest thousandth, we can identify Ξ(A) with the fuzzy cognitive map represented

by the following fuzzy digraph

1 3

42

0
.2
5

0.083

0
.5

1 1

0.583 0.5

Our first goal will be to characterize the Shapley authorization correspondence. To do that, we

consider the properties stated below. In the statement of these properties Ψ is an allocation rule for

authorization structures.

• EFFICIENCY. For every A ∈ AN it holds that

∑
k∈N

Ψk(A) = 1A(N).

Values for games with authorization structure
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Definition 4.5 Let A ∈ AN . An agent i ∈ N is said to be null in (N,A) if A(E) = A(E \ {i}) for
all E ⊆ N .

• NULL AGENT PROPERTY. For every A ∈ AN and i null agent in (N,A), it holds that

Ψi(A) = 0.

The following property is inspired by the transfer property introduced by Dubey [35] to

characterize the Shapley-Shubik index. It states that equal changes in the dependency relationships

among the agents produce equal changes in the allocations.

• TRANSFER PROPERTY. For every A, Â,B, B̂ ∈ AN such that, for every E ⊆ N ,

A(E) \ Â(E) = B(E) \ B̂(E) and Â(E) \A(E) = B̂(E) \B(E), it holds that

Ψ(A)−Ψ(Â) = Ψ(B)−Ψ(B̂).

• EQUAL TREATMENT PROPERTY. For every A ∈ AN and i, j ∈ N such that

A(E ∪ {i}) = A(E ∪ {j}) for all E ⊆ N \ {i, j}, it holds that

Ψi(A) = Ψj(A).

In the following theorem we see that these four properties stated above uniquely determine the

Shapley authorization correspondence.

Theorem 4.6 An allocation rule for authorization structures is equal to the Shapley authorization

correspondence if and only if it satisfies the properties of efficiency, null agent, transfer and equal

treatment.

Proof. Firstly, it is proved that the Shapley authorization correspondence satisfies the four

properties mentioned.
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Efficiency. Let A ∈ AN . For every j ∈ N it holds that(∑
k∈N

Ξk(A)

)
j

=
∑
k∈N

Ξkj(A) =
∑
k∈N

Φk(u{j}, A) = u{j}(A(N)) =
(
1A(N)

)
j
.

Null agent property. Let A ∈ AN and i ∈ N be such that i is a null agent in (N,A). It is clear

that, for every j ∈ N , i is an irrelevant player in (u{j}, A). From the irrelevant player property of

the Shapley authorization value, it follows that Φi(u{j}, A) = 0 for all j ∈ N , and hence Ξi(A) = 0.

Transfer property. Let A, Â,B, B̂ ∈ AN be such that A(E) \ Â(E) = B(E) \ B̂(E) and

Â(E) \A(E) = B̂(E) \B(E) for every E ⊆ N . It is clear that Aj − Âj = Bj − B̂j for every j ∈ N .

So, for every i, j ∈ N , it holds that

Ξij(A)− Ξij(Â) = ϕi(Aj)− ϕi(Âj) = ϕi(Aj − Âj)

= ϕi(Bj − B̂j) = ϕi(Bj)− ϕi(B̂j)

= Ξij(B)− Ξij(B̂).

Equal treatment property. Let A ∈ AN and i, j ∈ N be such that A(E ∪{i}) = A(E ∪{j})
for all E ⊆ N \ {i, j}. It is clear that for every k ∈ N , it holds that Ak(E ∪ {i}) = Ak(E ∪ {j}) for
all E ⊆ N \ {i, j}. Making use of the equal treatment property of the Shapley value it follows that

ϕi(Ak) = ϕj(Ak) for all k ∈ N , and hence Ξi(A) = Ξj(A).

Now we show that the properties in the theorem uniquely determine the Shapley authorization

correspondence. Let Ψ be an allocation rule for authorization structures satisfying the properties of

efficiency, null agent, transfer and equal treatment. We must prove that Ψ = Ξ.

Let n ∈ N and let N be a set of cardinality n. For every T ∈ 2N \ {∅} and i ∈ T we consider

CT,i : 2N → 2N

E → CT,i(E) =

{
{i} if T ⊆ E,

∅ if T * E.

It is clear that CT,i ∈ AN .
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Let A ∈ AN . If A(N) = ∅, we can easily deduce, from the null agent property, that

Ψ(A) = Ξ(A) = 0. If A(N) ̸= ∅, we can write

A =
∪

{(T,i)∈2N×N : i∈A(T )}

CT,i.

So it is enough to show that for every m ∈ N, T1, . . . , Tm ∈ 2N \ {∅} and i1, . . . , im ∈ N with

ik ∈ Tk for all k = 1, . . . ,m, it holds that

Ψ

(
m∪
k=1

CTk,ik

)
= Ξ

(
m∪
k=1

CTk,ik

)
.

Let us prove this equality by strong induction on m.

1. Base case. Let T ∈ 2N \ {∅} and i ∈ T . From the null agent property, we can easily derive

that

Ψj(CT,i) = 0 for all j ∈ N \ T. (4.1)

From the equal treatment property we can deduce that

Ψj(CT,i) = Ψl(CT,i) for all j, l ∈ T. (4.2)

From (4.1) and (4.2) we conclude, using the efficiency property, that

Ψj(CT,i) =


1

|T |
1{i} if j ∈ T,

0 if j ∈ N \ T.

Since Ξ also satisfies the properties used, it is clear that Ψ(CT,i) = Ξ(CT,i).

2. Inductive step. Take T1, . . . , Tm+1 ∈ 2N \ {∅} and i1, . . . , im+1 ∈ N with ik ∈ Tk for all
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k = 1, . . . ,m+ 1. Let

A =

m+1∪
k=1

CTk,ik , Â =

m∪
k=1

CTk,ik ,

B = CTm+1,im+1 , B̂ =

m∪
k=1

(CTk,ik ∩ CTm+1,im+1).

Since Ψ and Ξ satisfy the transfer property, we have

Ψ(A)−Ψ(Â) = Ψ(B)−Ψ(B̂), (4.3)

Ξ(A)− Ξ(Â) = Ξ(B)− Ξ(B̂). (4.4)

We already know that

Ψ(B) = Ξ(B). (4.5)

By induction hypothesis, it holds

Ψ(Â) = Ξ(Â). (4.6)

Now, observe that if ik ̸= im+1 then we can eliminate CTk,ik ∩CTm+1,im+1 in the expression of

B̂, and if ik = im+1 then CTk,ik ∩ CTm+1,im+1 = CTk∪Tm+1,ik . Then, by induction hypothesis,

we have

Ψ(B̂) = Ξ(B̂). (4.7)

From (4.3), (4.4), (4.5), (4.6) and (4.7) we deduce

Ψ

(
m+1∪
k=1

CTk,ik

)
= Ξ

(
m+1∪
k=1

CTk,ik

)
.

2
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4.3 Indices for authorization structures

Let A ∈ AN and i, j ∈ N . It holds that

Ξij(A) = ϕi(Aj) =
∑

{E⊆N : i∈E}

pE [Aj(E)−Aj(E \ {i})] ,

where the numbers pE are the coefficients of the Shapley value.

It is clear that Ξij(A) > 0 if and only if j depends partially on i in (N,A). In fact, Ξij(A) can

measure how strongly agent j depends on agent i in the structure (N,A). This motivates the

following definitions.

Let A ∈ AN and i, j ∈ N with i ̸= j. The number Ξij(A) is called the influence index of i over

j in (N,A).

Definition 4.7 Let A ∈ AN and i ∈ N . The sum of the influence indices of i over each one of the

rest of agents is called the influence index of i in (N,A) and is denoted by infi(A), that is,

infi(A) =
∑

j∈N\{i}

Ξij(A).

Definition 4.8 Let A ∈ AN and i ∈ N . The number Ξii(A) is called the sovereignty index of i in

(N,A) and is denoted by sovi(A).

Definition 4.9 Let A ∈ AN and i ∈ N . The addition of the influence and sovereignty indices of i

is called the power index of i in (N,A) and is denoted by powi(A), that is,

powi(A) = sovi(A) + infi(A).

Example 4.10 Let us calculate the sovereignty, influence and power indices in Example 4.4. It is

easy to check that
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sov1(A) =
7

12
, sov2(A) = 1, sov3(A) =

1

2
, sov4(A) = 1,

inf1(A) = 0, inf2(A) =
1

4
, inf3(A) =

1

12
, inf4(A) =

7

12
,

pow1(A) =
7

12
, pow2(A) =

5

4
, pow3(A) =

7

12
, pow4(A) =

19

12
.

We want to show the most important properties of the sovereignty, influence and power indices.

To that end, it is convenient to introduce some notation. Let A ∈ AN and i ∈ N . We denote

Vi(A) = {j ∈ N : j has veto power over i in (N,A)} ,

Pi(A) = {j ∈ N : i depends partially on j in (N,A)} .

Firstly, we see a characterization of the sovereignty index. To that end, we consider the properties

stated below. In the statement of these properties Ψ is a mapping from AN into RN .

Definition 4.11 Let A ∈ AN and i ∈ N . An agent i is said to be inactive in (N,A) if i ̸∈ A(N).

• INACTIVE AGENT PROPERTY. For every A ∈ AN and i ∈ N such that i is inactive in (N,A), it

holds that

Ψi(A) = 0.

If we wanted to evaluate the freedom of an agent i in an authorization structure (N,A), perhaps

the first two measures we would think of would be the numbers
1

|Vi(A)|
and

1

|Pi(A)|
. Notice that both

are extreme in the sense that with the first number we would ignore all the dependency relationships

that are not veto relationships, whereas with the second number we would equally value all the

dependency relationships. The following property distinguishes the indices that are in between those

two.

• MAXIMUM AND MINIMUM SOVEREIGNTY. For every A ∈ AN and i ∈ N such that i is not inactive
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in (N,A), it holds that
1

|Pi(A)|
6 Ψi(A) 6

1

|Vi(A)|
.

• TRANSFER PROPERTY. For every A, Â, B, B̂ ∈ AN such that, for every E ⊆ N,

A(E) \ Â(E) = B(E) \ B̂(E) and Â(E) \A(E) = B̂(E) \B(E), it holds that

Ψ(A)−Ψ(Â) = Ψ(B)−Ψ(B̂).

In the following theorem we see that these properties uniquely determine the sovereignty index.

We need the following result.

Lemma 4.12 Let T ∈ 2N \ {∅}. Then

∑
{E⊆N :T⊆E}

pE =
1

|T |

where the numbers pE are the coefficients of the Shapley value.

Theorem 4.13 A mapping Ψ : AN → RN is equal to the sovereignty index if and only if it satisfies

the properties of inactive agent, maximum and minimum sovereignty and transfer.

Proof. Firstly, we prove that the sovereignty index satisfies the properties mentioned in the theorem.

Inactive agent property. Let A ∈ AN and i ∈ N be such that i is inactive in (N,A). It follows

that Ai(E) = 0 for all E ⊆ N . It holds that sovi(A) = Ξii(A) = ϕi(Ai) = 0.

Maximum and minimum sovereignty. Let A ∈ AN and i ∈ N be such that i is not inactive in

(N,A). It holds that

sovi(A) = Ξii(A) = ϕi(Ai) =
∑

{E⊆N : i∈E}

pE [Ai(E)−Ai(E \ {i})]

=
∑

{E⊆N : i∈E}

pE Ai(E) =
∑

{E⊆N : i∈A(E)}

pE . (4.8)
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Firstly, we prove that
1

|Pi(A)|
6 sovi(A).

Notice that for every E ⊆ N with Pi(A) ⊆ E it holds that i ∈ A(E) (otherwise, we would have

i ∈ A(N) \ A(E) from what we could easily deduce that there would exist j ∈ N \ E such that i

depends partially on j, which would be absurd). Therefore, the sum in (4.8) is greater or equal to

∑
{E⊆N : Pi(A)⊆E}

pE

which, from Lemma 4.12, is equal to
1

|Pi(A)|
.

Now we prove that sovi(A) 6
1

|Vi(A)|
.

It is clear that for every E ⊆ N with i ∈ A(E) it holds that Vi(A) ⊆ E. Therefore, the sum in (4.8)

is less or equal to ∑
{E⊆N : Vi(A)⊆E}

pE

which, from Lemma 4.12, is equal to
1

|Vi(A)|
.

Transfer property. It is a direct consequence of the fact that the Shapley authorization

correspondence satisfies an analogous transfer property.

Now we show that these properties uniquely determine the sovereignty index. The reasoning

is similar to that followed in the case of the Shapley authorization correspondence. Suppose that

Ψ : AN → RN satisfies the properties of inactive agent, maximum and minimum sovereignty and

transfer. We must prove that Ψ is equal to the sovereignty index.

Let A ∈ AN . If A(N) = ∅, we know, from the inactive agent property, that Ψ(A) = sov(A) = 0. If

A(N) ̸= ∅, we can write

A =
∪

{(T,i)∈2N×N : i∈A(T )}

CT,i.

So, if we want to prove that Ψ = sov, it is enough to show that for every m ∈ N,
T1, . . . , Tm ∈ 2N \ {∅} and i1, . . . , im ∈ N with ik ∈ Tk for all k = 1, . . . ,m, it holds that

Ψ

(
m∪
k=1

CTk,ik

)
= sov

(
m∪
k=1

CTk,ik

)
.
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Let us prove this equality by strong induction on m.

1. Base case. Let T ∈ 2N \ {∅} and i ∈ T . From the inactive agent property we obtain that

Ψj(CT,i) = 0 for all j ∈ N \ {i}. (4.9)

Notice that Pi(CT,i) = Vi(CT,i) = T . From the property of maximum and minimum sovereignty

it follows that

Ψi(CT,i) =
1

|T |
. (4.10)

From (4.9) and (4.10) we have that Ψ(CT,i) =
1

|T |
1{i}. Since the sovereignty index also

satisfies the properties used, we obtain that

Ψ(CT,i) = sov(CT,i).

2. Inductive step. The reasoning is equal to that followed in the case of the Shapley

authorization correspondence.

2

There is something to comment about the property of maximum and minimum sovereignty.

Actually, the two inequalities given are strict except in the case that Pi(A) = Vi(A). Let us see this.

Let A ∈ AN and i ∈ N such that i is not inactive in (N,A). In the proof of the property referred

to we used that

sovi(A) =
∑

{E⊆N : i∈A(E)}

pE , (4.11)

1

|Pi(A)|
=

∑
{E⊆N : Pi(A)⊆E}

pE , (4.12)

1

|Vi(A)|
=

∑
{E⊆N : Vi(A)⊆E}

pE , (4.13)

and

{E ⊆ N : Pi(A) ⊆ E} ⊆ {E ⊆ N : i ∈ A(E)} ⊆ {E ⊆ N : Vi(A) ⊆ E}. (4.14)
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Suppose that sovi(A) =
1

|Pi(A)|
. In this case, from (4.11), (4.12) and (4.14), it follows that i ∈ A(E)

if and only if Pi(A) ⊆ E. It easily derives that Pi(A) = Vi(A).

Suppose that sovi(A) =
1

|Vi(A)|
. In this case, from (4.11), (4.13) and (4.14) it follows that i ∈ A(E)

if and only if Vi(A) ⊆ E. Consequently, it holds that Pi(A) = Vi(A).

It is clear that the sovereignty index of an agent is equal to 0 if and only if the agent is inactive

in the structure. Let us see when the sovereignty index of an agent is equal to 1.

Definition 4.14 Let A ∈ AN and i ∈ N . An agent i is said to be sovereign in (N,A) if

A ({i}) = {i}.

Lemma 4.15 Let A ∈ AN and i ∈ N . Then, i is sovereign in (N,A) if and only if sovi(A) = 1.

Proof. Let A ∈ AN and i ∈ N . We saw in (4.8) that

sovi(A) =
∑

{E⊆N : i∈A(E)}

pE . (4.15)

Moreover, we know from Lemma 4.12 that

∑
{E⊆N : i∈E}

pE = 1. (4.16)

From (4.15) and (4.16) it easily follows that sovi(A) is equal to 1 if and only if i ∈ A(E) for every

E ⊆ N with i ∈ E, or, equivalently, A({i}) = {i}. 2

Our next goal will be to give a characterization of the influence index. We consider the following

property, where Ψ is a mapping from AN into RN .

• MAXIMUM AND MINIMUM INFLUENCE. For every A ∈ AN and i ∈ N , it holds that

∑
{j∈A(N)\{i}: i∈Vj(A)}

1

|Pj(A)|
6 Ψi(A) 6

∑
{j∈A(N)\{i}: i∈Pj(A)}

1

|Vj(A)|
.

In the following theorem we show that this property together with the transfer property uniquely
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determine the influence index. We need a previous lemma.

Lemma 4.16 Let A ∈ AN and i, j ∈ N . It holds that

Ξij(A) 6 sovj(A)

and the equality holds if and only if i has veto power over j in (N,A).

Proof. Let A ∈ AN and i, j ∈ N . Remember that sovj(A) = Ξjj(A) = ϕj(Aj) and

Ξij(A) = ϕi(Aj), where Aj(E) = |A(E) ∩ {j}| for every E ⊆ N . It is clear that j is a necessary

player in the monotonic game Aj . From the necessary player property of the Shapley value it follows

that ϕi(Aj) 6 ϕj(Aj). So we have proved the inequality given in the lemma.

Now suppose that i has veto power over j in (N,A). It this case i is also a necessary player in Aj .

So we conclude that ϕi(Aj) = ϕj(Aj). Conversely, suppose that ϕi(Aj) = ϕj(Aj). It holds that

ϕj(Aj) =
∑

{E⊆N : j∈A(E)}

pE (4.17)

and

ϕi(Aj) =
∑

{E⊆N : i∈E}

pE [Aj(E)−Aj(E \ {i})] =
∑

{E⊆N : j∈A(E)\A(E\{i})}

pE . (4.18)

We conclude that

{E ⊆ N : j ∈ A(E)} = {E ⊆ N : j ∈ A(E) \A(E \ {i})}

whence it derives that i has veto power over j in (N,A). 2

Theorem 4.17 A mapping Ψ : AN → RN is equal to the influence index if and only if it satisfies

the properties of maximum and minimum influence and transfer.

Proof. Firstly, we prove that the influence index satisfies the properties mentioned in the theorem.
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Maximum and minimum influence. Let A ∈ AN and i ∈ N . We have that

infi(A) =
∑

j∈N\{i}

Ξij(A)

which, taking into consideration that Ξij(A) > 0 if and only if j depends partially on i in (N,A), is

equal to ∑
{j∈A(N)\{i}: i∈Pj(A)}

Ξij(A)

which, from Lemma 4.16, is less or equal to

∑
{j∈A(N)\{i}: i∈Pj(A)}

sovj(A)

which, from the property of maximum and minimum sovereignty, is less or equal to

∑
{j∈A(N)\{i}: i∈Pj(A)}

1

|Vj(A)|
.

So we have proved the right-hand inequality. Let us prove the other one.

infi(A) =
∑

{j∈A(N)\{i}: i∈Pj(A)}

Ξij(A) >
∑

{j∈A(N)\{i}: i∈Vj(A)}

Ξij(A)

which, using the second statement of Lemma 4.16, is equal to

∑
{j∈A(N)\{i}: i∈Vj(A)}

sovj(A)

which, from the property of maximum and minimum sovereignty, is greater or equal to

∑
{j∈A(N)\{i}: i∈Vj(A)}

1

|Pj(A)|
.

It is easy to see that, actually, the two inequalities given in the property are strict except in case that

{j ∈ A(N) \ {i} : i ∈ Vj(A)} = {j ∈ A(N) \ {i} : i ∈ Pj(A)}
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and, moreover, for every j in that set, Pj(A) = Vj(A).

Transfer property. It is a direct consequence of the fact that the Shapley authorization

correspondence satisfies an analogous transfer property.

Now we show that these properties uniquely determine the influence index. The reasoning is

similar to that followed in the case of the Shapley authorization correspondence. Suppose that

Ψ : AN → RN satisfies the properties of maximum and minimum influence and transfer. We must

prove that Ψ is equal to the influence index.

Let A ∈ AN . If A(N) = ∅, we know, from the property of maximum and minimum influence, that

Ψ(A) = inf(A) = 0. If A(N) ̸= ∅, we can write

A =
∪

{(T,i)∈2N×N : i∈A(T )}

CT,i.

So, if we want to prove that Ψ = inf , it is enough to show that for every m ∈ N,
T1, . . . , Tm ∈ 2N \ {∅} and i1, . . . , im ∈ N with ik ∈ Tk for all k = 1, . . . ,m it holds that

Ψ

(
m∪
k=1

CTk,ik

)
= inf

(
m∪
k=1

CTk,ik

)
.

Let us prove this equality by strong induction on m.

1. Base case. Let T ∈ 2N \ {∅} and i ∈ T . We can derive, from the property of maximum and

minimum influence, that

Ψj(CT,i) =


1

|T |
if j ∈ T \ {i},

0 if j ∈ (N \ T ) ∪ {i}.

Since the influence index also satisfies the property used, we obtain that

Ψ(CT,i) = inf(CT,i).



84 CHAPTER 4. RELATIONAL POWER IN AUTHORIZATION STRUCTURES

2. Inductive step. The reasoning is equal to that followed in the case of the Shapley

authorization correspondence.

2

Now we intend to give a characterization of the power index. For that purpose, we consider the

following properties, where Ψ is a mapping from AN into RN .

• EFFICIENCY. For every A ∈ AN it holds that

∑
k∈N

Ψk(A) = |A(N)|.

• NULL AGENT PROPERTY. For every A ∈ AN and i ∈ N such that i is a null agent in (N,A), it

holds that

Ψi(A) = 0.

• EQUAL TREATMENT PROPERTY. For every A ∈ AN and i, j ∈ N such that

A(E ∪ {i}) = A(E ∪ {j}) for all E ⊆ N \ {i, j}, it holds that

Ψi(A) = Ψj(A).

These properties together with the transfer property uniquely determine the power index.

Theorem 4.18 A mapping Ψ : AN → RN is equal to the power index if and only if it satisfies the

properties of efficiency, null agent, transfer and equal treatment.

Proof. That the power index satisfies the properties mentioned in the theorem is a direct

consequence of the fact that the Shapley authorization correspondence satisfies analogous properties.

The proof that the properties in the theorem uniquely determine the power index is similar to the

proof of the uniqueness of the Shapley authorization correspondence, so we omit it. 2
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4.4 The Shapley fuzzy authorization correspondence

In this section we study relational power in fuzzy authorization structures. Our aim is to extend

the concepts introduced in the previous section.

Definition 4.19 An allocation rule for fuzzy authorization structures assigns to each fuzzy

authorization operator on N a mapping in
(
[0, 1]N

)N
.

In a similar way as we defined the Shapley authorization correspondence, we make use of the

Shapley value to introduce an allocation rule for fuzzy authorization structures.

Definition 4.20 The Shapley fuzzy authorization correspondence assigns to each fuzzy authorization

operator a ∈ FAN the mapping ξ(a) ∈
(
[0, 1]N

)N
defined as

ξi(a) = (ϕi(aj))j∈N for every i ∈ N,

where ϕ is the Shapley value.

We denote ξij(a) = ϕi(aj). Observe that ξ (a) can be identified with a matrix in Mn(R). In
fact, ξ(a) is a submatrix of the matrix ζa defined in Corollary 3.18, since for every a ∈ FAN and

i, j ∈ N it holds that

ξij(a) = ϕi(aj) = ϕi

(
ua{j}

)
= φi(u{j}, a) = (ζa)i,{j} .

In a similar way as we did in the crisp case, ξ (a) can be interpreted as a fuzzy cognitive map on N .

Our first goal will be to characterize the Shapley fuzzy authorization correspondence. To do that,

we consider the properties stated below. In the statement of these properties ψ is an allocation rule

for fuzzy authorization structures.
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• EFFICIENCY. For every a ∈ FAN it holds that

∑
k∈N

ψk(a) = a(N).

Definition 4.21 Let a ∈ FAN . An agent i ∈ N is said to be null in (N, a) if a(E) = a(E \ {i})
for all E ⊆ N .

• NULL AGENT PROPERTY. For every a ∈ FAN and i null agent in (N, a), it holds that

ψi(a) = 0.

• TRANSFER PROPERTY. For every a, â, b, b̂ ∈ FAN such that a− â = b− b̂, it holds that

ψ(a)− ψ(â) = ψ(b)− ψ(b̂).

• EQUAL TREATMENT PROPERTY. For every a ∈ FAN and i, j ∈ N such that

a(E ∪ {i}) = a(E ∪ {j}) for all E ⊆ N \ {i, j}, it holds that

ψi(a) = ψj(a).

• HOMOGENEITY. For every a ∈ FAN and t ∈ (0, 1), it holds that

ψ(ta) = tψ(a).

In the following theorem we see that these five properties stated above uniquely determine the

Shapley fuzzy authorization correspondence. Before, we make a remark.

Remark 4.22 Let a ∈ FAN and i, j ∈ N . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that
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{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. Then,

ξij(a) = ϕi(aj) = ϕi

(
ua{j}

)
= φi(u{j}, a)

=

m∑
l=1

(hl − hl−1) Φi

(
u{j}, a

hl

)
=

m∑
l=1

(hl − hl−1) Ξij(a
hl).

So it holds that

ξ(a) =

m∑
l=1

(hl − hl−1) Ξ(a
hl).

Theorem 4.23 An allocation rule for fuzzy authorization structures is equal to the Shapley fuzzy

authorization correspondence if and only if it satisfies the properties of efficiency, null agent, transfer,

equal treatment and homogeneity.

Proof. Firstly, we see that the Shapley fuzzy authorization correspondence satisfies the five

properties mentioned.

Efficiency. Let a ∈ FAN . For every j ∈ N it holds that(∑
k∈N

ξk(a)

)
j

=
∑
k∈N

ϕk(aj) = aj(N).

Null agent property. Let a ∈ FAN and i ∈ N a null agent in (N, a). It is clear that, for every

j ∈ N , i is a null player in aj . From the null player property of the Shapley value we conclude that

ϕi(aj) = 0 for every j ∈ N . Therefore, ξi(a) = 0.

Transfer property. Let a, â, b, b̂ ∈ FAN be such that a− â = b− b̂. Let i, j ∈ N . It holds that

ξij(a)− ξij(â) = ϕi(aj)− ϕi(âj) = ϕi (aj − âj)

= ϕi(bj − b̂j) = ϕi(bj)− ϕi(b̂j)

= ξij(b)− ξij(b̂).

Equal treatment property. Let a ∈ FAN and i, j ∈ N be such that a(E∪{i}) = a(E∪{j})
for all E ⊆ N \{i, j}. For every k ∈ N , it holds that ak(E∪{i}) = ak(E∪{j}) for all E ⊆ N \{i, j}.
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Using the equal treatment property of the Shapley value we derive that ϕi(ak) = ϕj(ak) for every

k ∈ N , and hence ξi(a) = ξj(a).

Homogeneity. It follows easily from the definition of the Shapley fuzzy authorization

correspondence.

It remains to prove that the properties in the theorem uniquely determine the Shapley fuzzy

authorization correspondence. Let ψ be an allocation rule for fuzzy authorization structures satisfying

the properties of efficiency, null agent, transfer, equal treatment and homogeneity. We must prove

that

ψ(a) = ξ(a) for every n ∈ N and a ∈ FAN .

We proceed by strong induction on ⌈(a) where

⌈(a) = |{ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}| for all a ∈ FAN .

1. Base case. ⌈(a) = 0.

Notice that we can identify AN with the set {a ∈ FAN : im(a) ⊆ {0, 1}N}. From this

point of view, we can say that the restriction of ψ to the set of fuzzy authorization operators

a with ⌈(a) = 0 is an allocation rule for authorization structures. It is easy to check that

such restriction satisfies the properties of efficiency, null agent, transfer and equal treatment.

Therefore, using Theorem 4.6, it must hold that ψ(a) = ξ(a) for every n ∈ N and a ∈ FAN

with ⌈(a) = 0.

2. Inductive step. Let n ∈ N and a ∈ FAN with ⌈(a) > 0. We want to prove that

ψ(a) = ξ(a). Take t ∈ {ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}. It holds that

a = ta[0,t] + (1− t)a[t,1],

whence, using transfer, homogeneity and null agent, it follows that

ψ(a) = t ψ(a[0,t]) + (1− t)ψ(a[t,1]), (4.19)

ξ(a) = t ξ(a[0,t]) + (1− t) ξ(a[t,1]). (4.20)
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Since ⌈(a[0,t]) < ⌈(a) and ⌈(a[t,1]) < ⌈(a) it follows by induction hypothesis that

ψ(a[0,t]) = ξ(a[0,t]), (4.21)

ψ(a[t,1]) = ξ(a[t,1]). (4.22)

From (4.19), (4.20), (4.21) and (4.22) it follows that ψ(a) = ξ(a).

2

4.5 Indices for fuzzy authorization structures

In a similar way as we defined the sovereignty, influence and power indices for authorization

structures, we can define analogous indices for fuzzy authorization structures.

Let a ∈ FAN and i, j ∈ N with i ̸= j. The number ξij(a) is called the influence index of i over

j in (N, a).

Definition 4.24 Let a ∈ FAN and i ∈ N . The sum of the influence indices of i over each one of

the rest of agents is called the influence index of i in (N, a) and is denoted by infi(a), that is,

infi(a) =
∑

j∈N\{i}

ξij(a).

Definition 4.25 Let a ∈ FAN and i ∈ N . The number ξii(a) is called the sovereignty index of i in

(N, a) and is denoted by sovi(a).

Definition 4.26 Let a ∈ FAN and i ∈ N . The addition of the influence and sovereignty indices of

i is called the power index of i in (N, a) and is denoted by powi(a), that is,

powi(a) = sovi(a) + infi(a).

Remark 4.27 Let a ∈ FAN and {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. From Remark
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4.22, it holds that

sov(a) =

m∑
l=1

(hl − hl−1) sov(a
hl), (4.23)

inf(a) =

m∑
l=1

(hl − hl−1) inf(a
hl), (4.24)

pow(a) =
m∑
l=1

(hl − hl−1) pow(a
hl). (4.25)

We aim to see the most important properties of the sovereignty, influence and power indices. Let

a ∈ FAN and i ∈ N . We denote

Vi(a) = {j ∈ N : j has veto power over i in (N, a)} ,

Pi(a) = {j ∈ N : i depends partially on j in (N, a)} .

Firstly, we see a characterization of the sovereignty index. To that end, we consider the properties

stated below. In the statement of these properties ψ is a mapping from FAN to RN .

Definition 4.28 Let a ∈ FAN and i ∈ N . An agent i is said to be inactive in (N, a) if ai(N) = 0.

• INACTIVE AGENT PROPERTY. For every a ∈ FAN and i ∈ N such that i is inactive in (N, a), it

holds that

ψi(a) = 0.

• MAXIMUM AND MINIMUM SOVEREIGNTY. For every a ∈ FAN and i ∈ N such that i is not

inactive in (N, a), it holds that

ai(N)

|Pi(a)|
6 ψi(a) 6

ai(N)

|Vi(a)|
.

• TRANSFER PROPERTY. For every a, â, b, b̂ ∈ FAN such that a− â = b− b̂, it holds that

ψ(a)− ψ(â) = ψ(b)− ψ(b̂).
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• HOMOGENEITY. For every a ∈ FAN and t ∈ (0, 1) it holds that

ψ(ta) = tψ(a).

In the following theorem we see that these properties uniquely determine the sovereignty index.

Theorem 4.29 A mapping ψ : FAN → RN is equal to the sovereignty index if and only if it satisfies

the properties of inactive agent, maximum and minimum sovereignty, transfer and homogeneity.

Proof. Firstly, we see that the sovereignty index satisfies the properties mentioned in the theorem.

Inactive agent property. Let a ∈ FAN and i ∈ N such that i is inactive in (N, a). It follows

that ai(E) = 0 for every E ⊆ N . It holds that sovi(a) = ξii(a) = ϕi(ai) = 0.

Maximum and minimum sovereignty. Let a ∈ FAN and i ∈ N such that i is not inactive in

(N, a). Let {tl : l = 0, . . . , r} = {aj(F ) : F ⊆ N, j ∈ N} with 0 = t0 < . . . < tr. Using (4.23)

we can write

sovi(a) =
r∑

l=1

(tl − tl−1) sovi(a
tl).

Let m ∈ {1, . . . , r} such that ai(N) = tm. Notice that, given l ∈ {1, . . . , r}, if l > m then i is

inactive in (N, atl), whereas if l 6 m then i is not inactive in (N, atl). Taking into consideration the

inactive agent property of the (crisp) sovereignty index we can write

sovi(a) =

m∑
l=1

(tl − tl−1) sovi(a
tl). (4.26)

From the property of maximum and minimum sovereignty of the (crisp) sovereignty index it follows

that for every l ∈ {1, . . . ,m} it holds that

1

|Pi(atl)|
6 sovi(a

tl) 6 1

|Vi(atl)|
. (4.27)

But it is clear that

Vi(a) ⊆ Vi(a
tl) for every l ∈ {1, . . . , r} (4.28)
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and

Pi(a) ⊇ Pi(a
tl) for every l ∈ {1, . . . , r}. (4.29)

From (4.27), (4.28) and (4.29) it follows that

1

|Pi(a)|
6 sovi(a

tl) 6 1

|Vi(a)|
for every l ∈ {1, . . . ,m}. (4.30)

From (4.26) and (4.30) we obtain

ai(N)

|Pi(a)|
6 sovi(a) 6

ai(N)

|Vi(a)|
.

Transfer property and homogeneity. It is a direct consequence of the fact that the Shapley

fuzzy authorization correspondence satisfies analogous properties.

The proof of the uniqueness of the sovereignty index is similar to the proof of the uniqueness of

the Shapley fuzzy authorization correspondence. We would proceed by induction on ⌈(a). In the base

case, we would use Theorem 4.13 to derive that a mapping satisfying the properties in the theorem

must coincide with the (crisp) sovereignty index when it is restricted to authorization structures. In

the induction step, we would use transfer, homogeneity and inactive agent to prove the uniqueness.

2

Like in the crisp case, we can wonder when the sovereignty index of an agent is equal to 1. And

the answer is similar to that given in the crisp case, as we will see.

Definition 4.30 Let a ∈ FAN and i ∈ N . An agent i is said to be sovereign in (N, a) if ai ({i}) = 1.

Lemma 4.31 Let a ∈ FAN and i ∈ N . Then, i is sovereign in (N, a) if and only if sovi(a) = 1.

Proof. Let a ∈ FAN and i ∈ N . It holds that

sovi(a) = ξii(a) =
∑

{E⊆N : i∈E}

pE [ai(E)− ai(E \ {i})] =
∑

{E⊆N : i∈E}

pE ai(E). (4.31)
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We know from Lemma 4.12 that ∑
{E⊆N : i∈E}

pE = 1. (4.32)

From (4.31) and (4.32) it easily follows that sovi(a) is equal to 1 if and only if ai(E) = 1 for every

E ⊆ N with i ∈ E, or, equivalently, ai({i}) = 1. 2

Now we aim to characterize the influence index. We consider the following property, where ψ is

a mapping from FAN into RN .

• MAXIMUM AND MINIMUM INFLUENCE. For every a ∈ FAN and i ∈ N , it holds that

∑
{j∈supp(a(N))\{i}: i∈Vj(a)}

aj(N)

|Pj(a)|
6 ψi(a) 6

∑
{j∈supp(a(N))\{i}: i∈Pj(a)}

aj(N)

|Vj(a)|
.

In the following theorem we see that this property together with transfer and homogeneity uniquely

determine the influence index. We need a previous lemma.

Lemma 4.32 Let a ∈ FAN and i, j ∈ N . It holds that

ξij(a) 6 sovj(a)

and the equality holds if and only if i has veto power over j in (N, a).

Proof. Let a ∈ FAN and i, j ∈ N . Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with

0 = t0 < . . . < tr. Using Remarks 4.22 and 4.27 we can write

ξij(a) =

r∑
l=1

(tl − tl−1) Ξij(a
tl),

sovj(a) =
r∑

l=1

(tl − tl−1) sovj(a
tl).

From these two equalities and Lemma 4.16 it follows that ξij(a) 6 sovj(a). Moreover, the equality

holds if and only if Ξij(a
tl) = sovj(a

tl) for every l ∈ {1, . . . , r}. But, from the second statement of
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Lemma 4.16, this is equivalent to i ∈ Vj(a
tl) for every l ∈ {1, . . . , r}, which holds if and only if i

has veto power over j in (N, a). 2

Theorem 4.33 A mapping ψ : FAN → RN is equal to the influence index if and only if it satisfies

the properties of maximum and minimum influence, transfer and homogeneity.

Proof. Firstly, we prove that the influence index satisfies the properties mentioned in the theorem.

Maximum and minimum influence. Let a ∈ FAN and i ∈ N . Recall that

ξij(a) = ϕi(aj) =
∑

{E⊆N : i∈E}

pE [aj(E)− aj(E \ {i})] .

Notice that ξij(a) is strictly positive if and only if j depends partially on i in (N, a). So we can write

infi(a) =
∑

{j∈supp(a(N))\{i}: i∈Pj(a)}

ξij(a)

which, from Lemma 4.32, is less or equal to

∑
{j∈supp(a(N))\{i}: i∈Pj(a)}

sovj(a)

which, from the property of maximum and minimum sovereignty, is less or equal to

∑
{j∈supp(a(N))\{i}: i∈Pj(a)}

aj(N)

|Vj(a)|
.

So we have proved the right-hand inequality. Let us prove the other one:

infi(a) =
∑

{j∈supp(a(N))\{i}: i∈Pj(a)}

ξij(a) >
∑

{j∈supp(a(N))\{i}: i∈Vj(a)}

ξij(a)

which, using the second statement of Lemma 4.32, is equal to

∑
{j∈supp(a(N))\{i}: i∈Vj(a)}

sovj(a)
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which, from the property of maximum and minimum sovereignty, is greater or equal to

∑
{j∈supp(a(N))\{i}: i∈Vj(a)}

aj(N)

|Pj(a)|
.

Transfer property and homogeneity. It is a direct consequence of the fact that the Shapley

fuzzy authorization correspondence satisfies analogous properties.

The proof of the uniqueness of the influence index is similar to the proof of the uniqueness of

the Shapley fuzzy authorization correspondence. We would proceed by induction on ⌈(a). In the base

case, we would use Theorem 4.17 to conclude that a mapping satisfying the properties in the theorem

must coincide with the (crisp) influence index when it is restricted to authorization structures. In the

induction step, we would proceed in a similar way as in the proof referred to. 2

Finally, we characterize the power index. For that purpose, we consider the following properties,

where ψ is a mapping from FAN into RN .

• EFFICIENCY. For every a ∈ FAN it holds

∑
k∈N

ψk(a) =
∑
k∈N

ak(N).

• NULL AGENT PROPERTY. For every a ∈ FAN and i null agent in (N, a) it holds that

ψi(a) = 0.

• EQUAL TREATMENT PROPERTY. For every a ∈ FAN and i, j ∈ N such that

a(E ∪ {i}) = a(E ∪ {j}) for all E ⊆ N \ {i, j} it holds that

ψi(a) = ψj(a).

Theorem 4.34 A mapping ψ : FAN → RN is equal to the power index if and only if it satisfies the

properties of efficiency, null agent, transfer, equal treatment and homogeneity.
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Proof. That the power index satisfies the properties mentioned in the theorem is a direct

consequence of the fact that the Shapley fuzzy authorization correspondence satisfies analogous

properties. The proof that the properties in the theorem uniquely determine the power index is

almost identical to the proof of the uniqueness of the Shapley fuzzy authorization correspondence,

so we omit it. 2

Example 4.35 Let N = {1, 2, 3, 4}. Consider the graph G = (N,E) where

E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}} .

This graph is illustrated below

1

34

2

Given E ⊆ N and i ∈ E we denote C(E, i) the connected component of the induced subgraph G[E]

that contains i. Let a : 2N → [0, 1]N defined as

ai(E) =


|C(E, i)|

|N |
if i ∈ E,

0 if i ̸∈ E.

It is easy to check that a is a fuzzy authorization operator on N . The following table gives the vector
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a(E) for each nonempty E ⊆ N .

E a1(E) a2(E) a3(E) a4(E)

{1} 1
4 0 0 0

{2} 0 1
4 0 0

{3} 0 0 1
4 0

{4} 0 0 0 1
4

{1, 2} 1
2

1
2 0 0

{1, 3} 1
2 0 1

2 0

{1, 4} 1
2 0 0 1

2

{2, 3} 0 1
2

1
2 0

{2, 4} 0 1
4 0 1

4

{3, 4} 0 0 1
4

1
4

{1, 2, 3} 3
4

3
4

3
4 0

{1, 2, 4} 3
4

3
4 0 3

4

{1, 3, 4} 3
4 0 3

4
3
4

{2, 3, 4} 0 1
2

1
2

1
4

{1, 2, 3, 4} 1 1 1 1

If we calculate the matrix (ξij(a))16i,j64 we obtain

ξ(a) =
1

24


15 5 5 7

3 14 3 2

3 3 14 2

3 2 2 13



Let us calculate the sovereignty, influence and power indices.
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sov1(a) =
5

8
, sov2(a) =

7

12
, sov3(a) =

7

12
, sov4(a) =

13

24
,

inf1(a) =
17

24
, inf2(a) =

1

3
, inf3(a) =

1

3
, inf4(a) =

7

24
,

pow1(a) =
4

3
, pow2(a) =

11

12
, pow3(a) =

11

12
, pow4(a) =

5

6
.

Notice that in this example we could use the power index as a centrality index. If we prefer to obtain

a centrality index that assigns zero to isolated vertices, then we can consider b ∈ FAN given by

bi(E) =


|C(E, i)| − 1

|N | − 1
if i ∈ E,

0 if i ̸∈ E.

If we calculate (ξij(b))16i,j64 we obtain

ξ(b) =
1

18


9 5 5 7

3 8 3 2

3 3 8 2

3 2 2 7



Let us calculate the sovereignty, influence and power indices.

sov1(b) =
1

2
, sov2(b) =

4

9
, sov3(b) =

4

9
, sov4(b) =

7

18
,

inf1(b) =
17

18
, inf2(b) =

4

9
, inf3(b) =

4

9
, inf4(b) =

4

9
,

pow1(b) =
13

9
, pow2(b) =

8

9
, pow3(b) =

8

9
, pow4(b) =

7

9
.

Rounding to the nearest thousandth, we can identify ξ(b) with the fuzzy cognitive map represented

by the following fuzzy digraph

Values for games with authorization structure
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4

1

3

20.5 0.444

0.389 0.444

0.278

0.167

0
.1
6
7

0
.3
8
9

0.111

0.111

0
.1
6
7

0
.1
6
7

4.6 The Banzhaf authorization correspondence

In a similar way as we used the Shapley value to define the Shapley authorization correspondence,

in this section we make use of the Banzhaf value to define another allocation rule for authorization

structures.

Definition 4.36 The Banzhaf authorization correspondence assigns to each authorization operator

A ∈ AN the mapping Υ(A) ∈
(
[0, 1]N

)N
defined as

Υi(A) = (βi(Aj))j∈N for every i ∈ N,

where β is the Banzhaf value.

We denote Υij(A) = βi(Aj). Notice that Υ(A) can be identified with a matrix in Mn(R).
Moreover, similarly as we did with Ξ(A), Υ(A) can be interpreted as a fuzzy cognitive map on N .

Also notice that for every A ∈ AN and i, j ∈ N it holds that

Υij(A) = βi(Aj) = βi

(
uA{j}

)
= Bi(u{j}, A).
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Example 4.37 Let (N,A) be the authorization structure given in Example 4.4. It holds that

β(A1) =

(
5

8
,
3

8
,
1

8
,
1

8

)
,

β(A2) = (0, 1, 0, 0) ,

β(A3) =

(
0, 0,

1

2
,
1

2

)
,

β(A4) = (0, 0, 0, 1) .

So we have obtained that

Υ(A) =



5

8
0 0 0

3

8
1 0 0

1

8
0

1

2
0

1

8
0

1

2
1


.

We can identify Υ(A) with the fuzzy cognitive map represented by the following fuzzy digraph

1 3

42

0
.3
7
5

0.125

0
.5

1 1

0.625 0.5

Values for games with authorization structure
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We aim to characterize the Banzhaf authorization correspondence. To do that, we consider the

properties stated below. In the statement of these properties Ψ is an allocation rule for authorization

structures.

• 2-EFFICIENCY. For every A ∈ AN and i, j ∈ N such that every agent in N \ {i, j} is a null

agent in (N,A) it holds that ∑
k∈N

Ψk(A) = 1A(N).

Definition 4.38 Let A ∈ AN and let i, j be two different agents in N . The agents i and j can be

amalgamated in (N,A) if for every E ⊆ N such that {i, j} ⊆ E and {i, j}∩A(E) ̸= ∅ it holds that

{i, j} ⊆ A(E).

• AMALGAMATION. For every A ∈ AN and i, j two different agents in N such that i, j can be

amalgamated in (N,A), it holds that

Ψik(A) + Ψjk(A) = Ψ⌢
ij k

(Aij) for every k ∈ N \ {i, j}

and

Ψik(A) + Ψjk(A) = Ψ⌢
ij

⌢
ij
(Aij) for every k ∈ {i, j}.

In the following theorem we see that these properties together with null agent, transfer and equal

treatment uniquely determine the Banzhaf authorization correspondence.

Theorem 4.39 An allocation rule for authorization structures is equal to the Banzhaf authorization

correspondence if and only if it satisfies the properties of null agent, transfer, equal treatment,

2-efficiency and amalgamation.

Proof. That the Banzhaf authorization correspondence satisfies the properties of null agent, transfer

and equal treatment can be proved in a similar way as we did for the Shapley authorization

correspondence in Theorem 4.6. Let us see that the Banzhaf authorization correspondence satisfies

2-efficiency and amalgamation.
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2-Efficiency. Let A ∈ AN and i, j ∈ N be such that every agent in N \ {i, j} is a null agent in

(N,A). Let l ∈ N . It is clear that every player in N \ {i, j} is an irrelevant player in
(
u{l}, A

)
. From

the 2-efficiency property of the Banzhaf authorization value it follows that

∑
k∈N

Bk

(
u{l}, A

)
= u{l}(A(N)) =

(
1A(N)

)
l
. (4.33)

Also notice that(∑
k∈N

Υk(A)

)
l

=
∑
k∈N

Υkl(A) =
∑
k∈N

βk(Al) =
∑
k∈N

βk

(
uA{l}

)
=
∑
k∈N

Bk

(
u{l}, A

)
. (4.34)

From (4.33) and (4.34) we obtain that(∑
k∈N

Υk(A)

)
l

=
(
1A(N)

)
l
.

Amalgamation. Let A ∈ AN and let i, j be two different agents in N such that i, j can be

amalgamated in (N,A). If k ∈ N \ {i, j} we can write

Υik(A) + Υjk(A) = Bi

(
u{k}, A

)
+Bj

(
u{k}, A

)
. (4.35)

From the fact that i and j can be amalgamated in (N,A), it follows that they can be amalgamated

in (u{k}, A). Moreover, it is clear that
(
u{k}

)ij
is equal to the unanimity game (on N ij) u{k}. Using

the amalgamation property of the Banzhaf authorization value we can write

Bi

(
u{k}, A

)
+Bj

(
u{k}, A

)
= B⌢

ij

((
u{k}

)ij
, Aij

)
= B⌢

ij

(
u{k}, A

ij
)
= Υ⌢

ij k
(Aij). (4.36)

From (4.35) and (4.36) we obtain the first statement of the amalgamation property. As for the

second statement, it holds that

Υii(A) + Υji(A) = Bi

(
u{i}, A

)
+Bj

(
u{i}, A

)
. (4.37)

It is clear that i and j can be amalgamated in (u{i}, A). Moreover, it holds that
(
u{i}

)ij
= u{⌢

ij

}.

Values for games with authorization structure
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Using the amalgamation property of the Banzhaf authorization value we can write

Bi

(
u{i}, A

)
+Bj

(
u{i}, A

)
= B⌢

ij

((
u{i}

)ij
, Aij

)
= B⌢

ij

(
u{⌢

ij

}, Aij

)
= Υ⌢

ij
⌢
ij
(Aij). (4.38)

From (4.37) and (4.38) we obtain

Υii(A) + Υji(A) = Υ⌢
ij

⌢
ij
(Aij).

Now we show that the properties in the theorem uniquely determine the Banzhaf authorization

correspondence. Let Ψ be an allocation rule for authorization structures satisfying the properties of

null agent, transfer, equal treatment, 2-efficiency and amalgamation. We must prove that Ψ = Υ.

Let n ∈ N and let N be a set of cardinality n. Let A ∈ AN . If A(N) = ∅ we know, from the null

agent property, that Ψ(A) = Υ(A) = 0. If A(N) ̸= ∅, we can write

A =
∪

{(T,i)∈2N×N : i∈A(T )}

CT,i.

In order to prove that Ψ = Υ, it is enough to show that for every n,m ∈ N, T1, . . . , Tm ∈ 2N \ {∅}
and i1, . . . , im ∈ N with ik ∈ Tk for all k = 1, . . . ,m, it holds that

Ψ

(
m∪
k=1

CTk,ik

)
= Υ

(
m∪
k=1

CTk,ik

)
.

Let us prove this equality by strong induction on m.

1. Base case. We must prove that for every n ∈ N, T ∈ 2N \ {∅} and i ∈ T it holds that

Ψ(CT,i) = Υ (CT,i) .

We prove this equality by induction on |T |.

1.1 Base case. |T | 6 2. Let n ∈ N, T ∈ 2N \ {∅} with |T | 6 2 and i ∈ T . It is clear that

every agent in N \T is a null agent in (N,CT,i). From the 2-efficiency property it follows
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that ∑
k∈N

Ψk (CT,i) = 1{i}. (4.39)

And from the null agent property we obtain that

Ψl (CT,i) = 0 for every l ∈ N \ T. (4.40)

Moreover, using the equal treatment property we can derive that

Ψj (CT,i) = Ψi (CT,i) for every j ∈ T. (4.41)

From (4.39), (4.40) and (4.41) we conclude that

Ψk(CT,i) =


1

|T |
1{i} if k ∈ T,

0 if k ∈ N \ T.

Since Υ also satisfies the properties used, it is clear that Ψ(CT,i) = Υ(CT,i).

1.2 Inductive step. Let n ∈ N, T ∈ 2N \{∅} with |T | > 3 and i ∈ T . From the null agent

property it follows that

Ψl (CT,i) = Υl (CT,i) = 0 for every l ∈ N \ T. (4.42)

Since Ψ and Υ satisfy the equal treatment property it holds that

Ψl (CT,i) = Ψi (CT,i) for every l ∈ T, (4.43)

Υl (CT,i) = Υi (CT,i) for every l ∈ T. (4.44)

Take j and k two different agents in T \ {i}. It is clear that j and k can be amalgamated

in (N,CT,i). From the amalgamation property we obtain that

Ψjl (CT,i) + Ψkl (CT,i) = Ψ⌢
jk l

(
(CT,i)

jk
)

for every l ∈ N \ {j, k} (4.45)

Ψjl (CT,i) + Ψkl (CT,i) = Ψ⌢
jk

⌢
jk

(
(CT,i)

jk
)

for every l ∈ {j, k}, (4.46)

Values for games with authorization structure
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Υjl (CT,i) + Υkl (CT,i) = Υ⌢
jk l

(
(CT,i)

jk
)

for every l ∈ N \ {j, k}, (4.47)

Υjl (CT,i) + Υkl (CT,i) = Υ⌢
jk

⌢
jk

(
(CT,i)

jk
)

for every l ∈ {j, k}. (4.48)

It is easy to check that (CT,i)
jk is equal to the authorization operator (on N jk)

C
(T\{j,k})∪{

⌢
jk},i

. So we have that

Ψ
(
(CT,i)

jk
)

= Ψ

(
C
(T\{j,k})∪{

⌢
jk},i

)
, (4.49)

Υ
(
(CT,i)

jk
)

= Υ

(
C
(T\{j,k})∪{

⌢
jk},i

)
. (4.50)

Since | (T \ {j, k}) ∪ {
⌢
jk}| = |T | − 1 we know from the induction hypothesis that

Ψ

(
C
(T\{j,k})∪{

⌢
jk},i

)
= Υ

(
C
(T\{j,k})∪{

⌢
jk},i

)
. (4.51)

From (4.49), (4.50) and (4.51) we obtain that

Ψ
(
(CT,i)

jk
)
= Υ

(
(CT,i)

jk
)
. (4.52)

From (4.45), (4.46), (4.47), (4.48) and (4.52) we conclude that

Ψj (CT,i) + Ψk (CT,i) = Υj (CT,i) + Υk (CT,i) . (4.53)

From (4.43), (4.44) and (4.53) it follows that

Ψl (CT,i) = Υl (CT,i) for every l ∈ T. (4.54)

Finally, from (4.42) and (4.54) we conclude that Ψ(CT,i) = Υ (CT,i).

2. Inductive step. The reasoning is equal to that followed in the case of the Shapley

authorization correspondence.

2
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4.7 The Banzhaf fuzzy authorization correspondence

In a similar way as we used the Shapley value to define the Shapley fuzzy authorization

correspondence, in this section we make use of the Banzhaf value to define another allocation rule

for fuzzy authorization structures.

Definition 4.40 The Banzhaf fuzzy authorization correspondence assigns to each fuzzy authorization

operator a ∈ FAN the mapping τ(a) ∈
(
[0, 1]N

)N
defined as

τi(a) = (βi(aj))j∈N for every i ∈ N,

where β is the Banzhaf value.

We denote τij(a) = βi(aj). Observe that τ (a) can be identified with a matrix in Mn(R).
Moreover, τ(a) can be interpreted as a fuzzy cognitive map onN . Also notice that for every a ∈ FAN

and i, j ∈ N it holds that

τij(a) = βi(aj) = βi

(
ua{j}

)
= Bi(u{j}, a).

We aim to characterize the Banzhaf fuzzy authorization correspondence. To do that, we consider

the properties stated below. In the statement of these properties ψ is an allocation rule for fuzzy

authorization structures.

• 2-EFFICIENCY. For every a ∈ FAN and i, j ∈ N such that every agent in N \ {i, j} is a null

agent in (N, a) it holds that ∑
k∈N

ψk(a) = a(N).

Definition 4.41 Let a ∈ FAN and let i, j be two different agents in N . The agents i and j can be

amalgamated in (a,N) if for every E ⊆ N such that {i, j} ⊆ E it holds that ai(E) = aj(E).

Values for games with authorization structure
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• AMALGAMATION. For every a ∈ FAN and i, j two different agents in N such that i, j can be

amalgamated in (N, a), it holds that

ψik(a) + ψjk(a) = ψ⌢
ij k

(aij) for every k ∈ N \ {i, j}

and

ψik(a) + ψjk(a) = ψ⌢
ij

⌢
ij
(aij) for every k ∈ {i, j}.

In the following theorem we see that these properties together with null agent, transfer, equal

treatment and homogeneity uniquely determine the Banzhaf fuzzy authorization correspondence.

Before, we make a remark.

Remark 4.42 Let a ∈ FAN and i, j ∈ N . Let {hl : l = 0, . . . ,m} ⊂ [0, 1] be such that

{hl : l = 0, . . . ,m} ⊇ {ak(F ) : F ⊆ N, k ∈ N} with 0 = h0 < . . . < hm. It holds that

τij(a) = βi(aj) = βi

(
ua{j}

)
= Bi(u{j}, a)

=
m∑
l=1

(hl − hl−1)Bi

(
u{j}, a

hl

)
=

m∑
l=1

(hl − hl−1)Υij(a
hl).

So we have seen that

τ(a) =
m∑
l=1

(hl − hl−1)Υ(ahl).

Theorem 4.43 An allocation rule for fuzzy authorization structures is equal to the Banzhaf fuzzy

authorization correspondence if and only if it satisfies the properties of null agent, transfer, equal

treatment, 2-efficiency, amalgamation and homogeneity.

Proof. That the Banzhaf fuzzy authorization correspondence satisfies the properties of null agent,

transfer, equal treatment and homogeneity can be proved in a similar way as we did for the Shapley

fuzzy authorization correspondence in Theorem 4.23. Let us see that the Banzhaf fuzzy authorization

correspondence satisfies 2-efficiency and amalgamation.

2-Efficiency. Let a ∈ FAN and i, j ∈ N be such that every agent in N \ {i, j} is a null agent

in (N, a). Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr. For every
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l ∈ {1, . . . , r} the agents in N \ {i, j} are null agents in (N, atl). From the 2-efficiency property of

the Banzhaf authorization correspondence it follows that

∑
k∈N

Υk(a
tl) = 1atl (N) for every l ∈ {1, . . . , r}. (4.55)

Using Remark 4.42 and (4.55) we have that

∑
k∈N

τk(a) =
∑
k∈N

(
r∑

l=1

(tl − tl−1)Υk(a
tl)

)

=
r∑

l=1

(tl − tl−1)

(∑
k∈N

Υk(a
tl)

)

=
r∑

l=1

(tl − tl−1)1atl (N) = a(N).

Amalgamation. Let a ∈ FAN and let i, j be two different agents in N such that i, j can be

amalgamated in (N, a). Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr. It

is clear that i and j can be amalgamated in (N, atl) for every l ∈ {1, . . . , r}. From the amalgamation

property of the Banzhaf authorization correspondence it follows that

Υik(a
tl) + Υjk(a

tl) = Υ⌢
ij k

(
(atl)ij

)
for every k ∈ N \ {i, j} and l ∈ {1, . . . , r}, (4.56)

Υik(a
tl) + Υjk(a

tl) = Υ⌢
ij

⌢
ij

(
(atl)ij

)
for every k ∈ {i, j} and l ∈ {1, . . . , r}. (4.57)

From (3.1) we know that

(atl)ij = (aij)tl for every l ∈ {1, . . . , r}. (4.58)

Let k ∈ N \ {i, j}. Using Remark 4.42, (4.56) and (4.58) we can write

τik(a) + τjk(a) =
r∑

l=1

(tl − tl−1)Υik(a
tl) +

r∑
l=1

(tl − tl−1)Υik(a
tl)

=
r∑

l=1

(tl − tl−1)Υ⌢
ij k

(
(atl)ij

)
=

r∑
l=1

(tl − tl−1)Υ⌢
ij k

(
(aij)tl

)
= τ⌢

ij k

(
aij
)
.

Values for games with authorization structure



4.7. THE BANZHAF FUZZY AUTHORIZATION CORRESPONDENCE 109

Similarly, using Remark 4.42, (4.57) and (4.58) we can obtain that

τik(a) + τjk(a) = τ⌢
ij

⌢
ij

(
aij
)

for every k ∈ {i, j}.

It remains to prove that the properties in the theorem uniquely determine the Banzhaf fuzzy

authorization correspondence. Let ψ be an allocation rule for fuzzy authorization structures satisfying

the properties of null agent, transfer, equal treatment, 2-efficiency, amalgamation and homogeneity.

We must prove that

ψ(a) = τ(a) for every n ∈ N and a ∈ FAN .

We proceed by strong induction on ⌈(a) where

⌈(a) = |{ak(F ) : F ⊆ N, k ∈ N} \ {0, 1}| for all a ∈ FAN .

1. Base case. ⌈(a) = 0.

Notice that we can identify AN with the set {a ∈ FAN : im(a) ⊆ {0, 1}N}. From this

point of view, we can say that the restriction of ψ to the set of fuzzy authorization operators

a with ⌈(a) = 0 is an allocation rule for authorization structures. It is easy to check that

such restriction satisfies the properties of null agent, transfer, equal treatment, 2-efficiency and

amalgamation. Therefore, using Theorem 4.39, it must hold that ψ(a) = τ(a) for every n ∈ N
and a ∈ FAN with ⌈(a) = 0.

2. Inductive step. The reasoning is equal to that followed in the case of the Shapley fuzzy

authorization correspondence.

2

Example 4.44 Consider the graph G and the fuzzy authorization operators a and b defined in

Example 4.35. It holds that

τ(a) =
1

16


10 3 3 4

2 9 2 1

2 2 9 1

2 1 1 8


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τ(b) =
1

12


6 3 3 4

2 5 2 1

2 2 5 1

2 1 1 4


Rounding to the nearest thousandth, we can identify τ(b) with the fuzzy cognitive map represented

by the following fuzzy digraph

4

1

3

20.5 0.417

0.333 0.417

0.25

0.167

0
.1
6
7

0
.3
3
3

0.083

0.083

0
.1
6
7

0
.1
6
7
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Chapter5
Games with interior operator structure

In the second chapter we introduced authorization operators and provided a sharing value for

games with authorization structure. In this chapter we will focus on a particular class of authorization

operators: interior operators. Studying interior operators separately is due to a couple of reasons.

Firstly, they have, as we will see, especially interesting properties. And secondly, we aim to give a

characterization of the Shapley authorization value restricted to interior operator structures.

5.1 Interior operators

The concept of interior operator is very close to that of restriction introduced by Derks and

Peters [33], as we can see in the following definition.

Definition 5.1 An authorization operator A ∈ AN is said to be an interior operator if it satisfies

the following conditions:

1. A(N) = N,

2. A(A(E)) = A(E) for every E ⊆ N.

Observe that interior operators are particular cases of restrictions. Actually, the model proposed

by Derks and Peters would not lose generality if they considered just interior operators. Indeed, in

their model, given a restriction ρ and a game v on N , the players in N \ ρ(N) are irrelevant and

receive zero payoff, whereas the players in ρ(N) get the same payoff that would receive if the players

111
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in N \ ρ(N) were eliminated from the game and we considered the restriction of v to 2ρ(N) and the

interior operator resulting from restricting ρ to 2ρ(N).

Given an interior operator A ∈ AN , we can consider the family OA = {E ⊆ N : A(E) = E}.
In this way, we can identify an interior operator with a family of coalitions that is union-closed and

contains the empty set and the grand coalition. Via this identification, we can say that some of the

families of feasible coalitions considered in literature to model games with restricted cooperation are

interior operators. For instance, that is the case of antimatroids [3].

If we see the definition of interior operator, the first condition is very clear. But what is the

meaning of the second condition? In the following we see that this condition establishes that the

veto relations induced by A are transitive. We need a previous definition.

Definition 5.2 Let A ∈ AN , E ⊆ N and i ∈ N . A coalition E has veto power over i in (N,A) if

i ̸∈ A(N \ E).

Suppose that we have a game v ∈ GN with authorization structure (N,A). Take E ⊆ N and

i ∈ N . In this context, saying that E has veto power over i in (N,A) means that player i will not

be allowed to play the game v in any coalition disjoint from E. Remember that in Definition 2.12

we stated that, given an authorization operator A ∈ AN and two players i, j ∈ N , i has veto power

over j in (N,A) if j ̸∈ A(N \ {i}). Notice that this is equivalent to saying that {i} has veto power

over j in (N,A).

Let A ∈ AN . We define the following relation on 2N

E
A
◃ F iff E has veto power over every player in F in (N,A)

for all E,F ⊆ N .

Proposition 5.3 Let A ∈ ÃN . The following statements are equivalent:

1. The authorization operator A is an interior operator.

2. The relation
A
◃ is transitive.

Values for games with authorization structure
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Proof. Let A ∈ ÃN .

1 =⇒ 2. Suppose that A is an interior operator on N . Let E,F,H ⊆ N such that E
A
◃ F and

F
A
◃ H. By definition, E

A
◃ F means that A(N \E) ⊆ N \F . From the monotonicity of A it follows

that A(A(N \ E)) ⊆ A(N \ F ). Now, taking into consideration that A is an interior operator and

F
A
◃ H we can derive that

A(N \ E) = A(A(N \ E)) ⊆ A(N \ F ) ⊆ N \H.

Thus, A(N \ E) ⊆ N \H, which is equivalent to E
A
◃ H.

2 =⇒ 1. Suppose that A is such that the relation
A
◃ is transitive. Let E ⊆ N . By definition, it is clear

that N \ E A
◃ N \A(E). Similarly, it holds that N \A(E)

A
◃ N \A(A(E)). From the transitivity of

A
◃ we can derive N \ E A

◃ N \A(A(E)), which means that A(E) ⊆ A(A(E)). 2

Now we intend to show that interior operators can be identified with certain functions called

interior functions.

Definition 5.4 A mapping Λ : 2N → {0, 1} is an interior function on N if it satisfies the following

conditions:

1. Λ(N) = Λ(∅) = 1,

2. Λ(E ∪ F ) > min{Λ(E),Λ(F )} for all E,F ⊆ N .

The set of all interior functions on N is denoted by IN .

Remark 5.5 If Λ ∈ IN and E1, . . . , Er ⊆ N then

Λ(E1 ∪ . . . ∪ Er) > min(Λ(E1), . . . ,Λ(Er)).

Let Λ ∈ IN . Consider intΛ : 2N → 2N defined as

intΛ(E) =
∪

{F⊆E: Λ(F )=1}

F for all E ⊆ N.
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The following two results show that there is an identification between interior functions and

interior operators.

Proposition 5.6 Let Λ ∈ IN . It holds that intΛ is an interior operator on N .

Proof. It is clear that intΛ ∈ ÃN . Now take E ⊆ N . We must prove that

intΛ(intΛ(E)) = intΛ(E). It suffices to prove that Λ(intΛ(E)) = 1. Notice that

Λ(intΛ(E)) = Λ

 ∪
{F⊆E: Λ(F )=1}

F

 > min {Λ(F ) : F ⊆ E and Λ(F ) = 1} = 1.

2

Proposition 5.7 Let A : 2N → 2N be an interior operator on N . Then, there exists a unique

Λ ∈ IN such that A = intΛ.

Proof. Let A be an interior operator on N . Take Λ : 2N → {0, 1} defined by

Λ(E) =

{
1 if A(E) = E,

0 otherwise.

We want to check that Λ ∈ IN . It is clear that Λ(N) = Λ(∅) = 1. Let E,F ⊆ N . We must see

that Λ(E ∪ F ) > min(Λ(E),Λ(F )). It can be assumed that Λ(E) = Λ(F ) = 1. It holds that

A(E ∪ F ) ⊇ A(E) ∪A(F ) = E ∪ F.

We conclude that A(E ∪ F ) = E ∪ F and, therefore, Λ(E ∪ F ) = 1.

Now we show that intΛ = A. Let E ⊆ N . On the one hand, it holds that

intΛ(E) =
∪

{F⊆E: Λ(F )=1}

F =
∪

{F⊆E:A(F )=F}

F =
∪

{F⊆E:A(F )=F}

A(F ) ⊆ A(E),

Values for games with authorization structure
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and, on the other hand, since A(A(E)) = A(E) it holds that Λ(A(E)) = 1 and hence

A(E) ⊆
∪

{F⊆E: Λ(F )=1}

F = intΛ(E).

So we have obtained that intΛ(E) = A(E).

Finally, let Λ ∈ IN be such that A = intΛ. Let E ⊆ N . Notice that if Λ(E) = 1 then

intΛ(E) = E and, therefore, A(E) = E. Conversely, if A(E) = E it holds that

Λ(E) = Λ(A(E)) = Λ(intΛ(E)) = Λ

 ∪
{F⊆E: Λ(F )=1}

F


> min {Λ(F ) : F ⊆ E and Λ(F ) = 1} = 1,

whence Λ(E) = 1. We have proved that Λ(E) = 1 if and only if A(E) = E, hence we have

uniqueness. 2

Definition 5.8 A game with interior operator structure on N is a pair (v,Λ) where v ∈ GN and

Λ ∈ IN .

Given a game with interior operator structure, we can define a characteristic function that gathers

the information from the game and the interior operator structure in a reasonable way.

Definition 5.9 Let v ∈ GN and Λ ∈ IN . The restricted game of (v,Λ), denoted by vΛ, is defined

as the restricted game of
(
v, intΛ

)
, that is,

vΛ(E) = vint
Λ
(E) = v(intΛ(E)) for all E ⊆ N.

The number vΛ(E) is the worth of E in the game with interior operator structure (v,Λ).
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5.2 The Shapley interior value

An allocation rule for games with interior operator structure is a mapping that assigns to every

game with interior operator structure a payoff vector. In this section we define and characterize an

allocation rule for games with interior operator structure.

Definition 5.10 The Shapley interior value, denoted by Φint, assigns to every game with interior

operator structure (v,Λ) the Shapley value of the restricted game vΛ,

Φint(v,Λ) = ϕ
(
vΛ
)

for all v ∈ GN and Λ ∈ IN .

Notice that

Φint(v,Λ) = Φ
(
v, intΛ

)
for all v ∈ GN and Λ ∈ IN ,

where Φ is the Shapley authorization value.

Although the Shapley interior value can be seen as the restriction of the Shapley authorization

value to the set of games with interior operator structure, the characterization given in the second

chapter is not valid here. For instance, notice that the fairness property stated in that chapter cannot

be used when we restrict to games with interior operator structure, since, given an interior operator

A ∈ AN , T ⊆ N and i ∈ T , the authorization operator AT,i is not necessarily an interior operator.

We give a characterization of the Shapley interior value based on the characterization of the Shapley

value for games with restrictions provided by Derks and Peters [33]. Let us consider the following

properties.

• NECESSARY PLAYER PROPERTY. For every monotonic v ∈ GN , Λ ∈ IN and i ∈ N a necessary

player in v, it holds that

Ψi(v,Λ) > Ψk(v,Λ) for all k ∈ N.

Definition 5.11 Let Λ ∈ IN , E ⊆ N and i, j ∈ E. A player j depends on i within E according to

Λ if j ∈ intΛ(E) \ intΛ(E \ {i}).

Values for games with authorization structure
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Definition 5.12 Let v ∈ GN , E ⊆ N and j ∈ E. A player j is a null player for v within E if

v(F ) = v(F \ {j}) for every F ⊆ E.

Definition 5.13 Let v ∈ GN , Λ ∈ IN and i ∈ N . A player i is an unnecessary player in (v,Λ) if for

every E ⊆ N and j ∈ E such that j depends on i within E according to Λ it holds that j is a null

player for v within E.

• UNNECESSARY PLAYER PROPERTY. For every v ∈ GN , Λ ∈ IN and i ∈ N such that i is an

unnecessary player in (v,Λ), it holds that

Ψi(v,Λ) = 0.

Definition 5.14 Let Λ ∈ IN and E ⊂ N . A coalition E is an inessential coalition for Λ if Λ(E) = 0.

• INESSENTIAL COALITION PROPERTY. For every v, w ∈ GN , Λ ∈ IN and E ⊂ N an inessential

coalition for Λ such that v(F ) = w(F ) for all F ∈ 2N \ {E}, it holds that

Ψ(v,Λ) = Ψ(w,Λ).

In the following theorem we provide a characterization of the Shapley interior value.

Theorem 5.15 An allocation rule for games with interior operator structure is equal to the Shapley

interior value if and only if it satisfies the properties of efficiency, additivity, necessary player,

unnecessary player and inessential coalition.

Proof. That the Shapley interior value satisfies the properties of efficiency, additivity and necessary

player follows from the fact that the Shapley interior value is the restriction of the Shapley

authorization value to the set of games with interior operator structure and the fact that the

Shapley authorization value satisfies such properties. Let us prove that Φint satisfies the properties

of unnecessary player and inessential coalition.
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Unnecessary player property. Let v ∈ GN , Λ ∈ IN and i ∈ N an unnecessary player in (v,Λ).

We must prove that Φint
i (v,Λ) = 0. Taking into consideration the definition of Φint, it is enough to

show that i is a null player in vΛ. For that, take E ⊆ N . We must check that vΛ(E) = vΛ (E \ {i}).

Observe that

intΛ(E) \ intΛ(E \ {i}) = {j ∈ N : j depends on i within E according to Λ} .

Since i is an unnecessary player in (v,Λ), every player that depends on i within E according to Λ is

a null player for v within E. So it holds that

intΛ(E) \ intΛ(E \ {i}) ⊆ {j ∈ N : j is a null player for v within E}

and, therefore

v(intΛ(E)) = v
(
intΛ (E \ {i})

)
or, equivalently

vΛ(E) = vΛ (E \ {i}) .

Inessential coalition property. Let v, w ∈ GN , Λ ∈ IN and E ⊂ N an inessential coalition

for Λ be such that v(F ) = w(F ) for all F ∈ 2N \{E}. We must prove that Φint(v,Λ) = Φint(w,Λ).

It holds that

Φint
i (v,Λ) = ϕi(v

Λ) =
∑

{H⊆N : i∈H}

pH
[
v(intΛ(H))− v(intΛ(H \ {i}))

]
,

Φint
i (w,Λ) = ϕi(w

Λ) =
∑

{H⊆N : i∈H}

pH
[
w(intΛ(H))− w(intΛ(H \ {i}))

]
,

where the numbers pH are the coefficients of the Shapley value. Therefore, in order to see that

Φint(v,Λ) = Φint(w,Λ) it suffices to prove that v(intΛ(H)) = w(intΛ(H)) for all H ⊆ N . And

this is elementary because Λ(intΛ(H)) = 1.

We have seen that the Shapley interior value satisfies the five properties in the theorem. Now we

show that it is uniquely determined by those properties.

Values for games with authorization structure
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Let Ψ be an allocation rule for games with interior operator structure satisfying the properties of

efficiency, additivity, necessary player, unnecessary player and inessential coalition. We must see that

Ψ = Φint.

Let n ∈ N and let N be a set of cardinality n. Let Λ ∈ IN . We show that Ψ(v,Λ) = Φint(v,Λ) for

every v ∈ GN .

Firstly, we prove that Ψ(cuE ,Λ) = Φint(cuE ,Λ) for all c > 0 and E ∈ 2N \ {∅} with Λ(E) = 1.

Let c > 0 and E ∈ 2N \ {∅} with Λ(E) = 1. On the one hand, since Ψ satisfies the necessary player

property, it is clear that there exists b ∈ R such that Ψi(cuE ,Λ) = b for every i ∈ E. On the other

hand, it is easy to check that the players in N \ E are unnecessary players in (cuE ,Λ). So, by the

unnecessary player property, it must be Ψi(cuE ,Λ) = 0 for every i ∈ N \ E. Now, if we use the

efficiency of Ψ, we can conclude that

Ψi(cuE ,Λ) =


c

|E|
if i ∈ E,

0 if i ̸∈ E.

Since the Shapley interior value also satisfies the properties used, it holds that

Ψ(cuE ,Λ) = Φint(cuE ,Λ) for all c > 0 and E ∈ 2N \ {∅} with Λ(E) = 1.

Now take c < 0 and E ∈ 2N\{∅} with Λ(E) = 1. We intend to show thatΨ(cuE ,Λ) = Φint(cuE ,Λ).

Firstly, it is clear, from the unnecessary player property, that Ψ(0,Λ) = 0. Now, by additivity, we can

write

0 = Ψ(0,Λ) = Ψ(cuE ,Λ) + Ψ(−cuE ,Λ)

and, therefore

Ψ(cuE ,Λ) = −Ψ(−cuE ,Λ).

Similarly,

Φint(cuE ,Λ) = −Φint(−cuE ,Λ)

and, since Ψ(−cuE ,Λ) = Φint(−cuE ,Λ), we conclude that Ψ(cuE ,Λ) = Φint(cuE ,Λ).

So we have seen that Ψ(cuE ,Λ) = Φint(cuE ,Λ) for all c ∈ R and E ∈ 2N \ {∅} with Λ(E) = 1.
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Now, let v ∈ GN . We define ∆ : 2N → R in the following way,

∆(E) =


0 if E = ∅ or Λ(E) = 0,

v(E)−
∑
F$E

∆(F ) otherwise.

Take

w =
∑

{E∈2N\{∅}: Λ(E)=1}

∆(E)uE .

It is clear that w(H) = v(H) for every H ∈ 2N with Λ(H) = 1. Successively applying the inessential

coalition property it follows that Ψ(v,Λ) = Ψ(w,Λ) and Φint(v,Λ) = Φint(w,Λ). Finally, we can

write

Ψ(v,Λ) = Ψ(w,Λ)

= Ψ

 ∑
{E∈2N\{∅}: Λ(E)=1}

∆(E)uE ,Λ


=

∑
{E∈2N\{∅}: Λ(E)=1}

Ψ(∆(E)uE ,Λ)

=
∑

{E∈2N\{∅}: Λ(E)=1}

Φint(∆(E)uE ,Λ)

= Φint

 ∑
{E∈2N\{∅}: Λ(E)=1}

∆(E)uE ,Λ


= Φint(w,Λ)

= Φint(v,Λ).

2

Now, in this section we see that the Shapley interior value satisfies structural monotonicity, that

is, if we have a monotonic game with interior operator structure and a player that has veto power

over another player, then the first player will be given (according to the Shapley interior value) a

payoff greater or equal to the payoff received by the second player. Firstly we show that this property

is not true, in general, for the Shapley authorization value and games with authorization structure.
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Example 5.16 Let N = {1, 2, 3}. Let A ∈ AN be the authorization operator defined in Example

2.3.

E {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

A(E) ∅ ∅ {3} {1} {3} {2, 3} {1, 2, 3}

Consider the unanimity game u{1} ∈ GN . It holds that

Φ
(
u{1}, A

)
= (0.5, 0.5, 0).

So we have that player 3 has veto power over player 2 in (N,A) and

Φ3

(
u{1}, A

)
< Φ2

(
u{1}, A

)
.

Proposition 5.17 Let v ∈ GN be a monotonic game, Λ ∈ IN and i, j ∈ N be such that i has veto

power over j in (N, intΛ). Then Φint
i (v,Λ) > Φint

j (v,Λ).

Proof. Take a monotonic v ∈ GN , Λ ∈ IN and i, j ∈ N such that i has veto power over j in

(N, intΛ). It holds that

Φint
j (v,Λ) = ϕj(v

Λ) =
∑

{E⊆N : j∈E}

pE
[
v(intΛ(E))− v(intΛ(E \ {j}))

]
.

Let E ⊆ N . Since i has veto power over j in (N, intΛ), it holds that j ̸∈ intΛ(E \ {i}). Hence,
intΛ(E \ {i}) ⊆ E \ {j}, what leads to intΛ(E \ {i}) ⊆ intΛ(E \ {j}). Using the monotonicity of

v, it follows that v(intΛ(E \ {i})) 6 v(intΛ(E \ {j})). So we can write

Φint
j (v,Λ) 6

∑
{E⊆N : j∈E}

pE
[
v(intΛ(E))− v(intΛ(E \ {i}))

]
=

∑
{E⊆N : i,j∈E}

pE
[
v(intΛ(E))− v(intΛ(E \ {i}))

]
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6
∑

{E⊆N : i∈E}

pE
[
v(intΛ(E))− v(intΛ(E \ {i}))

]
= Φint

i (v,Λ).

2

Corollary 5.18 Let A be an interior operator on N and let i, j ∈ N be such that i has veto power

over j in (N,A). Then Ξi(A) > Ξj(A).

Proof. Let Λ ∈ IN be such that A = intΛ. Let k ∈ N . It holds that

Ξik(A) = Φi

(
u{k}, A

)
= Φint

i

(
u{k},Λ

)
which, from Proposition 5.17 is greater or equal than

Φint
j

(
u{k},Λ

)
= Φj

(
u{k}, A

)
= Ξjk(A).

2

Finally, we see an example of games with interior operator structure: the information market

games introduced by Muto, Potters and Tijs [52].

Example 5.19 Let N = {1, . . . , n} with n > 3. Suppose that the elements of N are companies

that want to sell their products in a certain market. Let (ω1, . . . , ωn) ∈ RN
++ be the vector whose

components represent the profit that each company will get from selling their products in the market.

Suppose that there exists a subset I of companies that have certain necessary information about the

market. We assume I $ N and |I| > 2. If a coalition does not contain any element in I then it will

not be able to sell in the market. So the profit that can be made by each coalition in 2N is given by

v(E) =


∑
i∈E

ωi if E ∩ I ̸= ∅,

0 if E ∩ I = ∅.
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Notice that v = ωA, where ω is the additive game given by the vector (ω1, . . . , ωn) and A is the

interior operator on N defined as

A(E) =

{
E if E ∩ I ̸= ∅,
∅ if E ∩ I = ∅.

It is clear that A = intΛ where Λ is the interior function on N defined by

Λ(E) =

{
1 if E ∩ I ̸= ∅ or E = ∅,
0 otherwise.

We calculate Φint(ω,Λ), that is equal to Φ(ω,A). In order to calculate Φ(ω,A) we use the expression

given in Corollary 2.16. Notice that in our case, since ω is additive, we just need to calculate

Φi

(
u{j}, A

)
for every i, j ∈ N . Moreover, observe that

Φi

(
u{j}, A

)
= ϕi

((
u{j}

)A)
= ϕi(Aj) = Ξij(A),

where Ξij(A) is the influence of i over j in (N,A). So, it holds that

Φ(ω,A) =


Ξ11(A) . . . Ξ1n(A)

...
. . .

...

Ξn1(A) . . . Ξnn(A)




ω1

...

ωn

 . (5.1)

We proceed to calculate Ξij(A) for every i, j ∈ N . We distinguish two cases.

Case j ∈ I. In this case it is clear that Aj = u{j}. It follows that Ξjj(A) = 1 and Ξij(A) = 0 for

every i ∈ N \ {j}.

Case j ̸∈ I. For every E ∈ 2N \ {∅} we define

∆(E) =

{
(−1)|H|+1 if there exists H ⊆ I,H ̸= ∅ such that E = H ∪ {j},

0 otherwise .

We want to prove that

∆Aj (E) = ∆(E) for every E ∈ 2N \ {∅}. (5.2)
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To do this, it suffices to show that

Aj(F ) =
∑

{E∈2N\{∅}:E⊆F}

∆(E) for every F ∈ 2N \ {∅}. (5.3)

Let F ∈ 2N \ {∅}. If j ̸∈ F or F ∩ I = ∅, it is clear that (5.3) holds. Suppose now that j ∈ F

and F ∩ I ̸= ∅. It holds that

∑
{E∈2N\{∅}:E⊆F}

∆(E) =
∑

{H∈2N\{∅}:H⊆F∩I}

(−1)|H|+1 =

|F∩I|∑
k=1

(
|F ∩ I|
k

)
(−1)k+1 = 1 = Aj(F ).

So we have proved (5.3) and, consequently, (5.2). We proceed to calculate Ξjj(A)

Ξjj(A) = ϕj(Aj) =
∑

{E⊆N : j∈E}

∆Aj (E)

|E|

=
∑

{H∈2N\{∅}:H⊆I}

(−1)|H|+1

|H|+ 1
=

1

|I|+ 1

|I|∑
k=1

(
|I|+ 1

k + 1

)
(−1)k+1

=

|I|∑
k=1

(
|I|
k

)
(−1)k+1

k + 1
=

1

|I|+ 1

|I|∑
k=1

(
|I|+ 1

k + 1

)
(−1)k+1

=
1

|I|+ 1

|I|+1∑
k=2

(
|I|+ 1

k

)
(−1)k =

|I|
|I|+ 1

. (5.4)

It remains to calculate Ξij(A) for every i ∈ N \{j}. On the one hand, notice that if i ∈ N \(I∪{j})
then i is a null player in Aj . Therefore

Ξij(A) = 0 for every i ∈ N \ (I ∪ {j}). (5.5)

On the other hand, from the equal treatment property of the Shapley value it follows that

Ξij(A) = Ξlj(A) for every i, l ∈ I. (5.6)

From (5.4), (5.5) and (5.6) we conclude, using the property of efficiency of the Shapley authorization
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correspondence, that

Ξij(A) =
1

(|I|+ 1) |I|
for every i ∈ I. (5.7)

Once we have calculated Ξ(A), if we go back to (5.1) we obtain

Φint
i (ω,Λ) = Φi(ω,A) =


ωi +

ω(N \ I)
(|I|+ 1) |I|

if i ∈ I,

|I|
|I|+ 1

ωi if i ∈ N \ I.

5.3 Fuzzy interior operators

We know that any interior operator has the form intΛ where Λ is an interior function. We make

use of this idea to introduce the concept of fuzzy interior operator. Firstly, we will define fuzzy interior

functions by generalizing Definition 5.4 in a natural way, and, then, we will associate what we will

call a fuzzy interior operator to each fuzzy interior function, in a similar way as we have associated

an interior operator to each interior function.

Definition 5.20 A fuzzy interior function on N is a mapping λ : 2N → [0, 1] that satisfies the

following conditions:

1. λ(N) = λ(∅) = 1,

2. λ(E ∪ F ) > min{λ(E), λ(F )} for all E,F ⊆ N .

The set of all fuzzy interior functions on N is denoted by FIN .

Let λ ∈ FIN . Consider intλ : 2N → [0, 1]N defined as

intλ(E) =
∪
F⊆E

λ(F )1F for every E ⊆ N.

It is easy to check that intλ is a fuzzy authorization operator.
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Definition 5.21 Let a ∈ FAN . The fuzzy authorization structure a is a fuzzy interior operator on

N if there exists λ ∈ FIN such that a = intλ.

Proposition 5.22 Let a : 2N → [0, 1]N be a fuzzy interior operator on N . Then there exists a

unique λ ∈ FIN such that a = intλ.

Proof. It is enough to prove that if λ : 2N → [0, 1] is a fuzzy interior function on N and a = intλ

then

λ(E) = min {ai(E) : i ∈ E} for all E ∈ 2N \ {∅}.

So, let λ : 2N → [0, 1] be a fuzzy interior function on N and E ∈ 2N \ {∅}. We must see that

λ(E) = min
{
intλi (E) : i ∈ E

}
.

By definition, intλi (E) = max{λ(F ) : i ∈ F ⊆ E}. So we have to check that

λ(E) = min {max{λ(F ) : i ∈ F ⊆ E} : i ∈ E} .

It is clear that λ(E) 6 min {max{λ(F ) : i ∈ F ⊆ E} : i ∈ E}. It only remains to prove that

λ(E) > min {max{λ(F ) : i ∈ F ⊆ E} : i ∈ E}. Take, for every i ∈ E, a set Fi such that

i ∈ Fi ⊆ E and λ(Fi) = max{λ(F ) : i ∈ F ⊆ E}. It holds that

λ(E) = λ

(∪
i∈E

Fi

)
> min{λ(Fi) : i ∈ E} = min {max{λ(F ) : i ∈ F ⊆ E} : i ∈ E} .

2

In a similar way as we did with interior operators, we study the transitivity of the dependency relations

induced by a fuzzy interior operator. Firstly we see that a fuzzy interior function determines some

certain interior functions. Let λ : 2N → [0, 1]. For any t ∈ (0, 1] consider

λt : 2N → {0, 1}

E → λt(E) =

{
1 if λ(E) > t,

0 otherwise.
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Proposition 5.23 Let λ : 2N → [0, 1]. Then the following statements are equivalent:

1. The function λ is a fuzzy interior function.

2. The function λt is an interior function for every t ∈ (0, 1].

Proof. Let λ : 2N → [0, 1].

1 =⇒ 2. Suppose that λ is a fuzzy interior function on N . Let t ∈ (0, 1]. It is clear that

λt(N) = λt(∅) = 1. Let E,F ⊆ N be such that λt(E) = λt(F ) = 1. It holds that

λ(E ∪ F ) > min{λ(E), λ(F )} > t, and hence λt(E ∪ F ) = 1.

2 =⇒ 1. Suppose that λ is such that λt is an interior function for every t ∈ (0, 1]. It is clear that

λ(N) = λ(∅) = 1. Let E,F ⊆ N and s = min{λ(E), λ(F )}. Suppose that s > 0. It holds that

λs(E) = λs(F ) = 1. Since λs is an interior function, it holds that λs(E ∪ F ) = 1, and hence

λ(E ∪ F ) > s. 2

Proposition 5.24 Let λ ∈ FIN . It holds that(
intλ

)t
= intλt for every t ∈ (0, 1].

Proof. Let λ ∈ FIN , t ∈ (0, 1] and E ⊆ N . We prove that

[intλ(E)]t = intλt(E).

Let i ∈ [intλ(E)]t. This means that intλi (E) > t. It follows that there exists F ⊆ E such that

i ∈ F and λ(F ) > t. From F ⊆ E and λt(F ) = 1 we can derive that F ⊆ intλt(E). Therefore,

i ∈ intλt(E).

Now take i ∈ intλt(E). It holds that λt(int
λt(E)) = 1. Equivalently, λ(intλt(E)) > t. From

i ∈ intλt(E), intλt(E) ⊆ E and λ(intλt(E)) > t, it follows that intλi (E) > t. 2

Proposition 5.25 Let a ∈ FAN . The following statements are equivalent:

1. The fuzzy authorization operator a is a fuzzy interior operator.

2. The authorization operator at is an interior operator for every t ∈ (0, 1].
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Proof. Let a ∈ FAN .

1 =⇒ 2. Suppose that a is a fuzzy interior operator on N . There exists λ ∈ FIN such that a = intλ.

Take t ∈ (0, 1]. From Proposition 5.24 we obtain that at = intλt , thus at is an interior operator.

2 =⇒ 1. Suppose that a is such that at is an interior operator for every t ∈ (0, 1]. Consider

λ : 2N → [0, 1] defined as

λ(E) = max
{
t ∈ [0, 1] : at(E) = E

}
for every E ⊆ N.

It is clear that λ ∈ FIN . In order to conclude that a is a fuzzy interior operator, it suffices to prove

that a = intλ. Take E ∈ 2N \ {∅} and i ∈ E. It holds that

intλi (E) = max {λ(F ) : i ∈ F ⊆ E}

= max
{
max

{
t ∈ [0, 1] : at(F ) = F

}
: i ∈ F ⊆ E

}
= max

{
t ∈ [0, 1] : there exists F ∈ 2N such that i ∈ F ⊆ E and at(F ) = F

}
= max

{
t ∈ [0, 1] : i ∈ at(E)

}
= ai(E).

2

Let a ∈ FAN . We define the following fuzzy relation on 2N

Ra(E,F ) = 1−max {ai(N \ E) : i ∈ F} for all E,F ⊆ N.

Proposition 5.26 Let a ∈ FAN . The following statements are equivalent:

1. The fuzzy relation Ra is transitive.

2. The relation
at

◃ is transitive for every t ∈ (0, 1].

Proof. Let a ∈ FAN .

1 =⇒ 2. Suppose that a is such that Ra is transitive. Let t ∈ (0, 1]. If E,F,G ⊆ N are such that

E
at

◃ F and F
at

◃ G it holds that F ∩ at(N \ E) = ∅ and G ∩ at(N \ F ) = ∅. We can write

ai(N \ E) < t for every i ∈ F,
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aj(N \ F ) < t for every j ∈ G,

whence Ra(E,F ) > 1 − t and Ra(F,G) > 1 − t. Since Ra is transitive we conclude that

Ra(E,G) > 1− t, from where we get E
at

◃ G.

2 =⇒ 1. Suppose a is such that
at

◃ is transitive for every t ∈ (0, 1]. Take E,F,G ⊆ N .

We must see that Ra(E,G) > min {Ra(E,F ), Ra(F,G)}. It suffices to prove that for every

t ∈ (0,min {Ra(E,F ), Ra(F,G)}) it holds that Ra(E,G) > t. If t ∈ (0,min {Ra(E,F ), Ra(F,G)})
it is clear that

ai(N \ E) < 1− t for every i ∈ F,

aj(N \ F ) < 1− t for every j ∈ G.

Therefore, E
a1−t

◃ F and F
a1−t

◃ G. Since
a1−t

◃ is transitive E
a1−t

◃ G, whence Ra(E,G) > t. 2

Proposition 5.27 Let a ∈ F̃A
N
. The following statements are equivalent:

1. The fuzzy authorization operator a is a fuzzy interior operator.

2. The relation Ra is transitive.

Proof. The result follows from Propositions 5.3, 5.25 and 5.26. 2

Definition 5.28 A game with fuzzy interior operator structure on N is a pair (v, λ) where v ∈ GN

and λ ∈ FIN .

In a similar way as we did in the crisp case, given a game with fuzzy interior operator structure,

we can define a characteristic function that gathers the information from the game and the fuzzy

interior operator structure.

Definition 5.29 Let v ∈ GN and λ ∈ FIN . The restricted game of (v, λ), denoted by vλ, is defined

as the restricted game of
(
v, intλ

)
, that is,

vλ(E) = vint
λ
(E) =

∫
intλ(E) dv for all E ⊆ N.
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The number vλ(E) is the worth of E in the game with fuzzy interior operator structure.

Remark 5.30 Let v ∈ GN and λ ∈ FIN . Let {tl : l = 0, . . . , r} = im(λ) ∪ {0} with

0 = t0 < . . . < tr = 1. Then it holds that

vλ(E) =

r∑
l=1

(tl − tl−1) v
(
[intλ(E)]tl

)
for all E ⊆ N,

where [intλ(E)]tl =
{
i ∈ N : intλi (E) ≥ tl

}
for l = 1, . . . , r.

5.4 The Shapley fuzzy interior value

An allocation rule for games with fuzzy interior operator structure is a mapping that assigns to

every game with fuzzy interior operator structure a payoff vector. We introduce a particular allocation

rule.

Definition 5.31 The Shapley fuzzy interior value, denoted by φint, assigns to every game with fuzzy

interior operator structure (v, λ) the Shapley value of the restricted game vλ,

φint(v, λ) = ϕ
(
vλ
)

for all v ∈ GN and λ ∈ FIN .

Notice that

φint(v, λ) = φ
(
v, intλ

)
for all v ∈ GN and λ ∈ FIN ,

where φ is the Shapley fuzzy authorization value.

Lemma 5.32 Let λ ∈ FIN and {tl : l = 0, . . . , r} = im(λ) ∪ {0} with 0 = t0 < . . . < tr = 1 and

let v ∈ GN . It holds that

φint(v, λ) =

r∑
l=1

(tl − tl−1)Φ
int(v, λtl),

where Φint is the Shapley interior value.
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Proof. Let λ ∈ FIN and {tl : l = 0, . . . , r} = im(λ) ∪ {0} with 0 = t0 < . . . < tr = 1. Let

v ∈ GN . Using Lemma 3.11 we can write

φint(v, λ) = φ
(
v, intλ

)
=

r∑
l=1

(tl − tl−1)Φ(v, (int
λ)tl).

Using Proposition 5.24 we conclude that the sum before is equal to

r∑
l=1

(tl − tl−1)Φ(v, int
λtl ) =

r∑
l=1

(tl − tl−1)Φ
int(v, λtl).

2

We aim to characterize the Shapley fuzzy interior value. To that end, we consider the following

properties.

• NECESSARY PLAYER PROPERTY. For every monotonic v ∈ GN , λ ∈ FIN and i ∈ N a necessary

player in v, it holds that

ψi(v, λ) > ψk(v, λ) for all k ∈ N.

Definition 5.33 Let λ ∈ FIN , E ⊆ N and i, j ∈ E. A player j depends on i within E according

to λ if intλj (E) > intλj (E \ {i})

Definition 5.34 Let v ∈ GN , E ⊆ N and j ∈ E. A player j is a null player for v within E if

v(F ) = v(F \ {j}) for every F ⊆ E.

Definition 5.35 Let v ∈ GN , λ ∈ FIN and i ∈ N . A player i is an unnecessary player in (v, λ) if

for every E ⊆ N and j ∈ E such that j depends on i within E according to λ it holds that j is a

null player for v within E.

• UNNECESSARY PLAYER PROPERTY. For every v ∈ GN , λ ∈ FIN and i ∈ N an unnecessary player

in (v, λ), it holds that

ψi(v, λ) = 0.
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Definition 5.36 Let λ ∈ FIN and E ⊂ N . A coalition E is an inessential coalition for λ if λ(E) = 0.

• INESSENTIAL COALITION PROPERTY. For every v, w ∈ GN , λ ∈ FIN and E ⊂ N an inessential

coalition for λ such that v(F ) = w(F ) for all F ∈ 2N \ {E}, it holds that

ψ(v, λ) = ψ(w, λ).

• REDUCTION. For every v ∈ GN , λ ∈ FIN and t ∈ (0, 1), it holds that

ψ(v, λ) = tψ(v, λ[0,t]) + (1− t)ψ(v, λ[t,1]),

where

λ[0,t] = min

(
1,
λ

t

)
,

λ[t,1] = max

(
0,
λ− t

1− t

)
.

Theorem 5.37 An allocation rule for games with fuzzy interior operator structure is equal to the

Shapley fuzzy interior value if and only if it satisfies the properties of efficiency, additivity, necessary

player, unnecessary player, inessential coalition and reduction.

Proof. That the Shapley fuzzy interior value satisfies the properties of efficiency, additivity and

necessary player follows from the fact that the Shapley fuzzy interior value is the restriction of the

Shapley fuzzy authorization value to the set of games with fuzzy interior operator structure and

the fact that the Shapley fuzzy authorization value satisfies such properties. Let us prove that φint

satisfies the properties of unnecessary player, inessential coalition and reduction.

Unnecessary player property. Let v ∈ GN , λ ∈ FIN , {tl : l = 0, . . . , r} = im(λ) ∪ {0}
with 0 = t0 < . . . < tr = 1 and i ∈ N an unnecessary player in (v, λ). We must prove that

φint
i (v, λ) = 0. Taking into consideration Lemma 5.32 it is enough to see that Φint

i (v, λtl) = 0

for all l = 1, . . . , r. Since Φint satisfies the unnecessary player property, it suffices to prove

that i is an unnecessary player in (v, λtl) for all l = 1, . . . , r. Take l ∈ {1, . . . , r}. Let

E ⊆ N and j ∈ E be such that j depends on i within E according to λtl . This means that
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j ∈ intλtl (E) \ intλtl (E \ {i}). By Proposition 5.24, this is equivalent to write that

j ∈ [intλ(E)]tl \ [intλ(E \ {i})]tl and hence, intλj (E) > tl > intλj (E \ {i}). From this and the

fact that i is an unnecessary player in (v, λ) we can derive that j is a null player for v within E. So

we have proved that i is an unnecessary player in (v, λtl).

Inessential coalition property. Let v, w ∈ GN , λ ∈ FIN , {tl : l = 0, . . . , r} = im(λ)∪ {0}
with 0 = t0 < . . . < tr = 1 and E ⊂ N an inessential coalition for λ such that v(F ) = w(F ) for all

F ∈ 2N \ {E}. We have to prove that φint(v, λ) = φint(w, λ). By Lemma 5.32, it suffices to prove

that Φint(v, λtl) = Φint(w, λtl) for all l = 1, . . . , r. And this is elementary from the facts that Φint

satisfies the inessential coalition property and E is an inessential coalition for λtl for all l = 1, . . . , r.

Reduction. Let v ∈ GN , λ ∈ FIN and t ∈ (0, 1). Using the property of reduction of the Shapley

fuzzy authorization value we can write

φint(v, λ) = φ
(
v, intλ

)
= tφ

(
v,
(
intλ

)[0,t])
+ (1− t)φ

(
v,
(
intλ

)[t,1])
.

It is easy to check that
(
intλ

)[0,t]
= int(λ

[0,t]) and
(
intλ

)[t,1]
= int(λ

[t,1]). Therefore the sum above

is equal to

tφ
(
v, int(λ

[0,t])
)
+ (1− t)φ

(
v, int(λ

[t,1])
)
= tφint

(
v, λ[0,t]

)
+ (1− t)φint

(
v, λ[t,1]

)
.

We have seen that the Shapley fuzzy interior value satisfies the six properties. It remains to prove

that such properties uniquely determine φint.

Let ψ be an allocation rule for games with fuzzy interior operator structure satisfying the properties

of efficiency, additivity, necessary player, unnecessary player, inessential coalition and reduction. We

must prove that

ψ(v, λ) = φint(v, λ) for every v ∈ GN and λ ∈ FIN .

We proceed by strong induction on ⌈(λ) where

⌈(λ) = |im(λ) \ {0, 1}| for all λ ∈ FIN .

1. Base case. ⌈(λ) = 0.

Notice that we can identify IN with the set {λ ∈ FIN : im(λ) ⊆ {0, 1}}. So we can say
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that the restriction of ψ to the set of games with fuzzy interior operator structure (v, λ) with

⌈(λ) = 0 is an allocation rule for games with interior operator structure. It is easy to check that

such restriction satisfies the properties of efficiency, additivity, necessary player, unnecessary

player and inessential coalition. Therefore, using Theorem 5.15 we conclude that

ψ(v, λ) = φint(v, λ) for every v ∈ GN and λ ∈ FIN with ⌈(λ) = 0.

2. Inductive step. Let v ∈ GN and λ ∈ FIN with ⌈(λ) > 0. We must prove that

ψ(v, λ) = φint(v, λ). Take t ∈ im(λ) \ {0, 1}. Since ψ satisfies the reduction property it

holds that

ψ(v, λ) = t ψ(v, λ[0,t]) + (1− t)ψ(v, λ[t,1]).

Since ⌈(λ[0,t]) < ⌈(λ) and ⌈(λ[t,1]) < ⌈(λ) it follows by induction hypothesis that

ψ(v, λ[0,t]) = φint(v, λ[0,t]) and ψ(v, λ[t,1]) = φint(v, λ[t,1]). Hence

ψ(v, λ) = t φint(v, λ[0,t]) + (1− t)φint(v, λ[t,1]) = φint(v, λ).

2
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Chapter6
Games with conjunctive authorization structure

Given an authorization structure and a coalition, the set of agents who are dominated by the

coalition can be larger than the union of the sets of agents who are dominated by each one of the

members of the coalition. There is a kind of authorization structures in which both sets are always

equal. They are called conjunctive authorization structures. In these structures all the dependency

relationships are bilateral. For this reason they are the most simple authorization structures. In this

chapter we define and characterize allocation rules for games with conjunctive authorization structure.

6.1 Conjunctive authorization structures

We aim to consider authorization structures in which the set of agents who are dominated by

the union of two coalitions coincides with the set of agents that are dominated by at least one of

the coalitions. This can be expressed with the following definition.

Definition 6.1 An authorization operator A ∈ AN is said to be conjunctive if

A(E ∩ F ) = A(E) ∩A(F ) for every E,F ⊆ N.

If A is a conjunctive authorization operator on N , the pair (N,A) is said to be a conjunctive

authorization structure. The set of all conjunctive authorization operators is denoted by AN
c .

The conjunctive permission structures introduced by Gilles, Owen and van den Brink [40] are

an example of conjunctive authorization structure. Given a permission structure, the operator that

135
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assigns to each coalition its conjunctive sovereign part is a conjunctive authorization operator. The

conjunctive permission structures were generalized in Algaba, Bilbao, van den Brink and Jiménez-

Losada [5] with the so called poset antimatroids, which are also conjunctive authorization structures.

Firstly we see a characterization of conjunctive authorization operators in terms of the veto

relationships induced by these operators.

Proposition 6.2 Let A ∈ AN . The following statements are equivalent:

1. The authorization operator A is conjunctive.

2. For every i, j ∈ N such that j depends partially on i in (N,A), it holds that i has veto power

over j in (N,A).

3. For every E ∈ 2N \ {∅} and j ∈ N such that E has veto power over j in (N,A), there exists

i ∈ E such that i has veto power over j in (N,A).

Proof. Let A ∈ AN .

1 =⇒ 2. Suppose that A is conjunctive and let i, j ∈ N such that j depends partially on i in (N,A).

There must exist E ⊆ N such that j ∈ A(E) \A (E \ {i}). We have

j ∈ A(E) \A (E \ {i}) = A(E) \A (E ∩ (N \ {i}))

= A(E) \ (A(E) ∩A (N \ {i}))

= A(E) \A (N \ {i}) .

Thereby j ̸∈ A (N \ {i}), that is, i has veto power over j in (N,A).

2 =⇒ 3. Let E ∈ 2N \ {∅} and j ∈ N such that E has veto power over j in (N,A). If j ̸∈ A(N)

any player in E has veto power over j. Suppose j ∈ A(N). Let E = {i1, . . . , il}. Take

m = min {r ∈ {1, . . . , l} : j ̸∈ A (N \ {i1, . . . , ir})} .

It is clear that j depends partially on im in (N,A). Using the hypothesis, we conclude that im has

veto power over j in (N,A).
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3 =⇒ 1. Let E,F ⊆ N . We must prove that A(E ∩ F ) = A(E) ∩ A(F ). From monotonicity of

authorization operators, it is clear that A(E ∩F ) ⊆ A(E)∩A(F ). Let us prove the other inclusion.

If A(E) ∩ A(F ) = ∅ or E = F = N we have finished. Otherwise, take j ∈ A(E) ∩ A(F ). Let us
see that j ∈ A(E ∩ F ). Suppose j ̸∈ A(E ∩ F ). This means that N \ (E ∩ F ) has veto power over

j. Using the hypothesis, we conclude that there exists i ∈ N \ (E ∩ F ) such that i has veto power

over j in (N,A). It holds that or i ̸∈ E or i ̸∈ F . Suppose i ̸∈ E (the case i ̸∈ F is similar). Since

j ̸∈ A (N \ {i}) and E ⊆ N \ {i}, we can derive j ̸∈ A(E), but this is a contradiction. 2

The calculation of the sovereignty, influence and power indices is particularly easy in the case of

conjunctive authorization structures, as we see in the following proposition.

Proposition 6.3 Let A ∈ AN
c . Then, it holds that

(a) sovi(A) =
1

|Vi(A)|
for every i ∈ N such that i is not inactive in (N,A).

(b) infi(A) =
∑

{j∈A(N)\{i}: i∈Vj(A)}

1

|Vj(A)|
for every i ∈ N .

(c) powi(A) =
∑

{j∈A(N): i∈Vj(A)}

1

|Vj(A)|
for every i ∈ N .

Proof. It is easy to check that (a) and (b) are a direct consequence of Proposition 6.2 and the

properties of maximum and minimum sovereignty and maximum and minimum influence seen in

Chapter 4. Finally, (c) derives from (a) and (b). 2

An important advantage of conjunctive operators is the fact that they preserve convexity. This

means that if we have a nonnegative convex game on a conjunctive structure, then the restricted

game is convex as well. In fact, this property characterizes conjunctive operators.

Proposition 6.4 Let A ∈ AN . The following statements are equivalent:

1. The authorization operator A is conjunctive.

2. For every nonnegative and convex v ∈ GN it holds that vA is convex.



138 CHAPTER 6. GAMES WITH CONJUNCTIVE AUTHORIZATION STRUCTURE

3. For every nonnegative and additive ω ∈ GN it holds that ωA is convex.

Proof. Let A ∈ AN .

1 =⇒ 2. Suppose that A is conjunctive and let v ∈ GN be nonnegative and convex. Let E,F ⊆ N .

It holds that

vA(E ∪ F ) + vA(E ∩ F ) = v(A(E ∪ F )) + v(A(E ∩ F ))

= v(A(E ∪ F )) + v(A(E) ∩A(F ))

> v(A(E) ∪A(F )) + v(A(E) ∩A(F ))

> v(A(E)) + v(A(F ))

= vA(E) + vA(F ).

2 =⇒ 3. This implication is trivial.

3 =⇒ 1. Let E,F ⊆ N . We must prove that A(E ∩ F ) = A(E) ∩ A(F ). It is clear that the

inclusion A(E ∩ F ) ⊆ A(E) ∩ A(F ) is true for any authorization operator. We need to show

that A(E ∩ F ) ⊇ A(E) ∩ A(F ). If A(E) ∩ A(F ) = ∅ we would have finished. Otherwise, take

i ∈ A(E) ∩ A(F ). We must prove that i ∈ A(E ∩ F ). Consider the unanimity game u{i} which is

an additive game. By hypothesis we know that uA{i} is a convex game. Therefore it holds that

uA{i}(E) + uA{i}(F ) 6 uA{i}(E ∩ F ) + uA{i}(E ∪ F )

whence it follows that i ∈ A(E ∩ F ). 2

Definition 6.5 A game with conjunctive authorization structure on N is a pair (v,A) where v ∈ GN

and A ∈ AN
c .

6.2 The Shapley conjunctive authorization value

An allocation rule for games with conjunctive authorization structure assigns to every game with

conjunctive authorization structure a payoff vector. In this section we define and characterize an

allocation rule for games with conjunctive authorization structure.

Values for games with authorization structure
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Definition 6.6 The Shapley conjunctive authorization value, denoted by Φc, assigns to each game

with conjunctive authorization structure (v,A) the Shapley value of vA,

Φc(v,A) = ϕ
(
vA
)

for all v ∈ GN and A ∈ AN
c .

Notice that

Φc(v,A) = Φ (v,A) for all v ∈ GN and A ∈ AN
c ,

where Φ is the Shapley authorization value.

In the following theorem we show a characterization of the Shapley conjunctive authorization

value.

Theorem 6.7 An allocation rule for games with conjunctive authorization structure is equal to the

Shapley conjunctive authorization value if and only if it satisfies the properties of efficiency, additivity,

irrelevant player and veto power over a necessary player.

Proof. That the Shapley conjunctive authorization value satisfies the properties of efficiency,

additivity, irrelevant player and veto power over a necessary player follows from the fact that the

Shapley conjunctive authorization value is the restriction of the Shapley authorization value to the

set of games with conjunctive authorization structure and the fact that the Shapley authorization

value satisfies such properties.

We have already seen that the Shapley conjunctive authorization value satisfies the four

properties. Now we see that such properties uniquely determine the Shapley conjunctive authorization

value. Let Ψ be an allocation rule for games with conjunctive authorization structure satisfying the

properties of efficiency, additivity, irrelevant player and veto power over a necessary player. We must

prove that Ψ = Φc.

Let n ∈ N and let N be a set of cardinality n. Our first goal will be to show that

Ψ(αuE , A) = Φc(αuE , A) for all α > 0, E ∈ 2N \ {∅} and A ∈ AN
c . So, take α > 0 and

E ∈ 2N \ {∅} and A ∈ AN
c . Consider the set

F = {i ∈ N : there exists j ∈ E such that i has veto power over j in (N,A)} .



140 CHAPTER 6. GAMES WITH CONJUNCTIVE AUTHORIZATION STRUCTURE

From the fact that Ψ satisfies the property of veto power over a necessary player, we can derive that

there exists b ∈ R such that

Ψi(αuE , A) = b for all i ∈ F. (6.1)

Take k ∈ N \ F . Notice that k is an irrelevant player in (αuE , A). Indeed, if a player j depends

partially on k in (N,A), then, from Proposition 6.2, k has veto power over j in (N,A). And, since

k ̸∈ F , we can derive that j ̸∈ E, and, therefore, j is a null player in αuE . Now, using that Ψ

satisfies the irrelevant player property, we conclude that

Ψi(αuE , A) = 0 for all i ∈ N \ F. (6.2)

From (6.1), (6.2) and the fact that Ψ satisfies efficiency we obtain that

Ψi(αuE , A) =


αuE(A(N))

|F |
if i ∈ F,

0 if i ̸∈ F.

Since Φc also satisfies the properties used, it holds that Ψ(αuE , A) = Φc(αuE , A).

So we have proved that Ψ(αuE , A) = Φc(αuE , A) for all α > 0, E ∈ 2N \ {∅} and A ∈ AN
c .

Finally, using the same linearity argument that we have used in several proofs before, we obtain

Ψ = Φc. 2

We can give another expression of the Shapley conjunctive authorization value. Before, we see

some results.

Let A ∈ AN and E ∈ 2N \ {∅}. We define

VE(A) = {i ∈ N : E * A (N \ {i})} .

It is clear that VE(A) =
∪
i∈E

Vi(A). Moreover, if E ∈ 2A(N) \ {∅} then

VE(A) =
∩

{F⊆N :E⊆A(F )}

F. (6.3)

Values for games with authorization structure
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Lemma 6.8 Let A ∈ AN . The following statements are equivalent:

1. The authorization operator A is conjunctive.

2. For every E ∈ 2A(N) \ {∅} it holds that E ⊆ A(VE(A)).

Proof. Let A ∈ AN .

1 =⇒ 2. Suppose that A is conjunctive and let E ∈ 2A(N) \ {∅}. If VE(A) = N we would have

finished, since E ⊆ A(N). Suppose VE(A) ̸= N . Notice that for every i ∈ N \ VE(A) it holds that
E ⊆ A(N \ {i}). So we have

E ⊆
∩

i∈N\VE(A)

A(N \ {i}). (6.4)

But, since A is conjunctive it holds that

∩
i∈N\VE(A)

A(N \ {i}) = A

 ∩
i∈N\VE(A)

(N \ {i})

 = A(VE(A)). (6.5)

2 =⇒ 1. Let F,H ⊆ N . We must prove that A(F ) ∩ A(H) ⊆ A(F ∩ H). If A(F ) ∩ A(H) = ∅
we would have finished. Suppose that A(F ) ∩ A(H) ̸= ∅. From A(F ) ∩ A(H) ⊆ A(F ) and

A(F ) ∩ A(H) ⊆ A(H) it follows, respectively, that VA(F )∩A(H)(A) ⊆ F and VA(F )∩A(H)(A) ⊆ H.

Therefore, VA(F )∩A(H)(A) ⊆ F ∩H, whence we derive that A
(
VA(F )∩A(H)(A)

)
⊆ A(F ∩H). Using

the hypothesis we obtain that A(F ) ∩A(H) ⊆ A(F ∩H). 2

Lemma 6.9 Let v ∈ GN and A ∈ AN
c . Then it holds

∆vA(F ) =
∑

{E∈2A(N)\{∅}: VE(A)=F}
∆v(E) for all nonempty F ⊆ N,

where ∆v are the dividends of Harsanyi of the game v.

Proof. Let T ∈ 2N \ {∅}. It suffices to prove that

vA(T ) =
∑
F⊆T

∑
{E∈2A(N)\{∅}: VE(A)=F}

∆v(E).
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Let us calculate,

∑
F⊆T

∑
{E∈2A(N)\{∅}: VE(A)=F}

∆v(E) =
∑

{E∈2A(N)\{∅}: VE(A)⊆T}
∆v(E)

which, from (6.3) and Lemma 6.8, is equal to

∑
{E∈2N\{∅}:E⊆A(T )}

∆v(E) = v(A(T )).

2

Proposition 6.10 Let A ∈ AN
c and v ∈ GN . Then

Φc
i (v,A) =

∑
{E∈2A(N)\{∅}: i∈VE(A)}

∆v(E)

|VE(A)|
.

Proof. It holds that

Φc
i (v,A) = ϕi(v

A) =
∑

{F⊆N : i∈F}

∆vA(F )

|F |

which, from Lemma 6.9, is equal to

∑
{F⊆N : i∈F}

 1

|F |
∑

{E∈2A(N)\{∅}: VE(A)=F}
∆v(E)



=
∑

{F⊆N : i∈F}

∑
{E∈2A(N)\{∅}: VE(A)=F}

∆v(E)

|VE(A)|

=
∑

{E∈2A(N)\{∅}: i∈VE(A)}

∆v(E)

|VE(A)|
.

2

Values for games with authorization structure
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6.3 The Banzhaf conjunctive authorization value

In Section 6.2 we used the Shapley value to provide an allocation rule for games with conjunctive

authorization structure. In this section we use the Banzhaf value to give another allocation rule for

these games.

Definition 6.11 The Banzhaf conjunctive authorization value, denoted by Bc, assigns to each game

with conjunctive authorization structure (v,A) the Banzhaf value of vA,

Bc(v,A) = β
(
vA
)

for all v ∈ GN and A ∈ AN
c .

Notice that

Bc(v,A) = B (v,A) for all v ∈ GN and A ∈ AN
c ,

where B is the Banzhaf authorization value.

In the following theorem we characterize the Banzhaf conjunctive authorization value.

Theorem 6.12 An allocation rule for games with conjunctive authorization structure is equal to the

Banzhaf conjunctive authorization value if and only if satisfies the properties of additivity, irrelevant

player, veto power over a necessary player, 2-efficiency and amalgamation.

Proof. That the Banzhaf conjunctive authorization value satisfies the properties of additivity,

irrelevant player, veto power over a necessary player and 2-efficiency follows from the fact that

the Banzhaf conjunctive authorization value is the restriction of the Banzhaf authorization value to

the set of games with conjunctive authorization structure and the fact that the Banzhaf authorization

value satisfies such properties.

In the case of the property of amalgamation we can use the same reasoning, but before we must

check that if A is a conjunctive authorization operator then Aij is also conjunctive. So let A ∈ AN
c

and i, j ∈ N . Take E,F ⊆ N ij . We want to prove that Aij(E ∩ F ) = Aij(E) ∩ Aij(F ). We

distinguish several cases:
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(a)
⌢
ij ̸∈ E,

⌢
ij ̸∈ F . It holds that

Aij(E) ∩Aij(F ) = A(E) ∩A(F ) = A(E ∩ F ) = Aij(E ∩ F ).

(b)
⌢
ij ∈ E, {i, j} * A((E \ {

⌢
ij}) ∪ {i, j}) and

⌢
ij ̸∈ F . It holds that

Aij(E) ∩Aij(F ) =
[
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

]
∩A(F )

= A
(
(E \ {

⌢
ij} ∪ {i, j}

)
∩A(F )

= A
((

(E \ {
⌢
ij}) ∪ {i, j}

)
∩ F

)
= A(E ∩ F )

= Aij(E ∩ F ).

(c)
⌢
ij ∈ E, {i, j} ⊆ A((E \ {

⌢
ij}) ∪ {i, j}) and

⌢
ij ̸∈ F . It holds that

Aij(E) ∩Aij(F ) =
[(
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

)
∪ {

⌢
ij}
]
∩A(F )

= A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩A(F )

= A
((

(E \ {
⌢
ij}) ∪ {i, j}

)
∩ F

)
= A(E ∩ F )

= Aij(E ∩ F ).

(d)
⌢
ij ̸∈ E,

⌢
ij ∈ F and {i, j} * A((F \ {

⌢
ij}) ∪ {i, j}). Analogous to case (b).

(e)
⌢
ij ∈ E, {i, j} * A((E \ {

⌢
ij}) ∪ {i, j}),

⌢
ij ∈ F and {i, j} * A((F \ {

⌢
ij}) ∪ {i, j}). It holds

that Aij(E) ∩Aij(F ) is equal to[
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

]
∩
[
A
(
(F \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

]
=

[
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩A

(
(F \ {

⌢
ij}) ∪ {i, j}

)]
\ {i, j}

= A
((

(E ∩ F ) \ {
⌢
ij}
)
∪ {i, j}

)
\ {i, j}

= Aij(E ∩ F ).

Values for games with authorization structure
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(f)
⌢
ij ∈ E, {i, j} ⊆ A((E \ {

⌢
ij}) ∪ {i, j}),

⌢
ij ∈ F and {i, j} * A((F \ {

⌢
ij}) ∪ {i, j}). It holds

that Aij(E) ∩Aij(F ) is equal to[(
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

)
∪ {

⌢
ij}
]
∩
[
A
(
(F \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

]
=

[
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩A

(
(F \ {

⌢
ij}) ∪ {i, j}

)]
\ {i, j}

= A
((

(E ∩ F ) \ {
⌢
ij}
)
∪ {i, j}

)
\ {i, j} = Aij(E ∩ F ).

(g)
⌢
ij ̸∈ E ,

⌢
ij ∈ F and {i, j} ⊆ A((F \ {

⌢
ij}) ∪ {i, j}). Analogous to case (c).

(h)
⌢
ij ∈ E, {i, j} * A((E \ {

⌢
ij})∪ {i, j}),

⌢
ij ∈ F and {i, j} ⊆ A((F \ {

⌢
ij})∪ {i, j}). Analogous

to case (f).

(i)
⌢
ij ∈ E, {i, j} ⊆ A((E \ {

⌢
ij})∪{i, j}),

⌢
ij ∈ F and {i, j} ⊆ A((F \ {

⌢
ij})∪{i, j}). Notice that

in this case it holds that

{i, j} ⊆ A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩ A

(
(F \ {

⌢
ij}) ∪ {i, j}

)
and

A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩ A

(
(F \ {

⌢
ij}) ∪ {i, j}

)
= A

((
(E ∩ F ) \ {

⌢
ij}
)
∪ {i, j}

)
.

We have that Aij(E) ∩Aij(F ) is equal to[(
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

)
∪ {

⌢
ij}
]
∩
[(
A
(
(F \ {

⌢
ij}) ∪ {i, j}

)
\ {i, j}

)
∪ {

⌢
ij}
]

=
[(
A
(
(E \ {

⌢
ij}) ∪ {i, j}

)
∩A

(
(F \ {

⌢
ij}) ∪ {i, j}

))
\ {i, j}

]
∪ {

⌢
ij}

=
[
A
((

(E ∩ F ) \ {
⌢
ij}
)
∪ {i, j}

)
\ {i, j}

]
∪ {

⌢
ij}

= Aij(E ∩ F ).

We have seen that the Banzhaf conjunctive authorization value satisfies the five properties

mentioned in the theorem. Now we see that such properties uniquely determine the Banzhaf

conjunctive authorization value. Let Ψ be an allocation rule for games with conjunctive authorization
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structure satisfying the properties of additivity, irrelevant player, veto power over a necessary player,

2-efficiency and amalgamation. We must prove that Ψ = Bc.

Firstly we show that

Ψ(αuE , A) = Bc(αuE , A) for all E ∈ 2N \ {∅}, A ∈ AN
c and α > 0. (6.6)

We proceed by induction on the number of players.

1. Base case. If n = 1 the equality follows directly from the property of 2-efficiency.

2. Inductive step. Let E ∈ 2N \ {∅}, A ∈ AN
c and α > 0. Consider the set

F = {i ∈ N : there exists j ∈ E such that i has veto power over j in (N,A)} .

From the fact that Bc and Ψ satisfy the property of veto power over a necessary player, we

can derive that there exist b, b′ ∈ R such that

Bc
i (αuE , A) = b for all i ∈ F, (6.7)

Ψi(αuE , A) = b′ for all i ∈ F. (6.8)

Suppose that i ∈ N \F . Notice that i is an irrelevant player in (αuE , A). Indeed, if a player j

depends partially on i in (N,A), then, from Proposition 6.2, i has veto power over j in (N,A).

And, since i ̸∈ F , we can derive that j ̸∈ E, and, therefore, j is a null player in αuE . Now,

using that Bc and Ψ satisfy the irrelevant player property, we conclude that

Bc
i (αuE , A) = 0 for all i ∈ N \ F, (6.9)

Ψi(αuE , A) = 0 for all i ∈ N \ F. (6.10)

Now we consider different cases.

(i) Case |E| > 2. Take j and k two different players in E. It is clear that j and k can be

Values for games with authorization structure
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amalgamated in (αuE , A). We can write

b+ b = Bc
j(αuE , A) +Bc

k(αuE , A) = Bc
⌢
jk

(
(αuE)

jk , Ajk
)

= Bc
⌢
jk

(
αu

(E\{j,k})∪
{

⌢
jk

}, Ajk

)
= Ψ⌢

jk

(
αu

(E\{j,k})∪
{

⌢
jk

}, Ajk

)
= Ψ⌢

jk

(
(αuE)

jk , Ajk
)
= Ψj(αuE , A) + Ψk(αuE , A) = b′ + b′,

and we obtain b = b′. Using (6.7), (6.8), (6.9) and (6.10) we can conclude that

Ψ(αuE , A) = Bc(αuE , A).

(ii) Case |E| = 1 and |F \E| > 2. Take j and k two different players in F \ E. It is easy to

check that j and k can be amalgamated in (αuE , A). It holds that

b+ b = Bc
j(αuE , A) +Bc

k(αuE , A) = Bc
⌢
jk

(
(αuE)

jk , Ajk
)

= Bc
⌢
jk

(
αuE , A

jk
)
= Ψ⌢

jk

(
αuE , A

jk
)

= Ψ⌢
jk

(
(αuE)

jk , Ajk
)
= Ψj(αuE , A) + Ψk(αuE , A) = b′ + b′,

and we obtain b = b′. Using (6.7), (6.8), (6.9) and (6.10) we conclude

Ψ(αuE , A) = Bc(αuE , A).

(iii) Case |E| = 1 and |F \ E| 6 1. On the one hand, using the 2-efficiency property, we can

write

∑
i∈N

Bc
i (αuE , A)−

∑
i∈N

Ψi(αuE , A) = αuE(A(N))− αuE(A(N)) = 0,

and, on the other hand, from (6.7), (6.8), (6.9) and (6.10) we obtain

∑
i∈N

Bc
i (αuE , A)−

∑
i∈N

Ψi(αuE , A) = (b− b′)|F |.

From both expressions we obtain b = b′ and, therefore, Ψ(αuE , A) = Bc(αuE , A).

So we have proved (6.6). Now, using additivity and reasoning as we did in the proof of Theorem

2.14 we conclude Ψ = Bc. 2
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6.4 Conjunctive fuzzy authorization structures

In a similar way as we introduced conjunctive authorization structures, we aim to introduce

conjunctive fuzzy authorization structures.

Definition 6.13 A fuzzy authorization operator a ∈ FAN is said to be conjunctive if

a(E ∩ F ) = a(E) ∩ a(F ) for every E,F ⊆ N.

If a is a conjunctive fuzzy authorization operator on N , the pair (N, a) is said to be a conjunctive

fuzzy authorization structure. The set of all conjunctive fuzzy authorization operators is denoted by

FAN
c .

In the following result the conjunctive fuzzy authorization operators are characterized in terms

of conjunctive authorization operators.

Proposition 6.14 Let a ∈ FAN . The following statements are equivalent:

1. The fuzzy authorization operator a is conjunctive.

2. The authorization operator at is conjunctive for every t ∈ (0, 1].

Proof. Let a ∈ FAN .

1 =⇒ 2. Suppose that a is conjunctive and let t ∈ (0, 1]. Let E,F ⊆ N . It holds that

at(E ∩ F ) = [a(E ∩ F )]t = [a(E) ∩ a(F )]t = [a(E)]t ∩ [a(F )]t = at(E) ∩ at(F ).

2 =⇒ 1. Suppose that at is conjunctive for every t ∈ (0, 1] and let E,F ⊆ N . It suffices to show

that [a(E ∩ F )]t = [a(E) ∩ a(F )]t for every t ∈ (0, 1]. Let us see this.

[a(E ∩ F )]t = at(E ∩ F ) = at(E) ∩ at(F ) = [a(E)]t ∩ [a(F )]t = [a(E) ∩ a(F )]t.

2

Values for games with authorization structure
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Conjunctive fuzzy authorization structures preserve convexity, as we see in the following

proposition.

Definition 6.15 A game with conjunctive fuzzy authorization structure on N is a pair (v, a) where

v ∈ GN and a ∈ FAN
c .

6.5 The Shapley conjunctive fuzzy authorization value

An allocation rule for games with conjunctive fuzzy authorization structure assigns to every game

with conjunctive fuzzy authorization structure a payoff vector.

Definition 6.16 The Shapley conjunctive fuzzy authorization value, denoted by φc, assigns to each

game with conjunctive fuzzy authorization structure (v, a) the Shapley value of the restricted game

va,

φc(v, a) = ϕ (va) for all v ∈ GN and a ∈ FAN
c .

Notice that

φc(v, a) = φ (v, a) for all v ∈ GN and a ∈ FAN
c ,

where φ is the Shapley fuzzy authorization value.

The Shapley conjunctive fuzzy authorization value has been studied in Gallardo, Jiménez,

Jiménez-Losada and Lebrón [39]. We give a characterization of φc in the following theorem.

Theorem 6.17 An allocation rule for games with conjunctive fuzzy authorization structure is equal

to the Shapley conjunctive fuzzy authorization value if and only if it satisfies the properties of

efficiency, additivity, irrelevant player, veto power over a necessary player and reduction.

Proof. That the Shapley conjunctive fuzzy authorization value satisfies the properties of efficiency,

additivity, irrelevant player and veto power over a necessary player follows from the fact that the

Shapley conjunctive fuzzy authorization value is the restriction of the Shapley fuzzy authorization

value to the set of games with conjunctive fuzzy authorization structure and the fact that the Shapley
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fuzzy authorization value satisfies such properties.

In the case of the property of reduction we can use the same reasoning, but before we must prove

that if a ∈ FAN
c and t ∈ (0, 1) then a[0,t], a[t,1] ∈ FAN

c . So let a ∈ FAN
c and t ∈ (0, 1). It is easy

to check that (
a[0,t]

)s
= ats for every s ∈ (0, 1],(

a[t,1]
)s

= at+s(1−t) for every s ∈ (0, 1].

From these two equalities and Proposition 6.14 we can easily derive that a[0,t] and a[t,1] are conjunctive

fuzzy authorization operators.

Uniqueness can be proved the same way as we did it for the Shapley fuzzy authorization value in

Theorem 3.16. 2

6.6 The Banzhaf conjunctive fuzzy authorization value

We aim to define an allocation rule for games with conjunctive fuzzy authorization structure that

extends the Banzhaf conjunctive authorization value defined in Section 6.3.

Definition 6.18 The Banzhaf conjunctive fuzzy authorization value, denoted by βc, assigns to each

game with conjunctive fuzzy authorization structure (v, a) the Banzhaf value of the restricted game

va,

bc(v, a) = β (va) for all v ∈ GN and a ∈ FAN
c .

Notice that

bc(v, a) = b (v, a) for all v ∈ GN and a ∈ FAN
c ,

where b is the Banzhaf fuzzy authorization value.

In the following theorem we give a characterization of the Banzhaf conjunctive fuzzy authorization

value.

Values for games with authorization structure
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Theorem 6.19 An allocation rule for games with conjunctive fuzzy authorization structure is equal to

the Banzhaf conjunctive fuzzy authorization value if and only if it satisfies the properties of additivity,

irrelevant player, veto power over a necessary player, 2-efficiency, amalgamation and reduction.

Proof. That the Banzhaf conjunctive fuzzy authorization value satisfies the properties mentioned

in the theorem follows from the fact that the Banzhaf conjunctive fuzzy authorization value is

the restriction of the Banzhaf fuzzy authorization value to the set of games with conjunctive

fuzzy authorization structure and the fact that the Banzhaf fuzzy authorization value satisfies

such properties. In the case of the property of amalgamation, take into consideration that if a is

a conjunctive fuzzy authorization operator then aij is also conjunctive (this is a consequence of

(3.1), Proposition 6.14 and the analogous result for conjunctive authorization operators seen in the

proof of Theorem 6.12).

Uniqueness can be proved the same way as we did it for the Banzhaf fuzzy authorization value in

Theorem 3.25. 2





Chapter7
NTU games with authorization structure

In a similar way as, in previous chapters, we have made use of the Shapley value and the Banzhaf

value for TU games to provide allocation rules for TU games with authorization structure, in this

chapter we use two well known solutions for NTU games, the Shapley correspondence and the

Harsanyi configuration correspondence, to introduce solutions for NTU games with authorization

structure.

7.1 NTU games and authorization structures

Let n ∈ N and let N be a set of cardinality n. Recall that an NTU game on N is a correspondence

V that assigns to each nonempty E ⊆ N a nonempty subset V (E) ⊆ RE .

Definition 7.1 An NTU game with authorization structure is a pair (V,A) where V is an NTU

game on N and A ∈ ÃN .

In a similar way as we did it with games with authorization structure, given an NTU game with

authorization structure we define an NTU game that gathers the information from both the game

and the structure.

Definition 7.2 Let V be an NTU game on N and A ∈ ÃN . The restricted game of (V,A) is the

153
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NTU game V A given by

V A(E) =


V (E) if A(E) = E,

(−∞, 0]E if A(E) = ∅,
V (A(E))× (−∞, 0]E\A(E) otherwise.

Example 7.3 Let N = {1, 2, 3}. Let V be an NTU game defined by

V ({i}) =
{
zi ∈ R{i} : zi 6 1

}
for every i ∈ N,

V ({i, j}) =
{
z ∈ R{i,j} : z 6 (2, 2)

}
for every i, j ∈ N with i ̸= j,

V (N) =
{
(z1, z2, z3) ∈ RN : z1 + z2 + z3 6 6

}
.

Let A ∈ ÃN be given by

A(E) =

{
E \ {3} if 2 ̸∈ E,

E otherwise.

Notice that (N,A) is a conjunctive authorization structure with one non-trivial veto relationship: 2

has veto power over 3. We can represent it with the following digraph

1

3

2

Consider the NTU game with authorization structure (V,A). Let us calculate V A.

V A ({1}) =
{
z1 ∈ R{1} : z1 6 1

}
,

V A ({2}) =
{
z2 ∈ R{2} : z2 6 1

}
,

Values for games with authorization structure
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V A ({3}) =
{
z3 ∈ R{3} : z3 6 0

}
,

V A ({1, 2}) =
{
(z1, z2) ∈ R{1,2} : (z1, z2) 6 (2, 2)

}
,

V A ({1, 3}) =
{
(z1, z3) ∈ R{1,3} : z1 6 1, z3 6 0

}
,

V A ({2, 3}) =
{
(z2, z3) ∈ R{2,3} : (z2, z3) 6 (2, 2)

}
,

V A ({1, 2, 3}) =
{
(z1, z2, z3) ∈ R{1,2,3} : z1 + z2 + z3 6 6

}
.

7.2 The Shapley authorization NTU correspondence

In this section we only consider the NTU games V satisfying the following conditions:

(i) V (E) is convex and comprehensive for all nonempty E ⊆ N .

(ii) V (N) is a proper, closed and smooth subset of RN .

(iii) For every x ∈ ∂(V (N)) it holds {y ∈ RN : y > x} ∩ V (N) = {x}.

(iv) There exists x ∈ RN such that V (E)× {0}N\E ⊆ x+ V (N) for every nonempty E ⊆ N .

(v) For every nonempty E ⊆ N and λ ∈ RE
++, the set {λ · x : x ∈ V (E)} is closed.

We denote ΓN the set of NTU games satisfying (i), (ii), (iii), (iv) and (v).

It is easy to prove the following proposition.

Proposition 7.4 Let V ∈ ΓN and A ∈ ÃN . It holds that V A ∈ ΓN .

We aim to give a correspondence that assigns to each NTU game with authorization structure

(V,A) with V ∈ ΓN and A ∈ ÃN a set of payoff vectors.
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Definition 7.5 The Shapley authorization NTU correspondence is given by

Θ(V,A) = SH
(
V A
)

for every V ∈ ΓN and A ∈ ÃN ,

where SH denotes the Shapley NTU correspondence.

Our goal is to provide a characterization of the Shapley authorization NTU correspondence. To

that end, we consider the properties that we state below. In the statement of these properties, Ψ is

a correspondence that assigns to each V ∈ ΓN and A ∈ ÃN a subset Ψ(V,A) ⊆ RN .

• NON-EMPTINESS. For every V ∈ ΓN such that ∂(V (N)) is a hyperplane and A ∈ ÃN , it holds

that

Ψ(V,A) ̸= ∅.

• EFFICIENCY. For every V ∈ ΓN and A ∈ ÃN , it holds that

Ψ(V,A) ⊆ ∂(V (N)).

• CONDITIONAL ADDITIVITY. For every A ∈ ÃN and V,W ∈ ΓN such that V +W ∈ ΓN , it holds

that

(Ψ(V,A) + Ψ(W,A)) ∩ ∂ ((V +W )(N)) ⊆ Ψ(V +W,A).

• SCALE COVARIANCE. For every V ∈ ΓN , A ∈ ÃN and α ∈ RN
++, it holds that

Ψ(α ∗ V,A) = α ∗Ψ(V,A).

• INDEPENDENCE OF IRRELEVANT ALTERNATIVES. For every A ∈ ÃN and V,W ∈ ΓN such that

V (N) ⊆W (N) and V (E) =W (E) for every E ̸= N , it holds that

Ψ(W,A) ∩ V (N) ⊆ Ψ(V,A).

Values for games with authorization structure
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• CONSISTENCY WITH THE SHAPLEY AUTHORIZATION VALUE. For all v ∈ GN and A ∈ ÃN , it holds

that

Ψ(Vv, A) = {Φ(v,A)},

where Φ is the Shapley authorization value.

In the following theorem we show that these properties uniquely determine the Shapley

authorization NTU correspondence.

Theorem 7.6 A mapping Ψ : ΓN × ÃN → 2R
N

is equal to the Shapley authorization NTU

correspondence if and only if it satisfies the properties of non-emptiness, efficiency, conditional

additivity, scale covariance, independence of irrelevant alternatives and consistency with the Shapley

authorization value.

Proof. Firstly, we prove that the Shapley authorization NTU correspondence satisfies such

properties.

Non-emptiness. Let V ∈ ΓN be such that ∂(V (N)) is a hyperplane. Using property (iii) of the

games in ΓN we can derive that there exist λ ∈ RN
++ and α ∈ R such that

V (N) =
{
y ∈ RN : λ · y 6 α

}
.

From property (iv) of the games in ΓN it follows that

sup
{
λE · z : z ∈ V A(E)

}
< +∞ for all nonempty E ⊆ N.

Let w ∈ GN given by

w(E) = sup
{
λE · z : z ∈ V A(E)

}
for all nonempty E ⊆ N and w(∅) = 0,

and take x ∈ RN defined by xi =
ϕi(w)

λi
. It is clear that x ∈ Θ(V,A). So we have proved that Θ

satisfies non-emptiness.



158 CHAPTER 7. NTU GAMES WITH AUTHORIZATION STRUCTURE

Efficiency. Let V ∈ ΓN and A ∈ ÃN . Using the efficiency property of the Shapley NTU

correspondence we can write

Θ(V,A) = SH
(
V A
)
⊆ ∂

(
V A(N)

)
= ∂(V (N)).

Conditional additivity. Let A ∈ ÃN . Let V,W ∈ ΓN be such that V +W ∈ ΓN . It holds

(Θ(V,A) + Θ(W,A)) ∩ ∂ ((V +W )(N)) =
(
SH

(
V A
)
+ SH

(
WA

))
∩ ∂

(
(V +W )A(N)

)
which, using (V +W )A = V A +WA, is equal to

(
SH

(
V A
)
+ SH

(
WA

))
∩ ∂

(
(V A +WA)(N)

)
⊆ SH

(
V A +WA

)
where we have used that the Shapley NTU correspondence satisfies conditional additivity. Finally it

suffices to notice that

SH
(
V A +WA

)
= SH

(
(V +W )A

)
= Θ(V +W,A).

Scale covariance. Let V ∈ ΓN , A ∈ ÃN and α ∈ RN
++. It holds

Θ(α ∗ V,A) = SH
(
(α ∗ V )A

)
= SH

(
α ∗ V A

)
which, using that the Shapley NTU correspondence satisfies scale covariance, is equal to

α ∗ SH
(
V A
)
= α ∗Θ(V,A).

Independence of irrelevant alternatives. Let A ∈ ÃN . Let V,W ∈ ΓN be such that

V (N) ⊆W (N) and V (E) =W (E) for every E ̸= N . It holds

Θ(W,A) ∩ V (N) = SH
(
WA

)
∩ V A(N) ⊆ SH

(
V A
)
= Θ(V,A)

where the inclusion follows from the fact that the Shapley NTU correspondence satisfies the property

of independence of irrelevant alternatives.
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Consistency with the Shapley authorization value. Let v ∈ GN and A ∈ ÃN . Since

Θ(Vv, A) = SH
(
(Vv)

A
)
, we calculate SH

(
(Vv)

A
)
. A vector x ∈ RN belongs to SH

(
(Vv)

A
)
if and

only if there exists λ ∈ RN
++ such that

(1) x ∈ (Vv)
A(N),

(2) sup
{
λE · z : z ∈ (Vv)

A(E)
}
< +∞ for all nonempty E ⊆ N ,

(3) λ ∗ x = ϕ(wλ) where wλ is the TU game defined by

wλ(E) = sup
{
λE · z : z ∈ (Vv)

A(E)
}

for all nonempty E ⊆ N.

Taking into consideration that

(Vv)
A(N) = Vv(N) =

{
z ∈ RN :

∑
k∈N

zk 6 v(N)

}
,

it is clear that

sup
{
λ · z : z ∈ (Vv)

A(N)
}
= +∞ for all λ ∈ RN

++ \ {1N}.

Hence, the only element in SH
(
(Vv)

A
)
is the one that is obtained with λ = 1N . So it holds

SH
(
(Vv)

A
)
= {ϕ(w1N )}. It is clear that w1N (E) = v(A(E)) for all nonempty E ⊆ N . Therefore,

we have

SH
(
(Vv)

A
)
= {ϕ(w1N )} = {ϕ(vA)} = {Φ(v,A)}.

We have proved that Θ satisfies the properties in the theorem. Now we want to show that these

properties uniquely determine the Shapley authorization NTU correspondence.

Let Ψ : ΓN × ÃN → 2R
N

be a mapping satisfying the properties of non-emptiness, efficiency,

conditional additivity, scale covariance, independence of irrelevant alternatives and consistency with

the Shapley authorization value. Now, take V ∈ ΓN and A ∈ ÃN . We intend to show that

Ψ(V,A) = Θ(V,A). We prove both inclusions.

Firstly, we prove that Ψ(V,A) ⊆ Θ(V,A). Let x ∈ Ψ(V,A). Since Ψ satisfies efficiency, it holds that

x ∈ ∂(V (N)). From x ∈ ∂(V (N)) and properties (i), (ii) and (iii) of the games in ΓN it is easy to
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derive that there exists λ ∈ RN
++ such that

λ · y 6 λ · x for every y ∈ V (N). (7.1)

Using the property of scale covariance, it follows that

λ ∗ x ∈ Ψ(λ ∗ V,A). (7.2)

Let V0 be the NTU game corresponding to the TU game that is identically zero. From the fact that

Ψ satisfies consistency with the Shapley authorization value it follows that

Ψ(V0, A) = {0}. (7.3)

From (7.2) and (7.3) we obtain

λ ∗ x ∈ Ψ(λ ∗ V,A) + Ψ(V0, A). (7.4)

Now, take y ∈ V (N) and z ∈ V0(N). Taking into consideration the definition of V0 and (7.1) we

have ∑
k∈N

(λ ∗ y + z)k = λ · y +
∑
k∈N

zk 6 λ · y 6 λ · x =
∑
k∈N

(λ ∗ x)k

from where we derive that λ ∗ x ∈ ∂ ((λ ∗ V + V0)(N)). Therefore, using (7.4), we have obtained

λ ∗ x ∈ (Ψ(λ ∗ V,A) + Ψ(V0, A)) ∩ ∂ ((λ ∗ V + V0)(N)) ,

and hence, since Ψ satisfies conditional additivity, we conclude that

λ ∗ x ∈ Ψ(λ ∗ V + V0, A) .

Using properties (iv) and (v) of the games in ΓN , it is easy to prove that λ ∗ V + V0 = Vv where v

is the TU game given by

v(E) = sup
{
λE · t : t ∈ V (E)

}
for all nonempty E ⊆ N.

Values for games with authorization structure
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Since Ψ satisfies consistency with the Shapley authorization value we can write

λ ∗ x ∈ Ψ(λ ∗ V + V0, A) = Ψ (Vv, A) = {Φ(v,A)}

hence, λ ∗ x = Φ(v,A) = ϕ(vA). So we have

(1) x ∈ V (N) = V A(N),

(2) sup
{
λE · t : t ∈ V A(E)

}
< +∞ for all nonempty E ⊆ N ,

(3) λ ∗ x = ϕ(vA) where, for every nonempty E ⊆ N ,

vA(E) =

{
sup

{
λA(E) · t : t ∈ V (A(E))

}
if A(E) ̸= ∅,

0 if A(E) = ∅,

or equivalently

vA(E) = sup
{
λE · t : t ∈ V A(E)

}
.

Hence, (1), (2) and (3) mean that x ∈ SH(V A) = Θ(V,A).

Now, we prove that Θ(V,A) ⊆ Ψ(V,A). Let x ∈ Θ(V,A). By definition there exists λ ∈ RN
++ such

that

(1) x ∈ V A(N),

(2) sup
{
λE · z : z ∈ V A(E)

}
< +∞ for all nonempty E ⊆ N ,

(3) λ ∗ x = ϕ(wλ) where wλ is the TU game defined by

wλ(E) = sup
{
λE · z : z ∈ V A(E)

}
for all nonempty E ⊆ N.

Consider the NTU game W ∈ ΓN defined as

W (E) =

{ {
y ∈ RN : λ · y 6 λ · x

}
if E = N,

V (E) if E ̸= N.

It is easy to check that Θ(W,A) = {x}. We know that Ψ(W,A) ⊆ Θ(W,A). Besides, from non-

emptiness, it must be that Ψ(W,A) ̸= ∅. Therefore, Ψ(W,A) = {x}. Finally, using the property of
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independence of irrelevant alternatives, we conclude that x ∈ Ψ(V,A). 2

In practice, if we have V ∈ ΓN and A ∈ ÃN , we do not need to obtain V A to calculate Θ(V,A).

Let us see this. Let λ ∈ RN
++ be such that

sup {λ · z : z ∈ V (N)} < +∞.

Consider wλ, vλ ∈ GN defined by

wλ(E) = sup
{
λE · z : z ∈ V A(E)

}
,

vλ(E) = sup
{
λE · z : z ∈ V (E)

}
,

for every nonempty E ⊆ N . It is clear that wλ = vAλ . We can use this to give a definition of Θ(V,A)

that does not involve the restricted game V A, as we see in the following remark.

Remark 7.7 Let V ∈ ΓN and A ∈ ÃN . A vector x ∈ RN belongs to Θ(V,A) if and only if there

exists λ ∈ RN
++ such that

(1) x ∈ V (N),

(2) sup {λ · z : z ∈ V (N)} < +∞,

(3) λ ∗ x = Φ(vλ, A) where vλ is the TU game defined by

vλ(E) = sup
{
λE · z : z ∈ V (E)

}
for all nonempty E ⊆ N.

Example 7.8 Let (V,A) be the NTU game with authorization structure considered in Example 7.3.

Let us calculate Θ(V,A) by means of Remark 7.7, without using the expression of the restricted

game V A. Since ∂(V (N)) is a hyperplane, it is plain to see that Θ(V,A) is a singleton {x}. It is
clear that x is associated to the comparison vector λ = (1, 1, 1). We calculate x by using Remark

7.7. Firstly, we proceed to calculate the characteristic function vλ

vλ ({1}) = vλ ({2}) = vλ ({3}) = 1,

vλ ({1, 2}) = vλ ({1, 3}) = vλ ({2, 3}) = 4,

vλ ({1, 2, 3}) = 6.

Values for games with authorization structure
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Now we calculate vAλ

vAλ ({1}) = 1, vAλ ({2}) = 1, vAλ ({3}) = 0,

vAλ ({1, 2}) = 4, vAλ ({1, 3}) = 1, vAλ ({2, 3}) = 4,

vAλ ({1, 2, 3}) = 6.

It holds that

Φ(vλ, A) = ϕ
(
vAλ
)
=

1

6
(10, 19, 7).

and from Remark 7.7 we conclude that

x =
1

6
(10, 19, 7).

So we have obtained that

Θ(V,A) =

{
1

6
(10, 19, 7)

}
.

7.3 NTU games and fuzzy authorization structures

In a similar way as we did it with TU games, we introduce NTU games with fuzzy authorization

structure.

Definition 7.9 An NTU game with fuzzy authorization structure is a pair (V, a) where V is an NTU

game on N and a ∈ F̃AN
.

Definition 7.10 Let V ∈ ΓN , a ∈ F̃A
N

and {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with

0 = t0 < . . . < tr = 1. The restricted game of (V, a) is the NTU game V a given by

V a(E) =
r∑

l=1

(tl − tl−1)V
atl (E),

where for every t ∈ (0, 1], at ∈ ÃN is defined as at(E) = {k ∈ E : ak(E) > t} for all E ⊆ N.

Example 7.11 Let V be the NTU game given in Example 7.3. Let a be the fuzzy authorization
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operator on {1, 2, 3} defined in the following table.

E {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

a(E) (1, 0, 0) (0, 1, 0) (0, 0, 0.4) (1, 1, 0) (1, 0, 0.6) (0, 1, 0.8) (1, 1, 1)

Consider the NTU game with fuzzy authorization structure (V, a). Let us calculate the restricted

game V a,

V a ({1}) =
{
z1 ∈ R{1} : z1 6 1

}
,

V a ({2}) =
{
z2 ∈ R{2} : z2 6 1

}
,

V a ({3}) =
{
z3 ∈ R{3} : z3 6 0.4

}
,

V a ({1, 2}) =
{
(z1, z2) ∈ R{1,2} : (z1, z2) 6 (2, 2)

}
,

V a ({1, 3}) =
{
(z1, z3) ∈ R{1,3} : z1 6 1.6, z3 6 1.2

}
,

V a ({2, 3}) =
{
(z2, z3) ∈ R{2,3} : z2 6 1.8, z3 6 1.6

}
,

V a ({1, 2, 3}) =
{
(z1, z2, z3) ∈ R{1,2,3} : z1 + z2 + z3 6 6

}
.

7.4 The Shapley fuzzy authorization NTU correspondence

We aim to give a correspondence that assigns to each NTU game with fuzzy authorization

structure (V, a) with V ∈ ΓN and a ∈ F̃AN
a set of payoff vectors. We need a previous result.

Proposition 7.12 Let V ∈ ΓN and a ∈ F̃A
N
. Then, it holds that

(a) V a(N) = V (N),

(b) V a ∈ ΓN .

Values for games with authorization structure
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Proof. Let V ∈ ΓN , a ∈ F̃A
N

and {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with

0 = t0 < . . . < tr = 1.

(a) It holds

V a(N) =

r∑
l=1

(tl − tl−1)V
atl (N) =

r∑
l=1

(tl − tl−1)V (N)

which, taking into consideration that V (N) is convex, is equal to V (N).

(b) We must prove that V a satisfies the five properties that characterize the NTU games in ΓN .

From V ∈ ΓN and V a(N) = V (N) it follows that V a satisfies (ii) and (iii).

Let E be a nonempty subset of N . From the fact that V atl (E) is convex and comprehensive

for all l = 1, . . . , r it can be derived that V a(E) is convex and comprehensive. Hence V a

satisfies (i).

Since V ∈ ΓN there exists x ∈ RN such that V (F )×{0}N\F ⊆ x+V (N) for every nonempty

F ⊆ N . Since V (N) is comprehensive, it is clear that we can assume that 0 ∈ x + V (N).

In these conditions, it is easy to check, making use of the comprehensiveness of V (N), that

V atl (E)× {0}N\E ⊆ x+ V (N) for all l = 1, . . . , r. It holds that

V a(E)× {0}N\E =

(
r∑

l=1

(tl − tl−1)V
atl (E)

)
× {0}N\E

=

r∑
l=1

(tl − tl−1)
(
V atl (E)× {0}N\E

)
⊆

r∑
l=1

(tl − tl−1) (x+ V (N))

which, using the convexity of V (N), is equal to x+ V (N). Therefore, V a satisfies (iv).

Let λ ∈ RE
++. It holds that

λ · V a(E) = λ ·

(
r∑

l=1

(tl − tl−1)V
atl (E)

)
=

r∑
l=1

(tl − tl−1)
(
λ · V atl (E)

)
which is closed, since it is a sum of closed intervals in the real line. So V a satisfies (v).

2
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Definition 7.13 The Shapley fuzzy authorization NTU correspondence is given by

θ(V, a) = SH (V a) for every V ∈ ΓN and a ∈ F̃A
N
,

where SH denotes the Shapley NTU correspondence.

We aim to give a characterization of the Shapley fuzzy authorization NTU correspondence. To

that end, we consider the properties that we state below. In the statement of these properties, ψ is

a correspondence that assigns to each V ∈ ΓN and a ∈ F̃A
N

a subset ψ(V, a) ⊆ RN .

• NON-EMPTINESS. For every V ∈ ΓN such that ∂(V (N)) is a hyperplane and a ∈ F̃A
N
, it holds

that

ψ(V, a) ̸= ∅.

• EFFICIENCY. For all V ∈ ΓN and a ∈ F̃A
N
, it holds that

ψ(V, a) ⊆ ∂(V (N)).

• CONDITIONAL ADDITIVITY. For every a ∈ F̃A
N

and V,W ∈ ΓN such that V +W ∈ ΓN , it

holds that

(ψ(V, a) + ψ(W,a)) ∩ ∂ ((V +W )(N)) ⊆ ψ(V +W,a).

• SCALE COVARIANCE. For all V ∈ ΓN , a ∈ F̃A
N

and α ∈ RN
++, it holds that

ψ(α ∗ V, a) = α ∗ ψ(V, a).

• INDEPENDENCE OF IRRELEVANT ALTERNATIVES. For all a ∈ F̃A
N

and V,W ∈ ΓN such that

V (N) ⊆W (N) and V (E) =W (E) for every E ̸= N , it holds that

ψ(W,a) ∩ V (N) ⊆ ψ(V, a).

Values for games with authorization structure
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• CONSISTENCY WITH THE SHAPLEY FUZZY AUTHORIZATION VALUE. For every v ∈ GN and a ∈ F̃A
N
,

it holds that

ψ(Vv, a) = {φ(v, a)},

where φ is the Shapley fuzzy authorization value.

Next we show that these properties characterize the Shapley fuzzy authorization NTU

correspondence.

Theorem 7.14 A mapping ψ : ΓN × F̃A
N

→ 2R
N

is equal to the Shapley fuzzy authorization

NTU correspondence if and only if it satisfies the properties of non-emptiness, efficiency, conditional

additivity, scale covariance, independence of irrelevant alternatives and consistency with the Shapley

fuzzy authorization value.

Proof. That the Shapley fuzzy authorization NTU correspondence satisfies non-emptiness,

efficiency, conditional additivity, scale covariance and independence of irrelevant alternatives can

be proved in a similar way as was proved for the Shapley authorization NTU correspondence.

Let us see that θ satisfies consistency with the Shapley fuzzy authorization value. Let v ∈ GN ,

a ∈ F̃A
N

and {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr = 1. Since

θ (Vv, a) = SH ((Vv)
a), we calculate SH ((Vv)

a). A vector x ∈ RN belongs to SH ((Vv)
a) if and

only if there exists λ ∈ RN
++ such that

(1) x ∈ (Vv)
a(N),

(2) sup
{
λE · z : z ∈ (Vv)

a(E)
}
< +∞ for all nonempty E ⊆ N ,

(3) λ ∗ x = ϕ(wλ) where wλ is the TU game defined by

wλ(E) = sup
{
λE · z : z ∈ (Vv)

a(E)
}

for all nonempty E ⊆ N.

Taking into consideration that

(Vv)
a(N) = Vv(N) =

{
z ∈ RN :

∑
k∈N

zk 6 v(N)

}
.
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It is clear that

sup {λ · z : z ∈ (Vv)
a(N)} = +∞ for all λ ∈ RN

++ \ {1N}.

Hence, the only element in SH ((Vv)
a) is the one that is obtained with λ = 1N . So we have that

θ (Vv, a) = {ϕ(w1N )}. If we get to prove that w1N = va we will have finished, since ϕ(va) = φ(v, a).

To that end, take E a nonempty subset of N . If a(E) = 0 it is clear that w1N (E) = va(E) = 0. If

a(E) ̸= 0, denote m = max
{
l : atl(E) ̸= ∅

}
. It holds that

w1N (E) = sup {z(E) : z ∈ (Vv)
a(E)}

= sup

{
r∑

l=1

(tl − tl−1) zl(E) : zl ∈ (Vv)
atl (E) for all l = 1, . . . ,m

}

=

r∑
l=1

(tl − tl−1) sup
{
z(E) : z ∈ (Vv)

atl (E)
}

=

m∑
l=1

(tl − tl−1) sup
{
y(atl(E)) : y ∈ Vv(a

tl(E))
}

=

m∑
l=1

(tl − tl−1) v
(
atl(E)

)
= va(E).

We have proved that θ satisfies the properties in the theorem. Now we aim to see that these

properties uniquely determine the Shapley fuzzy authorization NTU correspondence.

Let ψ : ΓN × F̃A
N

→ 2R
N

be a mapping satisfying the properties of non-emptiness, efficiency,

conditional additivity, scale covariance, independence of irrelevant alternatives and consistency

with the Shapley fuzzy authorization value. Now, take V ∈ ΓN and a ∈ F̃A
N
. We show that

ψ(V, a) = θ(V, a). We prove both inclusions.

Firstly, we prove that ψ(V, a) ⊆ θ(V, a). Let x ∈ ψ(V, a). Proceeding in the same way as we did in

the case of the Shapley authorization NTU correspondence, we can obtain λ ∈ RN
++ such that

λ ∗ x ∈ ψ (λ ∗ V + V0, a)

where V0 is the NTU game corresponding to the TU game that is identically zero.

Values for games with authorization structure
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Remember that λ ∗ V + V0 = Vv where v is the TU game given by

v(E) = sup
{
λE · z : z ∈ V (E)

}
for all nonempty E ⊆ N.

Since ψ satisfies consistency with the Shapley fuzzy authorization value we can write

λ ∗ x ∈ ψ (λ ∗ V + V0, a) = ψ (Vv, a) = {φ(v, a)}

hence, λ ∗ x = φ(v, a) = ϕ(va). So we have

(1) x ∈ V (N) = V a(N),

(2) sup
{
λE · z : z ∈ V a(E)

}
< +∞ for all nonempty E ⊆ N ,

(3) λ ∗ x = ϕ(va).

If we prove that

va(E) = sup
{
λE · z : z ∈ V a(E)

}
for all nonempty E ⊆ N, (7.5)

we will have finished since in that case (1), (2) and (3) will mean that, by definition,

x ∈ SH(V a) = θ(V, a). In order to prove (7.5) take E a nonempty subset of N . If a(E) = 0

the equality is clear. So we assume a(E) ̸= 0. Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N}
with 0 = t0 < . . . < tr = 1. Name m = max

{
l : atl(E) ̸= ∅

}
. It holds that

va(E) =

m∑
l=1

(tl − tl−1) v
(
atl(E)

)
=

m∑
l=1

(tl − tl−1) sup
{
λa

tl (E) · y : y ∈ V
(
atl(E)

)}
=

r∑
l=1

(tl − tl−1) sup
{
λE · z : z ∈ V atl (E)

}
= sup

{
λE ·

(
r∑

l=1

(tl − tl−1) zl

)
: zl ∈ V atl (E) for all l = 1, . . . ,m

}
= sup

{
λE · z : z ∈ V a(E)

}
.
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It remains to prove that θ(V, a) ⊆ ψ(V, a). The same reasoning that we followed in the case of the

Shapley authorization NTU correspondence can be used. 2

In a similar way as in the crisp case, in practice, if we have V ∈ ΓN and a ∈ F̃A
N
, we do not

need to obtain V a to calculate θ(V, a). Let λ ∈ RN
++ be such that sup {λ · z : z ∈ V (N)} < +∞.

Consider wλ, vλ ∈ GN defined by

wλ(E) = sup
{
λE · z : z ∈ V a(E)

}
,

vλ(E) = sup
{
λE · z : z ∈ V (E)

}
,

for every nonempty E ⊆ N . Let us see that

wλ = vaλ. (7.6)

Let {tl : l = 0, . . . , r} = {ak(F ) : F ⊆ N, k ∈ N} with 0 = t0 < . . . < tr = 1 and let E ∈ 2N \{∅}.
We must prove that wλ(E) = vaλ(E). It is easy to check that

sup
{
λE · z : z ∈ V atl (E)

}
= va

tl

λ (E) for every l = 1, . . . , r. (7.7)

It holds that

wλ(E) = sup
{
λE · z : z ∈ V a(E)

}
= sup

{
r∑

l=1

(tl − tl−1)
(
λE · zl

)
: zl ∈ V atl (E) for all l = 1, . . . , r

}

=
r∑

l=1

(tl − tl−1) sup
{
λE · z : z ∈ V atl (E)

}
which, from (7.7), is equal to

r∑
l=1

(tl − tl−1) v
atl
λ (E) = vaλ(E).

We can use (7.6) to give a definition of θ(V, a) that does not involve the restricted game V a, as

we see in the following remark.

Values for games with authorization structure



7.4. THE SHAPLEY FUZZY AUTHORIZATION NTU CORRESPONDENCE 171

Remark 7.15 Let V ∈ ΓN and a ∈ F̃A
N
. A vector x ∈ RN belongs to θ (V, a) if and only if there

exists λ ∈ RN
++ such that

(1) x ∈ V (N),

(2) sup {λ · z : z ∈ V (N)} < +∞,

(3) λ ∗ x = φ(vλ, a) where vλ is the TU game defined by

vλ(E) = sup
{
λE · z : z ∈ V (E)

}
for all nonempty E ⊆ N.

Example 7.16 Let (V, a) be the NTU game with fuzzy authorization structure considered in Example

7.11. Let us calculate θ(V, a) without using the expression of the restricted game. We use Remark

7.15. Since ∂(V (N)) is a hyperplane, it is plain to see that θ(V, a) is a singleton {x}. It is clear that
x is associated to the comparison vector λ = (1, 1, 1). We calculated vλ in Example 7.3. We proceed

to calculate vaλ,

vaλ ({1}) = vλ ({1}) = 1

vaλ ({2}) = vλ ({2}) = 1

vaλ ({3}) = 0.4 vλ ({3}) = 0.4

vaλ ({1, 2}) = vλ ({1, 2}) = 4

vaλ ({1, 3}) = 0.6 vλ ({1, 3}) + 0.4 vλ ({1}) = 2.8

vaλ ({2, 3}) = 0.8 vλ ({2, 3}) + 0.2 vλ ({2}) = 3.4

vaλ ({1, 2, 3}) = vλ ({1, 2, 3}) = 6

It holds that

φ(vλ, a) = ϕ (vaλ) = (2.1, 2.4, 1.5).

From Remark 7.15 we conclude that

x = (2.1, 2.4, 1.5).

So we have obtained that

θ(V, a) = {(2.1, 2.4, 1.5)} .
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7.5 The Harsanyi configuration correspondence for NTU games with

interior operator structure

We aim to define and characterize a Harsanyi solution for NTU games with interior operator

structure. In this section we only consider the NTU games V satisfying the following conditions:

(i) V (E) is closed, convex and comprehensive for all nonempty E ⊆ N .

(ii) V (N) is smooth.

(iii) For every x ∈ ∂(V (N)) it holds {y ∈ RN : y > x} ∩ V (N) = {x}.

We denote ΩN the set of NTU games satisfying (i), (ii) and (iii).

It is easy to prove the following proposition.

Proposition 7.17 Let V ∈ ΩN and A ∈ ÃN . It holds that V A ∈ ΩN .

A configuration correspondence Ψ for NTU games with interior operator structure assigns to

each V ∈ ΩN and A an interior operator on N a set Ψ(V,A) ⊂
∏

E∈2N\{∅}
RE . We aim to provide a

configuration correspondence for NTU games with interior operator structure with good properties.

Definition 7.18 The Harsanyi configuration correspondence for NTU games with interior operator

structure, denoted by H, is defined by

H(V,A) = H
(
V A
)

for every V ∈ ΩN and A interior operator on N,

where H denotes the Harsanyi configuration correspondence for NTU games.

Bearing in mind the definition of the Harsanyi configuration correspondence for NTU games,

we can give another version of the definition of the Harsanyi configuration correspondence for NTU

games with interior operator structure.

Values for games with authorization structure
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Remark 7.19 Let V ∈ ΩN and A an interior operator on N . A payoff configuration (xE)E∈2N\{∅}

belongs to H(V,A) if there exists λ ∈ RN
++ such that

(1) xE ∈ ∂
(
V A(E)

)
for all E ∈ 2N \ {∅},

(2) λ · xN = max {λ · y : y ∈ V (N)},

(3) if w is the TU game given by w(F ) = λF ·xF for every F ∈ 2N \ {∅}, then λE ∗xE = ϕ(w|E)

for all E ∈ 2N \ {∅}.

We introduce a notation that will be useful in the rest of the chapter. Given A ∈ AN we denote

aut(A) =
{
E ∈ 2N \ {∅} : A(E) = E

}
.

We aim to give a characterization of the Harsanyi configuration correspondence for NTU games

with interior operator structure. To that end, we consider the properties stated below. In the statement

of these properties, Ψ is a configuration correspondence for NTU games with interior operator

structure.

• EFFICIENCY. For every V ∈ ΩN , A an interior operator on N and (xE)E∈2N\{∅} ∈ Ψ(V,A), it

holds that

xE ∈ ∂ (V (E)) for all E ∈ aut(A).

• CONDITIONAL ADDITIVITY. For every V,W ∈ ΩN such that V + W ∈ ΩN , A an interior

operator on N and (xE)E∈2N\{∅} ∈ Ψ(V,A) + Ψ(W,A) such that xE ∈ ∂((V +W )(E)) for

all E ∈ aut(A) it holds that

(xE)E∈2N\{∅} ∈ Ψ(V +W,A).

• SCALE COVARIANCE. For every V ∈ ΩN , A an interior operator on N and α ∈ RN
++, it holds

that

Ψ(α ∗ V,A) =
{
(αE ∗ xE)E∈2N\{∅} : (xE)E∈2N\{∅} ∈ Ψ(V,A)

}
.

• INDEPENDENCE OF IRRELEVANT ALTERNATIVES. Given V,W ∈ ΩN , A an interior operator on

N such that V (E) ⊆ W (E) for all E ∈ aut(A) and (xE)E∈2N\{∅} ∈ Ψ(W,A) such that
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xE ∈ V (E) for all E ∈ aut(A) it holds that

(xE)E∈2N\{∅} ∈ Ψ(V,A).

• CONSISTENCY WITH THE SHAPLEY AUTHORIZATION VALUE. For v ∈ GN and A an interior operator

on N , it holds that

Ψ(Vv, A) =
{(

Φ(v|E , A|E)
)
E∈2N\{∅}

}
.

• ZERO INESSENTIAL GAMES. For V ∈ ΩN , A an interior operator on N and 0 ∈ ∂(V (E)) for all

E ∈ aut(A), it holds that

(0)E∈2N\{∅} ∈ Ψ(V,A).

In the next theorem we prove that these properties uniquely determine the Harsanyi configuration

correspondence for NTU games with interior operator structure. Before, we see a proposition that

will be useful in the proof of the theorem.

Proposition 7.20 Let V ∈ ΩN , A an interior operator on N and (xE)E∈2N\{∅} ∈ H(V,A). Then,

it holds that

(a) xE = 0 for every E ∈ 2N \ {∅} with A(E) = ∅.

(b) For every E ∈ 2N with A(E) ̸= ∅,

(xE)i =

{ (
xA(E)

)
i

if i ∈ A(E),

0 if i ∈ E \A(E).

Proof. Let V ∈ ΩN , A an interior operator on N and (xE)E∈2N\{∅} ∈ H(V,A).

(a) We proceed by strong induction on |E|.

1. Suppose |E| = 1. It holds that E = {i} and V A(E) = (−∞, 0]{i}. Since xE ∈ ∂
(
V A(E)

)
it must be xE = 0.

2. Suppose |E| > 1. By induction hypothesis it holds that

xF = 0 for all F $ E with F ̸= ∅. (7.8)

Values for games with authorization structure
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Let λ ∈ RN
++ the vector associated to the payoff configuration (xE)E∈2N\{∅}. From

condition (3) of the definition of H in Remark 7.19 we have that

λE ∗ xE = ϕ(w|E), (7.9)

where w(F ) = λF · xF for all F ∈ 2N \ {∅}. From (7.8) we know that w(F ) = 0 for all

F $ E. Therefore

ϕ(w|E) =

{
w(E)

|E|

}E

, (7.10)

and from (7.9) and (7.10) we obtain that

(xE)i =
w(E)

|E|λi
for every i ∈ E.

But from condition (1) in Remark 7.19 we know that xE ∈ ∂
(
V A(E)

)
= ∂

(
(−∞, 0]E

)
.

Consequently it holds that w(E) = 0 and hence xE = 0.

(b) We proceed by strong induction on |E|.

1. If |E| = 1 there is nothing to prove.

2. Suppose |E| > 1. We can assume that A(E) ̸= E because otherwise there is nothing to

prove. Let λ ∈ RN
++ the vector associated to the payoff configuration (xE)E∈2N\{∅}. Let

w be the TU game given by w(F ) = λF · xF for every F ∈ 2N \ {∅}. From (a) and the

induction hypothesis we can easily derive that

w(F ) = w(A(F )) for every F $ E. (7.11)

Notice that if F ⊆ E then A(F ) = A (A(F )) ⊆ A (F ∩A(E)). So it is clear that

A(F ) = A (F ∩A(E)) for every F ⊆ E. (7.12)

From (7.11) and (7.12) we can easily derive that

w(F ) = w (F ∩A(E)) for every F $ E. (7.13)
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For each nonempty F ⊆ E we define

∆(F ) =


w(E)− w(A(E)) if F = E,

0 if F ̸= E and F * A(E),

∆w(F ) if F ⊆ A(E).

Using (7.13) it is clear that

w(H) =
∑

{F∈2N\{∅}:F⊆H}

∆(F ) for every nonempty H ⊆ E,

hence

∆(F ) = ∆w(F ) for every nonempty F ⊆ E.

If i ∈ E it holds that

ϕi(w|E) =
∑

{F⊆E: i∈F}

∆w(F )

|F |
=

∑
{F⊆E: i∈F}

∆(F )

|F |

=
∑

{F⊆A(E): i∈F}

∆w(F )

|F |
+

w(E)− w(A(E))

|E|
,

whence we obtain that

ϕi(w|E) =


ϕi(w|A(E)) +

w(E)− w(A(E))

|E|
if i ∈ A(E),

w(E)− w(A(E))

|E|
if i ∈ E \A(E).

Taking into consideration that λE ∗ xE = ϕ(w|E) and λA(E) ∗ xA(E) = ϕ(w|A(E)) it

follows that

(xE)i =


(
xA(E)

)
i
+
w(E)− w(A(E))

|E|λi
if i ∈ A(E),

w(E)− w(A(E))

|E|λi
if i ∈ E \A(E).
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But, taking into account that

xA(E) ∈ ∂ (V (A(E)))

and

xE ∈ ∂
(
V A(E)

)
= ∂

(
V (A(E))× (−∞, 0]E\A(E)

)
,

it is easy to see that w(E)− w(A(E)) = 0, which completes the proof.

2

Theorem 7.21 A configuration correspondence for NTU games with interior operator structure is

equal to the Harsanyi configuration correspondence for NTU games with interior operator structure if

and only if it satisfies the properties of efficiency, conditional additivity, scale covariance, independence

of irrelevant alternatives, consistency with the Shapley authorization value and zero inessential games.

Proof. Firstly, we prove that the Harsanyi configuration correspondence for NTU games with

interior operator structure satisfies the properties in the theorem.

Efficiency. Let V ∈ ΩN , A an interior operator on N , (xE)E∈2N\{∅} ∈ H(V,A) and E ∈ aut(A).

Since H(V,A) = H(V A) and H satisfies efficiency it holds that xE ∈ ∂
(
V A(E)

)
= ∂(V (E)).

Conditional additivity. Let V,W ∈ ΩN such that V +W ∈ ΩN and A an interior operator on

N . Let (xE)E∈2N\{∅} ∈ H(V,A) +H(W,A) such that xE ∈ ∂((V +W )(E)) for all E ∈ aut(A).

Let (yE)E∈2N\{∅} ∈ H(V,A) and (zE)E∈2N\{∅} ∈ H(W,A) such that xE = yE + zE for every

E ∈ 2N \ {∅}. Take F ∈ 2N \ {∅}. We want to see that xF ∈ ∂
(
(V A +WA)(F )

)
. We distinguish

two cases:

(a) If A(F ) = ∅ we know, from Proposition 7.20, that yF = zF = 0 and hence xF = 0. Notice

that (V A +WA)(F ) = (−∞, 0]F . So it holds that xF ∈ ∂
(
(V A +WA)(F )

)
.

(b) If A(F ) ̸= ∅ we know, from Proposition 7.20, that

(yF )i =

{ (
yA(F )

)
i

if i ∈ A(F ),

0 if i ∈ F \A(F ),
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and

(zF )i =

{ (
zA(F )

)
i

if i ∈ A(F ),

0 if i ∈ F \A(F ),

whence it follows that

(xF )i =

{ (
xA(F )

)
i

if i ∈ A(F ),

0 if i ∈ F \A(F ).
(7.14)

By hypothesis, we know that

xA(F ) ∈ ∂ ((V +W )(A(F ))) . (7.15)

Moreover, it holds that

(V A +WA)(F ) = (V +W )A(F ) = (V +W )(A(F ))× (−∞, 0]F\A(F ). (7.16)

From (7.14), (7.15) and (7.16) it follows that xF ∈ ∂
(
(V A +WA)(F )

)
.

We have that (xE)E∈2N\{∅} ∈ H(V A) + H(WA) and xE ∈ ∂
(
(V A +WA)(E)

)
for every

E ∈ 2N \ {∅}. Since H satisfies conditional additivity it holds that

(xE)E∈2N\{∅} ∈ H
(
V A +WA

)
= H

(
(V +W )A

)
= H(V +W,A).

Scale covariance. Let V ∈ ΩN , A an interior operator on N and α ∈ RN
++. It holds that

H(α ∗ V,A) = H
(
(α ∗ V )A

)
= H

(
α ∗ V A

)
which, using that the Harsanyi configuration correspondence for NTU games satisfies scale covariance,

is equal to {
(αE ∗ xE)E∈2N\{∅} : (xE)E∈2N\{∅} ∈ H(V A)

}
,

or equivalently, {
(αE ∗ xE)E∈2N\{∅} : (xE)E∈2N\{∅} ∈ H(V,A)

}
.
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Independence of irrelevant alternatives. Let V,W ∈ ΩN , A an interior operator on N

such that V (E) ⊆ W (E) for all E ∈ aut(A) and (xE)E∈2N\{∅} ∈ H(W,A) such that xE ∈ V (E)

for all E ∈ aut(A). From V (E) ⊆W (E) for all E ∈ aut(A), it easily derives that

V A(E) ⊆WA(E) for every E ∈ 2N \ {∅}. (7.17)

Let F ∈ 2N \ {∅}. We want to see that xF ∈ V A(F ). We distinguish two cases:

(a) If A(F ) = ∅ we know, from Proposition 7.20, that xF = 0. In this case, V A(F ) = (−∞, 0]F ,

so xF ∈ V A(F ).

(b) If A(F ) ̸= ∅ we know, from Proposition 7.20, that

(xF )i =

{ (
xA(F )

)
i

if i ∈ A(F ),

0 if i ∈ F \A(F ).
(7.18)

By hypothesis, we know that

xA(F ) ∈ V (A(F )). (7.19)

From (7.18), (7.19) and V A(F ) = V (A(F ))× (−∞, 0]F\A(F ) it follows that xF ∈ V A(F ).

We have that xE ∈ V A(E) for every E ∈ 2N \ {∅}. From this fact, (7.17) and the fact that H

satisfies independence of irrelevant alternatives it follows that (xE)E∈2N\{∅} ∈ H(V,A).

Consistency with the Shapley authorization value. Let v ∈ GN and A an interior

operator on N . If we see condition (2) of the definition of H in Remark 7.19 and take into account

that

Vv(N) =

{
y ∈ RN :

∑
k∈N

yk 6 v(N)

}
,

it is clear that any payoff configuration in H(Vv, A) must be associated to λ = 1N . If we write the

three conditions for λ = 1N we have that a payoff configuration (xE)E∈2N\{∅} belongs to H(Vv, A)

if

(1) xE ∈ ∂
(
V A
v (E)

)
for all E ∈ 2N \ {∅},

(2)
∑
k∈N

(xN )k = v(N),
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(3) if w is the TU game given by w(F ) =
∑
k∈F

(xF )k for every F ∈ 2N \ {∅}, then xE = ϕ(w|E)

for all F ∈ 2N \ {∅}.

Notice that if (xE)E∈2N\{∅} ∈ H(Vv, A) and H ∈ aut(A) then, from condition (1), it holds that

xH ∈ ∂ (Vv(H)) =

{
y ∈ RH :

∑
k∈H

yk = v(H)

}
.

So it follows that w(H) = v(H). Moreover, from Proposition 7.20 we know that w(E) = w(A(E))

for all E ⊆ N . Therefore

w(E) = w(A(E)) = v(A(E)) = vA(E) for every E ⊆ N,

whence, taking into account condition (1), we obtain

xE = ϕ(w|E) = ϕ
(
vA|E

)
= Φ

(
v|E , A|E

)
for every E ∈ 2N \ {∅}.

We have seen that
(
Φ(v|E , A|E)

)
E∈2N\{∅} is the only possible payoff configuration in H (Vv, A).

Conversely, it is plain to see that
(
Φ(v|E , A|E)

)
E∈2N\{∅} satisfies (1), (2) and (3).

Zero inessential games. Take V ∈ ΩN and A an interior operator on N such that 0 ∈ ∂(V (F ))

for all F ∈ aut(A). It is clear that 0 ∈ ∂
(
V A(E)

)
for every E ∈ 2N \ {∅}. Since the Harsanyi

configuration correspondence for NTU games satisfies the property of zero inessential games it holds

that

(0)E∈2N\{∅} ∈ H(V A) = H(V,A).

We have proved that H satisfies the properties in the theorem. Now we see that these properties

uniquely determine the Harsanyi configuration correspondence for NTU games with interior operator

structure.

Let Υ and Ψ be configuration correspondences for NTU games with interior operator structure

satisfying the properties of efficiency, conditional additivity, scale covariance, independence of

irrelevant alternatives, consistency with the Shapley authorization value and zero inessential games.

We must prove that Υ = Ψ. Take V ∈ ΩN and A an interior operator on N . We want to verify that
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Υ(V,A) = Ψ(V,A). For symmetry, it suffices to prove one inclusion.

Let (xE)E∈2N\{∅} ∈ Υ(V,A). Consider W1 ∈ ΩN given by

W1(E) = V (E)− {xE} for every E ∈ 2N \ {∅}.

Since Υ satisfies efficiency it holds that xF ∈ ∂(V (F )) for every F ∈ aut(A), whence we obtain

that 0 ∈ ∂(W1(F )) for every F ∈ aut(A). From the property of zero inessential games we derive

that

(0)E∈2N\{∅} ∈ Ψ(W1, A). (7.20)

From properties (i), (ii) and (iii) of the games in ΩN we can obtain that there exists λ ∈ RN
++ such

that

λ · y 6 λ · xN for all y ∈ V (N).

Take W2 ∈ ΩN defined by

W2(E) =

{
V (N) if E = N,{

y ∈ RE : y 6 xE
}

if E $ N,E ̸= ∅.

Since Υ satisfies independence of irrelevant alternatives it holds that (xE)E∈2N\{∅} ∈ Υ(W2, A).

Using scale covariance it follows that

(λE ∗ xE)E∈2N\{∅} ∈ Υ(λ ∗W2, A). (7.21)

Let V0 be the NTU game corresponding to the TU game that is identically zero. From the fact that

Υ satisfies consistency with the Shapley authorization value it follows that

Υ(V0, A) =
{
(0)E∈2N\{∅}

}
. (7.22)

From (7.21) and (7.22) we obtain that (λE ∗ xE)E∈2N\{∅} ∈ Υ(λ ∗ W2, A) + Υ(V0, A). Notice

that λ ∗ W2 + V0 = Vv where v is the TU game given by v(E) = λE · xE for all nonempty

E ⊆ N . From conditional additivity it follows that (λE ∗ xE)E∈2N\{∅} ∈ Υ(Vv, A). Since Υ

and Ψ satisfy the property of consistency with the Shapley authorization value it holds that
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Υ(λ ∗W2 + V0, A) = Ψ(λ ∗W2 + V0, A). Therefore,

(λE ∗ xE)E∈2N\{∅} ∈ Ψ(λ ∗W2 + V0, A). (7.23)

Consider W3 ∈ ΩN given by

W3(E) =

{ {
y ∈ RN : λ · y 6 λ · xN

}
if E = N,{

y ∈ RE : y 6 xE
}

if E $ N,E ̸= ∅.

It is clear that

(λ ∗W3)(E) ⊆ (λ ∗W2 + V0)(E) for all E ∈ 2N \ {∅}. (7.24)

From (7.23), (7.24), the fact that λE ∗ xE ∈ (λ ∗W3)(E) for all E ∈ 2N \ {∅} and the property of

independence of irrelevant alternatives it follows that

(λE ∗ xE)E∈2N\{∅} ∈ Ψ(λ ∗W3, A),

which, from scale covariance, implies that

(xE)E∈2N\{∅} ∈ Ψ(W3, A). (7.25)

From (7.20) , (7.25) and the property of conditional additivity we obtain

(xE)E∈2N\{∅} ∈ Ψ(W1 +W3, A).

But notice that

(W1 +W3)(E) =

{ {
y ∈ RN : λ · y 6 λ · xN

}
if E = N,

V (E) if E $ N,E ̸= ∅,

hence V (E) ⊆ (W1 +W3)(E) for every E ∈ 2N \ {∅}. Finally, using the property of independence

of irrelevant alternatives we obtain that (xE)E∈2N\{∅} ∈ Ψ(V,A). 2

In practice, given V ∈ ΩN and A an interior operator on N , we do not need to obtain V A to

calculate H(V,A). From Remark 7.19 and Proposition 7.20 we can derive an alternative definition
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of H(V,A) that does not involve the restricted game V A. We give that definition in the following

remark.

Remark 7.22 Let V ∈ ΩN and A an interior operator on N . A payoff configuration (xE)E∈2N\{∅}

belongs to H(V,A) if there exists λ ∈ RN
++ such that

(1) xE ∈ ∂ (V (E)) for all E ∈ aut(A),

(2) λ · xN = max {λ · y : y ∈ V (N)},

(3) if w is the TU game given by w(F ) = λF ·xT for every F ∈ 2N \ {∅}, then λE ∗xE = ϕ(w|E)

for all E ∈ aut(A),

(4) xE = 0 for all E ∈ 2N \ {∅} with A(E) = ∅,

(5) For every E ∈ 2N with A(E) ̸= ∅,

(xE)i =

{ (
xA(E)

)
i

if i ∈ A(E),

0 if i ∈ E \A(E).

Example 7.23 Let us calculate H(V,A) where V and A are those given in Example 7.3. Since

∂(V (N)) is a hyperplane, it is easy to check that H(V,A) contains exactly one payoff configuration

(xE)E∈2N\{∅}. It is clear that this payoff configuration is associated to the comparison vector

λ = (1, 1, 1). Let w be the TU game given by w(F ) = λF · xF for every nonempty F ⊆ N .

Let us calculate (xE)E∈2N\{∅} by using the preceding remark.

From Remark 7.22 (1), it follows that

x{1} = 1,

x{2} = 1.

From Remark 7.22 (4), it follows that

x{3} = 0.
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We have that w ({1}) = λ{1} · x{1} = 1 and w ({2}) = λ{2} · x{2} = 1. So it holds that

ϕ
(
w|{1,2}

)
=

(
w({1, 2})

2
,
w({1, 2})

2

)
.

Using Remark 7.22 (3), we conclude that

x{1,2} =

(
w({1, 2})

2
,
w({1, 2})

2

)
.

From this fact and Remark 7.22 (1), we have that

x{1,2} ∈ ∂ (V ({1, 2})) ∩
{
(α, α) ∈ R{1,2} : α ∈ R

}
= {(2, 2)}.

So we have obtained that

x{1,2} = (2, 2).

From Remark 7.22 (5), it follows that

x{1,3} = (1, 0).

We have that w ({2}) = 1 and w ({3}) = λ{3} · x{3} = 0. So it holds that

ϕ
(
w|{2,3}

)
=

(
1 +

w({2, 3})− 1

2
,
w({2, 3})− 1

2

)
.

Using Remark 7.22 (3), we conclude that

x{2,3} =

(
1 +

w({2, 3})− 1

2
,
w({2, 3})− 1

2

)
.

From this fact and Remark 7.22 (1), we have that

x{2,3} ∈ ∂ (V ({2, 3})) ∩
{
(1 + α, α) ∈ R{2,3} : α ∈ R

}
= {(2, 1)}.

So we have obtained that

x{2,3} = (2, 1).
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We have that
w ({1}) = 1,

w ({2}) = 1,

w ({3}) = 0,

w ({1, 2}) = λ{1,2} · x{1,2} = 4,

w ({1, 3}) = λ{1,3} · x{1,3} = 1,

w ({2, 3}) = λ{2,3} · x{2,3} = 3.

Moreover, since xN ∈ ∂(V (N)), it follows that λ · xN = 6, that is, w(N) = 6. It holds that

ϕ(w) = (2, 3, 1), and using Remark 7.22 (3), we conclude that

xN = (2, 3, 1).
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are incompatible, ZOR-Methods and Models of Operations Research 38 (1993), 187–201.

[11] J.M. BILBAO, Closure spaces and restricted games, Mathematical Methods of Operations

Research 48 (1) (1998), 57–69.

[12] J.M. BILBAO, Cooperative games on combinatorial structures, Kluwer Academic Publishers,

2000.

[13] J.M. BILBAO, Axiomatizations of the Shapley value for games on augmenting systems,

European Journal of Operational Research 198 (2009), 530–544.

[14] J.M. BILBAO, T.S.H. DRIESSEN, A. JIMÉNEZ-LOSADA and E.A. LEBRÓN, The Shapley
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