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ABSTRACT 
In this paper, a simulation experiment is carried out in the framework of the normal/half-normal stochastic frontier 
model in order to analyse its ability to disentangle the two types of errors that form the composite error. According to 
the results obtained through the mean bias and the mean squared error of the parameters and efficiencies, and via 
Spearman rank correlation between actual and estimated efficiencies, a good performance of the model is only 
obtained when considering medium-sized or large samples and the variance of the inefficiencies highly contributes to 
that of the composite error. The problems of wrong skewness and absence of random error are also addressed. The 
influence on the results of selecting a wrong distribution for the inefficiency term is also analysed. 
Keywords: Production Models, Stochastic Frontier, Maximum Likelihood, Monte Carlo.  

Sobre la capacidad de separar los dos errores en el modelo de 
frontera estocástica normal/half-normal  

RESUMEN 
En este artículo, se lleva a cabo un experimento de simulación en el contexto del modelo con frontera estocástica 
normal/half-normal para analizar su capacidad de separar los dos tipos de error que forman el error compuesto. Según 
los resultados obtenidos a través del sesgo medio y el error cuadrático medio de los parámetros y las eficiencias, y 
mediante el coeficiente de correlación por rangos de Spearman entre las eficiencias reales y las estimadas, se obtiene 
un buen comportamiento del modelo solo cuando se consideran muestras de tamaño mediano o grande y la varianza 
de las ineficiencias contribuye de forma muy importante a la del error compuesto. Los problemas de la asimetría 
errónea y de la ausencia de errores aleatorios también son abordados. La influencia en los resultados de seleccionar 
una distribución errónea para el término de ineficiencia también se analiza. 
Palabras clave: Modelos de producción, frontera estocástica, máxima verosimilitud, Monte Carlo. 
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1. INTRODUCTION 
The origins of the stochastic frontier production models (SFPM) are stated in 

the seminal works of Aigner et al. (1977), Battese and Corra (1977), and Meeu-
sen and van den Broeck (1977). This type of model is employed for the analysis 
of the efficiency of a production process in terms of the observed deviations 
between the actual production and the ideal frontier of maximum attainable 
output. In econometrics terms, such deviations can be identified through ran-
dom perturbations in a regression model. 

Ever since its appearance, this kind of model has been spread broadly across 
the scientific literature, and has been applied to a wide range of productive sec-
tors. To mention a few of them, they have been extensively used in the produc-
tive analysis in agriculture and fisheries (Battese and Broca, 1997; García et al., 
2004), in the functioning of ports and airports (Barros, 2005, 2008), hospitals 
(O’Donnell and Nguyen, 2013), banking (Brissimis et al., 2010), and in the 
analysis of scientific production (Ortega and Gavilan, 2013).  

The basic formulation of an SFPM is as follows: 

( , ) u , 1,...,i i i iy f x v i nβ= + − = , 

where iy  is the output or production of the i–th firm, ix  the vector of all its 
inputs, β  a vector of unknown parameters to estimate, and ( )f ⋅  the production 
function. 

The random perturbation or error i i iv uε = −  is composed of two parts (this 
is the reason why it is also known as a composed error model), a symmetrical 
random variable iv ∈  representing the random sources of variation and a 
one-sided random variable 0iu >  designating the inefficiency of the produc-

tion process. Commonly, it is supposed that 2~ (0, ).i vv N σ  With regard to the 

inefficiency term iu , a positive probability distribution has to be chosen, since 
it measures the distance between the actual production and the stochastic fron-
tier. In this paper, the most common hypothesis is analysed, that is, *

i iu u=  

where * 2~ (0, ).i uu N σ By definition, it is said that the perturbations iu  follow a 

half-normal distribution, which is represented by 2~ (0, ).i uu HN σ  Addi-
tionally, it is supposed that the perturbations iv  and iu  are independent. With 
these selections, the model is known as the normal/half-normal stochastic 
frontier production model (Gómez-Gallego, Gómez-Gacía and Pérez-Cárceles, 
2012; and Wang and Schmidt, 2009). It is important to mention that other types 
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of distributions for the perturbations iu  have frequently been considered, inclu-
ding the normal distribution truncated at a parameter µ not necessarily zero 
(Bhandari, 2011) and the exponential and gamma distributions, which have 
been widely used, especially when the Bayesian approach is assumed (Koop et 
al., 1995; Osiewalski and Steel, 1998; Koop and Steel, 2003). 

In this paper, a Monte Carlo experiment is carried out to analyse the ability 
of the normal-half normal model to disentangle the two aforementioned types of 
error in order to provide good estimations of the parameters and efficiencies.  

Taking into consideration the main objective of the paper, the choice of the 
functional form of the production function is not particularly significant, which 
is why the production function utilised is linear, that is, ( , ) 'i if x xβ β= ⋅ , whe-
re the vector β  has an intercept. Let us observe that, since ix  and iy  are mea-
sured on a logarithmic scale, then the Cobb-Douglas production function is 
considered. In this most common case, instead of directly considering iu  as the 
inefficiency measure, ( )exp iu−  is taken, which is an alternative measure of 
efficiency with the additional advantage of being bounded between 0 and 1. For 
the sake of simplicity, the simulations are made on a model with an intercept 
and a single explanatory variable, since it has been proved that using a greater 
number of explanatory variables bears no effect on the results. 

The maximum likelihood (ML) estimation of the SFPM has long been im-
plemented by a range of statistical software, such as FRONTIER, LIMDEP, and 
STATA. Likewise, in the free and powerful statistical software R, several spe-
cific packages can be found for this purpose. In this paper, the frontier package 
version 1.1-0 (Coelli and Henningsen, 2013) is utilised in order to obtain the 
ML estimators in the environment of the software R. This package uses the 
source code Fortran of the FRONTIER 4.1 software (Coelli, 1996).  

Other studies, in which simulation analysis is carried out in SFPM, include: 
Coelli (1995), where the ML and the corrected least-squares estimators are 
compared; Zhang (1999), where the Bayesian estimation is set against the ML 
approach using a single point of the parametric space; and Ortega and Gavilan 
(2014), where a comparison between these two methodologies is carried out. 

As a criterion for the comparison of the results, the mean squared error 
(MSE) is used in this paper, and special emphasis is placed on the parameter 
which indicates what proportion of the variance of the composite error is due to 
inefficiency, and on the estimation of the individual efficiencies. 

This paper is organised as follows: in Section 2, the estimation of the model 
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and the design of the Monte Carlo experiment is described; in Section 3, the 
interpretation of the most interesting results is presented; Section 4 analyses the 
influence of wrongly considering a half-normal variable for the inefficiency 
term when the true distribution is gamma. Finally, in Section 5, the main con-
clusions of this paper are drawn. 

2. ESTIMATION OF THE MODEL AND DESIGN OF THE 
MONTE CARLO EXPERIMENT 

The ML estimation of the SFPM is carried out by using the parameterisation 
by Battese and Corra (1977), where 2 2 2

v uσ σ σ= +   and  2 2
uγ σ σ= , which is 

considered in the frontier package of the software R. Let us observe that γ  is a 
parameter taking values between 0 and 1, and is an indicator of the proportion 
of the variance due to the inefficiency. It is important to point out that γ  is not 

exactly the proportion of the variances, since ( ) 2var uu pσ= , where 

1 (2 / )p π= − . Specifically, if *γ  is named as the proportion of the total 
variance due to inefficiency, (that is, ( ) ( ) ( )( )* var var varu u vγ = + ), then it is 

straightforward to verify that ( )( )* 11 pγ γ γ γ −= + − . 

With this parameterization, the logarithm of the likelihood for the i-th obser-
vation is given by: 

( )( )( )21 1log( ) log log( ) log 1
2 2 2i i iL z zπ σ γ γ = − − − + Φ − − 

 
, 

where 
'

i i
i

y xz β
σ
−

=  and ( )Φ ⋅  is the distribution function of a standard normal 

random variable. Therefore, the ML estimation has to be obtained through nu-
merical optimization algorithms. 

With regard to the design of the Monte Carlo experiment, the sample space 
is given by 2 ,, ,nβ σ γ , and ix . By taking into consideration the invariance 

results in Olson et al. (1980), the value of the parameter 2σ  can be fixed. 
Therefore, 2 1σ =  has been assumed. Without loss of generality, a single 
explanatory variable has been taken following a standard normal distribution 
(on logarithmic scale) and the parameter ( )0 1,β β β=  (the intercept and the 

slope) has been selected as ( ) ( )0 1, 1,0.3β β =  (Zhang, 1999; Coelli, 1995). 
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The analysis performed in this paper is focused on the behaviour of the esti-
mation of the parameter γ , along with the estimations of the individual 
efficiencies. One objective is to analyse the behaviour of the estimations as 
much in small samples as in medium-sized and large samples, which is why 

{ }20,50,100,500n ∈  has been selected. With respect to the parameter *γ , the 

values { }0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1  have been adopted.  The 
corresponding values of the parameter γ  are  

*γ  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

γ  0.00 0.24 0.41 0.54 0.65 0.73 0.80 0.87 0.92 0.96 1.00 

Therefore, eleven values of γ  and four of n  are simulated, which entails 44 
combinations. For each combination, m 1000=  replications of the model are 
made. In order to obtain the pseudorandom numbers, the generators imple-
mented by default in R are used.  

For each parameter, the mean bias (MB) and the mean squared error (MSE) 
observed in the m  replications are calculated. With regard to the efficiencies, 
the MB, the MSE and the correlations1 between the actual and the estimated 
efficiencies are computed for each of the individual efficiencies. Afterwards, as 
a joint indicator, the averages are provided.  

3. RESULTS OF THE MONTE CARLO EXPERIMENT 
The complete results of the Monte Carlo experiment, that is to say, the bias 

and the MSE of all the parameters and the individual efficiencies and the 
Spearman correlations between the actual and estimated efficiencies in the 44 
cases considered, are laid out in the Appendix. Here, the most relevant results 
are presented, while attention is focused on the MSE criterion, which indicates 
the performance of the considered model. The behaviour of the estimations of 
parameter γ and the individual efficiencies are our main concern. As already 
pointed out, parameter γ captures the structure of the composite error. It is cru-
cial, in this type of model, to identify what proportion of the total error is due to 
inefficiency and what proportion is due to random effects. Therefore, the correct 
estimation of γ is extremely important for the attainment of the individual effi-
ciencies of each firm, which constitutes one of the main objectives when using 
this kind of model. 

In Figure 1, the estimations of the parameter γ for n=50 and the m=1000 
replications of the model are represented for each value of γ* using histograms. 
The true value of γ is indicated by a vertical line. The model offers poor estima-

                                                
1 Spearman rank correlations are obtained. Pearson correlations are very similar. 
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tions for low values of the parameter although the performance of the estima-
tions improves for large values of the parameter. This important conclusion is 
also reached for γ, the other parameters of the model and the efficiencies from 
Figure 2, where the MSEs of such quantities are shown for the considered 
values of n and γ*.  As expected, the estimations improve as the sample size 
increases. Taking into consideration the different scales of the vertical axis, the 
model provides a less accurate estimate of the intercept 0β  and of the variance 

2σ  than the other parameters and the efficiencies. The slope is estimated very 
accurately in all the cases. 

Figure 1 
Histograms of the parameter γ for n=50. The true value of γ is indicated as a vertical bar 

 
Source: Own elaboration. 

The similarity between the figures for the )(MSE γ  and the (E )ffiMSE   re-
veals the direct influence that the estimation of the parameter γ  exerts on the 
estimation of the efficiencies of the firms. 

With regard to the biases (considered in absolute values), the same important 
conclusions can be drawn, since in general they decrease as γ  and the sample 
size increase. In the same sense, the correlations between the actual and the 
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estimated efficiencies increase as γ  and the sample size increase, and have 
values below 0.60 when .0 65γ ≤  for all the considered sample sizes. 

Figure 2 
MSEs of the parameters and efficiencies as a function of *γ  and for the considered 

sample sizes 

 
Source: Own elaboration. 

In the analysis of the limitations of the model to disentangle the two types of 
errors in the model, it is important to study another problem: the tendency of the 
model to provide extreme estimations for the parameter γ , known as wrong 
skewness and absence of random errors. 

The problem of wrong skewness (Waldman, 1982), appears when the 
residuals of the estimated model through ordinary least squares (OLS) have a 
positive coefficient of asymmetry, since the composite error of the model con-
sidered in this paper has negative asymmetry (Green, 1993). In this case, it is 
obtained that ˆ 0γ =  (no inefficiencies are present in the model) and the OLS 
and ML estimations of the model coincide. This problem is considered as an 
inconsistency of the model, and a change in the specification of the model or 
increase the sample size are recommended. 
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The opposite problem, the absence of random errors, appears when ˆ 1γ =  
(no random errors are present in the model); in this case the model has a deter-
ministic frontier. This problem has been largely neglected in the scientific 
literature, although certain observations can be found in Ortega and Gavilan 
(2011). 

Table 1 shows the percentage of times (of the m=1000 replications) that 
these problems appear for the considered values of γ* and n, note that the values 
in bold fail to indicate a problem, but instead indicate correct estimations. The 
problem of the wrong skewness is more significant than the problem of the ab-
sence of random errors. As expected, both problems improve as the sample size 
increases. However, the levels of wrong skewness are significant even for large 
samples. As one might expect, the problem of wrong skewness decreases as γ 
increases and the opposite is true for the absence of random errors. This fact 
suggests that in a great quantity of cases the considered model is not able to 
distinguish between the two components of the composite error. In such cases, 
it is advisable to use another distribution for the inefficiencies that differs more 
from the normal distribution than does the half-normal distribution, such as the 
exponential, truncated normal, and gamma distributions (Koop and Steel, 2003). 

Table 1 
Percentage of times that the wrong skewness and the absence of random errors 

Wrong Skewness Absence of random errors 

γ∗ \ n 20 50 100 500 20 50 100 500 
0 47.6 48.5 49.5 48.9 14.3 1.0 0.0 0.0 

0.1 49.0 46.6 44.1 38.5 15.2 1.1 0.0 0.0 
0.2 42.4 41.7 36.7 20.7 18.4 1.3 0.1 0.0 
0.3 43.0 31.6 27.3 8.4 14.6 1.3 0.0 0.0 
0.4 35.3 26.2 15.8 1.6 18.9 2.7 0.0 0.0 
0.5 28.6 17.9 10.3 0.2 23.5 2.8 0.1 0.0 
0.6 24.9 12.6 3.8 0.0 26.0 4.9 0.3 0.0 
0.7 21.2 5.7 1.3 0.0 31.6 7.8 0.7 0.0 
0.8 14.1 2.2 0.0 0.0 37.3 13.2 1.5 0.0 
0.9 8.8 0.6 0.0 0.0 49.1 22.9 4.9 0.0 

1 4.7 0.2 0.0 0.0 68.9 67.8 67.5 66.3 

Source: Own elaboration. 

The results obtained all point in the same direction: the model should not be 
used (or should be used with caution) if γ̂  or the sample size is low. In other 
words, the best performance of the model is reached for moderate and large 
sample sizes, and when there is a significant contribution of the inefficiency 
term to the composite error.  
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4. WHAT IF THE TRUE MODEL IS NORMAL-GAMMA? 
In this section, the influence of wrongly considering a half-normal distribu-

tion for the inefficiencies is investigated. For this purpose, a simulation analysis 
is carried out equal to that in the previous section except for the distribution of 
the inefficiencies. In order to consider a distribution that greatly differs from the 
half-normal distribution, the inefficiencies are generated from a gamma model 
with shape parameter α  and scale parameter λ  in such a way that the distribu-
tion is always bell-shaped with mode ( )1 1.λ α − =  By also taking into consi-

deration that 2 2 2 1u vσ σ σ+ ==  where ( ) 2 2var uu pσ αλ==  and the selected 

values for 
( )

( ) ( )
2

*
2 2

var
var var v

u
u v

αλγ
αλ σ

= =
+ +

, then the values of α  and λ  are 

obtained. Figure 3 shows the half-normal and the corresponding gamma 
probability density functions for * 0.5γ = , chosen in accordance with the 
aforementioned criteria. 

Figure 3 
Comparison of the half-normal (dotted line) and gamma (solid line) probability density 

functions used for * 0.5γ =  

 
Source: Own elaboration. 

The complete results of the simulation experiment are shown in Table 6 in 
the Appendix. Moreover, in Figure 4, the MSEs of the parameters and efficien-
cies are shown. The estimations of the parameter β   and, surprisingly, of 2σ  
do not deteriorate. However, the intercept α  and the important quantities γ  
(except for the lowest values) and the efficiencies are less accurately estimated. 
Since, in empirical applications, the true distribution of the inefficiencies re-
mains unknown, these results suggest that: the half-normal distribution for the 
inefficiencies should not be assumed solely on the basis that “it is the most 
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common choice” (as is usually done): that a goodness–of-fit test, such as that in 
Wang et al. (2011), should be carried out for the selection of the distribution; 
and that at least an analysis of the sensitivity of the results should be performed 
with respect to the selection of several distributions for the inefficiencies.  

Figure 4 
 MSEs of the parameters and efficiencies for each parameter and efficiencies as a 

function of *γ  for n=50. The solid lines correspond to a half-normal distribution for the 
true inefficiency and the dashed lines correspond to a gamma distribution for the true 

inefficiency 

 
Source: Own elaboration. 

5. CONCLUSIONS 
In this paper, a simulation analysis is carried out in order to study the ability 

of the normal/half-normal stochastic frontier model to disentangle the two 
sources of random errors (noise and inefficiency). This ability is closely related 
to that of to accurately estimating the parameter γ  of the model which, in turn, 
holds a great influence on the estimation of the efficiencies of firms. 

The main conclusion reached is that the model performs well when medium-
sized or large samples are considered and the contribution of the inefficiency 
term to the composite error is significant. Otherwise, the model should be used 
with caution and other alternatives should be considered. The model should not 
be used in the presence of wrong skewness (which occurs with a high frequency 
for small and moderate values of γ  and n) or in the absence of random errors, 
in other words, when γ̂ =  0 or 1. 
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A simulation experiment using a gamma distribution as the true distribution 
for the inefficiencies is also carried out. In this case the normal/half-normal 
model is a wrong choice for the estimations and poorly estimates the parameter 
γ  and the efficiencies. Therefore, in practical applications, the distribution for 
the inefficiencies should be selected according to a goodness-of-fit test, or at 
least a sensitivity analysis of the main conclusions should be performed with 
regard to the selection of the distribution for the inefficiencies. 

The present work can be extended in a variety of ways. The ability to disen-
tangle the two types of error can be likewise analysed in a model with other 
distributions for the inefficiency term that differ from the half-normal distribu-
tion. Similar analysis can be carried out using alternative types of estimators, 
such as the Bayesian estimator. The present analysis has been performed in a 
cross-sectional framework; the panel data context could also be considered.  
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Appendix 

The following tables show the complete results of the simulations using the 
normal/half-normal model for each value of { }20,50,100,500n ∈ . The Mean 
Bias and the Mean Squared Error of the parameters and efficiencies are pre-
sented together with the Spearman rank correlations between the actual and the 
estimated efficiencies. These correlations are meaningless in the case 0γ =  , 
since the inefficiency term in that case is constant and equal to zero. 

Table 2 
Complete results for n=20 

γ∗ γ MB(β 0 ) MSE(β 0 ) MB(β 1 ) MSE(β 1 ) MB(σ2) MSE(σ2) MB(γ) MSE(γ) MB(Effi) MSE(Effi) CorrEffi 
0 0 -0.51009 0.62223 -0.00231 0.07023 -0.46293 0.96434 -0.40774 0.35855 0.26726 0.16887 -- 
0.1 0.23 -0.07143 0.31657 0.00379 0.05439 -0.23481 0.58797 -0.15779 0.21743 -0.05058 0.11646 0.28020 
0.2 0.41 0.02066 0.27321 0.00249 0.04795 -0.14934 0.46517 -0.04156 0.19649 -0.08471 0.12140 0.39509 
0.3 0.54 0.11982 0.25089 -0.00251 0.04082 -0.01238 0.36532 0.08504 0.20347 -0.13040 0.12667 0.47468 
0.4 0.65 0.13291 0.23848 0.00524 0.03865 0.02795 0.31488 0.12004 0.20858 -0.12578 0.12236 0.54654 
0.5 0.73 0.14037 0.20813 -0.00344 0.03560 0.05263 0.29583 0.14317 0.20222 -0.11468 0.10849 0.61879 
0.6 0.80 0.16937 0.20268 -0.00119 0.03107 0.12349 0.26975 0.18246 0.21193 -0.12494 0.10454 0.68885 
0.7 0.87 0.17406 0.17605 0.00198 0.02894 0.14564 0.24165 0.18502 0.20091 -0.11570 0.09155 0.74802 
0.8 0.92 0.15300 0.13209 -0.00262 0.02483 0.16668 0.21393 0.15698 0.15762 -0.09716 0.06966 0.81048 
0.9 0.96 0.14707 0.10098 0.00901 0.02054 0.15496 0.20697 0.12042 0.11494 -0.08573 0.05072 0.87821 

Source: Own elaboration. 

Table 3 
Complete results for n=50 

γ∗ γ MB(β 0 ) MSE(β 0 ) MB(β 1 ) MSE(β 1 ) MB(σ2) MSE(σ2) MB(γ) MSE(γ) MB(Effi) MSE(Effi) CorrEffi 
0 0 -0.43113 0.43090 -0.00119 0.02297 -0.36776 0.52111 -0.32344 0.23729 0.24350 0.13443 -- 
0.1 0.23 -0.02627 0.21053 -0.00228 0.01976 -0.18102 0.32941 -0.10814 0.14927 -0.05047 0.09893 0.28261 
0.2 0.41 0.06477 0.20107 -0.00376 0.01661 -0.09789 0.26022 0.01925 0.14682 -0.09712 0.10963 0.40323 
0.3 0.54 0.09568 0.17446 -0.00511 0.01516 -0.02751 0.20630 0.08478 0.14665 -0.09754 0.10201 0.49581 
0.4 0.65 0.11802 0.16598 0.00220 0.01378 0.02090 0.19479 0.13029 0.15729 -0.09909 0.09668 0.57837 
0.5 0.73 0.09395 0.13422 -0.00102 0.01093 0.02260 0.17894 0.11643 0.13933 -0.07574 0.08111 0.64710 
0.6 0.80 0.09145 0.10576 0.00003 0.01016 0.04109 0.15975 0.11738 0.12186 -0.06584 0.06710 0.71920 
0.7 0.87 0.05169 0.06837 -0.00222 0.00907 0.02333 0.13251 0.07058 0.07370 -0.03619 0.04565 0.78192 
0.8 0.92 0.03611 0.04088 0.00458 0.00795 0.03506 0.09894 0.04546 0.03970 -0.02263 0.02975 0.84580 
0.9 0.96 0.02532 0.02226 -0.00361 0.00585 0.03359 0.07813 0.02081 0.01627 -0.01523 0.01672 0.91230 

Source: Own elaboration. 
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Table 4 
Complete results for n=100 

γ∗ γ MB(β 0 ) MSE(β 0 ) MB(β 1 ) MSE(β 1 ) MB(σ2) MSE(σ2) MB(γ) MSE(γ) MB(Effi) MSE(Effi) CorrEffi 
0 0 -0.35515 0.29135 -0.00308 0.01051 -0.26031 0.26040 -0.26089 0.16262 0.21752 0.10659 -- 
0.1 0.23 0.00255 0.14767 -0.00016 0.00953 -0.12986 0.16127 -0.07635 0.10667 -0.05459 0.08644 0.28899 
0.2 0.41 0.09069 0.14437 0.00099 0.00786 -0.03716 0.13250 0.04519 0.11148 -0.09553 0.09629 0.41025 
0.3 0.54 0.11506 0.13098 0.00053 0.00707 0.02321 0.11717 0.10494 0.11720 -0.09638 0.09026 0.50675 
0.4 0.65 0.08443 0.09960 -0.00439 0.00573 0.02187 0.10780 0.09443 0.10233 -0.06642 0.07234 0.58703 
0.5 0.73 0.08108 0.07871 -0.00204 0.00552 0.04554 0.09382 0.09897 0.09081 -0.05568 0.06080 0.65991 
0.6 0.80 0.04752 0.04710 -0.00056 0.00497 0.02894 0.07648 0.06154 0.05445 -0.02989 0.04273 0.72562 
0.7 0.87 0.02374 0.02906 0.00024 0.00408 0.01835 0.06074 0.03679 0.03049 -0.01551 0.03079 0.79311 
0.8 0.92 0.01035 0.01441 0.00218 0.00391 0.00573 0.05057 0.01164 0.00781 -0.00507 0.01926 0.85722 
0.9 0.96 0.00432 0.00693 -0.00097 0.00254 0.00708 0.03806 0.00421 0.00204 -0.00256 0.01089 0.92219 
1 1 0.03066 0.00201 0.00000 0.00104 0.05615 0.02916 0.00281 0.00004 -0.01500 0.00091 0.99701 

Source: Own elaboration. 

Table 5 
Complete results for n=500 

γ∗ γ MB(β 0 ) MSE(β 0 ) MB(β 1 ) MSE(β 1 ) MB(σ2) MSE(σ2) MB(γ) MSE(γ) MB(Effi) MSE(Effi) CorrEffi 
0 0 -0.27964 0.16308 0.00121 0.00209 -0.15451 0.07015 -0.18368 0.07887 0.19153 0.07570 -- 
0.1 0.23 0.05777 0.08361 0.00220 0.00180 -0.03715 0.04566 -0.00570 0.05231 -0.06777 0.06987 0.29713 
0.2 0.41 0.07459 0.07397 -0.00139 0.00149 0.00506 0.04201 0.04764 0.05918 -0.06374 0.06847 0.41678 
0.3 0.54 0.05832 0.04460 -0.00168 0.00135 0.02630 0.03441 0.05880 0.04625 -0.04065 0.05421 0.51034 
0.4 0.65 0.02792 0.02023 -0.00283 0.00120 0.01710 0.02488 0.03546 0.02463 -0.01721 0.04039 0.59343 
0.5 0.73 0.01053 0.00854 0.00080 0.00095 0.00859 0.01706 0.01422 0.00922 -0.00645 0.03241 0.66683 
0.6 0.80 0.00370 0.00512 0.00115 0.00084 0.00263 0.01414 0.00695 0.00452 -0.00244 0.02706 0.73562 
0.7 0.87 0.00144 0.00294 0.00083 0.00072 0.00120 0.01019 0.00165 0.00164 -0.00116 0.02162 0.80058 
0.8 0.92 0.00051 0.00198 -0.00021 0.00062 -0.00168 0.00859 0.00086 0.00066 -0.00063 0.01566 0.86567 
0.9 0.96 -0.00055 0.00108 -0.00087 0.00043 0.00227 0.00622 -0.00014 0.00016 0.00004 0.00892 0.92925 
1 1 0.01765 0.00086 -0.00040 0.00021 0.03530 0.00790 0.00261 0.00003 -0.00837 0.00034 0.99949 

Source: Own elaboration. 

Table 6 
Complete results for n=50, whereby gamma is the true distribution for inefficiencies, as 

explained in Section 4. The case 0γ =  is omitted since in that case there is no 
inefficiency 

γ∗ γ MB(β 0 ) MSE(β 0 ) MB(β 1 ) MSE(β 1 ) MB(σ2) MSE(σ2) MB(γ) MSE(γ) MB(Effi) MSE(Effi) CorrEffi 
0.1 0.23 0.68511 0.67481 -0.00331 0.01915 -0.16043 0.30407 -0.08578 0.14031 -0.41469 0.24701 0.28246 
0.2 0.41 0.70776 0.68732 0.00491 0.01794 -0.06365 0.23332 0.03477 0.14358 -0.40139 0.23704 0.40895 
0.3 0.54 0.73405 0.70685 -0.00200 0.01434 0.01879 0.20202 0.12930 0.15606 -0.39201 0.22551 0.49896 
0.4 0.65 0.71181 0.65447 0.00231 0.01323 0.05778 0.19292 0.16623 0.16745 -0.36599 0.20106 0.58415 
0.5 0.73 0.68735 0.59606 -0.00157 0.01110 0.08182 0.16546 0.18256 0.16330 -0.33974 0.17450 0.65639 
0.6 0.80 0.65492 0.53447 0.00109 0.01073 0.08980 0.16633 0.16755 0.14496 -0.31138 0.14810 0.72081 
0.7 0.87 0.64628 0.50457 -0.00139 0.00995 0.11619 0.14648 0.16828 0.12764 -0.29541 0.12981 0.78772 
0.8 0.92 0.60950 0.43791 0.00136 0.00804 0.10381 0.13855 0.13783 0.09554 -0.27036 0.10645 0.85162 
0.9 0.96 0.57870 0.37534 -0.00157 0.00722 0.10452 0.10984 0.09797 0.05284 -0.24715 0.08315 0.91595 
1 1 0.56497 0.34418 -0.00142 0.00595 0.11008 0.08948 0.07362 0.02645 -0.23515 0.06894 0.98648 

Source: Own elaboration. 
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