A Generalization of Jeffreys’ Rule for NonregularModels

FRANCISCO J. ORTEGA

e-mail: flortega@us.es
Phone: +34 954556970

JESUS BASULTO
e-mail: basulto@us.es
Phone: +34 954557539

Address (for both authors):

Departamento de Economia Aplicada I. UNIVERSIDAD BEVILLA
Avenida Ramén y Cajal, n°1. 41018-Sevilla.

Author for correspondence: Francisco J. Ortega



A Generalization of Jeffreys’ Rule for NonregularModels

Abstract

We propose a generalization of the one-dimensideéiteys’ rule in order to obtain
noninformative prior distributions for nonregularodels, taking into account the
coments made by Jeffreys in his article of 1946.esEh noninformatives are
parameterisation-invariant and the Bayesian intervaave good behaviour in
Frequentist Inference. In some important cases,cam® generate noninformative
distributions for multi-parameter models with nayukar parameters. In nonregular
models, the Bayesian method offers a satisfactoiition to the inference problem and
also avoids the problem that the maximum likelihestimator has with these models.
Finally, we obtain noninformative distributions idob-Search and Deterministic
Frontier Production homogenous models.
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1. Introduction

There is a wide variety of empirical applicationsere the corresponding models do
not verify the regularity conditions of Wald (Azall, 1996, p.71). Usually, the main
problem is that the range of the observed randonabla depends on the parameters
that are being estimated. In Sareen (2003), Schih@#6) and Muller and Wefelmeyer
(2010) there are some examples where nonregularelsoappear in economic
applications, as in stationary job-search modelsicated regressions, deterministic
frontier production models and sealed-bid auctimuets.

In models with nonregular parameters, the standesdlts of parameter consistency
and asymptotic normality of the maximum likelihoestimator do not usually hold, so
that alternatives schemes to estimate the unknoamanpeters must be pursued.
Researchers have considered some alternatives emjeas estimating the unknown
parameters by using another methods (e.g. the whetianoments), or adopting
modifications to the original empirical specifieats for which the range problem
disappears, e.g., by introduction of measuremenmir e&xs in the literature concerned
with the estimation of stochastic production frergi (Coelli et al. 2005, Tchumtchoua
and Dey, 2007), looking sufficient conditions teride an asymptotic distributions for
the maximum likelihood estimator as in Akahira ahakeuchi (1995) and, finally,
applying the Bayesian estimation to nonregular e®ds in Ghosal (1999) and Wiper
et al (2008).

The Bayesian method needs to elicit a prior distidm to calculate the posterior
distribution from the likelihood function via Bayesheorem. One procedure of
generating prior distributions over parameters spas the Jeffreys’ rule, which is

calculated from the Fisher information. This pridistribution is called, usually,



noninformative. Note that Jeffres’s rule must vetifie regularity conditions to make
sense.

The first objective of our article is to give ansgamethod to obtain prior
noninformative distributions, which could be apgli® nonregular models. To this end,
we will return to the original Jeffreys’ works. Well use the interpretation that the
author makes of his proposal and the comments abloythis proposal is not valid in
the case of the uniform model (an important caseoofregular model). Based on this
reasoning, we can establish an analogy betweerlaregnd nonregular models that
allows to obtain a generalization of the meanindadfreys’ rule for nonregular models,
as we will see in the second section.

The second objective will be to show by mean of fligstrative examples (job-
search model and deterministic frontier productieodel), that using noninformative
distributions in Bayesian inference, the solutian the inference problem is also
satisfactory when the models are nonregular.

The rest of the article is organized as followsct®a 2 presents our proposal to
generate one-dimensional prior distributions. latis@ 3, we analyze the properties of
the prior noninformative distribution, proving ththis prior is parameterisation-
invariant for some smooth one-to-one transformatiod that a Bayesian interval with
probability 1e , calculated from the posterior distribution, aassa confidence interval
with a level of confidence &-(exact or approximate). In section 4, we studyrttuti-
parameter case. The two illustrative examples taidiex, respectively, in the sections 5

and 6. Finally, section 7 resumes the main conahssof the present article.

2. The One-Parameter Case.



In this section we shall propose one rule to obtaia-dimensional noninformative
prior distributions which is applied to nonregudend regular models.

Our proposal is based on the interpretation thifiteys (1946) makes of his rule to
obtain prior densities. We will explain this integpation using more modern notation
and applying it to the case of a continuous unip&tar regular model.

Let X be a random variable with densitiy(x|8), where S0O O R is a unknown
parameter. Given two value#,,6,L1©, Jeffreys consider the discrepancy (or

information) measures :

1166, = [(JT (x 16, - T (x1,) dx (1)

f(x18,)
f(x]6)

1,(6,,8,) :jlog£ J(f(x 18,)—f(x8,))dx )

Then he analyzes the behaviour d¢f (8,8 + 46) and |,(6,8+ A6), concluding that

“l; andl» are apparently the only ones that are ordinarilyhe second order in the
differences of the parameters in the laws whereth@ferences are small” (p.455). This
property is the one that finally led him to establhis rule, looking for the invariance
property check.

We will use the information measure

3@, 8,)=-8log [ (x[8, \/ f(x]8, )dx (3)
whose local behaviour is of second order too, as caer see in the following

proposition, whose proof can be found in Akahird &akeuchi (1991).
Proposition 1.In regular models,) (6,8 +46) = 1 (6)(46)” +0((46)?), where| (6)

is the Fisher information amount of the regular elpdefined as

® :\/_E{a%g(f (x |e))} @

06°




Thus, we can interpret that the Jeffreys’ rulestakprior distribution that give more

density of probability to those values of paramefggice in which local information is
greater, considering a distribution proportional m in order to verify the
invariance property.

Remark 1. In regular models, from the proposition 1, we camrite

1(6) = L!igmo%";) and therefore the Jeffreys’ rule can be expreased

20-0 (Ag)z )

m(6) 0 I(e):\/lim 3(0,6+48)
However, the behaviour of information measures amragular models for small
variations in the parameter is different. Jeffre(l046) points out that: “The
requirement that the chances shall be differergiabth respect to the parameters is not
always satisfied. One case is the rectangulariloigion [...]. For a'slightly greater
thana, |1 is of the first order i '—a instead of the second” (p.458).

This difference in behaviour can also be intergtete a certain analogy. This allows

us to define a prior distribution for nonregular dets “similar” to the Jeffreys’

disribution. Indeed, ifJ(8,8+ 46) is of the first order in46 when|46| - 0, there is
a function C(6) (not identically null) such thal(8,6+46) = C(6)|46l + o(|46]) and
thereforeAI‘Lmo[J(H, 6+ 46)/146|| = C(8) . Following the interpretation of Jeffrey’s rule,

we will define a prior distribution that give more density ofl@bility to those values

of parameter space in which local information is greater; we will pppos

J(6,6+46)

me)0c(o) = JLTOW (6)



We want to emphasize that now we do not consider the squaref r6¢fo because

of the local behaviour is of the first order instead of the secondaande shall see in
section 3, this proposal is parameterization-invariant.

Remark 2Note that the two situations described above can be written as

1k
(6) D( lim M] (7)

46 -0 |A9|k

wherek = 2 for regulars models ankl=1 for nonregular models.
Considering nonregular models, we obtain noninformative pristriloution for

simple examples.

Example 1.If we consider the uniform modédl (0,6), 60(0,+ew), with density
function f(x|8)=68", 0<x<@, we obtain)(d,6+A8)=-4log(d/(@+A8)) for
A6 >0; while for A6 <0, we obtainJ(8,8+A8)=-4log( (A8 + h)/Ab), and so

AE% (3(8+06)/106]) = AI;rPO_(J(9+A60/IA9|) =491 (8)
Thus the prior distribution igr(6) 067"

Example 2.If we consider the uniform model (6-1/2,6+1 2), 0R, with
density function f(x,0)=1, 6-1Y2<x<6+12 we obtain
J(6,0+h)=-8log(1-A@8) if AG>0 (for A8 sufficiently small), while that for
A <0 the amount of information is)(8,8+ h)=-8log(1+Af). It is very easy to
prove thatAILrPO(J(9,9+AH)/|A9|):8, and, consequently, the prior distribution is
me)01.

In the two nonregular previous examples, the rate of converfedt(8,6 + AG) to
zero is of ordefA@ |, while in the regular models the rate is of orda®)’, as we

pointed out earlier. It is interesting to recall that the usuatadterization of a regular



model f(x; 6?) is that the parametefl does not appear on endpoints of the interval
which f(x; 8) >0. But a general definition of a regular model is that
AIiemo(\](é?,6’+A6’)/(A6’)2) =1(6), and so the usual characterization is not a necessary

condition (Pitman, 1979, pag.13). Note that Pitman (1979rksv with
= _ U2 12\? . . .
J(6.,6,) —I( f(x16,) " - f(x|6,) ) dx, but is easy to prove that both information

measures have the same local behaviour, thataiigmb(J(B, €+AH)/3(€,€+A€)) =4

and consequently is the same to use either one or another ashodatmation.
In the following proposition, we prove that in nonregulaodels, under certain
conditions, the rate of convergent is of ordedéd | and we also obtain one alternative
expression to calculate the noninformative prior distribution.

Proposition 2. Let X,,..., X, be independent and identically distributed observations
from a density f(g), where 0@, and @ is an open interval(bounded or unbounded)
in R. We make the following assumptions:

1) [/6[JO, f(e|6 is strictly positive in a closed interval (bounded or umiutad)
S(6)=[ a(8). a(8)] .which depends o, and is zero outsid&(6). It is allowed

that one of the endpoints is free @fand may be plus or minus infinity.

ii) The setsS(6) are either increasing or decreasing difthat is, [ 8, <&, we have

s(6,)0 96,) or S(6,) 0 §6,)).
i) We assume thata,(d) and a,(8) are strictly monotone and continuously

differentiable functions unless they are infinite or free féhm

iv) On the setR(x,e):{(xe)D]R{2 - X 5(8)} either f(x|8) and of (x|8)/d8 are

jointly continuous in(x,8).



Then:

im J(6,6+406) _ 4E{dlogf(x|0)} ©)
h-0 |A6| o6
The proof of this proposition is given in the apgian
From the proposition 2, the prior distribution tha propose is
m6)0 HW}‘ (10)

The conditions stated in proposition 2 are the sasdhose established by Ghosal
(1999). Ghosal has obtained a matching prior inreguar cases which has the same
functional form of (10). Therefore, if conditiond proposition 2 hold, both prior

distributions remain the same, but if not, we htheadvantage of being able to obtain

the prior distribution applying (6). For exampleetmodelU (0,8) fall in all conditions
of proposition 2, and so its prior distribution dasobtained from the expression
6)0 \E[(d log f (x |9))/09]\ D\ E[-(o |oge/ae)]\ net, (11)
but the model (6-1/ 2,6+ 1/ 2)does not verify condition ii) of proposition 2, daq,
this case, it is not possible to get the matchingrpf Ghosal applying the formula

(10), but we have obtained the prigf8) al applying the formula (6).

3. Properties of the noninformative prior distribution.

There are two procedures to evaluate the methadsbimining noninformative prior
distributions. One is the parameterisation-invaridor some smooth one-to-one
transformation, and the other one is the so-catiatthing priors. In this section we will
see that the noninformative prior that we have psep has a good behaviour in both

procedures.



The invariance property is proved in the followimrgposition.
Proposition 3.The noninformative prior distribution is paramétation-invariant for

some smooth one-to-one transformation.

Proof. The measure of informatiod(6,,6,) does not depend on the choice of
parameterisation. For the valued,f, and transformationAd =A(f) one-to-one
(continuous and differentiable), we hal{@,,8,) = J(1;,4,), where A =A(4),i =1,2.

Now, if we consider the value®# and 46, and its respectived =A(d) and
A = A(6+A6) - A(6) ,we obtain that

J(8,60+06)=J(A(@),A(6+A08))= JA,A+AN).

Hence,

3(8,6+06) _ I A+8A) A _ JA,A+AA) A(@+06)-A(6)
A8 N A A8

and for A@ - 0, we obtain 77(8) = 71(A) 2 and this proves the proposition.
00

|

The matching priors procedure is a method of gemgragrior distributions over
parameter spaces based on the confidence propestiesets arising from the
corresponding posterior distributions. For exampte, a single parameter, we can
generate with this method a noninformative priorteat a Bayesian interval with
probability 1-a , calculated from the posterior distribution, aassa confidence interval
with a level of confidencé-a (exact or approximate).

The notion of matching, which first appeared in @Webhnd Peers (1963), may be
considered as an attempt to reconcile the two r@iffieschools, classical and Bayesian,

as a validation of a noninformative prior, or asuseful method for constructing
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confidence sets. For one-dimensional smooth fasjiligatching leads to Jeffreys’ prior
(Welch and Peers, 1963).

As we have pointed out in the previous sectioroiiditions of proposition 2 hold,
then the distribution proposed is equal to the @hesnatching prior. Specifically, in
Ghosal(1999) is proved that the Bayesian one-siotedval with probabilityl—a acts
as a confidence interval with a level of confidergeal tol-a + O(n?) .

If the conditions of proposition 2 do not hold, theare not general results about
matching priors. However, there are several exasnplbere the posterior Bayesian
interval, with probabilityl—a, acts as an exact confidence interval with a lefel

confidencel—-a (Basulto, 1997; Ortega and Basulto, 2003).

4. The Multi-Parameter Case.

When there is more than one parameter, that ispwhie® 0O R™, the general Jeffreys’

rule, in the regular case, is proportional to tlygiase root of the determinant of
information matrix, that i9;1(9)DJ|I(6?)|, where ‘I (9)‘ is the determinant of the

information matrix. This prior is invariant to atl@iry parameterisation. But, this choice
presents important deficiencies so it is not thealsption (Jeffreys, 1961, Ortega and
Basulto, 2003). To avoid this problem, Jeffreyspm®ed one modification of his rule
for multi-parameter case which he had applied todet® with location-scale
parameters. This modified rule is equivalent toaobt (i) the distribution for each
parameter treating the remaining as fixed parameted (ii) to calculate the multi-
parameter prior distribution as product of the esponding one-dimensional (Jeffreys,
1961, p.182-183).

The most usual method to generate multi-parameter distribution is to obtain

them from certain one-dimensional distributions gi@al or conditional distributions).

11



The final prior distribution depends on considerthgt all parameters are of interest
(Bernardo and Smith, 1994, Nicolau, 1993) or comsnd) of interest some of them

being the rest nuisance parameters.

For two-dimensional parame®r (6,,6,) 00 O R?, where the two parameters are
of interest, we can calculate the one-dimensionahditional prior distributions
1,(61]6,) and 1y (6,)6;) and then, look for a join prior distributionsz(6,,6,)
compatible with them (Arnold et al, 1999). An imfaort problem about this calculus is
that the distributionnu2(91| 92) is determined except for an arbitrary function ethi
can dependent of th8, and this function has influence in the join pastedistribution.

Thus, applying one-dimensional rule to parameferfor fixed &, we find that
,(6116,) 1 94,(60,,6,)C, 46 ), where C,,(6,) is an arbitrary function. Similarity,
we will obtain 77,,(6,]6,) Ul 94,(6,,6)C,{6 ). From these conditional distributions,
we propose the following definition.

Definition.  If it is certain that g,,(6,,6,)C,(6)=h,{6) Hnge ) and
021(61,6,) C51(6) = h, {6 ) h*Z(H ). then the prior distribution will be

71(6,,6,) U hy,(8) hy(6 ) (12)
This definition is taken from the papers of NicqB@093) and Ghosal (1999). We
observe that in this case, as point out Nicolau9319we can consider that the
parameters are a priori independent. Though thdqare solution is partial, the method
is of interest and is frequently used in the praEc{iGhosal, 1999), principally in two-

parameter models where one parameter is regulathenather is nonregular.

Example 3.Pareto Mode(77, ¢)

12



The density of a Pareto model is given by(x|7,¢)=¢n?x ™  x>n,n.¢ > 0.
Let ¢(7,¢|x)=log f(x |7 #). We can obtain the join prior distribution applyithe

one-dimensional rule to each individual conditiodiskribution, so:
A) For each fixedy, the model is regular on the paramaiiethat is, ¢ is regular,

and the conditional noninformative prior distrilmrs for ¢ |7 is proportional to the
square root of the Fisher information of model étix)). FromE[azﬁ/aqﬁz} =—¢7?, the
conditional noninformative prior igr(¢ |7) 0 ¢7'C, (7).

B) For each fixedp, the model is nonregular on the paramatend the conditions
of the proposition 2 are true. FroB[d¢/dn] = ¢/n7 , we obtainz(r7|#) 0 n~'C, (#).

From (12), the conditional noninformative priorse &he product of the functions

C,(n7) and C,(¢), with different parameters, and hence the joinimonmative prior

is 71(n,¢)0n~'¢~.
Example 4.Location-scale model

The density of location-scale model is given by
f(x16.8)=¢"%((x-0)/¢), 60R$>0 (13)

where fy(2) is a density function in the intervf, +o). Suppose that for each fixed
6, the Fisher information (¢ /6) = E[(6£/6¢)2} = —E[(azﬁ/cwz)} exists and is finite.
That is, the paramete¢ is regular. Suppose thaf,(0+) >0 and is finite, that is, the
parameterd is nonregular. In these cases, we find tEdD//06] =¢~*f,(0+) and

. 2
~E[0°010¢° | = kg™, where k=[[1+x§(®/ H(3] §() &, and consequently

n(61¢)01C, @) and (¢ |8) O ¢~ C, (). Therefore the conditional noninformative

13



priors are, respectivelg, (#) and C,(68), so, they are functions with different

parameters and hence the join noninformative siar(6,¢) 0 ¢

If we cannot apply (12), then we can try to lookilog a reparameterisation which
allows to apply it.

Example 5.Uniform Model (a, 8)
The density of a uniform modétr, B) is given by
f(x|a,B)=(B-a)*, asx<B,a<FOR (14)
In this case, the parameter vect@w,) is nonregular, and the condition of
proposition 2 is true when one parameter is fixedcsrom the

expressiori(a, B|x)=log f (x |a ,B), we obtaifE[d¢/0a]|=|E[ar/0p] = (B-a)™,

consequently (e | 8) 0 (B-a)™C,(B) and m(B|a)0 (B-a)™C,(a), that is, the
conditional noninformative prior densities are tloé product of two functions with

different parameter.

We consider the reparameterisatior= a, o = f—a , that is, the parameter is the

minimum value andr the width the interva(a, 8) (U is a parameter of location aod

of scale). Now,/(u,o |x)=log(c™), u< x< u+o. For each fixeds, we can applied
the situation of example 2, and then the conditiolainformative prior distribution is

n(u|o) 0 1-C (o), while for each fixeqs, we can applied the situation of example 1,
and then the conditional noninformative priortdisition is 7T(U|,u) O007'C, ().
Hence, the join noninformative prior distributioa ilT(,u,(f)D(f'1 (for parameter

vector(a, B) , the join noninformative prior distributioniga, ) O (,6’—0')_1).

14



5. Optimal job-search models with homogenous ages
Lancaster (1997) had proposed a job-search modelhéonogenous unemployed

population when the observed data are the durélipaf search and the accepted wage

(W), the resultant n person likelihood for a sam{glev) = ((t;,w,), ..., ¢, W, ) is

LOAENtw)=A"exd{-AF € PT}[] f(w B) . b<é<w i=12,.r (15

n
1=1

whereA is the rate of arrival of wage offer§;=zin:lq ; T(w|8@), the density function
of wage offersW (€ is a parameter vector}; (w|6?) the distribution function of wage

offersW: F(w]@)=1- F(w@); & is the reservation wage, where if an offer is tgea
than & then it is accepted, and b is the rate of unempéy benefit.

A hypothesisH,, that is central to the optimal job-search modas that the agents
make utility-maximizing choices. The mathematicffleet of this hypothesis is to

impose the restrictio,{"\:b+(/l/,0)L;Hm F(w|@)dw= g(6,1), so & is functionally

dependent o¥ and A (the valued and the discount ratp,, are assumed know to the
researcher) and the likelihood function parametease restricted to
b<g(@,A)<w,i=12..,n Now the parameter vectc(rﬁ,/l) is nonregular because
the support of W dependent on them.

If the optimality is no enforced,, the paramete¢ is functionally independent of
the remaining parameter§d, A). Now, the parameter vect#, ) is regular and¢ is

nonregular.

While the density function of wage offers was assdnhog-Normal in Lancaster

(1997), we assume a uniform density truncate(drj;ﬁ), where the parameters and

15



£ are unknown to the researcher. This model is mairieresting from an operative

point of view, because it leads to an easier pmstafistribution which is even
analytically tractable under the hypothesis. @n the other hand, if the population
observed is homogenous (for example, people witlgmatification that is searching
their first employment) we think that it would beasonable to suppose that all wage
offers will be similar among them and will be unifdy distributed in a short or

moderate length interval.

In this case, the accepted waéss uniform in(&, 8), and it is independent af . If
we make the transformatioor = f-¢, then the accepted wag¥g are uniform in

(¢, +0).

Hypothesidd,. The parametef is independent ofr
In this case, f(w|&,0)=0"", E<w<é+o , F(&|o)=1 and the likelihood
function is
LA Eoltw)=A"exd-AT}o ™", b<&é<w, f+o>w, (16)
where w;, andwg, are the minimum and maximum, respectively{w{,...,wn}.

The log-likelihood function for n=1 is

((A,é,0|tw)=Logd-At-Logr, {< W< {+o a7
and for the regular parametgrconditional to(¢,0), we have-0%¢/01?=A"% and so
n(A|€,0)0A7'C,(£,0) is the conditional noninformative prior distribm.

The parameter vectov(f, a) is nonregular, and from example 5, we have

n(é|1A,0)01C, A0) and m(o]|A,E)007C,(4,E). Then we can assume the
independent among the parameters and so the joimfoamative prior distribution is

n(A,é,0)0A17 0™

16



Now, the join posterior distribution is
A, &,0 |t w)OA" exd-AT o (™ | b<é<wy, +o>w, (18)
The constant of integration isK = nT”((V\(n) -p ™I - r‘(r”’)/( n- 2! and
r=wg, —Wgy Isthe range of accepted wages.
The marginal posterior distributions are: for tleggmeterA is a gamma distribution
with parametergn,T); for & is 71(&|t,W) O (w,, =)™, b<&<w, and, finally, the
marginal posterior density af is

o™ (o-r) si r<osw, -b

n(a|f,\7v)D{ (19)

o™ Si W, —b<o<+w
Hypothesidi, . The parametef is dependent o&r
From the restriction,gf:b+(/l/p)j;o F(w|@)dw (b and p are known by the
researcher) and we suppose that is uniform in(é,&+0), we obtain that
j:o F(w|8)dw=0/2 and soé =b+Aa/(2p). Now the Log-Likelihood function for

n=1 is
(A, 0|t,w)=Logl-At- Logr, b+tAg/(Pp)< w Ao/ ( p)+o (20)
For the conditional noninformative prior distribtis of A|o and o |A is not
possible to apply proposition 2 (neither to obtii@ matching prior of Ghosal) because
the condition i) is not satisfied. So, for eachxei o, we obtain
AIj]njo(l()l,ﬁ +A/1)/|A/1|):4,0‘1, and so 77(A|o) 01T, (0); for each fixed A, we

obtain AIimo(l(a,a+AJ)/|AJ|) =4)p'o™*, so the conditional noninformative prior
T -

17



distribution is m(c|A)00*C,(A). The join noninformative prior is
n1(A,&,0) 007", Now the join posterior distribution is

Ao |t w)dA" exd AT} o™ ™, b+/2]—a< Wy, ,b+;—0—+0> Wy o (21)
p 0

This last distribution is a bit more complex beaauts depends on the range of

vector(/La), So its constant of integration has not closedifeolution.

6. Deterministic frontier production models.
Examples of old models with nonregular parametees the deterministic frontier
production models of Aigner and Chu (1968) and nidh (1976). For homogenous

production units, the output, Y, for any individdaim, is equal t& = y+¢&, where i
is the maximum output ane is a normal variablg0,0) truncated in(-,0]. The

density function of Y is

(x=p)?
20°

f(ylﬂ,0)=%ex ] L YS U (22)

In this model, for each fixedr, the parametews is nonregular, thus we need to
obtain the conditional noninformative priqu|o. We can use the proposition 2 to
calculate|E[0¢/d4]|; from 8¢/dp =07 (y- ) and E[Y] :,u—\/?a, we obtain that
|E[0¢/04]| =J27'oc!, and the conditonal noninformative prior s
IT(,U|0') 01C, (@), whereC,(0) is a function ofo . For each fixeq:, the parameter
o is regular, thus the conditional noninformativéopfor o |y is obtained from to
apply Jeffreys’ rule. From —-E[0%//0u®]=0™2, we obtain the conditional

noninformative priorﬂ(a|,u) Da‘lcz (), where C,(u) is a function of . Now

18



from (12), we obtain the join noninformative prm(r,u,a) Do, which is similar to

the noninformative prior for a normal model.
The likelihood function for a sample=(y;,...,¥,) IS

n

L(u,oly)0c™ exr{zjizz ; -/J)zj Yy SHO>0 (23)

i=1

then the join posterior distributions is
(n+1 13
(o ly)0o )exr{FZ(yi-ﬂ)zj, Yy SHO>0 (24)
i=1

From the statisticsyzzinzlyi/n, Szzzin:l(y—_y)z/(n— ), and the identity

> (-’ =(n-)S+ fy-u)?, other expression for the join posterior

distribution is

_ 2
mu,oly)Do ™Y exr{—%] eXﬁE-"/’;'%] Y SH 0>0 (25)

Now, the marginal posterior distribution for is

moly)do™ exy{—%j(l—cp{wﬂ ,0d>0 (26)

g

where cD() is the standard normal distribution function aym is the maximum value

of y =(y;,..., ¥, )in the sample.
To calculate the marginal posterior of the paramgieve make the transformation

t=(u-y)Vn/ S. Thus,

(27)

t? j_nlz’ £ (Y(n)_y)\/?‘

ﬂ(t|y)D(1+n_1 <
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that is, the marginal posterior distribution foris a truncated t-Student density

distribution with n-1 degrees of freedom, where is greater than to and

t, = (y(n) —7)\/?1/5 is an ancillary statistic.

7. Conclusions.

The original idea of Jeffreys’ rule has been geiim¥d to nonregular models. This rule
proposes a prior distribution that gives more dgrwdi probability to those values of the

parameter space where local information is highke only difference with the regular

models is about the local behavior of informatioeasures. In non-regular models we
apply a first order approximation while second ordeapplied in the regular ones.

Therefore, both regular and non-regular modelsbhsamtegrated in a single method as
in (7).

Our proposal of generating one-dimensional nonmédive prior distributions in
nonregular models is quite satisfactory, since thdéculation is simple, they are
parameterisation-invariants and the Bayesian iatervhave a good frequentist
behaviour. If the necessary conditions to obtai@ @hosal’'s prior hold, then our
proposal has the same functional form as the nragcprior of Ghosal (1999). If the
necessary conditions don't hold, then we have thatage of being able to obtain the
prior distribution applying (6).

In the multi-parameter case, we have only consaig@mor distributions when all
parameters are of interest. If the supposition I#) (is not true, we can obtain a
parameterisation to apply this definition.

For each one model, in sections 5 and 6, we hatanaul their prior distributions. In

these models, the Bayesian method offers a satsfasolution to the inference
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problem and also avoids the problem the maximurelihkbod estimator has with

nonregular models.
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Appendix: proof of proposition 2.
We assume that the s&¢) are increasing i, that this,a'l(H) <0 and a'Z(H) >0 ; the

other case is handled by the reparameterisaflon —€ (it is permitted that one of
endpoint is free o or may be plus or minus infinity). In this situatj the function

log f (x|8) is decreasing ing and consequently, we must to prove that
m@)0-E[dlog f(x|6)/86] . In other case, the proof is similar, but theulewill be
@)D E[Jlog f (x|6)/06], because of the functiorog f (x |@) will be increasing in

6.

For simplicity in the notation, we will use h inateof AG.

A) For h>0, we need to prove thdim J(0.6+h) =-4E {M} :
h-0

26

We define the functiong,(x h) =+ T(x]6) f(xI8+ ) and G,(h) = [ g,(x H o

a,(6)

Since G, (h) is continuous irf0, £], we haveLirr})Gg(h) = G,(0 = 1, and consequently,

i 90,8+ h)_ . —8l0gG; () _ . 9 10gG (h)_

h-0 h h-0 h h- 0 Jh
3G, (h) [x00%(x b
=-glim —9N _ = _gjm 2@ _0h -

-0 Gy(h)  h0 Gy
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o) gy Ot x|+ h)oh |
J(e) T(x18) 2\ f(x|6+h) ) az(e)af(xlé?)dX:_LlE{alogf(x|9)}

= -8lim [
h-0 G,(h) 4 98 06
B) For h>0, we need to prove thmw = _4E[%8(X|@]

We define the functionsg, (X, h) :\/ f(x|8) f(x|@- h and

09( x B d». Since Q,(h) is continuous ifD, £], we have

Q) =[""

3, (6-h)

Lirr%Qg(h) =Q,(0 = 1, and hence

0Q,(h)
im J@.6-1) _ . 8logQy(h) _g. 010gQ (N _g.~an _ g0 QN
h-0 h h-0  h h-0  9h h-0 Q(h oh |0

In this case, since the integration Iimits(@é‘(h) depend on h, we apply the formula

of Leibniz (Apdstol, 1960) to calculad€), (h)/dh. We have

FD) - 2 [ x10) 2O ar 4 0~ B (@@= B10) (a@- Hio- -

-a,(6-h./f(a@-H16)y f(a@- Hlo- h

thus, we obtain:

h_.o 3, (6)

a \/f
3(9 ¢9+h) {J (B)Wa (XIH dxt %(5) f( 3(6)|6) - (6) f(q(0)|0)}

and applying again the formula of Leibniz, we obtai

8,(6) f (8,(8) 1) - 8,(6) f(a(6)0)=~- I;iff of gx 6! 9) 4

and hence

im 3(6,6+ h):4ja2(6)6f(x|9)dx_ 8J‘a2(9)6f(x|9)d)c_4E{6 log f(xlﬁ)]
h-0 h 3 () 06 a(6) 08 08
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This proves the proposition.
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