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A Generalization of  Jeffreys’ Rule for Nonregular Models 

 

 

Abstract 

We propose a generalization of the one-dimensional Jeffreys’ rule in order to obtain 
noninformative prior distributions for nonregular models, taking into account the 
coments made by Jeffreys in his article of 1946. These noninformatives are 
parameterisation-invariant and the Bayesian intervals have good behaviour in 
Frequentist Inference. In some important cases, we can  generate noninformative 
distributions for multi-parameter models with nonregular parameters. In nonregular 
models, the Bayesian method offers a satisfactory solution to the inference problem and 
also avoids the problem that the maximum likelihood estimator has with these models. 
Finally, we obtain noninformative distributions in Job-Search and Deterministic 
Frontier Production homogenous models. 
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1.    Introduction 

There is a wide variety of empirical applications where the corresponding models do 

not verify the regularity conditions of Wald (Azallini, 1996, p.71). Usually, the main 

problem is that the range of the observed random variable depends on the parameters 

that are being estimated. In Sareen (2003), Schmidt (1976) and Müller and Wefelmeyer 

(2010) there are some examples where nonregular models appear in economic 

applications, as in stationary job-search models, truncated regressions, deterministic 

frontier production models and sealed-bid auction models. 

In models with nonregular parameters, the standard results of parameter consistency 

and asymptotic normality of the maximum likelihood estimator do not usually hold, so 

that alternatives schemes to estimate the unknown parameters must be pursued. 

Researchers have considered some alternatives avenues, as estimating the unknown 

parameters by using another methods (e.g. the method of moments), or  adopting 

modifications to the original empirical specifications for which the range problem 

disappears, e.g., by introduction of measurement error as in the literature concerned 

with the estimation of stochastic production frontiers (Coelli et al. 2005, Tchumtchoua 

and Dey, 2007),  looking sufficient conditions to derive an asymptotic distributions for 

the maximum likelihood estimator as in Akahira and Takeuchi (1995) and, finally,  

applying  the Bayesian estimation to nonregular models as in Ghosal (1999) and Wiper 

et al (2008). 

The Bayesian method needs to elicit a prior distribution to calculate the posterior 

distribution from the likelihood function via Bayes’ theorem. One procedure of 

generating prior distributions over parameters spaces is the Jeffreys’ rule, which is 

calculated from the Fisher information. This prior distribution is called, usually, 
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noninformative. Note that Jeffres’s rule must verify the regularity conditions to make 

sense. 

The first objective of our article is to give an easy method to obtain prior 

noninformative distributions, which could be applied to nonregular models. To this end, 

we will return to the original Jeffreys’ works. We will use the interpretation that the 

author makes of his proposal and the comments about why his proposal is not valid in 

the case of the uniform model (an important case of nonregular  model). Based on this 

reasoning, we can establish an analogy between regular and nonregular models that 

allows to obtain a generalization of the meaning of Jeffreys’ rule for nonregular models, 

as we will see in the second section. 

The second objective will be to show by mean of two illustrative examples (job-

search model and deterministic frontier production model), that using noninformative 

distributions in Bayesian inference, the solution to the inference problem is also 

satisfactory when the models are nonregular. 

The rest of the article is organized as follows. Section 2 presents our proposal to 

generate one-dimensional prior distributions. In section 3, we analyze the properties of 

the prior noninformative  distribution, proving that this prior is parameterisation-

invariant for some smooth one-to-one transformation and  that a Bayesian interval with 

probability 1-α , calculated from the posterior distribution, acts as a confidence interval 

with a level of confidence 1-α (exact or approximate). In section 4, we study the multi-

parameter case. The two illustrative examples are studied, respectively, in the sections 5 

and 6. Finally, section 7 resumes the main conclusions of the present article. 

 

2.    The One-Parameter Case. 
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In this section we shall propose one rule to obtain one-dimensional noninformative 

prior distributions which is applied to nonregular and regular models. 

Our proposal is based on the interpretation that Jeffreys (1946) makes of his rule to 

obtain prior densities. We will explain this interpretation using more modern notation 

and applying it to the case of a continuous uniparameter regular model. 

Let X be a random variable with density ( | )f x θ , where ∈ ⊆ ℝθ Θ  is a unknown 

parameter.  Given two values , ∈1 2θ θ Θ , Jeffreys consider the discrepancy (or 

information) measures : 

 ( )( , ) ( | ( |= −
2

1 1 2 2 1I f x f x dxθ θ θ θ  (1) 

 ( )2
2 1 2 2 1

1

f (x | )
I ( , ) log f (x | ) f (x | ) dx

f (x | )

θ θ θ = θ − θ θ 
  (2) 

Then he analyzes the behaviour of   ( , )+1I θ θ ∆θ  and ( , )+2I θ θ ∆θ , concluding that 

“ I1 and I2 are apparently the only ones that are ordinarily of the second order in the 

differences of the parameters in the laws when these differences are small” (p.455). This 

property is the one that finally led him to establish his rule, looking for the invariance 

property check. 

We will use the information measure 

 1 2 2 1J( , ) 8log f (x | ) f (x | )dxθ θ = − θ θ  (3) 

whose local behaviour is of second order too, as we can see in the following 

proposition, whose proof can be found in Akahira and Takeuchi (1991). 

Proposition 1. In regular models, ( )( )( , ) (( ) )+ = +2 2J I oθ θ ∆θ θ ∆θ ∆θ , where ( )I θ  

is the Fisher information amount of the regular model, defined as 

 
( )( )2

2

log f x |
I( ) E

 ∂ θ
θ = −  

∂θ 
 (4) 
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Thus, we can interpret that the Jeffreys’  rule take a prior distribution that give more 

density of probability to those values of parameter space in which local information is 

greater, considering a distribution proportional to ( )I θ  in order to verify the 

invariance property. 

Remark 1.  In regular models, from the proposition 1, we can write 

( )
( )

,( ) lim
0

J
2I

∆θ

θ θ ∆θ
∆θ

θ
→

+=  and therefore the Jeffreys’  rule can be expressed as 

 ( ) ( )
( )
,

( ) lim
20

J
I

∆θ

θ θ ∆θπ θ θ
∆θ→

+∝ =  (5) 

However, the behaviour of information measures in nonregular models for small 

variations in the parameter is different. Jeffreys (1946) points out that: “The 

requirement that the chances shall be differentiable with respect to the parameters is not 

always satisfied. One case is the rectangular distribution […]. For 'α slightly greater 

than α , I1 is of the first order in '−α α  instead of the second” (p.458). 

This difference in behaviour can also be interpreted as a certain analogy. This allows 

us to define a prior distribution for nonregular models “similar” to the Jeffreys’ 

disribution. Indeed, if ( , )+J θ θ ∆θ  is of the first order in ∆θ  when → 0∆θ , there is 

a function ( )C θ  (not identically null) such that ( )( , ) ( )+ = +J C oθ θ ∆θ θ ∆θ ∆θ  and 

therefore [ ]lim ( , ) ( )
0

J C
∆θ

θ θ ∆θ ∆θ θ
→

+ = . Following the interpretation of Jeffrey’s rule, 

we will define a prior distribution  that give more density of probability to those values 

of parameter space in which local information is greater; we will propose 

 ( ) ( ),
( ) lim

0

J
C

∆θ

θ θ ∆θπ θ θ
∆θ→

+∝ =  (6) 
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We want to emphasize that now we do not consider the square root of ( )C θ  because 

of the local behaviour is of the first order instead of the second and, as we shall see in 

section 3, this proposal is parameterization-invariant. 

Remark 2. Note that the two situations described above can be written as 

 
( ) /

,
( ) lim

1 k

0

J
k∆θ

θ θ ∆θπ θ
∆θ→

 + ∝  
 

 (7) 

where =k 2 for regulars models and =k 1 for nonregular models. 

Considering nonregular models, we obtain noninformative prior distribution for 

simple examples. 

Example 1. If we consider the uniform model ( ) ( ), , ,∈ +∞U 0 0θ θ , with density 

function ( | ) ,−= ≤ ≤1f x 0 xθ θ θ , we obtain ( )( , ) log ( )+ ∆ = − + ∆J 4θ θ θ θ θ θ  for 

∆ > 0θ ; while for ∆ < 0θ , we obtain ( )( , ) log ( )+ ∆ = − ∆ + ∆J 4 hθ θ θ θ θ , and so 

 ( ) ( )lim ( ) lim ( ) 1

0 0
J J 4

θ θ
θ θ θ θ θ θ θ

+ −

−

∆ → ∆ →
+ ∆ ∆ = + ∆ ∆ =  (8) 

Thus the prior distribution is ( ) −∝ 1π θ θ . 

Example 2. If we consider the uniform model ( ), ,− + ∈ℝU 1 2 1 2θ θ θ , with 

density function ( , ) ,f x 1 1 2 x 1 2θ θ θ= − ≤ ≤ + , we obtain 

( , ) log( )+ = − − ∆J h 8 1θ θ θ  if ∆ > 0θ  (for ∆θ  sufficiently small), while that for 

∆ < 0θ  the amount of information is ( , ) log( )+ = − + ∆J h 8 1θ θ θ . It is very easy to 

prove that ( )lim ( , ) | |
∆ →

+ ∆ ∆ =
0

J 8
θ

θ θ θ θ , and, consequently, the prior distribution is 

( ) ∝ 1π θ . 

In the two nonregular previous examples, the rate of convergent of  ( , )+ ∆J θ θ θ  to 

zero is of order | |∆θ , while in the regular models the rate is of order ( )∆ 2θ , as we 

pointed out earlier. It is interesting to recall that the usual characterization of a regular 
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model ( );f x θ  is that the parameter θ  does not appear on endpoints of the interval 

which ( ); >f x 0θ . But a general definition of a regular model is that 

( )lim ( , ) / ( ) ( )
∆ →

+ ∆ ∆ =2

0
J I

θ
θ θ θ θ θ , and so the usual characterization is not a necessary 

condition (Pitman, 1979, pág.13). Note that Pitman (1979) works with    

( ) ( ) ( )( )/ /
, | |= −ɶ

21 2 1 2
1 2 1 2J f x f x dxθ θ θ θ , but is easy to prove that both information 

measures have the same local behaviour, that is,  ( )lim ( , ) ( , )
∆ →

+ ∆ + ∆ =ɶ
0

J J 4
θ

θ θ θ θ θ θ   

and consequently is the same to use either one or another amount of information. 

In the following proposition, we prove that in nonregular models, under certain 

conditions, the rate of convergent is of order  | |∆θ  and we also obtain one alternative 

expression to calculate the noninformative prior distribution. 

Proposition 2.  Let ,...,1 nX X be independent and identically distributed observations 

from a density f(x|θ), where ∈θ Θ , and Θ  is an open interval(bounded or unbounded) 

in ℝ . We make the following assumptions:  

i) ∀θ∈Θ, f(•|θ) is strictly positive in a closed interval (bounded or unbounded) 

( ) ( ) ( ),=   1 2S a aθ θ θ  ,which depends on θ , and is zero outside ( )S θ . It is allowed 

that one of the endpoints is free of θ  and may be plus or minus infinity.  

ii) The sets S(θ) are either increasing or decreasing  in θ (that is, ∀ <1 2θ θ  we have 

( ) ( )⊆1 2S Sθ θ  or ( ) ( )⊇1 2S Sθ θ ).  

iii) We assume that ( )1a θ  and ( )2a θ  are strictly monotone and continuously 

differentiable functions unless they are infinite or free fromθ . 

iv) On the set ( ) ( ){ }( , ) , : ,= ∈ ∈ℝ
2R x x x Sθ θ θ  either ( | )f x θ  and ( | )∂ ∂f x θ θ  are 

jointly continuous in ( ),x θ . 
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Then: 

 
( , ) log ( | )

lim
h 0

J f x
4E

θ θ θ ∂ θ
θ ∂θ→

+ ∆  =  ∆  
 (9) 

   

The proof of this proposition is given in the appendix. 

From the proposition 2, the prior distribution that we propose is 

 
log ( | )

( )
f x

E
∂ θπ θ

θ
 ∝  ∂ 

 (10) 

The conditions stated in proposition 2 are the same as those established by Ghosal 

(1999). Ghosal has obtained a matching prior in nonregular cases which has the same 

functional form of (10). Therefore, if conditions of proposition 2 hold, both prior 

distributions remain the same, but if not, we have the advantage of being able to obtain 

the prior distribution applying (6). For example, the model ( , )U 0 θ  fall in all conditions 

of proposition 2, and so its prior distribution can be obtained from the expression 

 ( ) ( )( ) log ( | ) log 1E f x Eπ θ ∂ θ θ θ θ θ −∝ ∂ ∝ − ∂ ∂ ∝       , (11) 

but the model ( / , / )− +U 1 2 1 2θ θ does not verify condition ii) of proposition 2, so, in 

this case, it is not possible to get the matching prior of Ghosal applying the formula 

(10), but we have obtained the prior ( ) 1π θ α  applying the formula (6). 

 

3.    Properties of the noninformative prior distribution. 

There are two procedures to evaluate the methods for obtaining  noninformative prior 

distributions. One is the parameterisation-invariant for some smooth one-to-one 

transformation, and the other one is the so-called matching priors. In this section we will 

see that the noninformative prior that we have proposed has a good behaviour in both 

procedures.  
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The invariance property is proved in the following proposition. 

Proposition 3. The noninformative prior distribution is parameterisation-invariant for 

some smooth one-to-one transformation. 

Proof. The measure of information ( , )1 2J θ θ  does not depend on the choice of 

parameterisation. For the values 1θ , 2θ  and transformation ( )=λ λ θ  one-to-one 

(continuous and differentiable), we have( , ) ( , )=1 2 1 2J Jθ θ λ λ , where ( ), , .= =i i i 1 2λ λ θ  

Now, if we consider the values θ and ∆θ, and its respective ( )=λ λ θ  and 

( ) ( )∆ = + ∆ −λ λ θ θ λ θ ,we obtain that 

( , ) ( ( ), ( )) ( , )+ ∆ = + ∆ = + ∆J J Jθ θ θ λ θ λ θ θ λ λ λ . 

Hence, 

 
( , ) ( , ) ( , ) ( ) ( )+ ∆ + ∆ ∆ + ∆ + ∆ −= =

∆ ∆ ∆ ∆ ∆
J J Jθ θ θ λ λ λ λ λ λ λ λ θ θ λ θ

θ λ θ λ θ
  

and for  ∆ → 0θ , we obtain ( ) ( )
λ

θ
π θ π λ ∂

∂
=  and this proves the proposition.  

■ 

The matching priors procedure is a method of generating prior distributions over 

parameter spaces based on the confidence properties of sets arising from the 

corresponding posterior distributions. For example, for a single parameter, we can 

generate with this method a noninformative prior so that a Bayesian interval with 

probability 1-α , calculated from the posterior distribution, acts as a confidence interval 

with a level of confidence 1-α (exact or approximate).  

The notion of matching, which first appeared in Welch and Peers (1963), may be 

considered as an attempt to reconcile the two different schools, classical and Bayesian, 

as a validation of a noninformative prior, or as a useful method for constructing 
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confidence sets. For one-dimensional smooth families, matching leads to Jeffreys’ prior 

(Welch and Peers, 1963). 

As we have pointed out in the previous section, if conditions of proposition 2 hold, 

then the distribution proposed is equal to the Ghosal’s matching prior. Specifically, in 

Ghosal(1999) is proved that the Bayesian one-sided interval with probability −1 α  acts 

as a confidence interval with a level of confidence equal to ( )−− + 21 O nα  . 

If the conditions of proposition 2 do not hold, there are not general results about 

matching priors. However, there are several examples where the posterior Bayesian 

interval, with probability −1 α , acts as an exact confidence interval with a level of 

confidence −1 α  (Basulto, 1997; Ortega and Basulto, 2003). 

 

4.    The Multi-Parameter Case. 

When there is more than one parameter, that is, when ∈ ⊆ ℝmθ Θ , the general Jeffreys’ 

rule, in the regular case, is proportional to the square root of the determinant of 

information matrix, that is, ( ) ( )∝ Iπ θ θ , where ( )I θ  is the determinant of the 

information matrix. This prior is invariant to arbitrary parameterisation. But, this choice 

presents important deficiencies so it is not the usual option (Jeffreys, 1961, Ortega and 

Basulto, 2003). To avoid this problem, Jeffreys proposed one modification of his rule 

for multi-parameter case which he had applied to models with location-scale 

parameters. This modified rule is equivalent to obtain: (i) the distribution for each 

parameter treating the remaining as fixed parameters and (ii) to calculate the multi-

parameter prior distribution as product of the corresponding one-dimensional (Jeffreys, 

1961, p.182-183). 

The most usual method to generate multi-parameter prior distribution is to obtain 

them from certain one-dimensional distributions (marginal or conditional distributions). 
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The final prior distribution depends on considering that all parameters are of interest 

(Bernardo and Smith, 1994, Nicolau, 1993) or considering of interest some of them 

being the rest nuisance parameters. 

For two-dimensional parameter ( ),= ∈ ⊆ ℝ2
1 2θ θ θ Θ , where the two parameters are 

of interest, we can calculate the one-dimensional conditional prior distributions 

( )|12 1 2π θ θ  and ( )|2 1 2 1π θ θ  and then, look for a join prior distribution  ( ),1 2π θ θ  

compatible with them (Arnold et al, 1999). An important problem about this calculus is 

that the distribution ( )|12 1 2π θ θ  is determined except for an arbitrary function which 

can dependent of the θ2, and this function has influence in the join posterior distribution. 

Thus, applying one-dimensional rule to parameter θ1, for fixed θ2, we find that 

| | |( | ) ( , ) ( )∝12 1 2 12 1 2 12 2g Cπ θ θ θ θ θ , where | ( )12 2C θ  is an arbitrary function. Similarity, 

we will obtain | | |( | ) ( , ) ( )∝2 1 2 1 2 1 1 2 2 1 1g Cπ θ θ θ θ θ . From these conditional distributions, 

we propose the following definition. 

Definition.  If it is certain that *
| | | |( , ) ( ) ( ) ( )12 1 2 12 2 12 1 12 2g C h hθ θ θ θ θ=  and 

*
| | | |( , ) ( ) ( ) ( )2 1 1 2 2 1 1 2 1 2 2 1 1g C h hθ θ θ θ θ= ,  then the  prior distribution will be 

 | |( , ) ( ) ( )1 2 12 1 2 1 2h hπ θ θ θ θ∝  (12) 

This definition is taken from the papers of Nicolau(1993) and Ghosal (1999). We 

observe that in this case, as point out Nicolau, 1993, we can consider that the 

parameters are a priori independent. Though the previous solution is partial, the method 

is of interest and is frequently used in the practice (Ghosal, 1999), principally in two-

parameter models where one parameter is regular and the other is nonregular.  

Example 3.  Pareto Model ( ),η ϕ  
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The density of a Pareto model is given by  ( )( | , ) , , , .− += > >1f x x x 0ϕ ϕη ϕ ϕη η η ϕ  

Let ( )( , | ) log | ,=ℓ x f xη ϕ η ϕ . We can obtain the join prior distribution applying the 

one-dimensional rule to each individual conditional distribution, so: 

A) For each fixed η, the model is regular on the parameter ϕ, that is,  ϕ is regular, 

and the conditional noninformative prior distributions for |ϕ η  is proportional to the 

square root of the Fisher information of model (fixed η). From − ∂ ∂ = − ℓ
2 2 2E ϕ ϕ , the 

conditional noninformative prior is ( )| ( )−∝ 1
1Cπ ϕ η ϕ η . 

B) For each fixed ϕ, the model is nonregular on the parameter η and the conditions 

of the proposition 2 are true. From [ ]∂ ∂ =ℓE η ϕ η , we obtain ( | ) ( )−∝ 1
2Cπ η ϕ η ϕ . 

From (12), the conditional noninformative priors are the product of the functions 

( )2C η  and ( )1C ϕ , with different parameters, and hence the join noninformative prior 

is  ( ), .− −∝ 1 1π η ϕ η ϕ  

Example 4.  Location-scale model 

The density of location-scale model is given by 

 ( | , ) (( ) / ), ,1
0f x f x 0θ ϕ ϕ θ ϕ θ ϕ−= − ∈ >ℝ  (13) 

where ( )0f z  is a density function in the interval [ ),+∞0 .  Suppose that for each fixed 

θ, the Fisher information ( ) ( ) ( )/    = ∂ ∂ = − ∂ ∂
  

ℓ ℓ
2 2 2I E Eϕ θ ϕ ϕ  exists and is finite. 

That is, the parameter  ϕ is regular. Suppose that  ( )+ >0f 0 0 and is finite, that is, the 

parameter θ is nonregular. In these cases, we find that [ ]/ ( )1
0E f 0θ ϕ−∂ ∂ = +ℓ  and 

/ ,2 2 2E kϕ ϕ− − ∂ ∂ = ℓ  where '( ) / ( ) ( ) = + 
2

0 0 0k 1 xf x f x f x dx, and consequently 

( )| · ( )∝ 11Cπ θ ϕ ϕ  and ( )| · ( )−∝ 1
2Cπ ϕ θ ϕ θ . Therefore the conditional noninformative 
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priors are, respectively, ( )1C ϕ  and ( )2C θ , so, they are functions with  different 

parameters and hence the join noninformative prior is ( ), .−∝ 1π θ ϕ ϕ  

If we cannot apply (12), then we can try to looking for a reparameterisation which 

allows to apply it. 

Example 5.  Uniform Model ( , )α β  

The density of a uniform model ( , )α β  is given by 

 ( | , ) ( ) , ,1f x xα β β α α β α β−= − ≤ ≤ < ∈ℝ  (14) 

In this case, the parameter vector ( , )α β  is nonregular, and the condition of 

proposition 2 is true when one parameter is fixed. From the 

expression( , | ) log ( | , )=ℓ x f xα β α β , we obtain [ ] [ ] ( )−∂ ∂ = ∂ ∂ = −ℓ ℓ
1E Eα β β α , 

consequently ( | ) ( ) ( )−∝ − 1
1Cπ α β β α β  and ( | ) ( ) ( )−∝ − 1

2Cπ β α β α α , that is, the 

conditional noninformative prior densities are not the product of two functions with 

different parameter. 

We consider the reparameterisation ,= = −µ α σ β α , that is, the parameter µ  is the 

minimum value and σ  the width the interval ( , )α β  ( µ is a parameter of location and σ 

of scale). Now, ( , | ) log( ),−= ≤ ≤ +ℓ
1x xµ σ σ µ µ σ . For each fixed σ, we can applied 

the situation of example 2, and then the conditional noninformative prior distribution is 

( )| ( )∝ i 11 Cπ µ σ σ , while  for each fixed µ, we can applied the situation of example 1, 

and then  the conditional  noninformative prior distribution is ( )| ( )−∝ 1
2Cπ σ µ σ µ . 

Hence, the join noninformative prior distribution is  ( ), −∝ 1π µ σ σ  (for parameter 

vector( , )α β , the join noninformative prior distribution is( ) ( ),
−∝ − 1π α β β α ). 
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5.    Optimal job-search models with homogenous agents 

Lancaster (1997) had proposed a job-search model for homogenous unemployed 

population when the observed data are the duration (T) of search and the accepted wage 

(W), the resultant n person likelihood for a sample ( ) ( ), ( , ),..., ( , )=t w 1 1 n nt w t w is 

 { } ( )( , , | , ) exp ( | ) | , , , ,...,
n

n
i i

i 1

L F T f w b w i 1 2 nθ λ ξ λ λ ξ θ θ ξ
=

= − < < =∏t w  (15) 

   

where λ is the rate of arrival of wage offers; 
=

=
n

ii 1
T t ; ( | )f w θ , the density function 

of wage offers W (θ is a parameter vector); ( )F w θ  the distribution function of wage 

offers W; ( ) ( )= −F w 1 F wθ θ ; ξ  is the reservation wage, where if an offer is greater 

than ξ  then it is accepted, and b is the rate of unemployment benefit.  

A hypothesis, 0H , that is central to the optimal job-search model, it is that the agents 

make utility-maximizing choices. The mathematical effect of this hypothesis is to 

impose the restriction ( ) ( )( | ) ,
+∞

= + =b F w dw g
ξ

ξ λ ρ θ θ λ , so ξ  is functionally 

dependent of θ and λ (the values b and the discount rate,ρ , are assumed know to the 

researcher) and the likelihood function parameters are  restricted to 

( , ) , , ,...,< < =ib g w i 1 2 nθ λ . Now the parameter vector ( ),θ λ  is nonregular because 

the support of W dependent on them. 

If the optimality is no enforced,1H , the parameter ξ  is functionally independent of 

the remaining parameters, ( ),θ λ . Now, the parameter vector ( ),θ λ  is regular and  ξ  is 

nonregular.  

While the density function of wage offers was assumed Log-Normal in Lancaster 

(1997), we assume a uniform density truncated in( ),α β , where the parameters α  and 
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β  are unknown to the researcher. This model is mainly interesting from an operative 

point of view, because it leads to an easier posterior distribution which is even 

analytically tractable under the hypothesis H0. On the other hand, if the population 

observed is homogenous (for example, people without qualification that is searching 

their first employment) we think that it would be reasonable to suppose that all wage 

offers will be similar among them and will be uniformly distributed in a short or 

moderate length interval. 

In this case, the accepted wages W is uniform in( ),ξ β , and it is independent of α . If 

we make the transformation = −σ β ξ , then the accepted wages W are uniform in 

( , ).+ξ ξ σ  

Hypothesis 0H .  The parameter ξ  is independent of σ  

In this case, ( | , ) ,−= < < +1f w wξ σ σ ξ ξ σ  , ( )| =F 1ξ σ  and the likelihood 

function is 

 { } ( ) ( )( , , | , ) exp , ,n n
1 nL T b w wλ ξ σ λ λ σ ξ ξ σ−= − < < + >t w  (16) 

 where  ( )1w  and ( )nw    are the minimum and maximum, respectively, of { },...,1 nw w . 

The log-likelihood function for n=1 is 

 ( , , | , ) ,Log t Log wλ ξ σ λ λ σ ξ ξ σ= − − < < +t wℓ  (17) 

and for the regular parameter λ, conditional to ( ),ξ σ , we have −−∂ ∂ =ℓ
2 2 2λ λ    and so 

( )| , ( , )−∝ 1
1Cπ λ ξ σ λ ξ σ  is the conditional  noninformative prior distribution.                    

The parameter vector ( ),ξ σ  is nonregular, and from example 5, we have 

( )| , · ( , )∝ 21Cπ ξ λ σ λ σ    and  ( )| , · ( , )−∝ 1
3Cπ σ λ ξ σ λ ξ . Then we can assume the 

independent among the parameters and so the join noninformative prior distribution is 

( ), , − −∝ 1 1π λ ξ σ λ σ . 
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Now, the join posterior distribution is  

 { } ( )
( ) ( )( , , | , ) exp , ,n 1 n 1
1 nT b w wπ λ ξ σ λ λ σ ξ ξ σ− − +∝ − < < + >t w  (18) 

The constant of integration is ( )( ) ( )
( )( ) ( )!− − − −= − − −n n 1 n 1
nK nT w b r n 2  and 

( ) ( )= −n 1r w w    is the range of accepted wages. 

The marginal posterior distributions are: for the parameter λ  is a gamma distribution 

with parameters (n,T); for ξ  is ( ) ( )( | , ) ( ) ,−∝ − < <
� � n

n 1t w w b wπ ξ ξ ξ  and, finally, the 

marginal posterior density of σ  is 

 
( )

( )

( )
( )

( )
( | , )

n 1
n

n 1
n

r si r w b
t w

si w b

σ σ σ
π σ

σ σ

− +

− +

 − ≤ ≤ −∝ 
− ≤ < +∞

� �
 (19) 

Hypothesis 1H . The parameter ξ  is dependent of σ  

From the restriction, ( )/ ( | )b F w dw
ξ

ξ λ ρ θ
+∞

= +   (b and ρ  are known by the 

researcher) and we suppose that W is uniform in( , )+ξ ξ σ , we obtain that 

( | ) /
+∞

= F w dw 2
ξ

θ σ  and so ( )= +b 2ξ λσ ρ . Now the Log-Likelihood function for 

n=1  is 

 ( , | , ) , ( ) ( )t w Log t Log b 2 w b 2λ σ λ λ σ λσ ρ λσ ρ σ= − − + < < + +ℓ  (20) 

For the conditional noninformative prior distributions of  |λ σ  and   |σ λ  is not  

possible to apply  proposition 2 (neither to obtain the matching prior of Ghosal) because  

the condition ii) is not satisfied. So, for each fixed σ , we obtain 

( )lim ( , ) / −

∆ →
+ ∆ ∆ = 1

0
I 4

λ
λ λ λ λ ρ , and so ( )| ( )∝ ⋅ 11 Cπ λ σ σ ; for each fixed λ , we 

obtain ( )lim ( , ) / − −

∆ →
+ ∆ ∆ = 1 1

0
I 4

σ
σ σ σ σ λρ σ , so the conditional noninformative prior 
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distribution is ( )| · ( )−∝ 1
2Cπ σ λ σ λ . The join noninformative prior is 

( ), , −∝ 1π λ ξ σ σ . Now the join posterior distribution is 

 { } ( )
( ) ( )( , | , ) exp , ,n n 1
1 nT b w b w

2 2

λσ λσπ λ σ λ λ σ σ
ρ ρ

− +∝ − + < + + >t w  (21) 

This last distribution is a bit more complex because it depends on the range of 

vector( ),λ σ , so its constant of integration has not closed-form solution.  

 

6.    Deterministic frontier production  models. 

Examples of old models with nonregular parameters are the deterministic frontier 

production models of Aigner and Chu (1968) and  Schmidt (1976). For homogenous 

production units, the output, Y, for any individual firm, is equal to = +Y µ ε , where µ  

is the maximum output and ε  is a normal variable ( ),0 σ  truncated in ( ],−∞ 0 . The 

density function of Y is 

 
( )

( | , ) exp ,
2

2

2 x
f y y

22

µµ σ µ
σπσ

 −= − ≤ 
 

 (22) 

In this model, for each fixed σ , the parameter µ  is nonregular, thus we need to 

obtain the conditional noninformative prior |µ σ . We can use the proposition 2 to 

calculate [ ]∂ ∂ℓE µ ; from ( )−∂ ∂ = −ℓ
2 yµ σ µ  and [ ] −= − 1E Y 2µ π σ , we obtain that 

[ ] − −∂ ∂ =ℓ
1 1E 2µ π σ , and the conditional noninformative prior is 

( )| · ( )∝ 11Cπ µ σ σ , where ( )1C σ  is a function of σ . For  each fixed µ , the parameter 

σ  is regular, thus the conditional noninformative prior for  |σ µ  is obtained from to 

apply Jeffreys’ rule. From [ ] −− ∂ ∂ =ℓ
2 2 2E µ σ , we obtain the conditional 

noninformative prior ( )| · ( )−∝ 1
2Cπ σ µ σ µ , where ( )2C µ  is a function of µ . Now 
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from (12), we obtain the join noninformative prior( ), −∝ 1π µ σ σ , which is similar to 

the noninformative prior for a normal model. 

The likelihood function for a sample ( ,..., )=y 1 ny y  is 

 ( )( , | ) exp ( ) , ,
n

n 2
i n2

i 1

1
L y y 0

2
µ σ σ µ µ σ

σ
−

=

 
∝ − ≤ > 

 
y  (23) 

then the join posterior distributions is 

 ( )
( )( , | ) exp ( ) , ,

n
n 1 2

i n2
i 1

1
y y 0

2
π µ σ σ µ µ σ

σ
− +

=

 
∝ − ≤ > 

 
y  (24) 

From the statistics 
=

=
n

ii 1
y y n, ( ) ( )

=
= − −

n2 2
ii 1

S y y n 1, and the identity 

( ) ( ) ( )
=

− = − + −
n 2 2 2

ii 1
y n 1 S n yµ µ , other expression for the join posterior 

distribution is 

 ( )
( )

( ) ( )
( , | ) exp exp , ,

2 2
n 1

n2 2

n 1 S n y
y 0

2 2

µπ µ σ σ µ σ
σ σ

− +    − −∝ − − ≤ >   
   

y  (25) 

Now, the marginal posterior distribution for σ, is  

 
( )( )( )

( | ) exp ,
2

nn
2

y y nn 1 S
1 0

2
π σ σ Φ σ

σσ
−

  − −   ∝ − − > 
      

y  (26) 

where ( )iΦ  is the standard normal distribution function and ( )ny  is the maximum value 

of ( ,..., )=y 1 ny y in the sample. 

To calculate the marginal posterior of the parameter µ, we make the transformation 

( ) /= −t y n Sµ . Thus, 

 
( )/

( )
( | ) ,

n 22
ny y nt

t 1 t
n 1 S

π
− − 

∝ + ≥ − 
y  (27) 
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that is, the marginal posterior distribution for µ is a truncated  t-Student density 

distribution with  n-1 degrees of freedom, where t is greater than  t0  and  

( )( )= −0 nt y y n s is an ancillary statistic.  

 

7. Conclusions. 

The original idea of Jeffreys’ rule has been generalized to nonregular models. This rule 

proposes a prior distribution that gives more density of probability to those values of the 

parameter space where local information is higher. The only difference with the regular 

models is about the local behavior of information measures. In non-regular models we 

apply a first order approximation while second order is applied in the regular ones. 

Therefore, both regular and non-regular models can be integrated in a single method as 

in (7). 

Our proposal of generating one-dimensional noninformative prior distributions in 

nonregular models is quite satisfactory, since the calculation is simple, they are 

parameterisation-invariants and the Bayesian intervals have a good frequentist 

behaviour. If the necessary conditions to obtain the Ghosal’s prior hold, then our 

proposal has the same functional form as the matching prior of Ghosal (1999). If the 

necessary conditions don’t hold, then we have the advantage of being able to obtain the 

prior distribution applying (6).  

In the multi-parameter case, we have only considered prior distributions when all 

parameters are of interest. If the supposition of (12) is not true, we can obtain a 

parameterisation to apply this definition. 

For each one model, in sections 5 and 6, we have obtained their prior distributions. In 

these models, the Bayesian method offers a satisfactory solution to the inference 
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problem and also avoids the problem the maximum likelihood estimator has with 

nonregular models.  
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Appendix: proof of proposition 2. 

We assume that the sets S(θ) are increasing in θ; that this, ' ( ) <1a 0θ  and ' ( ) >2a 0θ  ; the 

other case is handled by the reparameterisation → −θ θ (it is permitted that  one of 

endpoint is free of θ  or may be plus or minus infinity). In this situation, the function 

log ( | )f x θ  is decreasing in θ, and consequently, we must to prove that 

[ ]( ) log ( | )∝ − ∂E f xπ θ ∂ θ θ  . In other case, the proof is similar, but the result will be 

[ ]( ) log ( | )∝ ∂E f xπ θ ∂ θ θ , because of the function  log ( | )f x θ  will be increasing in 

θ. 

For simplicity in the notation, we will use h instead of ∆θ . 

A) For >h 0 , we need to prove that 
( , ) log ( | )

lim
+→

+  = −   h 0

J h f x
4E

h

θ θ ∂ θ
∂θ

.  

We define the functions ( , ) ( | ) ( | )= +g x h f x f x hθ θ θ  and 
( )

( )
( ) ( , )= 

2

1

a

a
G h g x h dx

θ
θ θθ

. 

Since ( )G hθ  is continuous in [ , ]0 ε , we have lim ( ) ( )
→

= =
h 0

G h G 0 1θ θ , and consequently, 

h 0 h 0 h 0

8logG (h) log G (h)J( , h)
lim lim 8lim

h h h
θ θ

→ → →

− ∂θ θ + = = − =
∂

 

( )

( )

( ) ( , )

lim lim
( ) ( )→ →

∂ ∂
∂ ∂= − = − =


2

1

a

a

h 0 h 0

G h g x h

h h8 8
G h G h

θθ θ
θ

θ θ
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( )

( ) ( )

( )

( | )
( | )

( | ) ( | ) log ( | )
lim

( )→

∂ + ∂
+ ∂ ∂ = − = − = −  ∂ ∂ 




2

1 2

1

a

a a

ah 0

f x h h
f x dx

2 f x h f x f x
8 4 dx 4E

G h

θ

θ θ

θ
θ

θθ
θ θ θ

θ θ
. 

B) For h>0, we need to prove that 
( , ) log ( | )

lim
→

−  = −   h 0

J h f x
4E

h

θ θ ∂ θ
∂θ

.  

We define the functions ( , ) ( | ) ( | )= −q x h f x f x hθ θ θ  and 

( )

( )
( ) ( , )

−

−
= 

2

1

a h

a h
Q h q x h dx

θ
θ θθ

. Since  ( )Q hθ   is continuous in[ , ]0 ε , we have 

lim ( ) ( )
→

= =
h 0

Q h Q 0 1θ θ , and hence 

( )
log ( ) log ( ) ( )( , )

lim lim lim lim
( )→ → → → =

∂
∂ ∂− ∂= = = =

∂ ∂h 0 h 0 h 0 h 0
h 0

Q h
8 Q h Q h Q hJ h h8 8 8

h h h Q h h

θ

θ θ θ

θ

θ θ
. 

In this case, since the integration limits of ( )Q hθ  depend on h, we apply the formula 

of  Leibniz (Apóstol, 1960) to calculate ( )∂ ∂Q h hθ . We have 

( ) '

( )

'

( | )( )
( | ) ( ) ( ( ) | ) ( ( ) | )

( ) ( ( ) | ) ( ( ) | )

−

−

∂ −∂ = + − − − − −
∂ ∂

− − − − −


2

1

a h

2 2 2a h

1 1 1

f x hQ h
f x dx a h f a h f a h h

h h

a h f a h f a h h

θθ
θ

θθ θ θ θ θ θ

θ θ θ θ θ
 

thus, we obtain: 

( ) ' '

( )

( | )( , )
lim ( | ) ( ) ( ( ) | ) ( ) ( ( ) | ) ,

→

 ∂+  = + − ∂  


2

1

a

2 2 1 1ah 0

f xJ h
8 f x dx a f a a f a

h

θ

θ

θθ θ θ θ θ θ θ θ θ
θ

 

and applying again the formula of Leibniz, we obtain: 

( )' '

( )

( | )
( ) ( ( ) | ) ( ) ( ( ) | )

∂− = −
∂

2

1

a

2 2 1 1 a

f x
a f a a f a dx

θ

θ

θθ θ θ θ θ θ
θ

, 

and hence 

( ) ( )

( ) ( )

( , ) ( | ) ( | ) log ( | )
lim

→

+ ∂ ∂ ∂ = − = −  ∂ ∂ ∂ 
 

2 2

1 1

a a

a ah 0

J h f x f x f x
4 dx 8 dx 4E

h

θ θ

θ θ

θ θ θ θ θ
θ θ θ

. 
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This proves the proposition. 
■ 

 

 

 


