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Parkinson disease 
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer 
disease. Ageing is one of the most influencing risk factors, and as the worldwide life expectancy 
continues to grow, PD is expected to affect to 8.7 million people by 2030 (Dorsey et al., 2007).  

PD is pathophysiologically characterized by a decline in striatal dopamine due to the 
degeneration of neurons arising from the pars compacta of the substantia nigra (SNpc). This 
degeneration gives rise in the early phase to the cardinal motor signs of bradykinesia, rigidity, 
resting tremor and postural instability. Non-motor features are also frequently present before the 
onset of the classical motor symptoms. This premotor or prodromal phase can be characterised by 
impaired olfaction, constipation, depression, excessive daytime sleepiness, and rapid eye 
movement sleep behaviour disorder. The pathogenic process that causes PD is presumed to be 
underway during the premotor phase, even more for more than 20 years, and involves regions of 
the peripheral and central nervous system in addition to the dopaminergic neurons of the SNpc 
(Samii et al., 2004, Kalia and Lang, 2015).  

Progression of PD is characterised by worsening of motor features, which initially can be 
managed with symptomatic therapies. However, as the disease advances, there is an emergence of 
complications related to long-term treatment, including motor and non-motor fluctuations, 
dyskinesia, and psychosis. In late-stages, treatment-resistant motor and non-motor features are 
prominent and include axial motor symptoms such as postural instability, freezing of gait, falls, 
dysphagia, and speech dysfunction. After about 20 years of disease, up to 80% of patients with PD 
have freezing of gait, falls, and dementia. Autonomic symptoms, such as urinary incontinence, 
constipation, and postural hypotension, are also common in late stages (Samii et al., 2004, Kalia and 
Lang, 2015).  

 
Figure 1. Clinical symptoms and time course of Parkinson’s disease progression. Diagnosis of Parkinson’s 
disease occurs with the onset of motor symptoms (time 0 years) but can be preceded by a prodromal phase 
of 20 years or more. As disease advances, axial motor symptoms, such as postural instability, falls and 
freezing of gait, drug-complications such as dyskinesias, and additional non-motor features tend to develop 
and contribute to disability. EDS=excessive daytime sleepiness. MCI=mild cognitive impairment. RBD=REM 
sleep behaviour disorder. Adapted from Kalia and Lang, 2015. 
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The etiopathogenesis of PD still remains unclear, but the current thinking is that the disease 
develops from a complicated interplay of risk factors, including demographics, environment and 
genetics.  

Together with ageing, ethnicity and gender are also established risk factors, being 
approximately 3:2 the male-to-female ratio for example. Meta-analysis studies have found a variety 
of environmental factors to be associated with an increased  risk of PD, including pesticide 
exposure, prior head injury, rural living, β-blocker use, agricultural occupation, and well-water 
drinking. It has been found also protective environmental factors such as tobacco smoking, coffee 
drinking, non-steroidal anti-inflammatory drug use, calcium channel blocker use, and alcohol 
consumption. The contribution of genetics to PD is suggested by the increased risk of disease 
associated with a family history of PD or tremor. The first monogenic form of PD identified was 
SNCA, which encodes the protein α-synuclein, and which led to the identification of α-synuclein as 
the major component of Lewy bodies and neurites. Mutations in this gene are rare and associated 
with autosomal dominant inheritance of parkinsonism. Mutations in LRRK2 and parkin are the most 
frequent causes of dominantly and recessively inherited PD, respectively. Another important risk 
gene is GBA, which encodes β-glucocerebrosidase, a lysosomal enzyme, and which is the greatest 
genetic risk factor for developing PD identified so far (odds ratio greater than 5). Besides, advances 
in genomics and bioinformatics have uncovered additional genetic risk factors. In the past decade, 
almost 900 genetic association studies have implicated dozens of potential gene loci (Kalia and 
Lang, 2015). 

Thus, in summary, PD is now viewed as a slowly progressive neurodegenerative disorder 
that begins years before diagnosis can be made, implicates multiple neuroanatomical areas, results 
from a combination of genetic and environmental factors, and manifests with a broad range of 
symptoms (motor and non-motor). 
 

Diagnosis 
The gold standard for diagnosis of PD still relies on post-mortem pathological examination. This is 
characterized by the presence of degeneration in the SNpc and Lewy pathology. Lewy pathology 
consists of abnormal aggregates of α-synuclein protein, called Lewy bodies and Lewy neurites. 

In clinical practice, the diagnosis of PD is primarily based on the presence of parkinsonian 
motor features, namely bradykinesia plus rigidity and resting tremor. The U.K. Parkinson Disease 
Society Brain Bank has well-defined this clinical diagnostic criteria, which provides a sensitivity  as 
high as 90%. However, in early stages, if clinical symptoms are subtle, monosymptomatic (e.g., an 
isolated tremor), or equivocal, it may be difficult to establish the correct diagnosis. Indeed, 
diagnostic tests which allow for definitive diagnosis at early stages of the disease do not exist yet. 
Of primary importance is to differentiate PD (and other neurodegenerative parkinsonisms) from 
other non-neurodegenerative movement disorders with similar clinical presentation (eg, essential 
tremor, drug-induced parkinsonism, psychogenic parkinsonism, etc) (Hughes et al., 2002).  

A variety of biomarkers for rapid and accurate PD diagnosis are currently under 
investigation. These biomarkers different nature including clinical, imaging, pathological, 
biochemical, and genetic.   
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Potential clinical markers include olfactory impairment and rapid eye movement sleep behaviour 
disorder diagnosed by polysomnography. Pathological markers are being tested such as 
phosphorylated α-synuclein in both somatic and autonomic nerve fibres, and positive staining for α-
synuclein in colonic biopsy tissue. Biochemial markers under study include concentration of α-
synuclein, DJ-1, tau, and β-amyloid, as well as activity of β-glucocerebrosidase in cerebrospinal fluid 
(CSF). However, none of them has been established as an accurate biomarker yet, and some of 
them are too invasive to be rutinely used in risk individuals (Kalia and Lang, 2015).  

 

 
Figure 2. Potential biomarkers for diagnosis of Parkinson’s disease. These biomarkers can be classified as 
clinical, imaging, pathological, biochemical, and genetic. Combinations of biomarkers are likely to be 
necessary for accurate diagnosis of premotor or early PD. Adapted from Kalia and Lang, 2015.  
 

Brain Imaging techniques are widely used for diagnosis since allow to non-invasively assess 
in-vivo the state of the brain circuitry. In PD and neurodegenerative parkinsonisms, the 
dopaminergic system plays a pivotal role and nuclear imaging of this pathway is an accurate 
biomarker of nigral degeneration. Dopamine dysfunction can be assessed using different molecular 
targets in the dopaminergic synapse with either PET or SPECT. Several options are available, but the 
most widely used approach is to assess the state of the presynaptic terminals with the dopamine 
transporter (DAT) imaging. The immediate advantage of this test is that is minimally invasive, 
however, the main disadvantagde is the lack of specificity with other parkinsonisms. One of the 
strong hypothesis and objective of this thesis is to improve this specificity with advanced 
computational image processing methods.  
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Dopamine transporter imaging  
The nigrostriatal dopaminergic pathway can be analyzed at the striatal level, where the nigrostriatal 
neurons end and connect to the postsynaptic neurons using dopamine as the neurotransmitter. 
DATs are located at the presynaptic nerve terminals and are responsible for reuptake of dopamine 
from the synaptic cleft; thus, DAT imaging allow in vivo assessment of the integrity of presynaptic 
nerve terminals (Figure 1).  
 

 
Figure 1. Schematic of striatal dopaminergic synapse (star indicates where 123I-ioflupane binds). Adapted 
from (Djang et al., 2012). 
 

The cocaine derivative 123I-labelled 2-carbomethoxy-3-(4-iodophenyl)-N-(3-fluoropropyl) 
nortropane (123I-FP-CIT or 123I-ioflupane) is a molecular imaging agent that binds to the DATs. 123I-
FP-CIT is stable 3–6 h after its i.v. administration and best imaged 3–4 h post-injection achieving 
high specific binding to the striatum compared to the rest of the brain parenchyma. The above 
characteristics make 123I-FP-CIT SPECT (or DAT SPECT) ideal for clinical use.  

123I-FP-CIT SPECT was approved by the European Medicines Agency and available in Europe 
in 2000 and by  the Food and Drug Administration In the United States on January 2011. Technical 
aspects of imaging such as the appropriate use of imaging devices, optimization of acquisition and 
processing parameters, and suggestions for further data analyses including quantification are dealt 
with in procedural guidelines published by the European Association of Nuclear Medicine and the 
Society of Nuclear Medicine and Molecular Imaging (Djang et al., 2012).  
 
 
 
 
 
 
 
 



 

 

Image quantification 
It is estimated that PD patient start manifestating motor symptoms after (the earliest) 50% or more 
of the nigrostriatal neurons have been lost. Hence, by the time the patient step by the clinic the 
nigrostriatal pathway is already severely degenerated. 

The DAT SPECT image consists of a high intensity specific region, i.e. the striatum, where 
DAT is highly expressed, surronded by a lower intensity non
brain, where DAT is non-significantly expressed. The SPECT images of normal volunteers and 
patients suffering from ET show similar uptake in the caudate nucleus and putamen with the 
striatum presenting as “comma
concentrations are and in severe cases the affected striatum loses the comma shape and becomes 
“point-like” (Figure 2B). PD is commonly clinically asymmetrical, and accordingly, the reduced 
uptake is more pronounced in the contralateral side of the one which suffers 
movement disorder symptoms (Badiavas et al., 2011
 

Figure 2. Axial view of a DAT SPECT image from a healthy control (A) and a Parkinson’s disease patient (B).
 
In clinical practice, DAT SPECT is commonly assessed eith
degeneration) or through striatal regional (putamen and caudate) DAT quantification with 
dedicated software packages. Visual assessment depends heavily on the observer’s experience and 
naturally shows inter- and intra
substantiate the diagnosis. Thus, quantification of regions of interests (ROI) is preferred and is 
usually performed by the calculation of the so
striatal binding ratio (SBR) (Badiavas et al., 2011
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The SBR is widely used in the literature for intensity normalization purposes in 123I-FP-CIT SPECT 
images and also in other functional brain image modalities. However, the SBR value is sensitive to 
many factors including: i) deviced-related such as scanner hardware and acquisition protocol; ii) 
physiological-related such as sex, age and metabolism; and iii) operator-related such as the 
delineation of the ROIs. An illustrative example of this problem is shown in Table 1 with data 
derived from the European FP-CIT SPECT healthy controls database (Varrone et al., 2013). In this 
example it can be noted that controls have significantly different mean SBR values in different sites. 
The mean SBR in Leipzig is 2.75 whereas in Copenhagen is 3.95. Hence, SBR is not a good strategy 
for data hamonisation and results can be biased when working with different group of subjects and 
a large number of scans.  
 

 
Table 1. Multi-site striatal binding ratio values from the European healthy controls database. 

 
 
As we shall see in the last work of this thesis (work 5), this bias with improved intensity 
normalization methods. In this work, entitled “Probabilistic intensity normalization of dopamine 
SPECT images via Variational mixture of Gamma distributions”, we aimed at developing an 
intensity normalization method for SPECT images to address SBR limitations.  
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Basal ganglia circuits and their relation with symptoms  
The manifestation of symptoms and progression in PD is closely related to the affected connections 
between the basal ganglia and the cortex (cortico-basal ganglia-thalamocortical circuits) throughout 
the disease course (Obeso et al., 2002, Rodriguez-Oroz et al., 2009). In parkinsonian syndromes, 
dopamine depletion can be first observed in this scan in the putamen, which affects the connection 
with the motor cortex (Figure 3). Indeed, cumulated evidence has shown the correlation between 
the motor symptoms and putaminal dopamine. Dopamine depletion in the caudate usually occurs 
in later stages, affecting two well-defined frontostriatal loops: the associative and the limbic circuits 
(de la Fuente-Fernandez, 2013). The associative circuit connects the dorsolateral prefrontal cortex 
with the dorsal caudate nucleus. Therefore, the integrity of this latter pathway is essential to 
correct cognitive functioning, and a large number of studies have in fact found a correlation 
between cognitive performance (including executive and working memory tasks) and caudate 
dopamine levels in PD (Brooks and Piccini, 2006). The limbic circuit include connections between 
the orbitofrontal cortex and the ventral caudate nucleus, and between the anterior cingulate cortex 
and the nucleus accumbens and is related to emotions and mood states. Also, there are studies 
showing the relationship between déficits in the ventral striatum and mood and neuropsychiatric 
disorders such as depression, anxiety, visual hallucinations and impulse control disorders (Kiferle et 
al., 2014, Vriend et al., 2014a, Vriend et al., 2014b).  
 

 
 

Figure 3. Functional organisation of the basal ganglia. The basal ganglia are divided into motor (A), 
associative (B), and limbic (C) subregions, which are topographically segregated, as highlighted by areas 
coloured in red (motor cortex), green (prefrontal cortex), and blue (anterior cingulate cortex). GPe=globus 
pallidus pars externa. GPi=globus pallidus pars interna. STN=subthalamic nucleus. Adapted from Rodriguez-
Oroz et al., 2009.  
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Dopamine depletion and motor symptoms  
The classical motor symptoms of PD include bradykinesia, muscular rigidity, rest tremor, and 
postural and gait impairment. Yet, not all PD patients present with the same motor symptoms, 
which has prompted attempts to classify subtypes of the disease based on the motor phenotype. A 
consensus on the classification of PD subtypes has not yet been established, but empirical clinical 
observations suggest two major subtypes: tremor-dominant (with a relative absence of other 
motor symptoms) and non-tremor-dominant PD (which includes phenotypes described as akinetic-
rigid syndrome and postural instability gait disorder). An additional subgroup of patients has a 
mixed or indetermediate phenotype with several motor symptoms of comparable severity. Course 
and prognosis of disease differ between the subtypes; tremor-dominant PD is often associated with 
a slower rate of progression and less functional disability than non-tremor-dominant PD, including 
lower risk of cognitive impairment. Furthermore, the various subtypes are hypothesized to have 
distinct aetiologies and pathogenesis (Jankovic et al., 1990, Foltynie et al., 2002).  

Distinctions are made between motor symptoms at presentation of the disease and the 
symptom dominance as the disease progresses, since some patients suffering from tremor at 
presentation become predominantly bradykinetic or rigid later in the disease. Hence, a 
fundamental and unsolved question is to elucidate which are the mechanisms underlying and 
driving the PD subtypes during the disease course.   
 

The role of uric acid in PD subtypes 
In this thesis, we present a work entitled “Lower levels of uric acid and striatal dopamine in non-
tremor dominant Parkinson's disease subtype”. The aim of this work was to show that PD 
subtypes differ in their levels uric acid (UA) and striatal dopamine, and that these both biological 
measures are closely related.  

In recent years, several groups have reported the correlation between decreased plasma UA 
levels and neuron cell failure in the substantia nigra, clinical progression and stage of PD. 
Conversely, high plasma UA concentrations in hyperuricemia may reduce the risk and delay the 
progression of PD (Ascherio et al., 2009, Schwarzschild et al., 2011, Ravina et al., 2012). 

The molecular mechanisms giving explanation to these clinical observations are not fully 
understood but it is believed that are related to the antioxidant properties of UA, which offers 
protection to the cells against oxidative stress. Oxidative stress seems to play a key role in 
nigrostriatal degeneration. Dopaminergic neurons in the substantia nigra pars compacta have high 
levels of basal oxidative stress likely due to enzymatic and nonenzymatic oxidation of dopamine. 
This process is considered enhanced in PD due to early compensatory changes in dopamine 
turnover resulting from the initiation of nigral cell degeneration. Remarkably, markers of oxidative 
stress and damage were found to be present in dopaminergic neurons in the SN of postmortem 
brain of PD patients. Moreover, several PD-linked genes such as α-synuclein, DJ-1, PINK1, and 
Parkin have been demonstrated to interact with oxidative stress, and these interactions may 
contribute to the progressive neurodegeneration underlying PD (Chen et al., 2012). 
Therefore we hypothesized and show that the differences in nigrostriatal degeneration across PD 
subtypes are accompanied by differences in their levels of UA and that these two measures 
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correlate. More specifically, non-tremor dominant show lower levels of UA and striatal DAT, thus 
explaining why they present with more severe symptoms. We hypothesize in this work that  UA 
might be involved in the mechanisms underlying and driving PD subtypes. 
 

Cognitive impairment and dementia 
Cognitive impairment is another (and common) disabling symptom in PD and is now considered to 
be among the most important symptoms of perhaps the greatest clinical unmet need. Cognitive 
deficits may be present in up to 24% of PD patients by the time of diagnosis, and this rate reaches 
over 80% in the long-term (Aarsland et al., 2011). Importantly, PD dementia is a crucial determinant 
of reduced life expectancy in patients. 

Cognitive impairment is also considered a heterogeneous entity  in PD. Although 
dysexecutive syndrome has long been considered the main hallmark of cognitive decline in PD, 
deficits in visuospatial, memory and attention functions may be also present. The rate and pattern 
of these deficits vary greatly among PD patients, and different biological mechanisms appear to 
play a role. These include neuronal degeneration of different neurotransmission systems, including 
catecholaminergic (ie, dopamine and norepinephrine) and cholinergic (acetylcholine) (Robbins and 
Cools, 2014).  

In this regard, the dual syndrome hypothesis was recently proposed, suggesting two facets 
of cognitive decline in PD: (i) changes in frontostriatal dopaminergic transmission, leading to deficits 
in planning, working memory, response inhibition and attentional control; and (ii) posterior cortical 
Lewy body pathology and secondary cholinergic loss, affecting visuospatial, mnemonic and 
semantic functions and leading to dementia (Kehagia et al., 2013). 

As for the development of PD itself, some genetic factors have been described as risk 
factors for cognitive impairment and dementia in PD. The early identification of these risk factors 
will allow to to adequately manage patients in early stages and tailor treatments to minimize 
and/or delay this cumbersome symptom. Furthermore, elucidating the contribution of these factors 
may provide new insights into the biological mechanisms underlying the different forms of 
cognitive deficits in PD. 

Some studies have focused on α-synuclein and tau, which might be involved in this process, 
suggesting that common variation in both the SNCA (α-synuclein) and the MAPT (microtubule 
associated protein tau) H1 haplotype might not only aff ect susceptibility to sporadic PD, but also 
affect the rate of cognitive decline and PD dementia. Also, it is widely known that APOE 
(apolipoprotein E) e4 allele confers risk for cognitive impairment, particularly in Alzheimer’s 
disease, and predicts cholinergic deficits. COMT (catechol-O-methyltransferase) encodes for a 
enzyme involved in the degradation of cortical dopamine and previous studies have shown that a 
variant in this gene modulates the dopamine levels in the frontostriatal network, and in turn, 
executive function performance. The glucocerebrosidase gene (GBA) is the most common genetic 
factor that has yet been identified for developing PD. PD patients with mutations in GBA have 
earlier disease onset, and are at a higher risk of developing visual hallucinations, cognitive 
impairment and dementia (Mollenhauer et al., 2014).  
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In this thesis, we present a work entitled “Genetic factors influencing frontostriatal 
dysfunction and the development of dementia in Parkinson's disease”. The aim of this work was 
to study the contribution to the dual syndromes of cognitive impairment (frontostriatal dopamine-
mediated and posterior cortical leading to dementia) of the main genetic risk factors decribed in 
the literature: GBA, MAPT, APOE, SNCA and COMT.  

 
Other parkinsonisms 
Although PD is the most common cause of parkinsonism, numerous other etiologies can lead to a 
similar set of parkinsonian symptoms (bradykinesia, rigidity, tremor at rest, and postural instability), 
thus making the differential diagnosis quite challenging, especially at early stages.   

Parkinsonism is a syndromal umbrella term that comprises 4 etiologically different entities:  
idiopathic Parkinson disease, familial parkinsonism, atypical parkinsonims (caused by other 
neurodegenerative diseases), and secondary parkinsonism, including common differential 
diagnoses such as specific tremor syndromes. The group of atypical parkinsonisms includes multiple 
system atrophy (parkinsonian and cerebellar types), progressive supranuclear palsy, corticobasal 
degeneration, spinocerebellar atrophy, and dementia with Lewy bodies. Vascular, drug-induced, 
toxic, and metabolic parkinsonism; parkinsonism associated with inflammation, trauma, and tumor; 
and normal-pressure hydrocephalus belong to the category of secondary parkinsonism. Essential 
tremor and other tremor syndromes are further common differential diagnoses additional to PD 
and atypical parkinsonisms. 

DAT imaging helps in this challenging task of differential diagnosis, especially between 
movement disorders with nigral degeneration and movement disorders without nigral 
degeneration. DAT concentrations are lower in presynaptic disorders, which include PD and other 
neurodegenerative parkinsonisms such as multiple system atrophy, progressive supranuclear palsy, 
and dementia with Lewy bodies (Booij et al., 2012). Conversely, DAT concentrations will generally 
be normal in parkinsonism without presynaptic dopaminergic loss, which includes essential tremor, 
drug-induced parkinsonism, and psychogenic parkinsonism. For this reason, DAT SPECT is 
frequently used in clinical practice to distinguish between more benign syndromes such as essential 
tremor or drug-induced parkinsonism and more aggressive neurodegenerative disorders such as PD 
or atypical parkinsonisms (Tatsch and Poepperl, 2013).  
 
Secondary parkinsonism: vascular parkinsonism 
The pattern seen in DAT SPECT in other forms of parkinsonism such as vascular parkinsonism (VP) is 
less clear and a matter of debate.  Reports on DAT binding in VP provide heterogeneous results, 
which might indicate that VP is a mixed entity that is not yet well characterized. Some authors have 
reported normal or only a slight but insignificant reduction of DAT binding in patients with 
suspected VP; others have found significantly reduced binding values (Antonini et al., 2012, 
Navarro-Otano et al., 2014). There is consent that DAT binding is reduced in striatal subregions 
directly affected by infarction, as demonstrated by structural defects in corresponding anatomical 
imaging examinations (Zijlmans et al., 2007). In 2012, we published a work where we developed a 
visual scale able to distinguish vascular parkinsonism from PD with 94% accuracy (Benitez-Rivero et 
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al., 2013). This scale consisted in four imaging patterns, three corresponging to VP and one more 
charasteristic in PD (Figure 4). Nuclear medicine experts were able to visually identify these 
patterns and making a differential diagnosis solely based on the scan.    
 

 
Figure 4. Visual scale to distinguish between vascular parkinsonism and Parkinson’s disease. Patterns: 0. 
Bilateral normal uptake. 1. Mild or moderate homogeneous and bilateral decreased striatal uptake. 2. Focal 
deficit of tracer accumulation on any striatal region (A) or homogeneous unilateral striatal diminished uptake 
(B). 3. Symmetric or asymmetric striatal reduced uptake, more pronounced in putamen than in caudate, 
showing a rostrocaudal gradient, with or without other irregular associated defects. Adapted from (Benitez-
Rivero et al., 2013).  
 
Despite this good accuracy in the differential diagnosis and very good inter-rater agreement 
(Cohen’s k = 0.83), visual scoring methods have important limitations such as the dependence on 
the rater. In this case, the two raters belonged to the same center and had the same training. ROI 
and voxel-based analyses can much better exploit the information content in the image to provide 
more objective estimates and generalizable to other centers. The number of voxels depends on 
several parameters including the type of image and scanner resolution, but a brain image can 
contain over 90,000 voxels. Hence, the analysis of these images are usually performed with 
computational image processing software packages, such as Statistical Parametric Mapping (SPM, 
run in Matlab) or FMRIB Software Library (FSL). The recognition of patterns in these images and 
construction of models for making inferences (including  diagnosis) require the use of advanced 
statistical techniques that few years ago gave birth to a now established and promising field of 
research (see section Pattern Recognition and Machine Learning in brain imaging). 

In this thesis, we present a work entitled “Machine learning models for the differential 
diagnosis of vascular parkinsonism and Parkinson's disease using [123I]FP-CIT SPECT”. The aim of 
this work was to develop diagnostic models using data from two rater-independent DAT SPECT 
assessment methods: Striatal ROI and whole-brain voxel-based analyses. 
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Atypical parkinsonism 
Current knowledge and state-of-the-art in the analysis of DAT SPECT do not allow to differentiate 
between PD and atypical parkinsonisms with accuracy. However, some studies have shown group-
level statistical differences in DAT imaging among these parkinsonisms, and more in particular by 
assessing the ligand uptake in striatal subregions (Oh et al., 2012) (see subregions in Appendix). 
These findings have shed light on the possibility of aiding the diagnosis of these syndromes with 
this widely used scan. We have also investigated the use of voxel-based pattern recognition 
approaches to aid the differential diagnosis of PD and atypical parkinsonisms.  

 
Pattern recognition and machine learning in brain imaging 
Pattern recognition  is a field within the area of machine learning (ML), which is concerned with 
automatic discovery of regularities in data through the use of computer algorithms, and with the 
use of these regularities to take actions such as classifying the data into different categories (eg, 
making diagnosis with classifiers) or finding correspondence between an anatomical or functional 
substrates in the brain and a phenotypic variable (regression with a quantitative measure). Pattern 
recognition aims to predict disease state at the single-subject level based on distributed patterns of 
anatomical/functional abnormality and is being increasingly applied in clinical neuroimaging 
studies. Classification algorithms have been applied to diagnose a wide range of neurological and 
psychiatric disorders (Orru et al., 2012, Zarogianni et al., 2013). In the context of this thesis, we 
aimed at identifying patterns in neuroimaging data to develop classifiers able to categorize subjects 
according to their most probable diagnosis.   

 
Machine learning pipeline overview 
In supervised machine learning, the basic scenario consists of a training sample, a test sample and 
a function – the classifier – to be learnt and tested. 

A classifier is a function that takes the values of the features or independent variables (eg, 
voxels in a certain ROI or whole-brain) in an example and predicts the class or dependent variable 
(eg, diagnosis) that that example belongs to. The classifier function has a number of parameters 
that have to be learned from the training data, in order to model the inherent relationships 
between the features and the class label. Feature selection techniques can be used to select the 
most informative/discriminative features to feed the classifier. Once trained, these relationships 
(and its accuracy) can be tested by using the learned classifier on a different set of examples, the 
test data. Intuitively, the idea is that, if the classifier truly captured the relationship between 
features and classes, it ought to be able to predict the classes of examples it hasn't seen before.  
Very importantly, the testing set should not include instances of the training set to avoid circularity 
or data overfitting (Pereira et al., 2009).  
Cross-validation techniques can be used to avoid splitting the whole sample in two independent 
datasets and thus loosing statistical power. In k-fold cross validation, the original data set is split 
into k non-overlapping sets and then the algorithm is trained using k − 1 subsets and the leŌ-out set 



 

14 
 

is used in the testing phase. The procedure is repeated k times, so that every subgroup is used in 
the testing phase (Pereira et al., 2009). 

The evaluation of classification performance usually includes measures such as sensitivity, 
specificity and accuracy. Sensitivity refers to the proportion of actual positive cases correctly 
identified and is computed by the TP / (TP + FN), where TP is the number of true positives and FN is 
the number of false negatives. Specificity refers to the proportion of the negatives cases correctly 
classified (e.g. healthy controls correctly identified as being healthy) and is computed by the 
amount TN / (TN + FP), where TN is the number of true negatives and FP is the number of false 
positives. Accuracy refers to the overall amount of correct classifications across the groups and is 
computed by TP + TN / TP + TN + FN + FP, or by the amount of (sensitivity + specificity) / 2, if the 
classes are balanced (Zarogianni et al., 2013). 

 
Figure 5. Machine learning pipeline in neuroimaging. Brain scans are first pre-processed using standard 
methods. A machine learning engine will attempt to find the function that minimizes classification error. A 
cross-validation scheme can be used to enhance power while avoiding overfitting.   
 
In these machine learning scenarios we generally have many more features (i.e., voxels) than 
samples (images) (p>>N). One common pitfall in machine learning, and especially when dealing 
with high dimensions like in neuroimaging, is the phenomenon called overfitting. Overfitting will 
occur if the function that we find for the classifier in the training set does not generalize to the test 
set. Risk factors for overfitting include small sample sizes, unadequate training/test set balance and 
function complexity. Normally, the best performance in the test set is achieved by finding the 
optimal tradeoff point between model complexity and performance in the training set. 
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Machine learning with basis functions 
In the more simplistic approach for ML, for example a linear regression, the goal is to find a 
function ܡ of the input variables ܠ to best approximate a set of output variables ܜ. Given a training 
data set comprising N observations {x௡}, where n = 1, …, N, in a input space of dimension D 
(number of voxels) together with corresponding target values {t௡}. The goal is to predict the value 
of t for a new value of x. In the simplest approach, this can be done by directly constructing an 
appropriate function (ܠ)ܡ whose values for new inputs ܠ constitute the predictions for the 
corresponding values of ܜ (Bishop, 2006). 
 
In a linear regression model, the target function ܡ can be as a linear combination of the input 
variables ܠ: 

,ܠ)ܡ (ܟ = w଴ + wଵxଵ + ⋯ + w஽x஽ 
 
where ܟ denotes the vector of weights (coefficients, parameters). The key property of this model is 
that it is a linear function of the parameters w଴, … , wୈ. It is also, however, a linear function of the 
input variables x୧, and this imposes significant limitations on the model. In ML it is convenient, 
especially in high-dimensions problems like in neuroimaging, to project the native feature input 
space into a new nonlinear feature space with the use of nonlinear basis functions ૖(ݔ).   
 
The target function ܡ can therefore be expressed as a linear combination of M (M<<D) basis 
functions {૖୫(x)}୫ୀଵ

୑ : 
 

ܡ = ෍ (ܠ)௠૖௠ܟ

ெ

௠ୀଵ

 

 
By using nonlinear basis functions, we allow the function ܠ)ܡ,  to be a nonlinear function of (ܟ
the input vector ܠ although linear in the parameters ܟ. This linearity in the parameters will greatly 
simplify the analysis of this class of models. This is the concept behind many ML methods for high-
dimensions and these functions are called kernels. Kernels are functions that allow a mapping of 
the original, non-linearly separable data into a new feature space where the data are linearly 
separable (Figure 7).  The concept of a kernel formulated as an inner product in a feature space 
allows us to build interesting extensions of many well-known algorithms by making use of the 
kernel trick, also known as kernel substitution. The general idea is that, if we have an algorithm 
formulated in such a way that the input vector x enters only in the form of scalar products, then we 
can replace that scalar product with some other choice of kernel (Bishop, 2006).  
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Figure 7. Graphical representation of the kernel trick. A non-linear function ૖ is applied to a non-linearly 
separable input space in R2 so that is linearly separable in a new feature space of higher dimension R3.  
 
On top of this scenario, a pletora of ML methods have been built using an endless variety of 
statistical tricks and techniques. A binary classifier can logistic regression by simply letting y = {0,1} 
and taking the logit function of y. 
 
A kernel is a function given by the relation: 
 

,ݔ)݇ ݔ ඁ) =  ૖்(ݔ)૖(ඁݔ) 
 
The simplest example of a kernel function is obtained by considering the identity mapping for the 
feature space so that ૖(ݔ) = ,ݔ)݇ in which case ,ݔ  ݔ ඁ) =  We shall refer to this as the linear . ݔ்ݔ 
kernel. There are numerous forms of kernel functions: polynomial, Gaussian and radial basis 
function (RBF) are some of the most commonly used basis functions. For example, a RBF has the 
form: 

૖(ݔ) = ݌ݔ݁ ቊ
ݔ) −  µ)ଶ

ଶݏ2 ቋ 

 
where µ represents the mean and s the standard deviation. 
 
One important aspect of kernel ML methods is the selection of type, form and number of basis 
functions. For example, if we assume that the basis functions ૖(ݔ) are fixed before the training 
data set is observed, the number of basis functions may needs to grow rapidly, often exponentially, 
with the dimensionality D of the input space, which can lead to curse of dimensionality problems. 
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Popular machine learning methods in brain imaging 
There are few widely used ML methods in the field of neuroimaging, including both discriminative 
models such as Support Vector Machines and Linear Discriminant Analysis and probabilistic models 
such as Relevance Vector Machines and Gaussian Processes.  
 
Support Vector Machines (SVM) is one of the most popular methods, partly because it can deal 
effectively with high-dimensional data and provide good classification results. SVM are a family of 
kernel-based algorithms that have sparse solutions so that predictions for new inputs depend only 
on the kernel function evaluated at a subset of the training data points. Hence, these methods 
address the limitation of other kernel algorithms for which all possible pairs xn and xm of training 
points must be evaluated cand thus computation times may turn excessive.  

The aim of a SVM classifier is to find a decision surface that would optimally distinguish 
between classes and based on that surface assign new, previously unseen data instances into the 
groups. In the training phase, the classifier computes the optimal decision surface expressed in the 
form (ܠ)ܡ = ܠܟ +  ܾ only by a subset of the original training set called the support vectors. 
Support vectors are data points that lie closest to the optimal separating hyperplane and hence are 
the most difficult patterns to classify (Figure 8). The optimal hyperplane is determined by 
maximizing the margin of separation between the two classes. The problem of finding the optimal 
hyperplane, thus, becomes an optimization problem.  

 

 
Figure 8. Binary Support Vector Machine classifier. The optimal hyperplane is determined by 
maximizing the margin of separation between the two clases according to the support vectors. 
 
An important characteristic of the SVM algorithm is that it has a sparse representation, meaning 
that the hyperplane is specified by a subset of data samples (support vectors) and predictions are 
derived from support vectors only. However, all data dimensions are still required for prediction: 
sparsity in SVM models refers to data samples, not features. Furthermore, predictions in SVM are 
not probabilistic and thus limited to discrete categorical decisions (e.g. patient/control). However, 
in real life application quantitative predictions are desirable to accurately represent variability 
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within subject groups and uncertainity. For example, we have seen that some neurological 
disorders like PD are per se very heterogeneous regarding symptoms and disease progression. 
Therefore, ideally, all patients of this disease should not be clustered altogether with a same class 
label.  

In this context, probabilistic models are different approaches for ML and may better reflect 
reality than discriminative models, since the uncertainity around a class label prediction is properly 
quantified. Probabilistic ML methods such as Relevance Vector Machines or Gaussian Processes 
have emerged as an alternative to SVM for prediction of high-dimensional data and are based on 
Bayesian theory.  The conceptual foreground of Bayesian theory is completely different, as the 
notation and terminology are.  

For example, in the probabilistic formulation of a simple linear regression (i.e., Bayesian 
linear regression) of the form ܜ = ,ܠ)ܡ  (ܟ + ε, where ε represents the noise, we aim to model a 
predictive distribution (ܠ|ܜ)ܘ to express our uncertainty about the value of ܜ for each value of ܠ. 
From this conditional distribution we can make predictions of ܜ, for any new value of ܠ, in such a 
way as to minimize the expected value of a suitably chosen loss function.  

Our objective is therefore to find values for ܟ such that ܠ)ܡ,  makes good predictions for (ܟ
new data: i.e. to model the underlying generative function. We are interested in estimating a 
distribution for ܟ. To that end, we will assume a prior ‘belief’ on how is ܟ (prior distribution), and 
we will update this belief (posterior distribution) according to the observed data ܜ (likelihood), 
with more posterior probability assigned to values which are both probable under the prior and 
which ‘explain the data' (Tipping, 2004). 

 
In mathematical notation following the Bayes rule, and assuming Gaussian distributions for the 
prior and the likelihood functions, the posterior is equal to (see Tipping, 2004 for further details): 
  

posterior =  ୪୧୩ୣ୪୧୦୭୭ୢ× ୮୰୧୭୰

୬୭୰୫ୟ୪୧୸୧୬୥ ୤ୟୡ୲୭୰
,ܜ|ܟ)݌ =  ,ܠ ,ߙ (ߚ = ௣

(௧|௫,௪,ߚ)௣(௪|ఈ)

௣(ࢻ|ܜ,ఉ)
 

 

where ߙ and β represent the precision (inverse variance) of the weights and the noise, respectively.  
 
Generally, calculating the full posterior distribution involves computing intractable integrals and 
approximation methods are commonly used, such as Variational Bayes, Markov Chain Montercalo 
(MCMC), etc. Another common strategy is called maximum a posteriori (MAP), where the single 
most probable value under the posterior distribution of ܟ is calculated instead.  This latter method 
is considered a shortcut and not a “true Bayesian” approach (see Bishop, 2006).  
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The problem of univariate voxel-based methods 
Most current approaches to neuroimaging take the basic spatial unit of analysis to be the voxel. 
Conventional voxel-wise analysis involve in Gaussian smoothing imaging data, independently fitting 
a statistical model to imaging data at each voxel, and generating statistical maps of test statistics 
and p-values. However, although this approach has been very effective, it suffers from some 
important shortcomings:  
 

 Voxel-based univariate methods do not properly account for the spatial properties of the 
image. The assumption of independence between voxels in the general lineal model (GLM) 
is rarely true and therefore the spatial dependencies are disregarded.  
 

 The voxel is an unit of resolution, not an unit of computation of the brain: modeling neural 
responses at the voxel level does not enable direct inferences about what are arguably the 
variables of real interest, the responses of the underlying neuroanatomical regions.  

 
 This approach generates a resolution-dependent mass amount of statistical estimates that 

need to be dealt with complex post-hoc correction methods (Nichols, 2012). Thus, these 
methods may be suboptimal in statistical power and do not optimally benefit from new 
high-resolution acquisition protocols. This inefficiency may lead to equivocal error rates and 
therefore wrong conclusions in brain research and clinical applications (Eklund et al., 2016).   
 

 The use of Gaussian smoothing can blur the image data near the edges of the spatially 
contiguous regions and thus introduce substantial bias in statistical results.  

 
In the last years there have been efforts to develop multivariate approaches in order to overcome 
these issues. In neuroimaging, characterizing the spatial correlations among a large number of 
voxels, usually in the tens of thousands to millions, is tremendously challenging. Yet, such spatial 
correlation structure and variability are important for achieving better prediction accuracy, for 
increasing the sensitivity of signal detection, and for characterizing the random variability of 
imaging data across subjects. In this thesis we introduce and have worked with a multivariate 
approach based on the progresses made in the field of spatial statistics.  
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Spatial statistics – an elegant multivariate approach 
Spatial statistics is a developed field in geoscience, where characterizing the continous spatial 
dependencies of the earth with sensors in discrete point locations have been a big scientific matter 
in this science for a long time. The classical approach is the linear mixed model, in which an 
additional term, called spatial random effects (ܐહ), is added to the GLM.  
 

ܡ = ܟܠ +  હܐ
 
The covariance matrix of this term describes the spatial correlation between V locations, and the 
inversion of this V x V matrix is necessary to solve the equations (Wikle and Royle, 2002). 
In 2008, Cressie and Johannesson developed a geostatistical model, termed Fixed Rank Kriging 
(FRK), in which the process of interest is modeled as a linear combination of basis functions plus a 
fine-scale variation term (Cressie and Johannesson, 2008). Spatial prediction using this method is 
then feasible even for very large number locations (up to a million or more), as long as the number 
of basis functions is much smaller (no more than a few thousand) than the number of observations. 
These basis functions can be nonlinear functions, such as RBF, b-splines, or wavelets that are placed 
all over the spatial domain. Typically, lengthscale parameters control the smoothness of the 
function and multiple resolutions are used so as to capture both short and long ranges of spatial 
dependencies (Figure 10). They provided some guidance about the requisites for the basis 
functions:  

 It is recommended that the basis functions be of different resolutions, to capture different 
scales of spatial variation.  

 Each resolution contains a group of basis functions with the same smoothness and range, 
but the range varies between resolutions. There are typically a few smooth basis functions 
with large support, and many “spiky” basis functions with small support.  

 The locations of the basis functions within a resolution should ideally cover the entire spatial 
domain of interest, D, and the locations of the basis functions from two different resolutions 
should probably not be coincident.  
 

 
Figure 6. Multiresolutional Radial basis functions. Five one-dimensional RBF from two resolutions 
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Basis functions for brain imaging  
We have already introduced in the previous section the use of basis functions for machine learning. 
There is a big fundamental question in neuroimaging machine learning though: which are the best 
form of basis functions to model a brain image?. Many options are possible, we have briefly 
mentioned above that there is a plethora of possible basis set to use such as RBF, b-splines or 
wavelets. Indeed, RBF are popular 3D computer modeling and some have made use to model brain 
images.    

However, there are two fundamental problems if using generic kernels such as isotropic 
RBFs: How many basis functions should be used to properly cover a specific region or even the 
entire brain, and what are they representing biologically? Essentially, one would need to conduct a 
brute force approach comprising three steps: i) selecting an arbitrary number of resolutions and 
ranges; ii) placing a large number of RBF covering the spatial domain; and iii) running a heavy 
optimization machinery in order to minimize some error measure in fitting a given data set. 
Furthermore, the biological substrate of the relevant RBF(s) coming out may not cleanly map onto 
congruent biological sources (i.e. bran nuclei) and thus lead to misleading conclusions 

The next work presented in this thesis is entitled “A Bayesian spatial model for 
neuroimaging using multiscale functional parcellations”. In this work we address these problems 
by introducing a new family of spatial basis functions for neuroimaging studies that more closely 
reflect the underlying biology. We have extracted a basis set of functions from high-quality resting 
state functional MRI. These are based on a novel multiscale functional parcellation of the relevant 
brain regions called Instantaneous Correlation Parcellation (ICP) (van Oort et al., 2016).  
 

Multiscale functional parcellation of the brain 
In this work we propose to use a soft hierarchical parcellation obtained from an advanced 
parcellation strategy known as Instantaneous Connectivity Parcellation (ICP) (van Oort et al., 
2016). Our rationale is based on emerging evidence of temporally independent, spatially 
overlapping, subnetworks within anatomical regions and functional networks in the human brain 
(Smith et al., 2012). These subnetworks are believed to represent fine-scale units of computation 
used by the brain for processing and therefore correspond well with biology.  

The ICP approach is ideally suited to derive from a brain region the underlying subnetworks, 
which we will use as basis functions. ICP will generate an adequate basis set of functions to our 
spatial statistics approach for three reasons:  

 ICP sub-divides brain networks on the basis of fine-grained temporal similarities instead of 
temporally averaged correlations.  

 ICP does not impose a spatial contiguity constraint, meaning that brain regions that are not 
spatially adjacent can still participate in the same subnetwork  

 ICP follows a hierarchical top-down strategy for parcellation, which generates a set of 
parcels at different levels of granularity which allows us to model multiple resolutions of 
spatial dependencies in the image.  
 



 

 

Instantaneous Correlation Parcellation 
ICP is based on the assumption that voxels that form a subregion within a larger region of interest 
(ROI) exhibit similar, yet slightly different time courses compared to other voxels within the larger 
region. Accordingly, each subregion within this ROI could be identified by structured changes 
between the voxel-wise timeseries and thus has its own characteristic temporal signature. To 
enhance the identifiability of subregions, ICP selectively augments t
element-wise multiplication of the voxel
entire ROI. This process (called “temporal unfolding”) results in instantaneous correlations and is 
illustrated in Figure 7. The instantaneous correlations are calculated separately for every fMRI 
dataset. Subsequently, group-level independent component analysis
a data-driven multivariate analyses technique, is applied to these transformed time courses. ICA 
will divide the ROI into subregions (i.e., components) by grouping voxels with similar timeseries, 
thus segregating voxels with different instantaneous correlatio
 
 

 

Figure 7. Illustration of the instantaneous correlation parcellation strategy.
four subregions. The black time course represents the average timeseries of the entire ROI, whereas the four colored 
timeseries represent exemplar timeseries for a voxel within each subregion. Multiplying each of these voxel specific 
timeseries with the average time course of the entire ROI (temporal unfolding), results in instantaneous correlations in 
which the subtle differences between the timeseries of each voxel are enhanced (increase in SNR of about 3 dB in this 
example). Subsequently, ICA is applied to the
grouping voxels with similar instantaneous correlations.
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ICP is based on the assumption that voxels that form a subregion within a larger region of interest 
(ROI) exhibit similar, yet slightly different time courses compared to other voxels within the larger 
region. Accordingly, each subregion within this ROI could be identified by structured changes 
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wise multiplication of the voxel-wise time courses with the average time course of the 
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level independent component analysis (Beckmann and Smith, 2004

driven multivariate analyses technique, is applied to these transformed time courses. ICA 
will divide the ROI into subregions (i.e., components) by grouping voxels with similar timeseries, 
thus segregating voxels with different instantaneous correlations (Oldehinkel et al., 2016

. Illustration of the instantaneous correlation parcellation strategy. The oval represents a ROI consisting of 
ubregions. The black time course represents the average timeseries of the entire ROI, whereas the four colored 

timeseries represent exemplar timeseries for a voxel within each subregion. Multiplying each of these voxel specific 
time course of the entire ROI (temporal unfolding), results in instantaneous correlations in 

which the subtle differences between the timeseries of each voxel are enhanced (increase in SNR of about 3 dB in this 
example). Subsequently, ICA is applied to the unfolded timeseries to segregate the region of interest into subregions by 
grouping voxels with similar instantaneous correlations. Adapted from Oldehinkel et al. 2016. 
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Hypothesis 

The dopamine transporter SPECT is a useful and widespread tool to assess the neurodegenerative 
state of the nigrostriatal pathway. Therefore, this image is helpful to evaluate the disease state, 
including motor and non-motor symptoms, in Parkinson’s disease (PD) and other parkinsonisms. 
However, its use is limited to determining the presence of nigral degeneration in clinical settings 
and assessing large striatal ROIs in clinical research. We hypothesized that more elaborated 
computational approaches to evaluate this image will help to: i) improve its reliability to further 
understanding disease hallmarks; and ii) develop extended clinical applications including the 
differential diagnosis between PD and other secondary and atypical parkinsonisms.  
 
More specifically we hypothesized that:  
 

 PD patients with a non-tremorigenous motor profile, namely postural instabiliy gait 
disorders subtype, will have lowers levels striatal dopamine and uric acid.  
 

 Distinct genetic factors affect distinct aspects of cognitive impairment in PD.  APOE2, APOE4, 
MAPT H1, SNCA rs356219, COMT Val158Met and variants in GBA may have a different role 
in the dual syndromes: frontostriatal dopamine-mediated and posterior-cortical leading to 
dementia. 

 
 Vascular parkinsonism and PD can be accurately differentiated with objective and 

automated algorithms using the DAT SPECT.  
 
 A particular brain region like the striatum can be accurately and parsimoniously represented 

with a linear combination of spatial basis funcions. A set of multiresolutional 
subparcellations of the striatum, using advanced termporal processing of fMRI experiments, 
can constitute a potential basis set of functions.  

 
 The intensity histogram of the DAT SPECT images has the form of a mixture model of 

Gamma distributions. The intensity of images acquired with different Gamma cameras can 
be harmonized by using the parameters of the resulting Gamma distributions.  
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Objectives  

In this thesis multiple disciplines of clinical neuroscience have been engaged, such as clinical 
neurology, genetics and computational methods, to achieve a set of objectives. Two global 
objectives were pursued: i) to improve our understanding of the motor and non-motor phenotype 
in PD aided by an in-vivo assessment of the patient with striatal DAT imaging; and ii) to improve the 
processing and assessment of DAT images with the use advanced computational approaches ir 
order to explore new potential clinical applications in parkinsonisms. 

 
The specific objectives are: 

 To investigate whether PD motor subtypes differ in their levels of uric acid, and if these 
differences correlate with the degree of striatal DAT  

 To investigate the role of APOE, MAPT, COMT, SNCA and GBA genes n both striatal 
denervation and the development of dementia in PD 

 To investigate and develop new methods of machine learning and pattern recognition for 
functional neuroimaging using advanced techniques, ir order to find new clinical 
applications for DAT SPECT  

 To develop algorithms using DAT SPECT images to automatically differentiate between PD 
from other parkinsonian disorders, such as the vascular parkinsonism and the progressive 
supranuclear palsy 

 To develop a voxel-based intensity normalization method for DAT SPECT images to allow  
harmonizing the images produced by different Gamma cameras 
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Summary of the results  
In this section, the results obtained in the works presented in this thesis are briefly summarized. 
 
In the article “Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson's 
disease subtype” we investigated the differences in uric acid and striatal DAT in PD motor 
subtypes: tremor-dominant (TD), intermediate (I), or postural instability and gait disorder (PIGD). 
 
We found that: 

 Uric acid levels were significantly lower for PIGD than for TD (3.7 vs 5.3 mg/dL; P<0.001) and 
I (3.7 vs 4.5 mg/dL; P=0.05) subtypes.  

 Striatal DAT levels were significantly lower for PIGD than for TD (3.7 vs 5.3; P<0.001) and I 
(3.7 vs 4.5; P=0.05) subtypes.  

  Uric Acid and striatal DAT levels were significantly correlated in posterior putamen 
(R2=0.18; P=0.002), anterior putamen (R2=0.18; P=0.001) and posterior caudate (R2=0.23; 
P<0.001).  

 All TD patients (100%) had a tremor onset, while this percentage reduced to 45% for I and to 
25% for PIGD (P<0.001). We speculate that UA might be involved in the maintenance of the 
less damaging TD phenotype and  thus also in the conversion from TD to PIGD. 

 
In the article “Genetic factors influencing frontostriatal dysfunction and the development of 
dementia in Parkinson's disease” we investigated the contribution to the dual syndromes of 
cognitive impairment in PD (frontostriatal dopamine-mediated and posterior cortical leading to 
dementia) of the main genetic risk factors decribed in the literature: GBA, MAPT, APOE, SNCA and 
COMT.  
 
We found that: 

 APOE2 allele (Pput=0.002; Pcau=0.01), the minor allele 'G' in SNCA polymorphism (Pput=0.02; 
Pcau=0.006) and GBA deleterious variants in (Pput=0.01; Pcau=0.001) had a detrimental effect 
on striatal DAT. 

 Met/Met carriers in COMT polymorphism had increased caudate DAT (Pcau=0.03).  
 Progression to dementia was influenced by APOE4 allele (HR=1.90; P=0.03) and GBA 

deleterious variants (HR=2.44; P=0.01). 
 The controversial MAPT had no role in either striatal DAT or dementia. 
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In the article “Machine learning models for the differential diagnosis of vascular parkinsonism and 
Parkinson's disease using [123I]FP-CIT SPECT” we developed diagnostic models with machine 
learning algorithms to differentate between vascular parkinsonism (VP) and Parkinson’s disease 
(PD). We assessed the DAT SPECT images with two methods: ROI-based  and whole-brain voxel-
based. 
 
We found that: 

 In regional striatal ROI analyses (putamen and caudate), there were significant differences 
between VP and PD in the most-affected putamen and the ipsilateral caudate. Age, disease 
duration and severity were also different. 

 Logistic regression using the ROI variables and the significant covariates gave a diagnostic 
accuracy of  90.3%. 

 The voxel-based analysis localized significant reductions in [123I]FP-CIT uptake in PD with 
respect to VP in two specular clusters of 1113 and 1320 voxels comprising areas 
corresponding to left and right striatum, respectively.  

 A Support Vector Machine model using the voxel data gave a diagnostic accuracy of 90.4%. 
 
In the article “A Bayesian spatial model for neuroimaging using multiscale functional 
parcellations” we developed a new anaylsis framework to perform inferences with functional 
neuroimaging data. We introduced a new family of basis functions (ICP functions), extracted from 
functional MRI experiments, to build parsimonious models. To test our new framework, we applied 
the model to fit quantitative images of DAT SPECT using the new basis set as compared with other 
potential basis sets including: generic isotropic bisquare functions, anatomical parcellations from 
Harvard-Oxford (HO) and Oxford-Imanova (OI) atlases, and independent components from ICA 
analyses as an alternative strategy to process functional MRI. We also showed the utility of our 
method to develop clinical application by constructing classifiers for parkinsonian syndromes with 
DAT SPECT images. 
 
We found that: 

 The new model provided an accurate (90% of explained variance) low-dimensional 
represensentation of  the striatum with a reduced number of basis functions (e.g. 50 ICP 
parcellations) and the corresponding weights. This gave a substantial reduction of the 
number of parameters as compared with the number of striatal voxels (V = 4,622).  

 The representation of the striatum was more accurate with the newly proposed family of 
basis functions (ICP parcellations) than with other basis sets. The explained variance was 
superior with ICP than with i) bisquare functions: indicating that basis functions derived 
from brain function are superior than generic; ii) anatomical parcellations, even at the same 
model order, indicating that functional imaging modalities can be better explained with 
brain function than with brain structure; and iii) functional independent components: 
indicating the importance of the multi-resolutional property recommended in spatial 
theory. 
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 Our framework allows to easily develop clinical applications. The weights associated with 
the basis functions, which implicitly encode spatial information, can be used in second-level 
analyses for classification or regression. We built classifiers to distinguish PD from normal 
controls with outstanding performance (AUC = 99%). We also built more challenging 
classifiers, aiming at distinguishim PD from PSP and its subtypes. We obtained relatively 
good performance to differentiate PD vs all PSP with different basis sets (AUC around 80%). 
We observed that the model using ICP functions was the best discriminanting the PSP 
subtypes (RS vs PAGF, AUC = 88%) 

 
 
In the work “Probabilistic intensity normalization of dopamine SPECT images via Variational 
mixture of Gamma distributions” we aimed at developing a voxel-based intensity normalization 
method for DAT SPECT images. The method equalizes intensity and enhances performance of 
analyses when working with images acquired with different Gamma cameras.  
 

We found that: 
 The intensity histogram of a DAT SPECT image has the form of a mixture model of Gamma 

distributions, two modeling the background and another modeling the specific region.  
 The model parameters of the distributions can be used to re-cast the intensity at the voxel 

level into a new – and universal – normalized feature space between 0 and 1. 
 The proposed methodology alleviated intensity differences between scans acquired with 

different Gamma cameras 
 The proposed reparameterization drastically improved the accuracy of PD diagnosis when 

images from different cameras were pooled. From the initial 83% to 93% range of 
performance using the current ROI-based normalization method, this increased after our 
proposed normalization to 89%-98% with ROI-based classifiers, and further to 95%-100% 
with voxel-based classifiers.  
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Abstract 

Parkinson’s disease (PD) patients who present with tremor and maintain a predominance of tremor 
have a better prognosis. Similarly, PD patients with high levels of uric acid (UA), a natural 
neuroprotectant, have also a better disease course. Our aim was to investigate whether PD motor 
subtypes differ in their levels of UA, and if these differences correlate with the degree of dopamine 
transporter (DAT) availability. We included 75 PD patients from whom we collected information 
about their motor symptoms, DAT imaging and UA concentration levels. Based on the 
predominance of their motor symptoms, patients were classified into postural instability and gait 
disorder (PIGD, n=36), intermediate (I, n=22), and tremor-dominant (TD, n=17) subtypes. The levels 
of UA and striatal DAT were compared across subtypes and the correlation between these two 
measures was also explored. We found that PIGD patients had lower levels of UA (3.7 vs 4.5 vs 5.3 
mg/dL; P<0.001) and striatal DAT than patients with an intermediate or TD phenotype. 
Furthermore, UA levels significantly correlated with the levels of striatal DAT. We also observed 
that some PIGD (25%) and I (45%) patients had a predominance of tremor at disease onset. We 
speculate that UA might be involved in the maintenance of the less damaging TD phenotype and 
thus also in the conversion from TD to PIGD. Low levels of this natural antioxidant could lead to a 
major neuronal damage and therefore influence the conversion to a more severe motor 
phenotype.  
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Introduction 

Parkinson’s disease (PD) patients can be categorized, based on the predominant motor symptoms, 
into tremor-dominant (TD) and non-tremor dominant subtypes (Foltynie et al., 2002). The former is 
characterized by a predominance of tremor and the latter by a predominance of rigidity, akinesia, 
and/or postural instability and gait disorder (PIGD) symptoms. This distinction differs between 
symptom predominance at presentation of the disease and symptom predominance at later stages, 
since some patients presenting with tremor at onset become predominantly rigid-akinetic or PIGD 
in more advanced stages (Hershey et al., 1991). Previous studies have demonstrated that PD 
patients who continue to have tremor dominance after several years progress more slowly than 
those with predominance of non-tremor symptoms (Jankovic et al., 1990, Rajput et al., 2009), 
including a lower likelihood to develop cognitive impairment and dementia (Lewis et al., 2005, 
Reijnders et al., 2009). At autopsy, TD patients have less pathological burden (Paulus and Jellinger, 
1991, Selikhova et al., 2009), and accordingly, neuroimaging studies have found a higher degree of 
dopaminergic denervation (Spiegel et al., 2007, Rossi et al., 2010, Schillaci et al., 2011, Eggers et al., 
2012, Kaasinen et al., 2014) and grey matter atrophy in the non-tremor subtype (Rosenberg-Katz et 
al., 2013). It is not yet well-known whether the pathophysiological mechanisms underlying these PD 
subtypes are different (Zaidel et al., 2009, Helmich et al., 2012). 
 A major challenge is to unravel why PD patients presenting and maintaining a TD phenotype 
have a better prognosis (i.e. slower deterioration), or conversely, why PD patients with a non-
tremor onset, or PD patients with a tremor onset but converting to rigid-akinetic and/or PIGD, 
progress worse (i.e. faster deterioration). It is likely that multiple factors play a role in PD 
phenotype and progression, including genetic susceptibility loci and environmental factors, but the 
identification of potential biomarkers is essential to improve treatment. A possible explanation for 
these differences could be that, although the biological mechanisms triggering sporadic PD for both 
subtypes were the same, these patients might differ in their levels of endogenous neuroprotective 
agents. In this regard, uric acid (UA) is an important natural antioxidant in the human body and it 
has been demonstrated that it reduces damage to neurons caused by oxidative stress. Indeed, low 
levels of serum UA have been associated with an increased risk to develop neurodegenerative 
diseases, including PD (Schlesinger and Schlesinger, 2008, Chen et al., 2012). Furthermore, 
longitudinal studies have determined that PD patients with lower levels of serum UA deteriorate 
more quickly (Schwarzschild et al., 2008, Ascherio et al., 2009). 
 In this study we sought to investigate whether the tremor and non-tremor PD subtypes 
differ in their levels of serum UA and degree of dopaminergic degeneration, and if these two 
measurements correlate. To this end, we collected motor information, UA levels and dopamine 
transporter (DAT) imaging by [123I]FP-CIT SPECT from 214 PD patients. Using retrospective data 
from the disease motor onset, we investigated in late stage patients whether patients who 
consistently maintained throughout the time a TD phenotype had higher values of UA as compared 
with those who developed PIGD symptoms. We hypothesized that the major neuronal damage 
seen in non-tremor PD patients could be related to a lower degree of neuroprotection, and UA 
might be one of the factors implicated in these mechanisms. 
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Materials and Methods 

Subjects 
We collected information from 75 PD patients (60% males, age of onset 46 ± 10 years [19-64], 
disease duration after symptom onset: 12 ± 6 years [5-23]) whom visited the Movement Disorders 
Unit from 2004 to 2014 at Hospital Virgen del Rocío (Seville, Spain). All patients had confirmed PD 
diagnosis based on the UK Parkinson's Disease Society Brain Bank clinical diagnostic criteria. For all 
these patients, we collected information about motor status and symptoms, [123I]FP-CIT SPECT, and 
serum UA concentration levels. The study was approved by the Hospital Virgen del Rocío ethics 
committee and all patients signed informed consent to participating in the study.  

 
Uric Acid measurement 
Blood samples of the patients were processed after extraction at the Central Laboratory of our 
Hospital. Serum urate concentration was determined by means of enzymatic assay following the 
standards in routine clinical practice. We did not include patients with conditions that could affect 
the serum UA concentration such as lymphoproliferative diseases, cancer, chemotherapy, 
haemolytic and pernicious anaemia, alcoholism, hypoxanthine phosphorylated guanidine deficits, 
gout, diabetic and alcoholic ketoacidosis, treatments that could affect the serum UA concentration 
[acetylsalicylic acid, diuretics, nicotinic acid, ethambutol, allopurinol, cyclosporine and 
pyrazinamide], lead poisoning, renal disease and hypo- or hyperthyroidism.  

 
Classification into motor subtypes 
Patients were classified based on established methods into TD, PIGD, or intermediate (I) using items 
from the Unified Parkinson’s Disease Rating Scale (UPDRS), off-medication (Jankovic et al., 1990). 
We considered that the motor phenotype at this UPDRS evaluation after a mean follow-up of 12 
years was stable and definite. Patients’ tremor score was determined by adding items 16 and 20-
21, and dividing by 8, and balance and gait score by adding items 13-15 and 29-30, and dividing by 
5. Patients were defined as TD if the ratio of the tremor score divided by the balance and gait score 
was ≥ 1.50, PIGD if the ratio was ≤ 1, and as I if the ratio was between 1-1.50. Disease severity by 
Hoehn and Yahr (H&Y) stage and the main symptom at onset (Tremor Onset (TO): any presence of 
tremor (from slight to severe) vs, Non-tremor Onset) were also recorded.  

 
SPECT imaging 
The acquisition procedure and SPECT reconstruction were carried out following standard protocols 
and can be found in a previous report (Huertas-Fernandez et al., 2015). SPECT images were 
processed with SPM8 using a homemade [123I]FP-CIT template 
(http://www.nitrc.org/projects/spmtemplates), and following the standard processing pipeline in 
SPM. We extracted the average [123I]FP-CIT binding at posterior and anterior putamen, and 
posterior caudate (head of caudate) using a custom-made parcellation of the striatum 
(https://www.nitrc.org/projects/striatalvoimap) following established methodology (Oh et al., 
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2012). For each patient and striatal subregion, we calculated the [123I]FP-CIT specific binding ratio 
(SBR) with respect to a non-specific volume in the occipital cortex by the formula: (striatal regional 
binding - occipital binding)/occipital binding.  

Given the high influence of age and scanner in the value of SBR (Varrone et al., 2013), we 
have worked with the age-normalized SBR instead (nSBR) (although raw SBR are also provided in 
supporting information). This measure is defined as the ratio between the patient SBR and the 
average age-specific healthy SBR, the latter calculated from linearly regressing age and SBR of 
normal controls. Thus, this measure represents the age and scanner-specific reduction of SBR due 
to the disease and makes these imaging variables more comparable with other studies using other 
machines (Pirker, 2003). For this, we used in-house images of 184 scans without evidence of 
dopaminergic deficit from the same scanner (age range 18–90 years; 56% males). In line with 
previous findings, we observed a 5.1% SBR decline per decade in these normal controls (Varrone et 
al., 2013). Lastly, since PD is asymmetrical by nature and laterality can affect the statistics at the 
group level, the comparisons were made for contralateral and ipsilateral to the most affected side 
instead of right and left.  

 
Statistical analysis 
We compared the three motor subtypes (TD, I and PIGD) using Chi-square test for nominal 
variables, ANOVA for quantitative variables, and the Kruskal Wallis test for the H&Y stage. Post-hoc 
analyses were performed to compare significant associations in a pairwise manner. Additionally, 
since UA levels are higher in men than in women by nature, we examined UA levels separated by 
sex as well. The correlation between UA and SPECT variables was evaluated with Pearson’s 
coefficient and the value of R2 (explained variance) is reported. Linear regression analyses were also 
performed to verify that the associations of UA and striatal nSBR with the motor subtype were not 
confounded by other variables such as age, sex and disease severity (UPDRSIII and H&Y). The 
significance threshold was set to P<0.05. Statistical analyses were performed with IBM SPSS 
Statistics 22.0. 
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Results 

Descriptive values and statistics are shown in Table 1. Of the 75 PD patients, 36 were classified as 
PIGD, 22 as I and 17 as TD. ANOVA indicated that UA levels were different across subtypes 
(P<0.001). Post-hoc analyses revealed that UA was significantly lower for PIGD than for TD (3.7 vs 
5.3; P<0.001) and I (3.7 vs 4.5; P=0.05) subtypes. When segregated by sex, UA levels were slightly 
higher in males as expected, but importantly, the differences across motor subtypes remained 
consistent (P=0.041). Post-hoc comparisons were still significant between PIGD and TD subtypes 
although the differences between PIGD and I subtypes vanished probably due to a loss in statistical 
power. ANOVA analyses also showed differences in striatal nSBR across motor subtypes (P<0.01, 
see Table), and in particular that PIGD had lower nSBR values than TD and I phenotypes (P<0.05).  
This was consistent for both ipsilateral and contralateral hemispheres and for both normalized SBR 
and raw SBR (raw SBR values are available in Table S1 in supporting information). Furthermore, UA 
levels were significantly correlated with striatal nSBR in posterior putamen (R2=0.17; P=0.002), 
anterior putamen (R2=0.18; P=0.001) and posterior caudate (R2=0.23; P<0.001) (Fig 1).  
 
 

 
Fig 1. Correlation of uric acid and contralateral normalized specific binding ratio (nSBR) for posterior 
putamen (A), anterior putamen (B), and posterior caudate (C).  
 
 
Regarding motor scales, PIGD patients were more severely affected than TD and I patients (H&Y = 4 
> 3, P<0.001), and had UPDRS total score was higher than TD patients (90 vs 74, P<0.05). 
Multivariate regression analyses confirmed that the positive univariate associations between motor 
subtypes and UA (β = 0.43, P=0.006) and (putamen) nSBR (β = 0.38, P=0.01) remained significant 
after correcting for the potential confounds and the differences in severity. Finally, when 
retrospectively examined the motor symptom onset of these patients, we observed that all TD 
patients (100%) had a tremor onset, but there was also a non-negligible percentage of patients with 
tremor onset who converted to I (45%) and to PIGD (25%) over the disease course. In this article, 
we speculate that this conversion may be partially driven by UA.  
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Table 1. Demographic values, motor information, uric acid levels and the regional age-normalized [123I]FP-CIT 
SBR. 

 PIGD (n=36) I (n=22) TD (n=17) p-value 
Sex (m/f) 17 / 19 15 / 7 13 / 4 N.S. 

Age of onset (y) 46 ± 9 41 ± 9 45 ± 12 N.S. 
Disease duration (y) 13 ± 6 13 ± 6 11 ± 7 N.S. 

TO (%) 25% 45% 100%*** <0.001 
UPDRS-III 49 ± 12 49 ± 12 46 ± 11 N.S. 

UPDRS Total 90 ± 22 86 ± 22 74 ± 14* 0.036 
Hoehn & Yahr 4 [3, 5] 3 [2.5, 4]*** 3 [2.5, 3]*** <0.001 

     
Uric Acid (mg/dL) 3.7 ± 0.9 4.5 ± 1.1* 5.3 ± 1.3*** <0.001 

Male 4.0 ± 1.0  4.7 ± 1.0 5.3 ± 1.3* 0.041 
Female 3.4 ± 0.8 4.0 ± 1.0 5.2 ± 1.8* 0.041 

     
Posterior putamen nSBR     

contralateral  0.18 ± 0.13 0.29 ± 0.14* 0.30 ± 0.16* 0.004 
ipsilateral  0.24 ± 0.13 0.34 ± 0.15* 0.38 ± 0.18** 0.004 

Anterior putamen nSBR     
contralateral  0.24 ± 0.16 0.38 ± 0.18* 0.40 ± 0.20* 0.002 

ipsilateral  0.31 ± 0.16 0.45 ± 0.19* 0.47 ± 0.20** 0.002 
Posterior caudate nSBR     

contralateral  0.28 ± 0.25 0.49 ± 0.28* 0.46 ± 0.29* 0.008 
ipsilateral  0.40 ± 0.26 0.63 ± 0.29* 0.61 ± 0.29** 0.002 

 

* p<0.05, ** p<0.01, *** p<0.001 for post-hoc analyses with respect to PIGD. 
PIGD: postural instability and gait disorder subtype; TD: tremor-dominant subtype, I: intermediate subtype; TO: Tremor 
Onset; N.S.: not significant. 
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Discussion 

In this study we found that PD patients with a PIGD motor phenotype have lower levels of serum 
UA and striatal DAT availability than PD patients with a predominance of tremor, and that the levels 
of UA are correlated with the degree of striatal dopamine depletion. These associations were 
significant in both univariate and multivariate analyses where potential confounds were also 
accounted for. Furthermore, using retrospective data of late stage patients, we also found that 
patients who maintained a TD phenotype throughout the disease course, or to a lesser extent 
progressed to an intermediate phenotype, had higher levels of UA and striatal DAT than PD patients 
who converted to the PIGD phenotype.  
 Our results are in line with a similar study that found significant lower UA levels and higher 
disease severity in PD patients with a non-tremor subtype (Lolekha et al., 2015). These authors also 
found consistent differences across motor subtypes for both genders, which is important given the 
inherent difference in UA values between men and women. However it is worth commenting that 
the levels of UA concentration in the study of Lolekha and colleagues were in overall higher than in 
our study. For example, on average, they observed 5.9 mg/dL in their TD patients as compared with 
5.3 mg/dL in our cohort, and these differences were even more accentuated when segregated by 
sex, where they report an average value of 6.4 mg/dL for TD males. We discard the UA assessment 
method as the main cause of this discrepancy since we also followed standard methodology to 
measure UA concentration, so we speculate that these differences are more likely due to intrinsic 
differences between the two populations (Thailand vs Spain) such as diet and ethnic origin among 
others. Also in line, our group in a previous study, and another cross-sectional study found lower 
levels of UA in advanced Hoehn and Yahr stages (Sun et al., 2012, Jesus et al., 2013). The 
longitudinal PRECEPT and DATATOP studies also found that PD patients with lower levels of UA at 
baseline suffered from faster rates of clinical progression, including greater declines in the UPDRS 
total score and striatal DAT availability (Schwarzschild et al., 2008, Ascherio et al., 2009).  
 Imaging of the striatal DAT is also a marker of disease severity and PD subtypes show a 
different degree of dopaminergic depletion in both hemispheres. In particular, higher motor 
severity, postural instability and falling have been associated with lower striatal DAT binding 
(Ravina et al., 2012). Previous studies also found higher [123I]FP-CIT uptake in TD in both putamen 
and caudate than in rigid-akinetic (Spiegel et al., 2007, Schillaci et al., 2011). A longitudinal study 
found higher declines in rigid-akinetic in striatal DAT at follow-up, although they found no 
differences at baseline (Eggers et al., 2012). Rossi et al. only found differences in putamen, probably 
because they included patients at a very early stage (<1 year of disease duration) and the caudate 
region was probably not sufficiently affected for differences between groups to be noted.(Rossi et 
al., 2010) Similarly, our results are partially consistent with a recent study that found higher 
caudate [123I]FP-CIT uptake but no differences in putaminal binding (Kaasinen et al., 2014). 
However, since the putamen is the part of the striatum involved in the motor loop, it is surprising to 
find that patients with a different motor phenotype do not differ in their levels of dopamine 
depletion in this region. Some obvious differences in methodology could have led to this 
discordance.  
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 The correlations between UA levels and DAT binding are consistent with a recent study 
performed in 52 newly diagnosed, drug-naïve PD patients, although its correlation coefficients 
(R2

putamen= 0.136; R2
caudate= 0.349) were not exactly the same (Moccia et al., 2015). These 

correlations are also in line with findings from the PRECEPT study, in which it was found that higher 
levels of urate were associated with a greater likelihood of a DAT scan without evidence of a 
dopaminergic deficit (Schwarzschild et al., 2011). Of relevance, all of these results are in line with 
the hypothesis that UA acts as a protector against dopaminergic degeneration and, in keeping with 
this notion, a recent animal study found attenuated toxic effects on nigral dopaminergic cell counts 
and striatal dopamine content in UOx (the gene encoding urate oxidase) knockout mice (Chen et 
al., 2013). 

We observed that 100% of TD had a tremor onset, but there was also a non-negligible 
proportion of patients that converted from a tremor-dominant onset to an intermediate phenotype 
(45% of I) or even to PIGD (25% of PIGD). This suggests that, in accordance with the literature 
(Hershey et al., 1991), PD patients with a tremor onset may evolve as the disease progresses to TD, 
I or, with a lower likelihood, to PIGD. Although a longitudinal study is necessary to corroborate this 
hypothesis, we speculate that those patients with a tremor onset that will maintain a TD phenotype 
may be those with higher levels of UA. Conversely, those with lower levels of UA could convert to 
an intermediate or PIGD subtype (Fig 2). Predicting motor disease progression is highly complex and 
may depend on multiple interacting factors (including genetic factors), but our results suggest that 
the motor phenotype may also be partially driven by UA levels. In this case, high levels of UA could 
help to maintain a less damaging TD form of PD.  

 
Fig 2. Diagram of conversion to motor phenotypes according to the levels of uric acid. 

 
Lastly, we acknowledge the limitations in our design and sample size to draw solid conclusions 
about our results. To corroborate our hypothesis, it would be very interesting to study in 
longitudinal cohorts such as PRECEPT the progression/conversion to motor phenotypes based on 
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the levels of UA at baseline and at follow-up. Unfortunately, direct comparison is not possible since 
these researchers compared and reported an UPDRS total score obtained by adding the motor 
activity, mentation, and activity of daily living subscales and did not perform motor subtype 
classification. 

In summary, in this study we provide further evidence about the differences in UA and 
striatal DAT between PD motor subtypes. We hypothesize and would like to test in the future 
whether PD patients who present with a tremor onset and maintain predominance of tremor, or, to 
a lesser extent, an intermediate phenotype, have higher levels of UA than those who develop PIGD 
symptoms. In this scenario, UA might be involved in maintaining the less damaging tremor-
dominant form of PD. Low levels of this natural antioxidant may lead to a lesser degree of 
neuroprotection and could therefore influence motor phenotype and the clinical course.  
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Abstract 

The dual syndrome hypothesis for cognitive impairment in Parkinson's disease (PD) establishes a 
dichotomy between a frontrostriatal dopamine-mediated syndrome, which leads to executive 
deficits, and a posterior cortical syndrome, which leads to dementia. Certain genes have been 
linked to these syndromes although the exact contribution is still controversial. The study’s 
objective was to investigate the role of APOE, MAPT, COMT, SNCA and GBA genes in the dual 
syndromes. We genotyped APOE (rs429358 and rs7412), MAPT (rs9468), COMT (rs4680) and SNCA 
(rs356219) risk polymorphisms and sequenced GBA in a cohort of 298 PD patients. The degree of 
dopaminergic depletion was investigated with [123I]FP-CIT SPECTs the presence of dementia was 
ascertained with a long-term review based on established criteria. The association between genetic 
and imaging parameters was studied with linear regression, and the relationship with dementia 
onset with Cox regression. We found that APOE2 allele (Pput=0.002; Pcau=0.01), the minor allele 'G' 
in SNCA polymorphism (Pput=0.02; Pcau=0.006) and GBA deleterious variants in (Pput=0.01; 
Pcau=0.001) had a detrimental effect on striatal [123I]FP-CIT uptake in PD. Conversely, Met/Met 
carriers in COMT polymorphism had increased caudate uptake (Pcau=0.03). The development of 
dementia was influenced by APOE4 allele (HR=1.90; P=0.03) and GBA deleterious variants (HR=2.44; 
P=0.01). Finally, we observed no role of MAPT locus in any of the syndromes. As a conclusion, 
APOE2, SNCA, COMT and GBA influence frontostriatal dysfunction whereas APOE4 and GBA 
influence the development of dementia, suggesting a double-edged role of GBA. The dichotomy of 
the dual syndromes may be driven by a broad dichotomy in these genetic factors. 
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Introduction 

Cognitive impairment is a common and disabling non-motor symptom of Parkinson's disease (PD). 
Cognitive deficits may be present in up to 24% of PD patients by the time of diagnosis, and this rate 
reaches over 80% in the long-term (Aarsland et al., 2011). Although dysexecutive syndrome has 
long been considered the main hallmark of cognitive decline in PD, deficits in visuospatial, memory 
and attention functions may be also present. The rate and pattern of these deficits vary greatly 
among PD patients, and different biological mechanisms appear to play a role (Robbins and Cools, 
2014). In this regard, the dual syndrome hypothesis was recently proposed, suggesting two facets of 
cognitive decline in PD: (i) changes in frontostriatal dopaminergic transmission, leading to deficits in 
planning, working memory, response inhibition and attentional control; and (ii) posterior cortical 
Lewy body pathology and secondary cholinergic loss, affecting visuospatial, mnemonic and 
semantic functions and leading to dementia (Kehagia et al., 2013). 

It is possible to assess the state of the frontostriatal circuitry by imaging the striatal 
dopamine transporter (DAT) with [123I]FP-CIT SPECT. In this scan, dopamine depletion can first be 
observed in the putamen, which affects the motor loop, whilst dopamine depletion in the caudate 
usually occurs in later stages, affecting two well-defined frontostriatal loops: the cognitive and the 
limbic loops (de la Fuente-Fernandez, 2013). Therefore, the integrity of this latter pathway is 
essential to correct cognitive functioning, and a large number of studies have in fact found a 
correlation between cognitive performance (including executive and working memory tasks) and 
caudate dopamine levels in PD (Brooks and Piccini, 2006).  

Several genetic loci have also been proposed as risk factors for cognitive decline in PD 
(Mollenhauer et al., 2014). Some of these genetic loci have been linked to the dopaminergic 
pathway, such as the Val158Met polymorphism in the catechol-O-methyltransferase gene (COMT). 
This gene encodes the COMT enzyme, which contributes to the degradation of cortical dopamine. 
Met carriers show low enzyme activity in comparison to Val carriers. This genotype therefore 
modulates dopamine levels in the frontostriatal network, and in turn, executive function 
performance (Nombela et al., 2014). Other genetic loci have been linked to both the development 
of dementia and performance in tasks mediated by other non-dopaminergic mechanisms. 
Specifically, the apolipoprotein E gene (APOE) ε4 allele has been associated with an increased risk 
of dementia (Williams-Gray et al., 2009) and deficits in memory and verbal fluency (Mata et al., 
2014, Nombela et al., 2014). Furthermore, the microtubule-associated protein tau gene (MAPT) H1 
haplotype has been linked with dementia (Seto-Salvia et al., 2011, Williams-Gray et al., 2013) and 
visuospatial deficits (Nombela et al., 2014), although recent results have been controversial (Mata 
et al., 2014). It is not yet known what role these two loci play in dopaminergic degeneration, and 
this needs to be addressed. Another genetic locus of interest is the rs356219 polymorphism, 
located in the 3’UTR of the α-synuclein gene (SNCA). Mutations and repetitions in SNCA lead to a 
familial form of PD with prominent cognitive impairment and dementia. The rs356219 
polymorphism has been linked to PD pathogenesis (Pihlstrom and Toft, 2011), although its role in 
cognition is far from clear. Its relationship with dopaminergic imaging has besides not yet been 
studied. Lastly, the glucocerebrosidase gene (GBA) is the most common genetic factor that has yet 
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been identified for developing PD (Sidransky et al., 2009). PD patients with mutations in GBA have 
earlier disease onset, and are at a higher risk of developing visual hallucinations, cognitive 
impairment and dementia (Neumann et al., 2009). Recent studies suggest that GBA-carriers have a 
more severe phenotype, with quicker disease progression (Winder-Rhodes et al., 2013). As is the 
case with other genes, very little is known about the relationship between GBA and dopaminergic 
imaging. 

Although other groups are thoroughly investigating the relationship between these genes 
and domain-specific neuropsychological tasks, using large cohorts of PD patients, not enough 
studies have yet been conducted to evaluate how these genetic loci contribute to dopaminergic 
degeneration through imaging. Furthermore, recent studies have produced contradictory results 
concerning the role that some loci, such as the H1 haplotype in MAPT, play in PD dementia. This 
study aims to investigate the role that these genes play in striatal dopaminergic denervation and PD 
dementia. To this end, we collected [123I]FP-CIT SPECT images and long-term clinical data on the 
developement of dementia, and genotyped APOE, MAPT, COMT and SNCA risk polymorphisms, as 
well as GBA screening in a cohort of 298 PD patients from our centre.  
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Materials and Methods 

Subjects 
A total of 298 PD patients were included in this study (age at onset 55 ± 13 years, 60% males), 
recruited from the Movement Disorders Unit at Virgen del Rocío Hospital (Seville, Spain). The 
diagnosis of PD was made using the UK Parkinson's Disease Society Brain Bank clinical diagnostic 
criteria. All patients underwent [123I]FP-CIT SPECT (mean disease duration 6 ± 6 years, median 
Hoehn and Yahr 2 [1.5, 2.5]) and were clinically monitored during the course of the disease with 
periodic visits to our clinic. At SPECT exam, 17% of the patients had no medication, 17% on 
levodopa, 18% on dopaminergic agonists and 48% on both. The median levodopa equivalent daily 
dose (LEDD) for those under treatment was of 596 [300, 1063] mg/day. The influence of the genetic 
factors on the dopamine-mediated syndrome was investigated through the association between 
the genotypes and striatal DAT, whereas the influence on the posterior syndrome was investigated 
through the association between the genotypes and the onset of dementia. We identified patients 
who met diagnostic criteria for possible or probable dementia (Emre et al., 2007) in a long-term 
review of the medical records (mean disease duration at time of review: 11 years). The diagnosis of 
dementia was ascertained by a variety of screening tools including a medical interview to the 
patient and caregiver, or scores in standard scales such as Mini Mental State Examination (MMSE ≤ 
24), and Parkinson’s disease Dementia Short Screen (PDD-SS ≤ 11) (Pagonabarraga et al., 2010).  

The disease duration at the visit when the patient met the criteria was used to perform 
survival analyses of the progression to dementia. The core features of these criteria include the 
presence of deficits (social, occupational, or personal care) impairing daily life and the presence of 
deficits in one or more cognitive domains such as attention, executive, visuo-spatial, memory and 
language, and behavioral symptoms. The diagnosis of possible dementia included an atypical profile 
of cognitive impairment in one or more domains such as prominent or receptive-type (fluent) 
aphasia, or pure storage-failure type amnesia. The diagnosis of probable dementia included 
impairment in at least two domains such as attention, executive and/or visuo-spatial functions, and 
free recall memory. Probable dementia diagnosis was also reinforced by the presence of behavioral 
symptoms such as apathy, changes in personality and mood, hallucinations and delusions, and 
excessive daytime sleepiness. All subjects provided informed written consent, and the Hospital 
Virgen del Rocío ethics committee approved this study. 

 

Genetics 
Genomic DNA was extracted from peripheral blood samples using the standard methods. All 
patients underwent genotyping for rs429358 and rs7412 (APOE ε2, ε3, and ε4), rs9468 (MAPT H1 
vs. H2), rs4680 (COMT Val158Met), and rs356219 (SNCA). Genotyping was performed with TaqMan 
SNP Genotyping Assay in a LightCycler480 (Roche Applied Science), and the genotyping success rate 
was over 98%. All patients were also screened for variants in the entire gene GBA, using both high-
resolution melting analysis for all exons and direct DNA resequencing for those samples showing 
abnormal melting profiles. Of the 298 subjects, we identified 62 GBA variants in a total of 48 
carriers. Identified variants were classified as potential deleterious (n=35) or potential benign 
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(n=27) (see Table S1) based on in silico analyses using the bioinformatic tools Grantham score, 
Polyphen-2, MutPred v1.2, and Mutation Taster. PD patients were classified into the group of 
“benign” if all the carried variants were potentially benign (n=17), and classified into the group of 
"deleterious" if at least one of the carried variants was potentially deleterious (n=31). A more 
detailed description about the sequencing procedure, variants and criteria for assessing 
pathogenicity can be found in a recent work from our group (Jesus et al., 2016). 

 

SPECT imaging 
The acquisition procedure and SPECT reconstruction can be found in a previous report (Huertas-
Fernandez et al., 2015). SPECT images were processed with standard procedures in SPM8 using a 
homemade [123I]FP-CIT template (http://www.nitrc.org/projects/spmtemplates). Quantitative 
analyses were based on volumes of interest in the striatum manually drawn by expert nuclear-
medicine specialists (https://www.nitrc.org/projects/striatalvoimap) following established 
methodology (Oh et al., 2012). A volume in the occipital cortex was used as a reference region and, 
for each patient, [123I]FP-CIT binding potential (BP) for posterior putamen and head of caudate was 
calculated. The BP was expressed as the percentage of age-expected binding with respect to 184 
normal scans (age range 18–90 years) (Pirker, 2003), and since laterality can affect the statistics at 
the group level, the comparisons were made for the more affected side.  
 

Statistical analysis 
We investigated the role of APOE ε2 and ε4 alleles; MAPT  H1 and H2 haplotypes; COMT Met allele; 
SNCA G allele; and deleterious and benign variants in GBA. Based on the previous reported 
genotypes of risk in the literature, the comparisons of interest in this study were: APOE: ε2+ vs. (ε2-
, ε4-) and ε4+ vs (ε2-, ε4-); MAPT: H1/H1 vs. H2; COMT: Met/Met vs. Val; SNCA: G vs. A; GBA: GBA+ 
vs. non carriers. Other potential genetic models were also explored (allelic, dominant and 
recessive), but for the sake of simplicity only the contrasts of interest and/or the strongest 
associations are presented. We performed separate linear regression analyses for each gene and 
imaging variable to study their potential interaction with PLINK 
(http://pngu.mgh.harvard.edu/~purcell/plink/). We entered the quantitative imaging variables as 
dependent variables, the genetic factors as independent variables and the regression coefficients 
were calculated as a measure of effect size. The potential confounding factors sex, age and disease 
duration at time of scan were also introduced as covariates. Although previous studies have shown 
that dopaminergic medications do not alter DAT imaging (Schillaci et al., 2005, Federoff et al., 
2012), we verified with exploratory analyses that medication was not confounding striatal uptake.  

The development of dementia was examined with survival analyses through Cox regression. For 
this analysis, we used as event variable the presence of dementia (yes/no), and as time variable the 
disease duration at dementia onset for the positive cases (yes) and the disease duration at the 
review of the records for the negative cases (no). We performed a separate regression analysis for 
each gene and Hazard ratios (HR) for each risk genotype were calculated adjusting for sex and age 
at disease onset as potential confounding factors for dementia. Analyses were done using IBM SPSS 
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Statistics 22.0 and the statistical threshold for significance was set to P < 0.05. Given that this is an 
exploratory study, we did not apply multiple testing penalization. 

 

Results 

Dopaminergic imaging 
Distribution of genotypes and descriptive values for putamen and caudate age-expected [123I]FP-CIT 
BP are shown in Table 1. Age at onset was similar among genotypes for each gene except for GBA, 
for which carriers of variants were younger than non-carriers (51 vs. 55 years; P=0.004). In linear 
regression analyses, we found that APOE ε2 allele, the minor allele 'G' in SNCA polymorphism, and 
deleterious variants in GBA were associated with a reduced BP in both striatal regions putamen and 
caudate (Table 2). Conversely, we observed higher BP in the caudate of COMT Met/Met carriers. 
Since this association could have been driven by the interaction between COMT enzyme and 
levodopa, we verified that there were no differences between genotype groups in the LEDD at scan 
with ANOVA test (Val: 278 mg/day vs. Met/Met: 331 mg/day; P=0.45). We also compared LEDD 
across genotypes for the other genetic factors and no differences were found. Lastly, we observed a 
trend for reduced caudate BP for H2/H2 carriers (P=0.06).  No relationship was found between DAT 
availability and APOE ε4 allele or benign variants in GBA. 
 
Table 1. Descriptive values distributed by genotype for age of onset and percentage of putamen and caudate 
age-expected [123I]FP-CIT binding potential. 
 

 n AoO Caudate Putamen 
APOE     

ε2+ 32 55 ± 13 0.48 ± 0.29 0.30 ± 0.16 
ε4+  60 54 ± 12 0.55 ± 0.25 0.35 ± 0.17 

(ε2-,ε4-) 200 55 ± 13 0.61 ± 0.30 0.40 ± 0.19 
MAPT     

H1/H1 166 54 ± 13 0.60 ± 0.31 0.39 ± 0.20 
H1/H2 108 55 ± 14 0.58 ± 0.26 0.38 ± 0.16 
H2/H2 20 56 ± 10 0.46 ± 0.29 0.33 ± 0.14 

COMT     
Met/Met 52 57 ± 12 0.67 ± 0.30 0.43 ± 0.21 
Val/Met 146 55 ± 14 0.57 ± 0.29 0.37 ± 0.17 
Val/Val 98 53 ± 13 0.57 ± 0.29 0.37 ± 0.18 

SNCA     
G/G 56 55 ± 14 0.53 ± 0.29 0.35 ± 0.17 
A/G 149 55 ± 12 0.57 ± 0.29 0.38 ± 0.19 
A/A 88 54 ± 14 0.64 ± 0.29 0.41 ± 0.17 

GBA     
deleterious 31 50 ± 8 0.53 ± 0.31 0.33 ± 0.15 

benign 17 52 + 11 0.58 ± 0.31 0.37 ± 0.21 
non-carriers 250 55 ± 13 0.59 ± 0.29 0.38 ± 0.18 

AoO: Age of disease onset 
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Table 2. Results for linear regressions of SPECT variables corrected for sex, age and disease duration. 
 

 Caudate Putamen 
β (95% CI) p β  (95% CI) p 

APOE     

ε2+ vs (ε2-,ε4-) -0.13 (-0.22,-0.02) 0.01 -0.18 (-0.25,-0.05) 0.002 

ε4+ vs (ε2-,ε4-) -0.07 (-0.13,0.03) 0.20 -0.09 (-0.14, 0.007) 0.08 

MAPT     

H1/H1 vs H2 -0.007 (-0.07,0.05) 0.83 -0.001 (-0.04,0.04) 0.94 

H2/H2 vs H1 -0.11 (-0.23,0.004) 0.06 -0.04 (-0.11,0.04) 0.31 

COMT     

Met/Met vs Val 0.09 (0.01,0.16) 0.03 0.04 (-0.004,0.09) 0.07 

SNCA     

G vs A -0.06 (-0.10,-0.02) 0.006 -0.03 (-0.06,-0.005) 0.02 

GBA     

deleterious vs non-carriers -0.14 (-0.24,-0.03) 0.01 -0.18 (-0.26,-0.07) 0.001 

benign vs non-carriers -0.02 (-0.16,0.11) 0.70 -0.03 (-0.17,0.09) 0.55 

  β:regression coefficient; CI: confidence interval 

 

 

Dementia 
Of the 298 patients, 59 progressed to dementia after a mean average of 10 years from disease 
onset. Of those, 34 met the criteria for probable dementia and 25 met those for possible dementia. 
The cumulated probability of dementia was 25.7%. Cox regression analyses are presented in Table 
3. We found that the development of dementia was influenced by the APOE ε4 allele (HR=1.90; 
P=0.03) and GBA deleterious variants (HR=2.59; P=0.01). The hazard ratio for the patients carrying 
both APOE ε4 and GBA deleterious variants was even higher although it did not reach significance 
due to the small number of cases (n=6, HR=2.95, P=0.10). The survival curves for these two genetic 
factors and their combination are presented in Fig 1. Also, a trend for a protective effect was 
observed for COMT Met/Met (HR=0.46; P=0.07). Finally, no association was found for the APOE ε2 
allele, MAPT H1/H1 genotype, SNCA polymorphism or GBA benign variants.  
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Table 3. Results for Cox regressions for the development of dementia corrected for sex and age of onset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HR: Hazards ratio; CI: Confidence Interval. 
 

 
Fig 2. Survival plot of dementia onset. Lines represent the cumulative dementia-free survival in years from 
disease onset.  GBA labels refer to patients carrying deleterious variants.  

 HR (95% CI) p 
APOE   

ε4+  1.90 (1.05,3.44) 0.03 
ε2+ 1.19 (0.54,2.64) 0.67 

(ε4-,ε2-) Ref.  
MAPT   

H1/H1 0.83 (0.51,1.45) 0.48 
H2 Ref.  

COMT   
Met/Met 0.46 (0.21,1.13) 0.07 

Val Ref.  
SNCA   

G/G 0.73 (0.35,1.59) 0.41 
A Ref.  

GBA   
deleterious 2.59 (1.16,5.76) 0.01 

benign 1.69 (0.59,4.80) 0.32 
non-carriers Ref.  

APOE + GBA   
 ε4+ and deleterious 2.95 (0.80,10.90) 0.10 

non-carriers Ref.  
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Discussion 

In this study, we found that striatal DAT availability levels in PD were influenced by APOE ε2 allele, 
COMT Val158Met, SNCA rs356219 and deleterious variants in GBA, whereas the development of 
dementia was influenced by the APOE ε4 allele and also by deleterious variants in GBA. Our results 
therefore suggest that APOE2, COMT and SNCA may be related to dopaminergic degeneration, 
while APOE4 may be related to other, non-dopaminergic degeneration mechanisms, and GBA may 
be implicated in both. Our findings support the dichotomy of the dual-syndrome hypothesis and 
provide new insights into the dissociation of the genetic factors which contribute to cognitive 
decline in PD.  

The role of APOE2 in PD is controversial, some studies found a higher ratio of ε2 alleles in PD 
patients than in controls, although other studies do not share this finding (Huang et al., 2004, 
Federoff et al., 2012). Similarly, the 'G' allele in SNCA polymorphism has been found 
overrepresented in PD (Goris et al., 2007). There are no previous studies investigating the 
relationship between these genetic factors with striatal DAT, but our results suggest that both 
APOE2 and SNCA could have a negative effect on the dopaminergic pathway. We also observed a 
trend for reduced caudate BP fot H2/H2 carriers, although this trend should be further supported 
by other data sets since, to the best of our knowledge, no prior data on this relationship have been 
reported. Hence, our results suggest that APOE2 and SNCA may be implicated in PD pathogenesis 
and lead to a faster frontoexecutive impairment. No association with dementia onset was found, 
which is consistent with previuos data (Williams-Gray et al., 2013), and indicate that these loci do 
not play any role in the posterior cortical syndrome. We also found increased levels of caudate DAT 
in Met/Met carriers of COMT polymorphism. This is consistent with a 18F-DOPA PET study, which 
found higher presynaptic dopamine levels in frontal regions in Met/Met (Wu et al., 2012), and in 
controversy with a recent study that found higher levels of striatal FP-CIT BP in Val/Val (Muellner et 
al., 2015). However, this last result could be a false positive due to a small sample size (40 subjects 
in total, and only 3 Met/Met carriers). 

We found APOE4 to be associated with a faster progression to dementia, but no such 
relationship was found for MAPT H1/H1. The observed effect size for APOE ε4 (HR=1.90) was 
modest in comparison to that seen in AD but consistent with an existing meta-analysis in PD, which 
also suggests this allele has a moderate effect on PD dementia (OR=1.74; 95% CI 1.36-2.23) 
(Williams-Gray et al., 2009). Consistent with our data, Mata and colleagues' recent study noted the 
detrimental effect of APOE ε4 on cognition in PD, and no effect for MAPT H1/H1 (Mata et al., 2014). 
Also, a previous study of PD in Spain discarded a relationship between MAPT H1/H1 and dementia 
(Ezquerra et al., 2008). On the other hand, a recent 10-year follow-up for the CamPaIGN cohort 
found a link between MAPT H1/H1 and dementia, and no link for APOE ε4 (Williams-Gray et al., 
2013). However, this discrepancy concerning APOE ε4 could arise from a lack of power, since only 
38 demented PD patients and 35 non-demented PD patients were evaluated, and ε4 frequency was 
higher in the case of the demented (37% vs. 26%), although it did not reach a significant level.  

Interestingly, we found that deleterious variants in GBA were associated to both reduced 
striatal BP and faster progression to dementia, possibly indicating that these variants play a role in 
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both dopaminergic and non-dopaminergic degeneration processes. There are very few studies on 
dopaminergic imaging for PD GBA carriers, and these are limited to only a few cases;(Goker-Alpan 
et al., 2012, McNeill et al., 2013) as of yet, no solid conclusions have therefore been drawn on the 
relationship between GBA and the dopaminergic system. Consistent with our observations, a recent 
study found a reduced glucocerebrosidase enzymatic activity in the substantia nigra of GBA carriers 
(Gegg et al., 2012). Clinical studies also support our results, having observed greater motor and 
cognitive impairment in PD patients with deleterious GBA variants (e.g. L444P, N370S), including a 
higher risk of progressing to Hoehn and Yahr stage 3 and dementia (Winder-Rhodes et al., 2013, 
Brockmann et al., 2015). Moreover, a recent study found executive and visuospatial deficits in 
these carriers, supporting our view that GBA might have a double-edged role in both dopaminergic 
and non-dopaminergic degeneration (Mata et al., 2016). Also importantly, despite our 
bioinformatic analyses classified the variant E326K as benign, there are recent data suggesting the 
deleterious effect of E326K variant, including lower glucocerebrocidase activity (Alcalay et al., 2015) 
and worse performance in executive and visuospatial tasks in these carriers (Mata et al., 2016). 
However, our data do not support the negative role of this variant. There were 5 patients 
heterozygous for E326K and 4 patients with compound heterozygosis with other deleterious 
variants, and none of them had reduced DAT binding in comparison with analogous non-carriers 
nor displayed signs of dementia after a mean follow-up of 14 years. We acknowledge that our 
sample size is limited to make conclusions about this variant but our observations on these 9 
patients do not indicate that this variant should be classified as deleterious. Lastly, we also 
observed that the risk of GBA deleterious variants carriers to develop dementia was increased in 
combination with APOE4 allele. However, this is just an observation and should be interpreted with 
caution since we only had 6 patients having both risk genotypes (3 of them got demented, and two 
of them were L444P carriers). Indeed, the result is not significant due to the lack of power.  

In summary, APOE2, COMT Met, 'G' allele at SNCA rs356219 and deleterious variants in GBA 
contribute to dopaminergic degeneration in PD. These loci may therefore contribute to 
frontostriatal dysfunction. APOE4 and variants in GBA contribute to the development of dementia, 
and are possibly related to other non-dopaminergic processes. Different genetic risk genotypes 
produce different outcomes of the dual syndromes of cognitive impariment in PD, and deleterious 
variants in GBA may play a double-edged role in both. We acknowledge that the lack of exhaustive 
clinical and neuropsychological assessments for dementia is a potential limitation in our study. 
However, this population-based study was designed to overcome limitations of sample size in 
genetic studies and provide reliable effect sizes. Futher research will be able to verify the findings of 
this discovery sample, and will allow for more convincing conclusions. 
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Supporting Information  
 
Table S1. List of GBA variants grouped by potential pathogenicity according to in-silico analyses 
 
 Allele cDNA Protein Exon n 
deleterious 
 

G195W c.700G/T p.Gly234Trp 7 5 
S271G c.928A/G p.Ser310Gly 8 2 
R262C  / rs374117599 c.901C>T p.Arg301Cys 8 1 
T369T / rs138498426 c.1224G/ p.Thr408Thr 9 1 
W312R c.1051T>A p.Trp351Arg 9 5 
N370S c.1223A/G p.Asn409Ser 10 5 
D409H c.1342G/C p.Asp448His 10 1 
 -- c.1264_1319del55 p.Leu422fsx3 10 1 
L444P c.1448T/C p.Leu483Pro 11 10 
V457D c.1487T>A p.Val496Asp 11 2 
R496H c.1604G>A p.Arg535His 12 2 
Total 35 

benign  -- c.116-8C/T  -- 4 4 
 -- c.588+7A>C  -- 6 1 
I119I  / rs14741115 c.474C/T p.Ile158Ile 6 1 
L268L c.921C/T p.Leu307Leu 8 2 
R262H  / rs140955685 c.902G/A p.Arg301His 8 1 
T369M  / rs75548401 c.1223C/T p.Thr408Met 9 3 
E326K / rs2230288 c.1093G/A p.Glu365Lys 9 9 
 -- c.1388+10T>G  -- 10 1 
T410T c.1347G/C p.Thr449Thr 10 1 
A446T c.1453G>A p.Ala485Thr 11 1 
A446A / rs199928507 c.1455A>G p.Ala485Ala 11 1 
L449L c.1464G/C p.Leu488Leu 11 2 
Total 27 
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Abstract 

Purpose: The study’s objective was to develop diagnostic predictive models using data from two 
commonly used [123I]FP-CIT SPECT assessment methods: Region-of-interest (ROI) analysis and 
whole-brain voxel-based analysis.  

 
Methods: We included retrospectively 80 patients with vascular parkinsonism (VP) and 164 
patients with Parkinson's disease (PD) who underwent [123I]FP-CIT SPECT. Nuclear-medicine 
specialists evaluated the scans and calculated bilateral caudate and putamen [123I]FP-CIT uptake, 
and asymmetry index using the BRASS software. Statistical Parametric Mapping (SPM) was used to 
compare the radioligand uptake between both entities at the voxel level. Quantitative data from 
these two methods, together with potential confounding factors for dopamine transporter (DAT) 
availability (sex, age, disease duration and severity), were used to build predictive models following 
a 10-fold cross-validation scheme. Logistic regression (LR), linear discriminant analysis (LDA) and 
support vector machine (SVM) algorithms for ROI data, and its penalized versions for SPM data 
(PLR, PDA and SVM), were assessed for performance.  
 
Results: Significant differences were found between VP and PD in the most-affected putamen and 
the ipsilateral caudate in the ROI analysis after covariate correction. Age, disease duration and 
severity were also found to be informative in feeding the statistical model. SPM localized significant 
reductions in [123I]FP-CIT uptake in PD with respect to VP in two specular clusters comprising areas 
corresponding to left and right striatum. The diagnostic predictive accuracy for the LR model using 
ROI data was 90.3%, and 90.4% for the SVM model using SPM data.  
 
Conclusion: The predictive models built with ROI data and SPM data from [123I]FP-CIT SPECT 
provide great discrimination accuracy between VP and PD. An external validation using these 
methods would be convenient to confirm its applicability across centers. 
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Introduction 

Vascular parkinsonism (VP) is a parkinsonian syndrome due to cerebrovascular lesions and 
characterized by the presence of gait difficulty, symmetrical lower body bradykinesia and postural 
instability, and the absence of resting tremor (FitzGerald and Jankovic, 1989, Winikates and 
Jankovic, 1999, Rektor et al., 2006). Although recent neuropathology and epidemiological studies 
have reported hallmarks distinguishing VP from idiopathic Parkinson’s disease (PD), overlap in 
symptoms presentation is not rare and its differentiation is still a clinical challenge, especially at 
early stages (Hughes et al., 1992, Jellinger, 2003, Zijlmans et al., 2004, Kalra et al., 2010).  

The visualization of the dopamine transporter (DAT) through the use of [123I]FP-CIT SPECT is 
a commonly used tool that may help in the distinction of VP and PD. However, the status of the 
striatal DAT in VP is controversial due to its heterogeneity and the accuracy in the differential 
diagnosis is still poor (Gerschlager et al., 2002, Lorberboym et al., 2004, Kalra et al., 2010, Antonini 
et al., 2012, Contrafatto et al., 2012, Navarro-Otano et al., 2014). This heterogeneity has been 
reflected in a recent study with a large cohort that showed that the [123I]FP-CIT SPECT of about one 
third of VP cases were normal, while the other two thirds were abnormal, and from which a small 
percent of cases overlapped the typical imaging pattern of PD (Antonini et al., 2012). Furthermore, 
it has been suggested that a normal scan in VP can be associated to a negative responsiveness to l-
dopa treatment (Antonini et al., 2012), although this association is also currently contradictory 
(Zijlmans et al., 2007). 

The majority of the studies including VP have evaluated [123I]FP-CIT SPECT imaging through 
visual assessment according to a standardized scale (Benamer et al., 2000) or semi-quantification of 
striatal ligand uptake (ROI analysis). Such methods may be suboptimal for two main reasons: the 
specialist’s introduction of a certain degree of subjectivity in the visual interpretation and in the 
manual ROI delineation and focusing primarily on DAT uptake in the striatum, thus missing the 
extent of the radioligand binding to the DAT, serotonin and noradrenergic transporters in other 
brain regions. In contrast, voxel-based analysis has proven to be a reliable and unbiased tool for the 
examination of whole-brain imaging and some studies have used it with success in the 
differentiation of PD from other neurodegenerative diseases (Colloby et al., 2004, Scherfler et al., 
2005, Goebel et al., 2011, Nocker et al., 2012). However, voxel-based studies including VP series are 
still lacking. 

We have recently published a detailed clinical research with a large cohort of VP and PD 
patients (Benitez-Rivero et al., 2013). This study presented a newly developed visual scoring system 
with above 94% accuracy in the distinction of VP and PD and a clustering method using ROI data 
that achieved an accuracy of 82%. The first objective of the present study was to build a diagnostic 
predictive model using the ROI data from the same dataset with improved performance and 
applying more adequate methodologies for problems of classification from the machine learning 
theory. The second objective was to conduct a whole-brain voxel-based comparison between VP 
and PD using Statistical Parametric Mapping (SPM) and to follow the same strategy as the ROI data 
for building a predictive model with the voxel data.  
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Materials and methods 

Patients 
We included a total of 80 patients with VP and a control group of 164 patients with PD seen at our 
center from 2006 to 2011. This is the subset of patients with digital [123I]FP-CIT SPECT available 
from our previous work and detailed clinical information of the whole dataset was given in that 
study (Benitez-Rivero et al., 2013). For this study, basic features were reviewed when carrying out 
SPECT, i.e. sex, age, disease duration and severity measured by the Hoehn & Yahr scale (H&Y). The 
diagnosis of VP was made according to the diagnostic criteria proposed by Zijlmans et al. (Zijlmans 
et al., 2004) and the diagnosis of PD was made according to the UK Parkinson’s Disease Society 
Brain Bank clinical diagnostic criteria (Hughes et al., 1992). This study was approved by the local 
ethics committee and conducted in accordance with the Declaration of Helsinki. 

 
SPECT imaging 
Patients underwent a brain SPECT scan with a dual-head rotating gamma camera (Philips Axis) 
fitted with LEHR fan-beam collimators. In order to block the thyroid uptake of free radioactive 
iodide, patients were given potassium perchlorate 500 mg orally 30 min before intravenous 
injection of 185 MBq of [123I]FP-CIT (Ioflupane. Datscan®. GE Healthcare). Image acquisition began 
between 3 and 4 hours after radioligand injection. A total of 120 images of 30 seconds each over a 
360° circular orbit were acquired on a 128 x 128 matrix (zoom 1.5). Reconstruction was performed 
by filtered back-projection using a Butterworth without attenuation nor scatter correction and 
further reorientation to obtain transaxial slices. Patients gave informed written consent for the 
[123I]FP-CIT SPECT scan after a full discussion of possible risks and benefits as is the general practice 
in our hospital.  
 

ROI analysis 
An automatized semi-quantitative analysis was performed to evaluate specific-to-nondisplaceable 
[123I]FP-CIT binding potential (BPND) using the HERMES-BRASS software (version 3.5). Regions of 
interest (ROI) were constructed around the right and left caudate and putamen. Patient scans were 
first normalized to a [123I]FP-CIT mean template, and regions were drawn using a standardized 3-D 
volume-of-interest map. [123I]FP-CIT BPND for these regions and asymmetry index (AI) were 
calculated. We defined the most-affected side as the hemisphere with the lowest putaminal ligand 
uptake. ROI variables were then defined as follows: putamen and caudate ipsilateral to the most-
affected side (Put_I, Cau_I), and putamen and caudate contralateral to the most-affected side 
(Put_C, Cau_C). 
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SPM analysis 
A semi-quantitative whole-brain voxel-based analysis was performed using SPM8   

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) running under a Matlab environment 
(MathWorks, Sherborn, MA).  

 Raw SPECT images were first manually reoriented setting the anterior commissure as the co-
ordinate’s origin. Each scan was then spatially normalized into the standard stereotactic MNI 
(Montreal Neurological Institute) space using a [123I]FP-CIT template developed by our group and 
available at http://www.nitrc.org/projects/spmtemplate (Garcia-Gomez et al., 2013). This 
normalization algorithm comprises a 12-parameter affine transformation of the reoriented images 
onto the [123I]FP-CIT template image followed by estimating the nonlinear deformations between 
the applied images. Next, spatially normalized images were smoothed using an isotropic 8 mm full 
width at half-maximum isotropic Gaussian kernel (FWHM) to compensate for inter-individual 
anatomical variability and render the imaging data more normally distributed. Lastly, since DAT 
densities are known to be low in the occipital lobe and the cerebellum, a brain mask for those areas 
was created using automated anatomical labeling (AAL) atlas. A total of 152,673 voxels were 
analyzed. Clusters of a minimum of 16 (twice FWHM of the gaussian filter) contiguous voxels with a 
threshold of PFWE < 0.05 corrected for multiple comparisons were considered to be statistically 
significant.  
 

Data analysis 
Statistical analyses were performed using the IBM SPSS Statistics 20.0 software and R. Descriptive 
statistics are reported with percentages, mean and standard deviation and median and 
interquartilic range when necessary. Scale variables were first checked for normality with Shapiro-
Wilk test and homoscedasticity with Levene test. 

For comparing VP and PD, chi-square test was used for sex, two-sample t-test was used for age, 
disease duration and mean regional [123I]FP-CIT uptake, and Mann-Whitney test was used for AI 
and H&Y stage. Furthermore, ROI values were entered into a logistic regression along with age, sex, 
disease duration and H&Y stage as covariates. Additionally, since these factors are known to 
influence the radioligand uptake (Erro et al., 2012, Varrone et al., 2013), interaction terms were 
included to check its role as effect modifiers. In the SPM analysis, the [123I]FP-CIT uptake was 
compared between VP and PD with a two-sample t-test contrast (VP>PD).  

Moreover, due to its clinical relevance and in order to clarify the inconsistencies so far in 
literature, subanalyses of VP cases comparing l-dopa responders versus non-responders were 
performed by logistic regression for ROI data, and again by two-sample t-test contrast in SPM (VP 
non-responder > VP responder).  
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Predictive models 
Predictive models using the quantitative data from the ROI and SPM analyses were built for 

diagnosis classification. The clinical diagnosis, as defined in the section "Patients", was considered 
"gold standard" in this study and it was used as dependent variable in the models building. For the 
models using ROI data, the independent variables were the significant variables from the logistic 
regression, while for the models using SPM data, the independent variables were the voxel’s 
intensity values (after normalization and smoothing) contained in the significant clusters from the 
SPM contrasts. Significant covariates were also taken into account.    

The models were assessed using a 10-fold cross-validation scheme, which randomly splits the 
dataset into K=10 parts, 90% is used for training and the remaining 10% for testing, for every kth=1, 
2,...,10. The final model and performance results were obtained from averaging the ten runs, which 
were given in area under curve, accuracy, sensitivity and specificity. This strategy prevents 
overfitting the model with our dataset thus allowing model generalization for other centers data. 
All calculations were done using the R-package "caret" (http://cran.r 
project.org/web/packages/caret/index.html). 

From a statistical point of view, the modeling of ROI data and SPM data requires different 
approaches. The ROI data consist of few variables, whereas the SPM data consist of hundreds of 
voxels values. The latter is a classical p>>N problem and must be faced with regularized algorithms, 
which weight the independent variables according to its information content, priorizing some and 
penalizing others through tunable shrinkage functions. We have opted for comparing three 
methods recommended elsewhere (Hastie et al., 2013): penalized logistic regression (PLR), 
penalized discriminant analysis (PDA) and support vector machine (SVM). The ROI data were 
analyzed with equivalent methods: logistic regression (LR), linear discriminant analysis (LDA) and 
support vector machine (SVM). Tuning parameters for the algorithms were chosen based on the 
package default grid of iterations. 
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Results 

Demographic and clinical features 
The demographic and clinical features are reported in Table 1. There were significant differences 
between VP and PD in age, disease duration and H&Y stage (P<0.001). These associations were 
consistent in the regression analysis. As already described in our previous work, our subset of VP 
patients were older, with higher disease duration and H&Y stage than our subset of PD patients.   

 
Table 1  Demographic and main clinical features of VP and PD patients. 

 VP (n=80) PD (n=164) 

Sex (m/f,n) 57/23 101/68 

Age (years, mean ± SD) 75.11 ± 6.70 60.26 ± 10.84 #,***   

Disease duration (years, median [IQR]) 4 [2, 8] 2 [1, 4] #,** 

H&Y stage (median [IQR]) 2.5[2.5, 3] 2 [2, 2.5] †,* 

Intergroup comparisons between VP patients and PD patients. #p<0.001 with t-test. †p<0.001 with Mann-
Whitney test. *p<0.05, **p<0.01, ***p<0.001 with logistic regression. 

 

Discrimination between VP and PD using ROI analysis 
Regional [123I]FP-CIT uptake values and intergroup statistics are summarized in Table 2. Descriptive 
analyses showed significantly lower [123I]FP-CIT BPND values for all four regions along with an 
increased AI in PD with respect to VP (P<0.001). Regression analysis indicated that these findings 
were consistent after covariate correction for the most-affected hemisphere regions (Cau_I, 
P<0.001; Put_I, P<0.001). None of the interaction terms reached significance.  
 
Table 2  Mean regional putamen and caudate [123I]FP-CIT BPND in VP and PD patients. 

 VP (n=80) PD (n=164) 

Cau_I (mean ± SD) 1.54 ± 0.54 #,*** 1.06 ± 0.46 

Cau_C (mean ± SD) 1.64 ± 0.49 # 1.23 ± 0.50 

Put_I (mean ± SD) 1.20 ± 0.52 #,*** 0.53 ± 0.30 

Put_C (mean ± SD) 1.43 ± 0.52 # 0.78 ± 0.37 

AI (median [IQR]) 7.04 [3.00,18.94] † 20.69[8.82, 39.00] 
 Intergroup comparisons between VP patients and PD patients. #p<0.001 with t-test. †p<0.001 with Mann-
Whitney test. ***p<0.001 with logistic regression. 
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These significant variables, along with the covariates age, disease duration (DisDur) and H&Y, were 
further used to build the predictive models. Scatter plots with the 2-dimensional combinations of 
the two input factors, i.e. Cau_I, and Put_I, were inspected to ensure that linear approaches were in 
fact suitable to fit decision boundaries between VP and PD (Fig. 1). Cross-validation results for the 
three methods are shown in Table 3. LR demonstrated slight superior discrimination accuracy than 
SVM and LDA (accuracy = 0.903>0.899>0.898, respectively), and its equation is given by the 
following formula:   

 
logit(diagnosis) = -14.55 - 3.92*Cau_I + 7.29*Put_I + 0.18*age + 0.75*H&Y - 0.28*DisDur 

 
These results indicated that, despite being a very good model, a small percentage of scans were 
misdiagnosed. To improve the discrimination accuracy, we established a cut-off of 80% for the class 
probability. In other words, we assigned a diagnosis only if the probability of belonging to that class 
applying the formula was above 80%. We tested the LR model in the whole dataset and accuracy 
was raised up to 95%, although 17% of the cases were under threshold and remained tagged as 
“doubtful”.  

 

 

Fig. 1  Scatter plots with the 2-dimensional graphs of regional [123I]FP-CIT uptakes of caudate (Cau_I) and 
putamen (Put_I) ipsilateral to the most-affected side, for VP and PD cases.  
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Table 3  Average 10-fold cross-validation performance results for the diagnostic predictive models built with 
ROI data, given in area under curve (AUC), accuracy, sensitivity (Sens) and specificity (Spec). The methods 
tested were logistic regression (LR), linear discriminant analysis (LDA) and support vector machine (SVM). 
 

Method AUC Accuracy Sens Spec Parameter

LR 0.951 0.903 0.944 0.794 - 

LDA 0.940 0.898 0.963 0.775 - 

SVM 0.950 0.899 0.947 0.784 C=1 

 
Discrimination between VP and PD using SPM analysis 
Voxel-based analysis of [123I]FP-CIT SPECTs confirmed the results of the striatal ROI analysis. SPM 
contrasts revealed decreased intensity values in PD patients in comparison to VP patients in two 
specular clusters (1113 and 1320 voxels) that comprised areas corresponding to, respectively, left 
and right striatum (Table 4). 

 

 

Fig. 2  Voxel clusters representing significant decreases in [123I]FP-CIT uptake in PD with respect to VP. Areas 
comprise putamen and caudate nucleus and are represented in MNI normalized MRI scan.   
 

Table 4  Significant findings of the SPM comparison of VP and PD (VP>PD). 

Cluster localization Cluster size MNI co-ordinates T value Z value pFWE 

X y z 

Left striatum 1113 -26 -10 2 8.31 7.77 <0.001 

  -20 14 2 5.59 5.42 <0.001 

  -22 -18 4 5.46 5.29 <0.001 

Right striatum 1320 28 -6 2 8.08 7.59 <0.001 

  22 -16 0 5.32 5.17 0.001 

  20 10 12 5.27 5.12 0.001 
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The predictive models were built using all intensity values of voxels contained in the significant 
clusters as independent variables, and the same covariates as in ROI analysis (age, disease duration 
and H&Y stage). Cross-validation results from penalized methods are summarized in Table 5. SVM 
showed slight superior accuracy in discriminating between VP and PD than PLR and LDA (accuracy = 
0.904>0.887>0.884, respectively). 
 
Table 5  Average 10-fold cross-validation performance results for the diagnostic predictive models built with 
SPM data, given in area under curve (AUC), accuracy, sensitivity (Sens) and specificity (Spec). The methods 
tested were penalized logistic regression (PLR), penalized discriminant analysis (PDA) and support vector 
machine (SVM). 
 

Method AUC Accuracy Sens Spec Parameters 

PLR 0.960 0.887 0.981 0.704 α= 0.1, λ=0.1 

PDA 0.878 0.884 0.944 0.769 λ=3 

SVM 0.954 0.904 0.954 0.801 C=1 

 

Comparison between l-dopa responders and non-responders 
Neither logistic regression with ROI data nor SPM analysis revealed association between [123I]FP-CIT 
uptake and l-dopa responsiveness in VP cases.  
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Discussion 

In this study, we have provided accurate methods for distinguishing between VP and PD using 
[123I]FP-CIT SPECT. We developed predictive models using the quantitative data from the SPECT 
evaluation of a large cohort of patients via two widespread methods: striatal ROI analysis and 
whole-brain voxel-based analysis.   

Our previous study (Benitez-Rivero et al., 2013), along with a similar multicentre study 
performed in Italy (Antonini et al., 2012), confirmed what previous studies have been postulating 
for years: vascular parkinsonism is a different and distinguishable entity from PD; however clinical 
manifestations and imaging patterns are heterogeneous. Nowadays, [123I]FP-CIT SPECT represents a 
widely extended and helpful tool to aid the physician in the diagnosis of VP, and numerous studies 
have worked with its visual assessment and ROI quantification (Kalra et al., 2010, Tatsch and 
Poepperl, 2013). Some authors reported significant differences in the asymmetry index with 
respect to PD (Zijlmans et al., 2007, Contrafatto et al., 2012), but these studies had a small sample 
size and the sensitivity was as low as 50%. These results have questioned the accuracy of [123I]FP-
CIT SPECT for VP diagnosis, and indeed, a very recent study considered the inclusion of cardiac 
[123I]MIBG SPECT and smell identification UPSIT test for the differential diagnosis (Navarro-Otano et 
al., 2014). In our previous study we used the [123I]FP-CIT BPND values of the most affected putamen, 
the ipsilateral caudate and the asymmetry index in a clustering method and achieved an accuracy of 
82%. However, this approach did not exploit all the information available from the patient and 
contained in the image, nor provided a generalizable mathematical formula for use by other 
groups. 

In contrast, other studies have successfully applied elegant methods for distinguishing atypical 
parkinsonisms and other diseases from PD with DAT SPECT imaging. Scherfler et al. used ROI 
analysis and SPM to extract mean voxel cluster values and introduced its parameters into a 
stepwise discriminant analysis (Scherfler et al., 2005). Years later, the same group elaborated a 
computer-assisted image algorithm (CAIA) using voxel data that outperformed a multinomial 
regression using ROI data (Goebel et al., 2011). In this study, we have investigated images of VP 
using these sorts of approaches. In the ROI analysis, in agreement with previous studies 
(Gerschlager et al., 2002, Contrafatto et al., 2012), we found that in PD, in comparison with VP, the 
striatal DAT availability is markedly reduced and the AI is significantly higher. Logistic regression 
revealed that the most-affected putamen and the ipsilateral caudate, along with the covariates age, 
disease duration and H&Y stage, were found to be informative in feeding the predictive model. 
Cross-validation procedures demonstrated that the algorithms LR, LDA and SVM were excellent 
classifiers using these variables. In the case of LR, the model obtained a diagnostic accuracy of 
90.3%. Moreover, results could be improved to 95% accuracy by thresholding the class probability 
and creating a pool of doubtful cases. For those cases, we assumed the ROI analysis of [123I]FP-CIT 
SPECT was inconclusive and that it would be necessary to evaluate the clinical profile and the 
structural neuroimaging to determine a more reliable diagnosis.  

Despite the diagnostic accuracy for the newly developed visual scoring system in our previous 
work reaching above 94%, we acknowledge that this performance required highly trained nuclear-
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medicine specialists, and that the intra and inter-observer rates were not perfect. Although we 
strongly encourage specialists to train and apply the new visual score, we believe that the 
application of the LR formula can be more easily used to achieve diagnostic accuracies above 90%. 
Regarding SPM, the comparison gave significant differences in [123I]FP-CIT uptake in two specular 
clusters of voxels comprising areas of the striatum. We benefited from this huge content of 
information to introduce all voxel values together with the covariates into a penalized classification 
algorithm and found that SVM was able to achieve 90.4% accuracy. Besides, as for the ROI data, it 
would be possible to raise this accuracy by restricting the allocation to high class probabilities. This 
method demonstrated that the use of whole-brain voxel data is a powerful alternative with two 
great advantages with respect to the previous method: no a priori assumptions about the location 
of the ligand uptake and more importantly, the method are conducted in an unbiased and 
automated fashion.  

It is also important to note that our models made use of basic clinical information, namely age, 
disease duration and H&Y stage. To the best of our knowledge, none of the previous studies using 
[123I]FP-CIT SPECT for diagnostic ascertainment has included this information in their models. 
However, we observed that, apart from being factors directly influencing the radioligand uptake per 
se, they were simple and accessible but very informative parameters for the diagnosis 
discrimination. Hence, we recommend its inclusion in the models. We also tested if there was 
higher striatal ligand uptake in VP cases with negative response to l-dopa treatment versus positive 
responders as found by (Antonini et al., 2012).  Our results were all negative for this association 
indicating that the [123I]FP-CIT SPECT was not a good predictor of responsiveness to dopamine 
replacement therapy. 

Finally, it is interesting to argue why these models did not reach 100% accuracy. In our opinion 
there might be a major limitation influencing the accuracy: our gold standard was based on clinical 
criteria that was blind to the SPECT, and perhaps a few cases were wrongly diagnosed. Some of the 
cases that were tagged as VP, even-though they fulfilled the criteria for VP when included in the 
study, had a PD-like pattern in the scan. It is possible that some of these patients truly had VP with 
an  indistinguishable [123I]FP-CIT SPECT  from PD, while others had in reality an underlying PD 
accompanied with cerebrovascular damage. In that case, updating our models would entail an 
increase in the accuracy and therefore, a boost in the credibility of the SPECT-aided diagnosis. 
Nevertheless, to confirm this hypothesis it would be necessary to perform a long term follow-up to 
verify how these patients evolve clinically, or preferentially, an MRI scan or an  
anatomopathological examination in the most misleading cases. 

In conclusion, this study has provided accuracies above 90% in discriminating between VP and 
PD via two common methods for SPECT evaluation: ROI analysis and SPM. A mathematical formula 
for the ROI analysis model is given in this manuscript for its evaluation by other groups. 
Furthermore, our study introduces a method for processing voxel-based data: the use of penalized 
algorithms implemented in R-packages. This approach provides an automated and therefore 
objective, fast and efficient solution very beneficial for the nuclear-medicine specialist decision-
making. Future work regarding the inclusion of more types of Parkinsonism and its implementation 
in a distributable application for external evaluation will be performed. 
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Abstract 

The dominant mass-univariate approach to neuroimaging data analysis uses the voxel as the unit of 
computation. While convenient, voxels lack biological meaning and their size is arbitrarily 
determined by the resolution of the image. Moreover, mass-univariate approaches do not model 
spatial dependencies and result in a large number of statistical estimates which need to be 
corrected post-hoc. To address these shortcomings, we introduce a multivariate spatial model in 
which an imaged brain region is assumed to result from a linearly weighted combination of 
(preferably multiscale) basis functions. The model is estimated using a Bayesian framework so as to 
automatically find the most accurate and parsimonious combination of basis functions describing 
the data. We test our framework to predict quantitative SPECT images of striatal dopamine 
function with a variety of basis sets including generic isotropic functions, anatomical parcellations 
of the striatum derived from structural MRI atlases, and functional parcellations of the striatum 
derived from advanced temporal processing of resting state fMRI. We found that a combination of 
~50 multiscale functional parcellations - and the corresponding weights - accurately represented 
the striatal dopamine activity, which gave a substantial reduction of the number of parameters to 
make inferences as compared with the number of voxels (V = 4,622). We also demonstrate the 
translational validity of our framework to develop clinical applications by constructing parsimonious 
and accurate models for discriminating parkinsonian disorders. As a conclusion, our spatial model 
constitutes an elegant alternative to voxel-based approaches in neuroimaging studies; not only are 
they biologically interpretable, they are also adaptive to high resolutions, represent high 
dimensions efficiently, and capture multi-range spatial dependencies.  

 

Highlights: 

● A multivariate spatial model using brain parcellations as basis functions is proposed 
● Brain regions can be modeled as a superposition of their multiscale parcellations 
● The obtained parcellations are biologically meaningful and capture spatial dependencies 
● The framework allows to develop parsimonious models with accurate clinical application 
● The model is computationally efficient, enhances power and adapts to high resolutions 

 

Keywords: Multivariate GLM; Functional parcellations; Spatial statistics; Basis functions; 

Spatial statistics; Dopamine transporter SPECT; Parkinsonian disorders.  
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Introduction 

Neuroimaging techniques have become invaluable tools for clinical research and practice in many 
brain disorders thanks to their ability to noninvasively investigate brain structure and function with 
relatively high spatial resolution. Data acquisition techniques such as MRI and PET allow the rich 
spatial structure that emerges from interactions between brain regions to be probed in high detail. 
However, classical voxel-based mass-univariate methods of analysis fit an independent model for 
each sampled brain location (i.e. for each voxel) and do not properly account for the spatial 
properties of the image, effectively disregarding spatial dependencies. The assumption of 
independence between voxels that mass-univariate analysis entails is rarely true which means that 
the mass-univariate approach ignores an important source of information encoded by statistical 
dependencies between brain regions. Furthermore, the mass-univariate approach is also 
suboptimal because it generates a great number of statistical estimates that depend arbitrarily on 
the voxel size in the image. These need to be dealt with using complex post-hoc correction methods 
such as random field theory (Nichols, 2012; Worsley et al., 1996), the accuracy of which has been 
the subject of significant recent debate (Eklund et al 2016). 

In light of these drawbacks, there have been some proposals to take spatial dependencies 
into account using multivariate approaches, and the field of spatial statistics offers attractive 
methods in this respect. Various discrete spatial models have been proposed for neuroimaging data 
(e.g.,Penny et al., 2005; Woolrich et al., 2004) but these generally only provide local smoothing for 
the parameter estimates from mass-univariate analysis. They do not accommodate long-range 
dependencies that are intrinsic to neuroimaging data, nor overcome the arbitrary dependence on 
voxel size or the intricate structure-shape relationships of the brain. A more accurate and flexible 
approach is the spatial mixed model, in which an additional term, called a spatial random effect, is 
added to the model. Here, spatial dependencies are typically modeled using a continuous (usually 
Gaussian) spatial random field. The covariance matrix of this term describes the spatial correlation 
between all locations (e.g., voxels), and the inversion of this matrix is necessary to obtain suitable 
estimates under this model (Wikle and Royle, 2002). The immediate problem of applying this 
approach to neuroimaging data is the computational burden of this calculation. Accordingly, this 
approach has principally been used in the context of restricted regions of interest (Bowman et al., 
2008; Groves et al., 2009) although some studies have made use of data reduction techniques to 
approximate the underlying spatial process (Hyun et al., 2014; Zhu et al., 2014).  

An efficient alternative to model high-dimensional spatial processes is the use of low rank 
models, in which the covariance matrix is approximated by a reduced number of basis functions 
(Cressie and Johannesson, 2008). These basis functions can be nonlinear functions, such as radial 
basis functions (RBFs), b-splines, or wavelets, that are placed all over the spatial domain. In spatial 
applications, multiple resolutions are typically used to capture both short and long ranges of spatial 
dependencies. Along this line, Gershman et al., (2011) developed a spatial modeling approach for 
neuroimaging data, referred to as topographic latent source analysis (TLSA). In TLSA, fMRI data are 
modeled as a superposition of image sources constructed from adaptive RBFs. The most important 
benefit of this approach is that it abstracts away from the voxel as a unit of analysis, and instead 
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performs inferences over underlying neuroanatomical regions. However, in TLSA generic isotropic 
RBFs are used that do not map cleanly onto their biological sources (i.e. bran nuclei). The approach 
also requires running heavy optimization machinery in order to fit a given data set.  

In this work we address these problems by introducing a new family of spatial functions for 
neuroimaging studies that more closely reflect the underlying biology. These are based on a novel 
multiscale functional parcellation of the relevant brain regions derived from resting state fMRI 
(rsfMRI). More specifically, we propose to use a soft multiscale parcellation obtained from an 
advanced parcellation strategy known as instantaneous connectivity parcellation (ICP, van Oort et 
al 2016). Our rationale is based on emerging evidence of temporally independent, spatially 
overlapping, subnetworks within anatomical regions and functional networks in the human brain 
(Smith et al., 2012). These subnetworks are believed to represent fine-scale units of computation 
used by the brain for processing and therefore correspond well with biology. The ICP approach is 
ideally suited to derive the underlying subnetworks, ICP, is ideally suited to deriving such 
subnetworks, which we will use as basis functions, for three reasons: first, ICP sub-divides brain 
networks on the basis of fine-grained temporal similarities instead of temporally averaged 
correlations. Second, ICP does not impose a spatial contiguity constraint, meaning that brain 
regions that are not spatially adjacent can still participate in the same subnetwork and third, ICP 
follows a hierarchical top-down strategy for parcellation, which generates a set of parcels at 
different levels of granularity which allows us to model multiple ranges of spatial dependencies in 
the image.  

We propose to represent an imaged brain region (or the whole brain) by a linearly weighted 
sum of basis functions. We propose to use a Bayesian framework - with automatic relevance 
determination of features and posterior optimization - to automatically find the best subset of 
bases. The resulted basis functions and the corresponding weights can be used in a second level of 
analysis to investigate the phenotype of the imaged subjects. To illustrate, we test our framework 
to predict quantitative SPECT images of the dopamine transporter (DAT) availability in the healthy 
striatum. DAT imaging allows assessing the integrity of presynaptic dopaminergic neurons of the 
nigrostriatal pathway and it is widely used in the clinical practice of movement disorders (Tatsch 
and Poepperl, 2013). We compare a variety of basis sets including: i) generic isotropic bisquare 
functions; ii) structural parcellations of the striatum derived from the Harvard-Oxford and Oxford-
Imanova atlases; and iii) functional parcellations of the striatum obtained from Independent 
Component Analysis (ICA) and ICP processing of rsfMRI data from the Human Connectome Project 
(Van Essen et al., 2013). We also develop an example with a real clinical application on how to use 
our model to construct accurate diagnostic classifiers for parkinsonian disorders. 

Our spatial model abstracts away from the voxel as the fundamental unit of analysis, it is 
generic, and can be adapted to investigate other brain regions and research questions. Moreover, 
the proposed methodology provides the additional benefits: (i) biological interpretability of the 
computation units – spatial functions over the voxel - in the analyses (ii) a substantial reduction in 
the number of parameters for making inferences in neuroimaging studies, which consequently 
reduces correction penalties and enhances power; (iii) a faithful representation of the complex 
spatial structure of neuroimaging data in low dimensions (iv) a quantification of the uncertainty in 
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the predictions thanks to the bayesian nature of the approach (v) a method to quantify the value of 
different parcellation schemes in terms of the accuracy with which they can represent 
neuroimaging data. In this work we propose and demonstrate the validity of ICP basis set to make 
inferences in functional neuroimaging. Importantly, the multiscale nature of the ICP algorithm 
allows to efficiently capture the multiple ranges of spatial correlation in the brain. This enables to 
model spatially non-stationary correlation structures and long range dependencies in the data. 
These are both very challenging for classical spatial statistical models, yet are inherent properties of 
brain organization (Glasser et al 2016). 
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Methods 

Notational preliminaries 
Throughout this section and what follows, we use bold lowercase characters to denote vectors (a), 
bold uppercase letters to denote matrices (A), plain letters to denote scalars (A or a), where we 
generally reserve lowercase letters for indexing and uppercase letters for fixed quantities.  

Statistical model formulation 
We use a flexible regression framework to model neuroimaging data in the spatial domain. To 
achieve this, we first reshape the preprocessed and masked three dimensional data volumes from 
each of Ssubjects into a vector ܡ௦of dimension V, where ݏ = 1, … , ܵ.Our aim is to predict these data 
using a set of basis functions {૖௠(ܠ)}௠ୀଵ

ெ , that vary over the spatial domain, ܠ,which for simplicity 
we take here to be coordinates in theCartesiancoordinate system. While these could be subject 
specific, here we employ a common set of basis functions across all subjects (described below). We 
consider that ܡ௦results from a linear combination M spatial basis functions plus a noise term: 
 

௦ܡ = ෍ w௠,௦߶௠(ܠ)

ெ

௠ୀଵ

+ ε 

 

where, ܟ௦ = ,ݏ,1ݓൣ … , ൧ݏ,ܯݓ
ܶ
 is anM-dimensional vector of regression coefficients (weights) that are 

specific to each subjectݏ and are adjusted to predict the class labels as accurately as possible. ε 
represents additive Gaussian noise ε~ࣨ(0,ିߚଵ)withߚdenoting the noise precision (i.e. inverse 
variance).1In this paper, we cast this problem in the context of Bayesian hierarchical models, where 
prior distributions are placed over model parameters of interest. This provides several important 
benefits: most importantly, Bayesian models account for the uncertainty in the parameter 
estimates and provide implicit regularization of model parameters. They also provide a simple and 
elegant method to combine data from multiple subjects via a shared prior over the regression 
coefficients (ܟ௦) as outlined below.  
 
In the first instance, we place a prior distribution over the regression coefficients only (ܟ௦). This 
yields a hierarchical generative model that can be succinctly summarized by the joint likelihood, 
which factorises in the following way:  
 
 

,܇)݌ ઴, ,હ|܅ (ߚ = ෑ ,௦|઴ܡ)݌ ,ߚ (௦|હܟ)݌(௦ܟ
ௌ

௦ୀଵ

 
(1) 

Here, ઴ is a V × M matrix that collects all the basis functions, ܅ = ,ଵܟ] … ,  ே] is an M × S matrixܟ
that collects the weight vectors for each subject and Y is aܸ × ܵmatrix collecting the neuroimaging 

                                                 
1 Throughout this paper it is more convenient to work with precisions and precision matrices rather than covariances 
and covariance matrices. 
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data for all subjects. We assume a Gaussian prior over the weights for each subject, such that 
(௦|હܟ)݌ = ,ࣆ|௦ܟ)ࣨ ઩હ

ିଵ). Here,the precision matrix, ઩ࢻ (inverse covariance matrix, i.e.઩હ
ିଵ = ઱ࢻ), 

is shared across subjects and we make it explicit that it depends on a vector of hyperparameters 
(હ = ,1ߙ] … ,  is zero. For ,ࣆ ,Without loss of generality, we also assume that the prior mean .(ܶ[ܯߙ
the model in equation (1), the precision matrix is taken to be diagonal and is parameterized with an 
independent parameter for each basis function (ߙ௠) along the leading diagonal. These parameters 
control the precision of each basis function, constituting an ‘automatic relevance determination’ 
prior (ARD; Mackay, 1995).  Under this prior, the independent parameters for each basis function 
allow non-informative and redundant basis functions to be down-weighted and informative ones to 
be emphasized in a consistent manner across subjects. We could also take this one step further and 
apply priors over the precision parameters that further encourage them towards sparsity, which is 
the basis for the relevance vector machine (Tipping, 2001). However, we consider in our case that 
we do not have sufficient prior knowledge as to whether we should expect the model to be sparse. 
Therefore, we estimate the precision parameters from the model in equation (1) in an 
unconstrained manner, using an empirical Bayesian approach, described in the next section. The 
basic set up of this model is schematized in Figure 1. 
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Figure 1. (A) The basic spatial model in matrix notation: the Sneuroimaging vectors of dimension V 
(Y) result from a linear combination of M basis functions (Φ) and the corresponding weights (W). 
(B) Diagram of the model: DATSCAN images in the striatum are modeled as a superposition of M 
weighted striatal basis functions. A zero-mean Gaussian prior with precisionߙ௠is placed over each 
weight, which determine the importance of each basis function for predicting the data.  
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The model specified by equation (1) is appealing due to its simplicity, but it does not fully account 
for the uncertainty in the parameter estimates because it places a prior distribution on the weight 
vector coefficients only. It also does not properly account for spatial correlations between basis 
functions. To address these problems, we employ a full Bayesian treatment of the problem, where 
weplace prior distributions over all variables of interest and explicitly model correlations between 
basis functions. This gives rise to a hierarchical generative model in which the joint likelihood 
factorises in the following way: 
 
 

,܇൫݌ ઴, ,܅ ઩ࢻ, ఉߠ|ߚ , ൯ࢻߠ = (ࢻߠ|ࢻ઩)݌(ఉߠ|ߚ)݌ ෑ ,܆|௦ܡ)݌ ,ߚ (௦|઩હܟ)݌(௦ܟ
ௌ

௦ୀଵ

 

 

(2) 

In this case, we have extended the generative model in equation (1) to accommodate correlations 
between the basis functions by allowing off-diagonal entries in ઩હ (and therefore also ઱હ).We 
thenplace priors over the precision matrix of the ARD coefficients (݌(઩ࢻߠ|ࢻ)) and the noise 
precision (݌(ߠ|ߚఉ)) in addition to the weights, where ࢻߠ and ߠఉ  denote the parameters of prior 
distributions for હand ߚ. More specifically, we specify that the prior over the weights has the same 
Gaussian form as before: ݌(ܟ௦|઩હ) = ,௦|૙ܟ)ࣨ ઩હ

ିଵ), the prior over the ARD precision matrixhas a 
Wishartdistribution ݌(઩ࢻߠ|ࢻ) = ,ܰ|ࢻℎ(઩ݏࣱ݅  where ܰ denotes the prior degrees of freedom(۾
and ۾ denotes the prior precision.2 Finally, we specify that the prior over the regression coefficients 
has the form of a Gamma distribution ݌൫ߚหߠఉ൯ = ,ܽ|ߚ)݉ܽ࣡  ܾ)), where ܽ and ܾ are shape and rate 
parameters. This choice of priors greatly simplifies the inference in this model because it facilitates 
an efficient Gibbs sampling framework that capitalizes on the conjugacy of these distributions as 
described in section 2.4. 
 

Model estimation and inference: Empirical Bayes 
For both of the models considered here (equations (1) and (2)), inference proceeds by estimating 
the posterior distribution over all parameters of interest. This is straightforward for thebasic model 
specified in equation (1), because for fixed હ and ߚ the posterior distribution over ܅ can be 
computed in closed form according to Bayes’ rule. For the model in equation (1), the posterior can 
be written as: 

 

,܇|܅)݌ ઴, ,ࢻ ୪୧୩ୣ୪୧୦୭୭ୢ× ୮୰୧୭୰  = (ߚ

୫ୟ୰୥୧୬ୟ୪ ୪୧୩ୣ୪୧୦୭୭ୢ
 = 

∏ ௣(ܡೞ|઴,ܟೞ,ఉ) ௣(ܟೞ|ࢻ)ೞ

௣(܇|઴,ࢻ,ఉ)
 

 

                                                 
2Throughout this paper, we use a parameterisation of the Wishart distribution over ܦ ×  matrices whereby ܦ

,ܰ|܆)ℎݏࣱ݅ (۾ = ଶ/(ேି஽ିଵ)|܆|ே/ଶ|۾|ܭ exp ቂ−
ଵ

ଶ
tr(۾܆)ቃ, where ିܭଵ = 2ே஽/ଶߨ஽(஽ିଵ)/ସ ∏ Γ[(ܰ + 1 − ݀)/2]஽

ௗୀଵ . Here N 

denotes the degrees of freedom and P is a symmetric, positive definite precision matrix. 
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It is straightforward to show (see e.g. (Bishop, 2006)) that by combining a factorised Gaussian prior 
and Gaussian likelihood, the posterior is also a factorisedGaussian, such that ܇|܅)݌, ઴, હ, (ߚ =
∏ ,௦ܡ|௦ܟ)݌ ઴, હ, ௦(ߚ .The posterior weight vector for each subject (ܟ௦)can then be written as: 
 
,௦ܡ|௦ܟ)݌  ઴, હ, (ߚ ,ഥ௦ܟ|௦ܟ)ࣨ =   (ଵିۯ

ۯ  ઴୘઴ߚ = + ઩હ   

ഥ௦ܟ   ௦ (3)ܡଵ ઴୘ିۯߚ =

 
Now, in order to calculate this posterior distribution, it is necessaryestimateoptimal values for the 
hyperparameters હ and ߚ. For the model in Equation (1), we achieve this using an empirical Bayes, 
or type-II maximum likelihood approach in which we work with point estimates of the 
hyperparameters (Bishop, 2006; Tipping, 2004). For models with relatively small numbers of basis 
functions, this approach is relatively efficient, although the computational cost does not scale well 
to models with a large number of basis functions (see below for further details). This is done by 
optimising the logarithm of thedenominator of Bayes rule, namely the log marginal likelihood, with 
respect to the hyperparameters. The intuition behind this approach is that the marginal likelihood 
describes the probability of the data (܇) after integrating out the dependence on the parameters 
 As such, it embodies a tradeoff between model fit and model complexity and so by maximizing .(܅)
the marginal likelihood, one obtains an optimal balance between the two. In this case, the marginal 
likelihood can also be computed in closed form. This takes the following form, where we have taken 
advantage of the independence of subjects and have omitted the dependence on ઴ for notational 
clarity: 
 

log ,ࢻ|܇)݌ = (ߚ log න ,܅|܇)݌ (ߚ   ܅݀(હ|܅)݌

 
=

ܸܵ
2

log ߚ −
ܸܵ
2

log ߨ2 −
ܵ
2

log|઩હ| −
ܵ
2

log|ۯ|

−
ߚ
2

෍(ܡ௦ − ઴ܟഥ௦)்(ܡ௦ − ઴ܟഥ௦) − ഥ௦ܟ
்઩હܟഥ௦

ௌ

௦ୀଵ

 
(4) 

 
 
To find હ and ߚ we employ a conjugate gradient optimization scheme as described in (Rasmussen 
and Williams, 2006). This requires the derivatives of the objective function given in equation (4), 
which can be found by applying standard identities for derivatives of expressions involving matrices 
and are given in the appendix.  
 
There are two key insights to note from the model specified by equations (1), (3) and (4). First, 
equation (1) embodies the assumption that subjects are independent realizations from the same 
distribution. This means that while the hyperparameters are shared across a group of subjects, the 
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weights are estimated independently for each of ܵ subjects.This provides a simple way to induce 
coupling between subjects via their shared reliance on 7a common set of hyperparameters. More 
generally, one could also employmulti-task learning (Bonilla et al., 2008; Caruana, 1997; Marquand 
et al., 2014) to couple the data from different subjects which does not require an independence 
assumption.However, this would be computationally costlyso we do not pursue it here. Second, 
equation (3) shows that the posterior variance for the weights does not depend on the value of the 
response variables (ܡ௦), only on the basis functions (઴)and noise precision (ߚ). Since we have 
chosen these to be fixed across subjects, this can lead to considerable computational 
improvements if this is accounted for in the implementation. In other words, it is not necessary to 
recompute the noise precision for each subject, only the posterior mean. For the remainder of this 
work, we refer to the approach where the model in equation (1) is fit using by optimisting the 
objective function in equation (4) as ‘Empirical Bayes’. 
 

Model estimation and inference: Full Bayes 
For the model in equation (2), we adopt an alternative Markov chain Monte Carlo (MCMC) 
inference approach. This is highly desirable because it can accurately quantify the uncertainty over 
all variables in the model and allows a richer hierarchical model to be specified over the 
parameters. In more detail, we employ a blocked Gibbs sampling algorithm to estimate the full 
posterior distribution over quantities of interest, rather than point estimates. This is achieved by 
repeatedly sampling from the full conditional distribution of each block of variables conditioned on 
the current estimates of all the others. This breaks a complex, high-dimensional distribution into 
simpler, low-dimensional problems, which can be sampled by conventional methods. Moreover, we 
choose conjugate prior distributions for each block of parameters which means that the full 
conditional distribution for each block of parameters can be computed exactly and has a known 
distributional form, which makes them easy to sample. In more detail, for each of ݐ = 1, … , ܶ 
iterations in the Markov chain, we draw samples from the full conditional distributions for ߚ ,܅, 
and ઩હ based on the current estimates for the other parameters. This is achieved by repeatedly 
sampling from the full conditional distributions given below, where we use a superscript to denote 
the iteration number and again suppress the dependence on ઴: 

઩હ|(௧ାଵ)܅)݌
(௧), ,(௧)ߚ (܇ = ෑ ࣨቀܟ௦

(௧ାଵ)ቚܟഥ௦
(௧ାଵ), ቁ(௧ାଵ)(ଵିۯ)

ௌ

௦ୀଵ
 (5a) 

઩હ|(௧ାଵ)ߚ)݌
(௧), ,(௧)܅ (܇ = ࣡ܽ݉ ቆߚ(௧ାଵ)ቤܽ +

ܸܵ
2

, ܾ +
1
2

෍ ቀ࢟௦ − ઴ܟ௦
(௧)ቁ

்

௦
ቀ࢟௦ − ઴ܟ௦

(௧)ቁቇ (5b) 

઩હ)݌
(௧ାଵ)|܅(௧), ,(௧)ߚ (܇ ℎݏࣱ݅ = ൬઩ࢻ

(௧ାଵ)ฬܰ + ܵ, ۾ + ෍ ௦ܟ
(௧)ቀܟ௦

(௧)ቁ
்

௦
൰  (5c) 

 

For many applications, the computational cost of MCMC methods is high relative to alternative 
methods. However, is important to note that equation (2) is linear in the parameters. As a result, 
the Gibbs sampling approach described above is highly efficient and converges rapidly to the target 



 

88 
 

distribution, as will be shown below. For the remainder of this paper we will refer to the estimation 
of equation (2) using equations (5a-c) as ‘Full Bayes’. 

Spatial basis functions 
In this work we consider five approaches for constructing basis functions for the spatial model. 
These consisted of:two data-driven functionalparcellations of the striatum based on (i) a recently 
developed instantaneous connectivity parcellationapproach (van Oort et al 2016) and (ii) agroup-
level independent component analysis (ICA); (iii) a set of generic basis functions widely used in 
spatial applications (Cressie and Johannesson, 2008) plustwo anatomical parcellationsof the 
striatum, derived from (iv) the probability maps derived from the structural MRI-based Harvard-
Oxford (HO) atlas, and finally (iv) the DTI-based Oxford-Imanova (OI) atlas. Both anatomical atlases 
are available in FSL (http://fsl.fmrib.ox.ac.uk/fsl). These basis sets are described next and their most 
important characteristics are summarized in Table 1 below: 
 
Table 1: Summary of the different basis sets evaluated in this work 

 
 
 
 
 
 
 
 
 

 
 
Instantaneous connectivity parcellation derived basis functions 
We obtained a multiscale functional parcellation of the bilateral striatum by applying ICP to 
restingstate fMRI of 100 participants from the Human Connectome Project (HCP)(Van Essen et al., 
2013), preprocessed using the HCP minimal processing pipelines (Glasser et al 2013). The ICP 
approachis described in detail elsewhere (Oldehinkel et al., 2016; van Oort et al., 2016)but we 
provide a brief overview here. ICP is based on the assumption that voxels that form a subregion 
within a larger region exhibit similar, yet slightly different time courses compared to the other 
voxels in the larger region. The aim of ICP is therefore to divide the larger region into smaller, 
functionally homogenous sub-regions based on their temporal signature.The differences between 
these temporal signatures may be subtle, so in order to increase sensitivity for such differences, we 
analyse the dynamics of the ‘instantaneous’ modes of connectivity, reflecting the voxel-to-region 
differences in functional connectivity. In essence, we amplify the differences in (groups of) voxel 
time series by comparing them to a shared reference, here taken to be thegrand mean average 
time course of the original region selected for parcellation.  
 

Name Type Data driven Multi-scale N basis functions 

ICP Functional Yes Yes 464 

ICA Functional Yes No 464 

Bisquare Generic No Yes 681 

Harvard-Oxford Structural No No 4 

Oxford-Imanova Structural No No 7 
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Pearson correlation is the most widely used metric to quantify functional connectivity between 
brain regions or voxels. In such types of analysis, themeasure of association is based on temporal 
averaging, which hides the rich dynamic information present in resting fMRI data. With ICP, we 
expand upon the basic Pearson correlation by considering the sequence of events across time. This 
proceeds by temporally ‘unfolding’ the time-averaged correlation between each voxel and the 
reference timeseries. For normalized time-series(i.e. having zero mean and unit standard 
deviation)of length T, the Pearson correlation between time courses x and ycan be written as the 
mean of the element-wise (Hadamard) product between them, i.e.: 

 

௫,௬ߩ =
1
ܶ

෍ ௧ݕ௧ݔ

்

௧ୀଵ

 

The essential intuition underlying the ICP method is that we analyse the time-resolved 
instantaneous connectivity between a regionally-specific reference time series and all voxels’ time 
series within the same region.In contrast to Pearson correlation, we do not perform temporal 
averaging over the quantity given above. This enables us to make use of the instantaneous 
temporal dynamics to sub-divide the original region into a set of subregions, based on the 
assumption that the temporal dynamics are also spatially structured. We derive a set of spatial 
modes describing this structure by feeding the temporally unfolded timecourse of each voxel with 
the reference timecourse into a group-level independent component analysis (ICA)as implemented 
in the FSL MELODIC software (Jenkinson et al 2012). While we could also use this decomposition to 
derive a piece-wise constant parcellation (see van Oort et al, 2016), these are not well suited for 
use as spatial basis functions. Instead, we use a set of real-valued quantities describing the relative 
confidence by which each voxel can be assigned to each parcel (i.e. soft parcellation) which form 
the set of candidate basis functions (Φ) for our spatial model. 
 
The ICP algorithm described above requires that the model order of the ICA decomposition be 
specified, although various approaches may be used to select the model order automatically (van 
Oort et al, 2016). In this work, we employ ICP do develop a multi-scale parcellation. Thus, for the 
striatum, we obtained subdivisions from model orders ofܯௗ= {2,…,30}, generating a total of M = 
464 basis functions (∑ ௗܯ

ଷ଴
ௗୀଶ ).  

 

Independent Component Analysis derived basis functions 
To act as a reference method, we compared the ICP method described above to a standard group-
level ICA decomposition.This allowed us to assess the value of the multi-scale nature of the ICP-
derived basis set for modelling neuroimaging data.For this we estimated a group-level ICA 
decomposition from the resting state data derived from the bilateral striatum from the same 100 
subjects from the HCP dataset and after the same preprocessing. We then estimated a group-level 
ICA from the concatenated data from all subjects and runs with the dimensionality fixed to the 
same total value as for the ICP analysis above (M = 464). This generates a large number of basis 
functions with spatially very focal support (i.e., each having limited spatial extent). The question of 
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whether the dimensionality of these two basis sets is functionally equivalent is revisited in the 
discussion.  
 

Generic local bisquare basis functions 
As second reference method, we evaluated the ability of a generic basis set commonly used in 
classical spatial applications (Cressie and Johannesson, 2008). This involves tiling multi-resolutional 
basis functions all over the spatial domain to capture the multiple ranges of spatial correlation 
(Cressie and Johannesson, 2008; Nychka et al., 2014). This reference method is therefore useful to 
assess the value of data-driven basis functions that aim to recapitulate the underlying biology with 
respect to basis functions that are simply multi-scale. Following Cressie and Johannesson (2008), we 
use local bisquare functions for this purpose. These take the form: 
 
 

߶௠೏
(ܠ) = ൝൤1 − ቀ ଵ

௥೏
ฮܠ − ௠೏܋

ฮቁ
ଶ

൨
ଶ

, ݂݅  ฮܠ − ௠೏܋
ฮ ≤ ௗݎ

0 ݁ݏ݅ݓݎℎ݁ݐ݋

  (6) 

 
 
Here, the ߶௠೏

 are the individual spatially-dependent basis functions, which are indexed (ܠ)
by݉ௗ = 1, … , ܯ ௗ at the ݀-th detail level where againܯ = ∑ ௗௗܯ . The centres of each basis 
function are denoted by ܋௠೏

 and ݎௗ denotes 1.5 × the Euclidean distance between centre points at 
the ݀-th detail level. Intuitively, this basis function set can be considered as similar to a radial basis 
functions but with finite support across space. Here we choose three detail levels, having 
ௗݎ = {6݉݉, 12݉݉, ௗܯ ,{18݉݉ = {589, 72, 20} and therefore yielding a total of 681 basis 
functions. Note that the total model order is slightly higher than the model order of the data-driven 
basis sets, but it was not possible to obtain an exact match because it is necessary to tile the entire 
space with basis functions. 

 
 
 
Anatomical basis functions 
For the anatomical atlases, we used the probability maps derived from: the 4 anatomical 
subdivisions (left and right putamen and caudate) from the MRI-based Harvard-Oxford (HO) atlas, 
and the 7 subdivisions from the connectivity DTI-based Oxford-Imanova (OI) atlas, supplied with the 
FSL software package v.5.0.9 (http://fsl.fmrib.ox.ac.uk/fsl). 
Figure 2 shows examples of the different basis sets used to model activity in the striatum. There are 
some characteristics that are worth commenting on: First, the soft nature of the parcellations fits 
with the idea that functional networks can be spatially overlapping (Smith et al., 2012). Thus, these 
parcellation schemes accommodate for the fact that one spatial unit may be involved in multiple, 
functionally relevant networks. With regard to the specific basis sets, the ICP and ICA basis sets are 
functional and data-driven and aim to derive the underlying units for the basis set on the basis of 



 

 

the underlying functional anatomy. They differ in that ICP provides a multi
parcels, allowing brain units of varying sizes and with substantial spatial overlap to be combined to 
accurately model brain data. In contrast, the ICA basis set is derived from a single high
decomposition, so the parcels are all quite small
basis set does not use biology, but instead places basis functions across a regular grid and across 
multiple spatial scales. The anatomical basis sets are data
but are neither multi-scale nor functional. The intuition underlying these basis sets is that function 
to a certain extent recapitulates structure.
 

Figure 2. Basis functions used to model activity in the striatum. For the high
(independent component analysis, instantaneous connectivity parcellation and local bisquare
functions), only examples are shown. Note also that the basis sets have not been masked to assist 
visualization. 

Correlation between features
Another important consideration for the model we present here is that collinearity between 
predictor variables (here, basis functions) in linear regression models complicates the 
interpretation of the resulting regression coefficients 
problems when covariates are highly collinear: (i) although unbiased, the regression coefficients 

the underlying functional anatomy. They differ in that ICP provides a multi
parcels, allowing brain units of varying sizes and with substantial spatial overlap to be combined to 
accurately model brain data. In contrast, the ICA basis set is derived from a single high
decomposition, so the parcels are all quite small and have lower spatial overlap. The local bisquare 
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multiple spatial scales. The anatomical basis sets are data-driven on the basis of structural anatomy, 
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have a high variance and can therefore be sensitive to slight variations in the data. This is because 
there are many combinations of collinear covariates that can predict the data equally well. (ii) Care 
must be taken in the interpretation of high magnitude coefficients because a high magnitude 
coefficient can arise because a covariate is directly useful in predicting the data or because it acts as 
a ‘suppressor’ variable (Kraha et al., 2012); that is, that it helps to cancel out noise or mismatch in 
other covariates (Haufe et al., 2014). We perform two specific analyses to alleviate these concerns. 
First, we evaluate the reproducibility of the coefficients under different splits of the data, and 
second we present structure coefficients that show the univariate correlation between the 
predictors and each covariate. These are a standard tool in linear regression models to assist 
interpretation of regression coefficients in the presence of collinearity (Kraha et al., 2012).  

 

Model testing 
We applied our spatial model to study dopamine function in the striatum as measured by 
DATSCAN, which is a reliable imaging test for the identification of nigrostriatal degeneration. This 
scan is accurate and widely used in clinical practice for the diagnosis of Parkinson’s disease (PD) and 
its differentiation from other movement disorders without presynaptic dopaminergic loss (e.g., 
essential tremor and drug-induced parkinsonism). However, the discrimination of PD from other 
parkinsonian disorders such as progressive supranuclear palsy (PSP) is way more challenging and 
current standard methods of assessments of this image do not allow to make this differential 
diagnosis (Tatsch and Poepperl, 2013).  

We elaborate two illustrative examples in the following. We first show a proof-of-concept 
example in which we use our method to obtain an accurate low-dimensional representation of the 
striatum using DATSCAN of normal controls. Second, we develop a translational clinical example 
using images from different parkinsonian disorders including Parkinson’s disease and progressive 
supranuclear palsy. We show how to use our framework to build efficient classifiers in the 
discrimination of these diseases. 

 
Low-dimensional representation of the healthy striatum 
In this example we sought to develop a spatial model able to accurately fit the DATSCAN of normal 
controls using a reduced set of basis functions and their corresponding weights. We compared the 
model performance in this task for the five candidate basis sets (ICP, ICA, bisquare, HO and OI). 

Subjects 
We included a total of 100 subjects (52% males, 60 ± 7 years) reported as normal by nuclear 
medicine specialists and who were scanned with [123I]FP-CIT SPECT at Hospital Virgen del Rocio, 
Sevilla, Spain. Details about the SPECT scanner and acquisition protocol can be found in a previous 
work (Huertas-Fernandez et al., 2014). SPECT images were spatially normalized into standard space 
using a custom template (http://www.nitrc.org/projects/spmtemplates). No smoothing was 
applied. 

Model set-up and evaluation 
The bilateral striata of the scans were masked using a manually delineated region template of 
dimension V=4622 (https://www.nitrc.org/projects/striatalvoimap). Data from the striata of the 
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N=100 normal subjects were vectorised to form Y (V×N) and intensity standardized to have zero 
mean and unit standard deviation. Each of these is associated with an independent weight vector, 
collected in the matrix W (M×N) but were dependent on a common set of hyperparameters as 
decribed above. We formed Φ for each basis set (ΦICP, ΦICA, Φbisquare, ΦHO, ΦOI) and each basis 
function was smoothed with an 8 mm Gaussian kernel to emulate the point spread function of the 
SPECT scanner (Cot, et al., 2004). 

We evaluated the model performance by assessing the mean cross-validated explained 
variance (ten repeats of split-half) as a function of the model order (M’ << M). For the anatomical 
basis sets (HO and OI) the model order was fixed (4 and 7, respectively). For the other basis sets 
(ICP, ICA and bisquare) the basis functions were ordered by relevance based on ARD estimation in 
order to construct a complexity/accuracy tradeoff curve. Thus, for M’=1, the model included only 
the most relevant bases; for M’=20, the model included the 20 top relevant bases, etc. To check 
these models in greater detail, we computed a spatial Pearson correlation coefficient (rho) between 
most relevant functions to check redundancy the correlation between the ߙ௠ across the 10 splits as 
a measure of reproducibility. 
 

Discrimination of parkinsonian disorders 
In this example we used our framework to build spatial models with the different basis sets (ICP, 
ICA, bisquare, HO and OI) for classification purposes. We tested the models to discriminate the 
following classes: i) normal controls from PD; ii) PD (in early stages) from PSP and iii) PSP subtypes 
(RS vs. PAGF). We also computed the classification performance of a classical voxel-wise classifier 
(i.e., using all the voxels) in order to have a non-spatial approach as a reference. 

Subjects  
We included next to the 100 NC subjects described in the previous section, 100 patients with PD 
(63% males, 63 ± 12 years); 50 of them in early stage (disease duration 3 ± 2 years) and the other 50 
in late stage (disease duration 13 ± 5 years); and 53 patients with PSP (73 ± 7 years; disease 
duration 3 ± 2 years). Forty-three of the PSP patients presented with the classical Richardson 
Syndrome (PSP-RS), whereas the other 10 presented with a pure akinesia and gait-freezing (PSP-
PAGF) phenotype. All patients were also scanned at the same site. The diagnosis of PD was made 
using the UK Parkinson's Disease Society Brain Bank clinical diagnostic criteria and the PSP patients 
were diagnosed and labeled based on established clinical criteria (Williams et al., 2005).  

Model set-up and evaluation 
The model set-up pipeline was the same as for the previous example to form Φ for the different 
basis sets. We also formed the output matrix Y for the disease groups (i.e., YPD and YPSP) as we did 
for the normal controls in the previous section. Once the matrix W was determined for each group, 
we used the weights in a second level of analyses to build the binary classifiers for the comparisons 
between normal controls and PD, PD (early stage) and PSP, and between the PSP subtypes (RS vs. 
PAGF). We used Bayesian logistic regression with ARD prior to select the most discriminating 
features (weights and basis functions). The classification performance was evaluated through the 
area under curve (AUC). 

 

 



 

 

Results  

Overall performance of different basis sets and models
Dopamine function in the striatum of normal subjects scanned with DATSPE
accurately predicted (R2> 90%) using multiple different basis sets and inference algorithms. 
relative performance of the different methods is summarized in Figure 3 in terms of proportion of 
variance explained. This shows that: (i) a
the DATSCAN data extremely accurately, whereas (ii) the anatomical basis sets were substantially 
less accurate; (iii) as expected, the predictive performance of all methods drops as a smaller 
proportion of spatial data points are available to train the model; (iv) for the ICP basis set, in which 
basis functions have high spatial correlation, the Empirical Bayesian approach overfits, but the full 
Bayesian approach does not. Finally, (v) for the ful
slightly more accurate than the ICP basis set.
 

 
Figure 3. Total variance explained by the Empirical Bayes approach (A) and the Full Bayesian 
approach (B) for models with a complete set of basis functions.
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variance explained. This shows that: (i) all higher order basis (ICP, ICA and bisquare) sets predicted 
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Performance of different basis sets as a function of model order 
It is crucial to derive a basis set that explains the data accurately and parsimoniously (i.e. using few 
basis functions). For example, it is reasonable to expect that more parsimonious mo
improved sensitivity in subsequent analyses. While there are various possible heuristics to select 
the most informative basis functions, a natural and effective approach is to select basis functions on 
the basis of their ARD coefficients, which is also the strategy employed by the relevance vector 
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basis set, where they explain approximately 20% more variance in the data 
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Figure 4. Total variance explained by the Empirical Bayes approach (A) and th
approach (B) for models using only the top 50 basis functions. 
 
 
To explore this further, we next chart the performance of the different basis sets as a function of 
the number of basis functions included (Figure 5). This plot was generated
basis functions to the model on the basis of their ARD coefficient estimated from the entire dataset. 
For simplicity, these models were trained using the empirical Bayes approach although similar 
conclusions were reached using the f
all basis sets perform at ceiling. More importantly, Figure 5 shows that the data
(ICP and ICA) perform better than the generic basis set across most model orders, indicating th
the data-driven basis sets give rise to more parsimonious models of brain function. Note also that 
the anatomical basis sets perform poorly across nearly all model orders for which they were 
applied. This speaks against the possibility that their poor p
model order. There is a relatively small difference between the different data
although ICP outperforms ICA both at very low model orders (< 5) and at moderate model orders 
(between 15-75 basis functions). 
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all basis sets perform at ceiling. More importantly, Figure 5 shows that the data
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driven basis sets give rise to more parsimonious models of brain function. Note also that 
the anatomical basis sets perform poorly across nearly all model orders for which they were 
applied. This speaks against the possibility that their poor performance is solely related to low 
model order. There is a relatively small difference between the different data
although ICP outperforms ICA both at very low model orders (< 5) and at moderate model orders 
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Figure 5. Explained variance (mean ± standard deviation) as a function of the number of basis functions 
included in the model. Inset shows a zoom on the performance of all methods at low model orders. 
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functions had also high structure coefficients (Supplementary Figure S1), which confirms the 
relevance of these variables for the model and rules out
being driven by suppressor effects. 
 
 
 
 
 

xplained variance (mean ± standard deviation) as a function of the number of basis functions 
included in the model. Inset shows a zoom on the performance of all methods at low model orders. 

dimensional representation of the striatum 
An important benefit of this approach is to provide a low-dimensional representation of the data. 
As an illustrative example, the ARD coefficients from the ICP model produced a relatively sparse set 
of basis functions relevant for predicting striatal dopamine function. For visualization purposes, we 
show these by deriving a ‘relevance score’ from the empirical Bayesian estimates (Figure 6A), 
where we divide the absolute value of ߙ௠ for each basis function with respect to the maximum 

). These largely correspond with the posterior variance derived from a full Bayesian model 
having a diagonal covariance matrix (Figure 6B). This shows that there were relatively few 
function with high relevance (e.g., m = 1, 5, 65, and 434), and – importantly 
functions had also high structure coefficients (Supplementary Figure S1), which confirms the 
relevance of these variables for the model and rules out the possibility of these high coefficients 
being driven by suppressor effects.  
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Figure 6. (A) Normalized relevance of the M weights using Empirical Bayes (B) Posterior variances of the 
weights using Full Bayes. Each weight correspond to a basis function obtained from instantaneous 
connectivity parcellation into into d = {2,…,30} levels. These different levels of parcellation are denoted by 
bars along the x-axis. 
 
Figure 7 illustrates that the top-ranked basis functions largely mapped different regions of the 
striatum and with different spatial lengthscales (i.e. smoothness). The basis functions 1, 65 and 434 
were spatially located covering major regions of the caudate, ventral striatum and putamen, 
respectively. Hence, the combination of these basis functions capture different spatial features and 
varying ranges of spatial correlation, respectively. Finally, note that there were relevant basis 
functions across multiple scales of parcellation. 
 
 

 
 

Figure 7. A selection of the top ranked basis function with coordinates given in MNI space.  Notation: basis 
function number (level).  
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Discrimination of parkinsonian disorders 
The area under curve for the three tested binary classifiers using the different basis set is shown in 
Table 2. The discrimination between PD and normal controls is a relatively straightforward 
classification problem on the basis of DATSCAN images and we observed that all methods 
performed approximately equally well at ceiling levels. The discrimination between PD and PSP is 
known to be very challenging using DATSCAN and this was reflected in our results. We obtained a 
moderate classification performance across basis sets, being the voxel approach the most accurate 
with AUC = 0.85. Paradoxically, when we trained the classifiers to differentiate the PSP subtypes (RS 
vs PAGF) we found that the voxel approach produced the worst performance (AUC = 0.45) while 
the ICP basis set clearly outperformed (AUC = 0.88). This suggests that some classification tasks 
where group differences have a strong spatial component may require from spatial methods over 
voxel approaches to capture these subtle spatial differences.  
 
Table 2. Area under curve of classifiers trained to discriminate parkinsonian disorders 
 
 
 
 
 
 
 
 
 
 
One of the benefits of using brain parcellations to build basis sets is the interpretability of the 
discriminative features. We illustrate in Figure 8 two of the top-ranked discriminative ICP basis 
functions for PD and PSP. The basis functions for distinguishing PD from NC were centered on the 
putamen and the ventral striatum whereas for PSP (vs. PD) were rather centered on the caudate. 
This observation is in accordance with the distinct pattern of degeneration seen in these entities, 
which may be important in the development of disease biomarkers in machine learning 
approaches. 
 
 
 
 
 

Basis set PD vs NC PD vs PSP RS vs PAGF 
ICP 0.99 0.78 0.88 
ICA 0.93 0.65 0.56 

Bisquare 0.99 0.76 0.75 
Harvard-Oxford 0.99 0.79 0.76 
Oxford-Imanova 0.99 0.82 0.57 

Raw voxels 1 0.85 0.42 
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Figure 8. Representation of ICP discriminative basis functions between normal controls and Parkinson’s 
disease and between Parkinson’s disease and progressive supranuclear palsy.  
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Discussion 
In this work we presented a new spatial modeling approach for the analysis of neuroimaging data 
that entails characterizing spatially distributed effects as a linear superposition of multiscale 
functional basis functions. This framework provides an elegant alternative to classical mass-
univariate approaches and provides several advantages including: (i) a gain in interpretability since 
the units of analysis have a stronger biological basis relative to voxels or generic basis functions 
(van Oort et al., 2016); (ii) the ability to utilise information from multiple data modalities; (iii) a 
great reduction of the number of statistical tests, leading to enhanced statistical power and 
consequent benefit from high-resolution acquisitions; (iv) incorporation of multi-resolutional spatial 
information in the image, thus capturing not only local dependencies but also long range 
interactions; and (v) a method to automatically identify meaningful subregions/subnetworks. In 
addition, our approach provides a method by which alternative parcellation approaches can be 
compared quantitatively, which enabled us to demonstrate that the ICP approach we employ to 
create basis functions provided more accurate models of brain function for a given model order 
than anatomical parcellation schemes predominantly used in the field. 

The gain in interpretation provided by our method comes from the fact that the units of analysis 
used by many current approaches (e.g., the voxel in classical mass-univariate analysis, and the RBFs 
employed in current spatial approaches such as TLSA) do not have a direct biological interpretation. 
In contrast, we propose to partition the brain into multiscale functional networks and to use these 
as primary regressors in the statistical analyses. This builds upon the idea that these networks can 
represent the elementary units of computation used by the brain. Importantly, we were able to 
assess this quantitatively because our approach provides a full spatial statistical model for the 
observed imaging data and therefore can be used to quantitatively compare different parcellation 
approaches (e.g. by comparing the accuracy with which different approaches can predict the 
observed imaging data). In this example, we showed that for a given model order, the ICP basis set 
provided more accurate predictions for unseen subjects than other basis sets. This result is very 
important and allows us to draw the following conclusions of ICP strategy for spatial models: (i) the 
superiority over bisquare functions reinforces our hypothesis that biologically meaningful 
parcellations extracted from human brain function outperform mathematically-generated generic 
functions; (ii) the superiority over anatomical parcellations, even at same model order, indicates 
that functional imaging modalities can be better explained with brain function than with brain 
structure. Moreover, the flexibility of fMRI processing allowed to reach higher model orders which 
further increased performance; (iii) the superiority of ICP over ICA, two methods extracting basis 
functions the from the same data, revealed the importance of the multiscale nature of ICP to build 
spatial models as it is recommended in spatial theory (Cressie and Johannesson, 2008); and 
remarkably (iv) the fact that oxygen consumption (BOLD fMRI) was accurate to explain dopamine 
function (DATSCAN) suggests that ICP parcellations may closely reflect the true underlying biology 
of human brain function. 
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In this work we employ soft parcellations to construct a neural basis set, which provides several 
advantages over the common approach of hard partitioning the brain using clustering techniques. 
For example, soft parcellations mitigate the risk of mixing signals from different brain regions if the 
definition of the spatial parcels is inaccurate and also allow one spatial unit to be involved in 
different networks (see e.g. Figure 1) and allow for a more gradual transition in underlying 
organization. We combine this with a principled method to select the most informative basis given 
the data and the experimental question, and further show in that these subdivisions can not only 
more accurately represent brain activity relative to other parcellation methods but also have a clear 
correspondence with physiological processes. For example, in line with the documented striatal 
uptake loss pattern in DATSCAN (Tatsch and Poepperl, 2013), we have seen functional parcellations 
located in the putamen that are discriminative for PD (vs. normal controls), and in the caudate for 
PSP (vs. PD). The weights associated with these basis functions can be used to investigate the 
association with phenotypic variables and may constitute a new potential avenue for the 
development of imaging biomarkers.  

The reduction in the number of parameters is substantial with respect to voxel-based univariate 
approaches. For example, we were able to accurately model (R2 > 90%) the striatum of normal 
controls with only M = 50 basis functions (M <<V, where V = 4622). An advantage of this reduction 
is a lower multiple comparisons penalty and therefore a gain in statistical power. The number of 
basis functions and therefore the multiple comparison correction for univariate analyses will 
depend on the number of subdivisions conducted with ICP. For our example applications we 
subdivided the striatum into up to 30 parts, but this value can be different based on prior 
hypothesis or knowledge about the level of granularity of certain region or network. Oort et al 
propose to use split-half reproducibility to learn about the optimal granularity of the parcellation. In 
any case, the number of subdivisions will always be much lower than the number of voxels so the 
gain in statistical power will always be substantial. This enables the detection of effects with smaller 
sample sizes. Also, in contrast to voxel-based approaches, the number of parameters and 
consequently, the multiple comparison penalty does not increase with spatial resolution. In fact, 
using our method increases in spatial resolution can potentially yield spatially richer basis functions.  

In addition to being highly accurate, our method is computationally efficient and highly scalable 
relative to other spatial statistical approaches for neuroimaging data (Bowman et al., 2008; Hyun et 
al., 2014; Zhu et al., 2014). For example, in TLSA, activations are modeled using radial basis 
functions, each of which requires both location and spatial bandwith parameters to be set resulting 
in many hyperparameters that have to be optimised given the data. In contrast, our set of basis 
functions have empirically-defined amplitudes and lengthscales and the optimisation step refers 
only to the hyperparameters of the weights and not to the configuration of the functions per se. As 
such, our approach can efficiently scale to high-resolution whole-brain prediction, where it may 
make use of hierarchically defined whole-brain atlases (e.g. van Oort, 2014). Another important 
property of our method is the improved modeling of the spatial information contained in the 
image. The spatial correlation between locations, especially between distant voxels, is not properly 
modeled by voxel-based approaches. In this sense, the multiscale nature of ICP allows to capturing 
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both local spatial dependencies and long-range interactions, which can yield improved sensitivity 
relative to voxel-wise approaches (Bowman et al 2008). This could be noted in PSP subtype 
classification example where the classifier using the raw voxels gave very poor performance, which 
may indicate that that particular classification task required from richer spatial information to 
detect subtle differences. However, we have seen that ICP may not always be (e.g., PD vs all PSP) 
the best basis set for all the applications and indeed we recommend to test our spatial model with 
other types of basis set for further applications. For example, fine-grained parcels obtained from 
ultra-high resolution MRI can be used to develop spatial models for structural MRI (Iglesias et al., 
2015; Keuken et al., 2014). Multi-modal parcellation methods (e.g. Glasser et al., 2016) are also 
good candidates for the basis set, although such parcellations are often not multi-resolutional, 
which is disadvantageous for modeling spatial dependencies across multiple scales. 

Finally, our approach is generic and is able to accommodate the most common types of designs and 
questions in neuroimaging studies. We provide a framework that can be easily applied to modeling 
groups of related scans so that studies involving case-control, multiple groups or task fMRI 
experiments can be easily accommodated. The weights (W) obtained can be used in further 
analyses to compare groups or investigate quantitative measures with parametric statistics or 
machine learning techniques. This provides additional benefits to those noted above, including the 
ability to use information encoded by spatial correlation. We demonstrated the value and the 
flexibility of our approach by using it to construct classifiers with different basis sets that were able 
to accurately distinguish PD patients from controls. This degree of accuracy is comparable to what 
is obtained using current procedures in the diagnostic workflow of PD and other neurodegenerative 
parkinsonisms (e.g. putamen quantification; Tatsch and Poepperl, 2013), so this example is only 
intended to validate our method using a well-established clinical application. Furthermore, our 
approach can also be used to provide new insights into disease mechanisms. For example, it would 
be interesting to use our model to investigate the correlation between the degeneration of fine 
striatal subnetworks with specific symptoms in parkinsonism, such as rigidity, gait disorder or 
dyskinesias. 

In summary, in this paper we presented a methodological framework for spatial modeling in 
neuroimaging with multiple advantages relative to existing approaches. In future work we would 
like to investigate other neuroimaging modalities and other brain regions. The framework we 
present is very generic and can be used to explore traits or symptoms in any brain disorder from a 
new perspective and has high potential to lead to methods that can be translated to real clinical 
practice.  
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Appendix 

 
The derivatives of the log marginal likelihood with respect to the hyperparameters are given below 
 

߲
ߚ߲

log ,ࢻ|܇)݌ = (ߚ
ܸܵ
ߚ2

−
ܵ
2

tr[ିۯଵ઴்઴]

− ෍
1
2

௦ܡ
௦ܡ் +

1
2

௦ܡ
்઴܊௦ +

1
2

ഥ௦ܟ
்઴்઴ܟഥ௦ + ௦܊ߚ

்઴்઴ܟഥ௦

ௌ

௦ୀଵ

+ ௦܊
்઩હܟഥ௦ 

 

 

߲
௠ߙ߲

log ,ࢻ|܇)݌ = (ߚ −
ܵ
2

tr ቈ઩હ
߲઩હ

ିଵ

௠ߙ߲
቉ −

ܵ
2

tr ൤ିۯଵ ߲઩હ

௠ߙ߲
൨

+ ෍ ௦܋ߚ
்઴்ܡ௦ − ௦܋ߚ

்઴்઴ܟഥ௦ − ௦܋
்઩હܟഥ௦ −

1
2

ഥ௦ܟ
் ߲઩હ

௠ߙ߲
ഥ௦ܟ

ௌ

௦ୀଵ

 

 
where: 

௦܊  = (۷ −  ௦ܡଵ઴்ିۯ(ଵ઴்઴ିۯߚ

 
௦܋ = ߚ

ଵିۯ߲

௠ߙ߲
઴்ܡ௦ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

104 
 

Acknowledgments 

We are grateful to Francisco Javier Garcia Gomez and Jose Antonio Lojo for their valuable time 
searching for the DATSPECT images in the PACS. We would also like to thank Juan Manuel Oropesa 
Ruiz and Silvia Jesus for their efforts in characterizing the clinical phenotype of the subjects used in 
this study. IH was supported by PFIS doctoral programme [FI14/00497] and M-AES mobility 
fellowship [MV15/00034] from the Instituto de Salud Carlos III. AFM gratefully acknowledges 
support from the Netherlands Organisation for Scientific Research (NWO), under the Gravitation 
programme (grant number 024001006) and from a Verniewingsimpuls VIDIfellowship (91716415). 
PM gratefully acknowledges the funding received from the Instituto de Salud Carlos III through the 
programme of research projects in health (grant number PI16/01575). CFB gratefully acknowledges 
funding from the Wellcome Trust UK Strategic Award [098369/Z/12/Z]. CFB is supported by the 
Netherlands Organisation for Scientific Research (NWO- Vidi 864-12-003). 

 

Conflict of Interest 

CFB is director and shareholder in SBGNeuroLtd. 

  



 

105 
 

References 

Bishop, C.M., 2006. Pattern Recognition and Machine Learning, Pattern Recognition. 
doi:10.1117/1.2819119 

Bonilla, E., Chai, K.M., Williams, C., 2008. Multi-task Gaussian Process Prediction. Adv. Neural Inf. 
Process. Syst. 20, 153–160. 

Bowman, F.D., Caffo, B., Bassett, S.S., Kilts, C., 2008. A Bayesian hierarchical framework for spatial 
modeling of fMRI data. Neuroimage 39, 146–156. doi:10.1016/j.neuroimage.2007.08.012 

Caruana, R., 1997. Multitask Learning. Mach. Learn. 28, 41–75. doi:10.1023/A:1007379606734 
Cot, A., Sempau, J., Pareto, D., Bullich, S., Pavia, J., Calvino, F., Ros, D., 2004. Study of the point 

spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 49, 
3125–3136. doi:10.1088/0031-9155/49/14/007 

Cressie, N., Johannesson, G., 2008. Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. 
Ser. B Stat. Methodol. 70, 209–226. doi:10.1111/j.1467-9868.2007.00633.x 

Eklund, A., Nichols, T. E., Knutsson, H. 2011 Cluster failure: why fMRI inferences for spatial extent 
have inflated false positive rates. PNAS 113, 7900-5 doi:10.1073/pnas.1602413113 

Gershman, S.J., Blei, D.M., Pereira, F., Norman, K.A., 2011. A topographic latent source model for 
fMRI data. Neuroimage 57, 89–100. doi:10.1016/j.neuroimage.2011.04.042 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., 
Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C., 2016. A multi-
modal parcellation of human cerebral cortex. Nature 1–11. doi:10.1038/nature18933 

Groves, A.R., Chappell, M.A., Woolrich, M.W., 2009. Combined spatial and non-spatial prior for 
inference on MRI time-series. Neuroimage 45, 795–809. 
doi:10.1016/j.neuroimage.2008.12.027 

Guyon, I., Elisseeff,  a, 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 
3, 1157–1182. doi:10.1162/153244303322753616 

Haufe, S., Meinecke, F., Gorgen, K., Dahne, S., Haynes, J.D., Blankertz, B., Biebmann, F., 2014. On 
the interpretation of weight vectors of linear models in multivariate neuroimaging. 
Neuroimage 87, 96–110. doi:10.1016/j.neuroimage.2013.10.067 

Huertas-Fernandez, I., Garcia-Gomez, F.J., Garcia-Solis, D., Benitez-Rivero, S., Marin-Oyaga, V.A., 
Jesus, S., Caceres-Redondo, M.T., Lojo, J.A., Martin-Rodriguez, J.F., Carrillo, F., Mir, P., 2014. 
Machine learning models for the differential diagnosis of vascular parkinsonism and 
Parkinson’s disease using [123I]FP-CIT SPECT. Eur. J. Nucl. Med. Mol. Imaging 42, 112–119. 
doi:10.1007/s00259-014-2882-8 

Hyun, J.W., Li, Y., Gilmore, J.H., Lu, Z., Styner, M., Zhu, H., 2014. SGPP: Spatial Gaussian predictive 
process models for neuroimaging data. Neuroimage 89, 70–80. 
doi:10.1016/j.neuroimage.2013.11.018 

Iglesias, J.E., Augustinack, J.C., Nguyen, K., Player, C.M., Player, A., Wright, M., Roy, N., Frosch, M.P., 
McKee, A.C., Wald, L.L., Fischl, B., Van Leemput, K., 2015. A computational atlas of the 
hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive 
segmentation of in vivo MRI. Neuroimage 115, 117–137. 



 

106 
 

doi:10.1016/j.neuroimage.2015.04.042 
Keuken, M.C., Bazin, P.L., Crown, L., Hootsmans, J., Laufer, A., Muller-Axt, C., Sier, R., van der 

Putten, E.J., Schafer, A., Turner, R., Forstmann, B.U., 2014. Quantifying inter-individual 
anatomical variability in the subcortex using 7T structural MRI. Neuroimage 94, 40–46. 
doi:10.1016/j.neuroimage.2014.03.032 

Kraha, A., Turner, H., Nimon, K., Zientek, L.R., Henson, R.K., 2012. Tools to support interpreting 
multiple regression in the face of multicollinearity. Front. Psychol. 3. 
doi:10.3389/fpsyg.2012.00044 

Mackay, D., 1995. Probable networks and plausible predictions — a review of practical Bayesian 
methods for supervised neural networks, Network: Computation in Neural Systems. 
doi:10.1088/0954-898X/6/3/011 

Marquand, A.F., Brammer, M., Williams, S.C.R., Doyle, O.M., 2014. Bayesian multi-task learning for 
decoding multi-subject neuroimaging data. Neuroimage 92, 298–311. 
doi:10.1016/j.neuroimage.2014.02.008 

Nichols, T.E., 2012. Multiple testing corrections, nonparametric methods, and random field theory. 
Neuroimage 62, 811–815. doi:10.1016/j.neuroimage.2012.04.014 

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., Sain, S., 2014. A multi-resolution 
Gaussian process model for the analysis of large spatial data sets. J. Comput. Graph. Stat. 0. 
doi:10.1080/10618600.2014.914946 

Oldehinkel, M., Beckmann, C.F., Pruim, R.H.R., van Oort, E.S.B., Franke, B., Hartman, C.A., Hoekstra, 
P.J., Oosterlaan, J., Heslenfeld, D., Buitelaar, J.K., Mennes, M., 2016. Attention-
Deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity. Biol. 
Psychiatry Cogn. Neurosci. Neuroimaging 1–11. doi:10.1016/j.bpsc.2016.03.008 

Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial 
priors. Neuroimage 24, 350–362. doi:10.1016/j.neuroimage.2004.08.034 

Rasmussen, E., Williams, K.I., 2006. Gaussian processes for machine learning . MIT Press 248. 
Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., 

Jenkinson, M., Andersson, J.L.R., Glasser, M.F., Van Essen, D.C., Feinberg, D.A., Yacoub, E.S., 
Ugurbil, K., 2012. Temporally-independent functional modes of spontaneous brain activity. 
Proc. Natl. Acad. Sci. U. S. A. 109, 3131–6. doi:10.1073/pnas.1121329109 

Tatsch, K., Poepperl, G., 2013. Nigrostriatal dopamine terminal imaging with dopamine transporter 
SPECT: an update. J. Nucl. Med. 54, 1331–8. doi:10.2967/jnumed.112.105379 

Tipping, M.E., 2004. Bayesian inference: An introduction to principles and practice in machine 
learning. Adv. Lect. Mach. Learn. 1–19. doi:10.1162/15324430152748236 

Tipping, M.E., 2001. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. 
Res. 1, 211–244. doi:10.1162/15324430152748236 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., 2013. The WU-
Minn Human Connectome Project: An overview. Neuroimage 80, 62–79. 
doi:10.1016/j.neuroimage.2013.05.041 

Van Oort, E. S. B., Mennes, M., Kumar, V. J. Grodd, W., Beckman, C. F. Human brain parcellation 
using time courses of instantaneous correlations ArXiV, 1609.04636 



 

107 
 

Van Oort, E. S. B., Mennes, M., Beckmann, C. F. (2014) Hierarchical atlas of human functional 
architecture using instantaneous correlation parcellations. 20th Meeting of the Organization for 
Human Brain Mapping, Hamburg, Germany 
Wikle, C., Royle, J., 2002. Spatial statistical modeling in biology. Mississauga, EOLSS Publ. Co. Ltd 1–

27. 
Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M., 2004. Fully Bayesian Spatio-Temporal 

Modeling of FMRI Data. IEEE Trans. Med. Imaging 23, 213–231. doi:10.1109/TMI.2003.823065 
Worsley, K.J., Marrett, S., Neelin, P., Vandal,  a C., Friston, K.J., Evans,  a C., 1996. A unified 

statistical approach for determining significant voxels in images of cerebral activation. 
{H}uman {B}rain {M}apping 4, 58–73. doi:10.1162/NECO_a_00006-Arleo 

Zhu, H., Fan, J., Kong, L., 2014. Spatially Varying Coefficient Model for Neuroimaging Data with 
Jump Discontinuities. J. Am. Stat. Assoc. 109, 1084–1098. doi:10.1080/01621459.2014.881742 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

108 
 

 
Probabilistic intensity normalization of 

dopamine SPECT images via  
Variational mixture of  
Gamma distributions 
 

 

 

 

 

 

 

 

 

Article in preparation, preliminary work presented as: 

A. Llera*, I. Huertas*, P. Mir, C.F. Beckmann, “Probabilistic intensity normalization of PET/SPECT 
images via Variational mixture of Gamma distributions”, 30th NIPS Conference 2016, Workshop on 
Machine Learning for Health (ML4H), Nov. 2016, Barcelona, Spain. 
 

and Selected as Spotlight Talk 

 * Shared first autorship 



 

109 
 

 

Probabilistic intensity normalization of dopamine SPECT images 

via Variational mixture of Gamma distributions 

Alberto Llera*1, Ismael Huertas*2, Pablo Mir2, Christian F. Beckmann3,4 

1: Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and 
Behaviour, Radboud University, Nijmegen, the Netherlands 

2: Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío / CSIC / 
Universidad de Sevilla, Seville, Spain 

3: Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the 
Netherlands 

4: Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of 
Oxford, United Kingdom 

 

 
 
 

Adapted from 30th Conference on Neural Information Processing Systems (NIPS 2016), Workshop 
on Machine Learning for Health 

 
* Shared first autorship 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

110 
 

 
Abstract 
Dopamine transporter SPECT images show substantial variability in intensity caused not only by 
physiological inter-individual differeces but also by device and acquisition-related factors. However, 
the current standard to assess these images, based on regional quantification of the striatal uptake, 
does not efficiently harmonize this heterogeneity in intensity and thus these quantities can be 
unequivalent across Gamma cameras. In this work we present a method to intensity normalize 
these images. We propose to reparametrize the voxels values of a certain scan according to a 
mixture model of Gamma distributions learnt from healthy subjects acquired with the same 
camera. The reparametrization is based on the cumulative density function of the distribution 
modeling the specific uptake so values are re-casted into the probabilistic interval [0,1]. We found 
that our method equalized image intensities and, as a consequence, it improved (with respect to 
the current standard) the discrimination ability between Parkinson disease subjects and healthy 
controls when images from different cameras were pooled together. Moreover, our approach 
allowed the use of voxel-based classifiers that further improved performance with respect to those 
regional-based. Our results indicated that our normalization schema was useful to alleviate bias and 
facilitated the generalization of algorithms when multi-site datasets are merged. The proposed 
methodology may constitute a key pre-processing step in multi-center studies using this type of 
images. 
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Introduction 
The imaging of the dopamine transporter (DAT) with nuclear medicine techniques, such as SPECT or 
PET, is a very useful and widespread tool  for the diagnosis of Parkinson’s disease (PD) and other 
neurodegenerative parkinsonisms (Tatsch and Poepperl, 2013). In these diseases, there is a 
progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway, which projects 
from the substantia nigra to the striatum. DATs are located at the presynaptic nerve terminals and 
are responsible for reuptake of dopamine in the synapses of these neurons to the striatum.  Hence, 
DAT imaging  allows to in-vivo visualizing the state of these projections and thus determining the 
presence of neuronal degeneration (Booij et al., 2012). DATs can be imaged with molecular binding 
agents such as the cocaine derivative 123I-labelled 2-carbomethoxy-3-(4-iodophenyl)-N-(3-
fluoropropyl) nortropane (123I-FP-CIT or 123I-ioflupane). This molecule is stable 3–6 h after its 
administration and best imaged 3–4 h post-injection, which makes it ideal for clinical use. In fact, its 
use was approved by the European Medicines Agency in 2000 and by  the Food and Drug 
Administration in the United States in January 2011 (Djang et al., 2012).  

DAT SPECT images present a high intensity variability from scan to scan caused by multiple 
factors, including both physiological factors such as metabolism, age and gender, and acquisition-
related factors such as machine, scanning protocol and image reconstruction (Varrone et al., 2013). 
The current standard method of assessment of these images consists of the quantification of tracer 
binding in the main striatal regions of interest (ROI), namely putamen and caudate, through the 
calculation of the striatal binding ratio (SBR). In this calculation, the tracer binding in specific 
regions (i.e., the striatum) is normalized to the tracer binding in non-specific regions. The non-
specific region refers to a region where the DATs are poorly expressed, commonly the occipital 
cortex or the cerebellum (Badiavas et al., 2011). The SBR of a particular ROI is then formulated as: 
 

ோைூܴܤܵ =
ோைூܥ − ேௌ஻ܥ

ேௌ஻ܥ
 

 
where CROI is the mean count per voxel in the ROI (whole striatum, putamen or caudate) and CNSB 
represents the mean count per voxel in the non-specific region.  

However, this ROI-based normalization schema is making assumptions about the intensity  
distribution in these ROIs that are not fully true and therefore this method may introduce bias. An 
illustrative example of this problem occurred in the European multicentre database of healthy 
controls for 123I-FP-CIT SPECT (ENC-DAT), where different sites produced statistically significant SBR 
values (Varrone et al., 2013). These large SBR differences, probably caused by the use of different 
Gamma cameras and settings, make these values not directly comparable and consequently the 
variable “site” should be introduced as a covariate in further analyses to account for these 
differences, which is also a suboptimal choice. Furthermore, these differences may affect the 
reproducibility of the accuracy of neuroimaging-based machine learning algorithms out of the 
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tested data-set. This lack of generalization may therefore affect the reliability of software aiding 
clinical decision-making.  
One group has made recent efforts to alleviate these inter-subject intensity differences in these 
images using more sophisticated voxel-based approaches and with very good results (Salas-
Gonzalez et al., 2013, Brahim et al., 2014, Brahim et al., 2015). While these methods provide a 
substantial improvement with respect to the SBR, they were applied to subjects that were acquired 
at the same site. Thus, it is uncertain whether these methods deal efficiently with the larger 
differences that are caused by distinct acquisition pipelines. Furthermore, the normalized intensity 
values, although harmonized, are still dependent on the values generated by that particular 
acquisition set-up.  

In this work we  propose to reparametrize the intensity values of DAT SPECT to a fixed and 
universal interval [0,1] using a probabilistic normalization technique. More specifically,  we propose 
to model a normative image histogram of a specific acquisition set-up (e.g., a site) with a mixture 
model of Gamma distributions using healthy subjects. Then, a certain image (also pathologic, e.g., 
with PD) acquired with those parameters can be fitted to that normative model to be quantified.   

The Gamma distribution modeling the specific uptake region is a related measure to the 
probability of activation of a given voxel. We reparametrize each voxel value according to the 
cumulative density function of that Gamma distribution. We used images from a public repository 
and acquired at multiples sites to test our method. We demonstrate that our nomalization 
procedure brings the following benefits: i) alleviates differences across scans/sites and ii) provide a 
universally comparable intensity range for the measurement of the striatum tracer binding. This 
latter benefit is crucial not only to allow comparing numeric results across sites/studies but also to 
build unbiased and generalizable algorithms with these scans.    

 

Methods 

Dataset  
In this work we make use of DAT SPECT images obtained from the Parkinson’s Progression Markers 
Initiative (PPMI) repository (www.ppmi-info.org). PPMI is a public-private partnership funded by 
the Michael J. Fox Foundation for Parkinson’s Research and funding partners. This project involves 
more than 30 clinical sites worldwide and DAT SPECT is one of the imaging test that are being 
collected.  These conditions make this multi-center repository an ideal example to reflect the 
heterogenity of real world data and to test our method for intensity harminization. We randomly 
selected 1342 DAT SPECT scans corresponding to 210 healthy controls and 1132 PD patients 
acquired at 24 different sites. These scans were acquired with 7 different cameras from a variety of 
manufacturers, including: (1) MARCONI 3000XP, (2) PHILIPS BrightView, (3) SIEMENS Encore2, (4) 
SIEMENS IP2, (5) PICKER HERMES Workstation, (6) GE MILLENNIUM MG and (7) GE VARICAM (Table 
1). All brain images were spatially normalized to MNI152 standard space using the standard 
procedure in FSL (http://fsl.fmrib.ox.ac.uk/fsl). 
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Table 1. Number of control and PD images, and sites per camera. Note: some sites have more than one 
camera. 

 MARCONI PHILIPS SIEMENS PICKER GE 
 3000XP BrightView Encore2 IP2 HERMES MILLENNIUM VARICAM 

Sites (N) 1 3 14 6 4 1 2 
 Controls 

N 15 21 90 30 31 14 9 
sex (M/F) 9 / 6 15 / 6 60 / 30 15 / 15 23 / 8 10 / 4 6 / 3 

age (years) 60 ± 11 62 ± 13 62 ± 10 59 ± 11 61 ± 13 55 ± 13 64 ± 13 
 PD 

N 179 133 494 128 108 61 29 
sex (M/F) 128 / 51 65 / 68 309 / 185 97 / 31 68 / 40 44 / 17 20 / 9 

age (years) 62 ± 10 68 ± 9 63 ± 10 61 ± 9 63 ± 9 60 ± 11 58 ± 11 

 

 
Raw image intensity 
The histogram of DAT SPECT images is characterized by a positive-valued distribution with two 
prominent features: i) a broad main component with positive mode bulk at low values 
corresponding to the background intensity, namely the non-specific uptake region;  and ii) a right-
skewed long tail at higher intensity values than the former and which corresponds to the activation 
voxels, namely the specific uptake region.  
 

 

                               Figure 1. Intensity histogram of a DAT SPECT image from a normal control  
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Inter-scan variability 
The intensity values of this type of images heavily depend on a variety of factors including both 
physiological-related such as age, sex and metabolism and device-related such as camera hardware 
and acquisition protocol. One of the largest source of variability is the imaging system (i.e., the 
camera), although images acquired with the same camera but with different acquisition parameters 
may give very different intensity profiles. Since in our dataset there are some sites with no or very 
few healthy controls to reliably model its intensity profile, we have grouped the images in our 
analyses by camera for both simplicity and sample size considerations. Figure 1 shows the mean 
histogram of the healthy controls for each camera, which illustrates the large variation in intensity 
profiles.  

Beyond the camera, there are also other factors regarding acquisition set-up and 
parameters such as the collimators, the pixel size or the reconstruction algorithm that can influence 
this variability. Hence, the true intensity profile may be set-up specific rather than camera-specific. 
We have illustrated this concept in Figure 3, where the mean histogram of healthy controls 
acquired with SIEMENS Encore2 camera at 12 different sites (thus, 12 potential different set-ups) 
were plotted. It can be noted that there are at least three different profiles indicating that sites 
using the same camera produce different intensity profiles. In particular, the site 290 (turquoise) 
and the sites 12 (orange) and 73 (green)  cluster separately from the other sites.   
 

 

Figure 2. Mean histogram of the healthy controls DAT SPECT images of each camera 
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Figure 3. Mean histogram of the healthy controls DAT SPECT images of SIEMENS Encore2 camera acquired at 
12 different sites.  

 
 
Intensity normalization with Gamma mixture model 
We propose to intensity normalize DAT SPECT images by a re-parametrization of the voxel values to 
the interval [0,1]. To this end, we propose to fit the image histogram to a mixture model of Gamma 
distributions. Each voxel value will be based on the cumulative density function (CDF) of the 
Gamma distribution function modeling the specific region of healthy subjects (i.e., the healthy 
striatum). In this way, each voxel intensity will represent the probability of activation, being 1 the 
highest value seen.  

Formally, let X = {xଵ, … , xୗభ
, … , xୗ} represent neuroimaging vectors corresponding to DAT 

SPECT images from S ∈ N subjects; from which the first S1 subjects are healthy controls and the 
remaining have some pathology e.g. Parkinson’s disease (PD). For each subject s, the vector 
 xୱ = (xଵ

ୱ , … , x୬
ୱ )  represents the measurements at the n ∈ V spatial locations in the brain (voxels). 

This methods consists of three main steps: 

1. Subject-wise scaling with respect to the its mode xത୨
ୱ =  

୶ౠ
౩

୑౩
 for j ∈ {1, … , n} and s ∈ {1, … , S} , 

where Mୱ denotes the mode of the subject.  
2. Learning the parameters of the Gamma mixture model using images from healthy subjects of a 

particular camera. We consider a mixture model of three Gamma components of the form: 
 

p (x|π, Θ) = ∏ ∑ π୩G୩(ଷ
୩ୀଵ

୒
୬ୀଵ x୬Θ୩) 

 
where Θ୩ = {s୩, r୩} are the shape and scale parameters of the three Gamma components 
and π = {πଵ, πଶ, πଷ} are the mixing proportions.  
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Thus, a DAT SPECT image histogram can be represented as the mixture of three Gamma 
distributions, two modeling the background (Figure 4 left) and one modeling the specific uptake 
(Figure 4 right). The model parameters were learnt using a Variational Bayesian approach. The 
model order (k=3) was estimated by evaluating the Free Energy of the models with different 
numbers of components.  

 
Figure 4. Mixture of three Gamma distributions to fit mean instensity histogram of DAT SPECT images from 
healthy subjects. 
 
3. We compute the CDF of the Gamma distribution modeling the specfic region and substitute 

each voxel value by its value according to: 
 

xത୨
ୱ =

1

rଷ
ୱయᴦ(sଷ)

න tୱయିଵ exp ൬
−t
rଷ

൰ dt,

୶തౠ
౩

଴

 j ∈ {1, … , n}, s ∈ {1, … , S} 

 
We will denote this re-parametrization as CDF-based intensity normalization (Figure 4). 
Importantly, this approach provides a  great advantage with respect to other classical normalization 
approaches based on probability density functions: it keeps the probabilistic interpretation of the 
data while preserving a monotonic transformation, i.e. voxels near the mode have equal probablity 
of activation than voxels in the right tail.  
 



 

117 
 

 

Figure 5. Cumulative Density Function (CDF) of the Gamma distribution modeling the specfic region. Each 
voxel value (x) will be replaced by its value under this distribution cdf (x). 

 
Statistical analyses 
In order to investigate the harmonization ability of our newly proposed method, we compared 
across cameras the intensity values of the primary subregions studied in DAT SPECT, namely 
putamen and caudate, before and after applying both the classical SBR and the Gamma CDF 
normalization. We made these comparisons only for healthy controls to avoid confounding the 
differences between cameras with the potential differences in PD severity. We used ANOVA and 
Tukey post-hoc analyses to identify differences between the imaging variables across cameras. The 
significance threshold was set to 0.007 (0.05/7) according to Bonferroni correction.  

We also examined the performance of a simple classifier to distinguish between healthy 
controls and PD when using multi-center data. We run logistic regression using bilateral putamen 
and caudate variables for both SBR and Gamma CDF normalization, and the mean area under curve 
(AUC) after a 10-fold cross-validation schema was calculated. In addition, since striatal voxel values 
are normalized after CDF reparametrization, we also run logistic regression using all the voxels in 
the striatum to compare the performance between ROI- and voxel-based classification. To deal with 
the high dimensionality, we penalized the regression with L1 regularization.  
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Results 

The Gamma CDF normalization schema provided a reparametrization of the intensity values of the 
DAT SPECT images to the interval [0, 1] for all cameras, and the corresponding intensity histograms 
were fairly equalized (Figure 6). An image example before and after normalization is shown in 
Figure 7. We observed that our normalization method produced a contrast enhancement of the 
image.  
 
 

 
 
Figure 6. Mean histogram of the healthy controls DAT SPECT images of each camera after CDF-based 

normalization. 
 

 
Figure 7. Example of the DAT SPECT image before (raw) and after normalization  (CDF normalized). 
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Striatal intensity 

The descriptive values for striatal intensity values (both raw and after normalization) across 
cameras are shown in Table 2. In healthy controls, we found significant differences in the mean 
striatal raw intensity values between many of the cameras. There were not differences in either sex 
and age indicating that these differences were not confounded by demographics. We observed that 
both SBR  and CDF-based normalization schemas alleviated most of these differences although 
some differences remained. After SBR, differences remained between the camera MARCONI 
3000XP and Encore2 and IP2 SIEMENS cameras (p<0.001). After CDF, differences remained 
between HERMES Workstation (Encore2 and IP2) and the cameras MARCONI 3000XP and SIEMENS 
Encore 2 (p<0.001). 
 
 
 
 
 

Discrimination between healthy controls and PD 

The results of the classifiers are summarized in Table 3. We observed that, when using SBR 
quantification, the performance of the classifiers was slightly poorer when scans from multiple 
sites/set-ups were pooled together. AUC values ranged from 0.83 to 0.93 being higher for classifiers 
contructed with images from a single site. Importantly, we found a significant improvement in 
performance when the ROI-based classifiers were built with striatal intensities after our proposed 
Gamma CDF normalization. For example, the AUC for IP2, HERMES and VARICAM classifiers 
remarkably increased by >10%. Moreover, since CDF normalization reparametrized the intensities 
at the voxel level to a unique interval  [0, 1] for all scans, the classification performance was further 
enhanced to AUC = [0.95-1] by the use of voxel-based classiffiers.   
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Table 2. Demographics and mean caudate and putamen intensities for raw image, and after  striatal binding ratio (SBR) and Gamma 
cumulative density function (CDF) normalization methods for healthy controls and PD patients.   

 
MARCONI PHILIPS SIEMENS PICKER GE 

3000XP1 BrightView2 Encore23 IP24 HERMES5 MILLENNIUM6 VARICAM7 

Controls 

N 15 21 90 30 31 14 9 

raw caudate 113 ± 212,4,5,6 33 ± 71,3,7 95 ± 542,4,5,6 62 ± 371,3,7 27 ± 81,3,7 28 ± 51,3,7 142 ± 422,4,5,6 

raw putamen 101 ± 182,4,5,6 29 ± 61,3,7 87 ± 492,4,5,6 56 ± 351,3,7 24 ± 71,3,7 25 ± 41,3,7 130 ± 382,4,5,6 

SBR caudate 2.37 ± 0.513,4 2.02 ± 0.47 1.78 ± 0.371 1.79 ± 0.331 2.20 ± 0.54 2.08 ± 0.49 2.20 ± 0.51 

SBR putamen 1.99 ± 0.413,4 1.70 ± 0.36 1.53 ± 0.301 1.52 ± 0.271 1.80 ± 0.41 1. 73 ± 0.32 1.94 ± 0.38 

CDF caudate 0.77 ± 0.045 0.72 ± 0.06 0.77 ± 0.065 0.74 ± 0.07 0.71 ± 0.071,3 0.71 ± 0.07 0.72 ± 0.08 

CDF putamen 0.69 ± 0.045 0.62 ± 0.05 0.67 ± 0.065 0.64 ± 0.07 0.60 ± 0.061,3 0.61 ± 0.05 0.65 ± 0.07 

PD 

N 179 133 494 128 108 61 29 

raw caudate 93 ± 23 29 ± 12 75 ± 43 58 ± 32 27 ± 11 22 ± 6 108 ± 31 

raw putamen 82 ± 20 26 ± 11 67 ± 38 51 ± 27 23 ± 9 19 ± 4 92± 25 

SBR caudate 1.43 ± 0.39 1.15 ± 0.48 1.19 ± 0.36 1.22 ± 0.35 1.42 ± 0.46 1.22 ± 0.51 1.61 ± 0.41 

SBR putamen 1.13 ± 0.30 0.93 ± 0.39 0.95 ± 0.29 0.96 ± 0.29 1.07 ± 0.36 0.94 ± 0.38 1.21 ± 0.27 

CDF caudate 0.61 ± 0.11 0.54 ± 0.14 0.60 ± 0.13 0.53 ± 0.13 0.49 ± 0.13 0.59 ± 0.13 0.57 ± 0.12 

CDF putamen 0.46 ± 0.09 0.40 ± 0.11 0.45 ± 0.10 0.38 ± 0.11 0.32 ± 0.10 0.43 ± 0.10 0.41 ± 0.08 

         Superscripts indicate post-hoc differences (p<0.007) between Gamma cameras 
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Table 3. Mean area under curve for controls vs PD classifiers using ROI striatal variables with SBR and CDF normalization and all striatal voxels 
with CDF normalization.  

 ALL 
MARCONI PHILIPS SIEMENS PICKER GE 

3000XP BrightView Encore2 IP2 HERMES MILLENNIUM VARICAM 

Sites (N) 24 1 3 14 6 4 1 2 

AUC SBR (ROI) 0.86 0.93 0.88 0.86 0.87 0.83 0.90 0.87 

AUC CDF (ROI) 0.89 0.90 0.95 0.89 0.95 0.93 0.90 0.98 

AUC CDF (voxel) 0.98 1 0.99 0.98 0.97 0.95 0.96 1 
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Discussion 
In this work we have introduced a probabilistic normalization schema valid for DAT SPECT images 
based on Bayesian mixture of Gamma distributions. We showed that the proposed methodology 
provides a reparameterization of the data in the interval [0,1] which effectively equalize the 
intensity histograms of the images procedent from different cameras and acquisition set-ups. 
Remarkably, our normalization step boosted up to >10% the discrimination ability between controls 
and PD when images from multiple sites/cameras were pooled together. Our method is also 
extensible to other modalities of functional imaging following the activation/background paradigm 
such as other SPECT radioligands or PET.  

Data harmonization is a key element in the generation of reliable and reproducible results in 
science. In fact, recent years have seen an increase in alarming signals regarding the lack of 
replicability in neuroimaging research (Gorgolewski and Poldrack, 2016, Poldrack et al., 2017). 
There are many factors influcencing this problem, some subject-related such as the variability in the 
collection of phenotypic data and the inherent heterogeneity in disease, but also the acquisition 
hardware and data analysis methods can play a major role. Unfortunately, this lack of 
standardization may generate site- or study-specific neuroimaging findings and estimates and 
therefore cause irreproducible and non-generalizable results.  

We have observed this phenomenon in DAT SPECT data from PPMI repository, where the 
diagnostic classification performance between controls and PD varied from 83% to 93% when 
images from different sites were pooled and a suboptimal harmonization method such as the SBR 
was used. This variability suggests that the classification algorithms were biased (partly) due to the 
variability in intensity across sites/acquisition set-ups. We found that our normalization method 
was helpful to alleviate this bias and as a result the diagnostic performance of the same ROI-based 
algorithms improved to 89%-98%. Furthermore, in contrast to the classical SBR operating at the ROI 
level, our normalization method provided a reparametrization at the voxel level which allowed us 
to create voxel-based algorithms that further increased classification performance up to 95%-100%.  

An additional benefit of our method with respect to the SBR and also other recently 
proposed voxel-based normalization methods  is the reparametrization to a unique and universal 
interval [0, 1]. SBR values are commonly in the range [0,5-4] depending on the camera, and some 
previous studies have found significant differences in these values across sites, thus limitating the 
capacity of pooling them. Recently proposed voxel-based aproches (Salas-Gonzalez et al., 2013, 
Brahim et al., 2014, Brahim et al., 2015), while effective for harmonization, are still dependent on 
the intensities of the analyzed dataset and thus ROI intensities would require from an extra step to 
compare the obtained values with other datasets. We have seen that our method alleviates 
differences in striatal intensity across cameras (although not in a optimal way yet). In this way,  
mean ROI intensities (e.g., putamen and caudate) can be directly compared across studies and 
pooled for meta-analysis purposes. In our next work we will refine our method to further improve 
this homogeneization.  
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In summary, we have proposed an objective and automated intensity normalization method, based 
on a mixture model Gamma distributions that may constitute a key pre-processing step to analyze 
DAT SPECT images. In this work we have demonstrated that our method provides important 
advantages that are crucial for: i) pooling DAT SPECT images (especially multi-site) and ii) creating 
unbiased and generalizable neuroimaging-based machine learning algorithms with this type of 
images.  
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Discussion 

Globally, we have learnt and contributed with new results and concepts to field of clinical 
neuroimaging in movement disorders. We have tested some hypotheses of current debate in the 
literature such as the role of some genes in cognitive impairment, the role of uric acid in PD motor 
subtypes or the utility of the DAT SPECT to differentiate PD from other parkinsonisms. Also, we 
have developed new methods for image processing and pattern recognition in neuroimaging 
making use of cutting-edge concepts in this field of expertise. Some of these results are very 
relevant in my opinion and far beyond the state-of-the-art. The Table below shows the impressive 
evolution of the methods that I used to apply when I started to work with these images back in 
2012 and how we evaluate these images now in 2017. This evolution is also seen in the pros and 
cons of each approach. We have passed from using the classical ROI-based calculation, which 
performs poorly and misses a lot of information due to the averaging; to using voxel-wise methods 
that are more accurate and richer in information but characterized by being prone to overfitting 
because the p>>N problem of dimensionality; to finally working with spatial models that are 
accurate and information-rich, work in low dimensions, and account for spatial correlation.  
 
 

 ROI-based Voxel-wise Spatial models 

 

   

Method ࡵࡻࡾࡾ࡮ࡿ =
ࡵࡻࡾ࡯ − ࡮ࡿࡺ࡯

࡮ࡿࡺ࡯
 

Discriminative: 
SVM, LDA 

Probabilistic: 
Bayesian 

optimization 
Information  Poor Rich Rich 
Performance Low High High 
Parsimonity Yes No Yes 

Dimensions / 
overfitting risk 

Low High Low 

Spatial 
correlation 

No No Yes 

Table. Evolution of the methodology to assess DATSCAN images during the thesis   
 

2012 2017 
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In the following, I will summarize the discussions of the works presented, one by one: 
 
Regarding the role of uric acid in Parkinson's disease subtypes, our data are in accordance with 
previous studies supporting this role. The largest studies exploring this relationship are PRECEPT 
and DATATOP (Schwarzschild et al., 2008, Ascherio et al., 2009), two longitudinal clinical trials 
conducted in the US that found that PD patients with lower levels of UA at baseline suffered from 
faster rates of clinical progression, including greater declines in the UPDRS total score and striatal 
DAT availability. Also, a recently published meta-analysis including 13,000 PD patients has provided 
a reliable effect size of this association (Wen et al., 2017). Given the fact that it is also known that 
PIGD PD patients have a worse disease course than TD PD patients, it was not surprising to see that 
UA levels differed between these subtypes. A recent study conducted in PD patients from Thailand 
showed that UA differed between PD subtypes (Lolekha et al., 2015). There is also some evidence, 
although weak, that UA levels correlate with striatal DAT (Spiegel et al., 2007, Schillaci et al., 2011).  

Despite all this evidence, it still remains unclear how the course of UA is during the clinical 
progression. To the best of my knowledge, the majority of the conducted studies have cross-
sectionally evaluated early and late stage patients, but any study has assessed longitudinally both 
UA and clinical state in the same group of patients. DATATOP for example tracked the clinical 
course with UPDRS but UA was not further tracked from baseline. In our study we evaluated UA 
and clinical state at late stages, but we also retrospectively verified the initial stages of these 
patients. We observed that 100% of TD had a tremor onset, but there was also a non-negligible 
proportion of patients that converted from a tremor-dominant onset to an intermediate phenotype 
(45% of I) or even to PIGD (25% of PIGD) during the course of the disease. Although unfortunately 
we did not count with UA in these initial stages, it would be very interesting to study whether these 
proportion of conversion from TD to PIGD are also aligned with drops in the levels of UA.   
 

Regarding the role of the studied genetic factors in cognitive impairment in PD, we have provided 
new findings, and also both supported and contradicted some previous findings. In this line, 
notorious works have been performed, although there are conflicting results and the exact role of 
these risk genetic factors is unclear.  

The CamPaING study longitudinally assessed 142 PD patients in the United Kingdom during 
10 years, where they found MAPT H1 to be associated with dementia whereas no relationship was 
found for COMT Val158Met, SNCA rs356219 and APOE4 (Williams-Gray et al., 2013). On the other 
hand, the study by Mata et al. performed exhaustive neuropsychological assessments in 1079 PD 
patients from 6 academic centers in the United States and found a consistent association of APOE4 
with cognitive impairment across several domains, whereas no role was found for MAPT H1 and 
SNCA rs356219 (Mata et al., 2014). The role of GBA seems to be clearer since several studies have 
consistently found that deleterious variants are associated with a worse disease progression 
including cognitive deficits and dementia (Winder-Rhodes et al., 2013, Mata et al., 2016). In 
particular for this gene, the debate is more focus on the role of some non-pathogenic variants and 
polymorphism. 
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Our long-term of dementia support the findings of Mata et al. role of APOE4 and GBA 
deleterious variants. Our assessment of striatal provides new insights about the role of these 
genetic factors. We hypothesized that a detrimental effect of certain genetic risk factors in striatal 
depletion could negatively influence the state of the frontrostriatal loop and therefore constitute a 
risk factor for dysexecutive syndrome. APOE2, SNCA rs356219, COMT Val158Met and GBA 
deleterious variants were found to be associated, which in line studies supporting the role of 
APOE2 and SNCA rs356219 in PD pathogenesis (Huang et al., 2004, Pihlstrom and Toft, 2011) and 
COMT Val158Met in dopamine metabolism (Wu et al., 2012). 
 
Regarding the diagnosis of vascular parkinsonism, the study herein presented, along with our 
previous study on VP (Benitez-Rivero et al., 2013) and a similar multicentre study performed in Italy 
(Antonini et al., 2012), have confirmed what it has been postulated for years: VP is a different and 
distinguishable entity from PD; however clinical manifestations and imaging patterns are very 
heterogeneous, which make the diagnosis very challenging. 

The heterogeneity in VP there included a high proportion of normal scans (up to 37% has 
been reported) (Antonini et al., 2012), the location of striatal dopamine deficit may depend on the 
cerebrovascular lesion, which can vary from patient to patient, and also a non-neglibile percent 
(16%) with a very similar imaging pattern than PD (Benitez-Rivero et al., 2013). ROI-based 
comparisons between VP and PD have found lower striatal DAT and higher asymmetry indices in 
PD, but these group-level differences are not sufficient to establish a specific diagnosis at the single 
subject level (Contrafatto et al., 2012).  Our study attempted to make this pattern recognition of VP 
profile in DAT imaging more automated, and indeed it is the first study in the literature using both 
ROI and voxel data to discriminate the two entities using machine learning algorithms. Although the 
results are very good for this binary comparison (90% accuracy, which might be even higher due 
few possible clinical mislabelling a PD as VP in early stages) 

Nevertheless, it should be noted that this diagnostic specificity for VP may be poor in a 
multi-class classifier with other unknown movement disorders. For example, if >30% of VP scans are 
visually classified as normal the differential diagnosis with essential tremor may be inaccurate. In 
this regard, spatial modelling from work 4) constitutes a promising approach to deal with these 
complex patterns and spatial heterogeneity. This approach has the potential to identify subtle 
spatial patterns disregarded by the human eye. In future work, it would be very interesting to test 
whether these models are able to model the spatial heterogeneity and what is even more 
challenging, to notice differences between normal scans in essential tremor and VP.    
 
Regarding the use of spatial models for neuroimaging, we have provided a new framework to 
analyze brain images that potentially address many of the problems that convey the use of the 
voxel. In this regard, although the use of the voxel has provided great advances in our 
understanding of the brain in health and disease during already two decades, criticism due to three 
major reasons: i) the voxel is a mere resolution unit without biological meaning and ii) voxel-wise 
approaches generate a massive amount of statistical estimates that which may reduce power to 
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detect signals; and iii) brain regions interact with other non-spatially-contiguous regions and these 
interactions are disregarded with univariate approaches.  

There have been recent efforts to overcome these limitations, including multivariate 
approaches such as multivariate pattern analysis (MVPA), which eludes the assumption of 
independence between voxels, and other similar spatial models such as Topographic Latent Source 
Analysis (TLSA) which is constructed with radial basis functions (Gershman et al., 2011). A main 
difference between our work and TLSA is the nature if the basis functions, being generic in TLSA 
whereas our work introduces a new family of basis functions extracted from brain function. Our 
framework provides an elegant alternative to classical mass-univariate and approaches using 
generic basis functions including the following advantages: (i) a gain in biological interpretability; (ii) 
the ability to utilise information from multiple data modalities; (iii) a great reduction of the number 
of statistical tests; (iv) incorporation of multi-resolutional spatial information in the image; and (v) a 
method to automatically identify meaningful subregions/subnetworks. Our approach is generic and 
it is also possible to employ many other types of basis set such as, fine-grained parcels obtained 
from ultra-high resolution MRI (Keuken et al., 2014) or  multi-modal parcellations (Glasser et al., 
2016). Although a possible disadvantage of other methods with respect to ICP family basis set, is 
that if parcellations are not defined at different levels of granurality, the spatial dependencies 
across multiple scales may not be properly captured. 

The weights associated with the basis functions, which implicitly encode spatial information, 
can be used in further analyses to compare groups or investigate quantitative measures with 
parametric statistics or machine learning techniques. Hence, these spatial-wise weights can have 
diagnostic utility and provide new insights into disease mechanisms. For example in DAT imaging in 
PD, loss in mean putamen uptake is known to be associated with motor symptoms in general. It 
would be interesting if future work to use our model to find subnetworks associated with more 
specific symptoms, such as rigidity, gait disorder or dyskinesias.  
 
Lastly, regarding the intensity normalization of DAT SPECT images, we provide an effective method 
to harmonize intensity across cameras. There are two major limitations of the current standard to 
normalize and quantify these images, namely the striatal binding ratio (SBR): i) it is ROI-based, and 
therefore voxel-based approaches cannot applied with these normalization schema; and ii) it makes 
assumptions about the intensity distribution of the image that are not fully true, and indeed 
previous studies have shown that different Gamma cameras can produce different striatal SBR 
(Varrone et al., 2013). Thus, these factors limitate the capacity to: i) compare studies or pool 
images from different sites; and ii) to create voxel-based algorithms with these images. As a 
consequence, this lack of standardization may have generated site- or study-specific neuroimaging 
findings and estimates that might unfortunately be irreproducible and non-generalizable.  

We have observed this phenomenon in DAT SPECT data from PPMI repository, where the 
diagnostic classification performance between controls and PD varied from 83% to 93% when 
images from different sites were pooled and a suboptimal harmonization method such as the SBR 
was used. We found that our normalization method was helpful to alleviate this bias and as a result 
the diagnostic performance of the same ROI-based algorithms improved to 89%-98%. Furthermore, 
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in contrast to the classical SBR operating at the ROI level, our normalization method provided a 
reparametrization at the voxel level which allowed us to create voxel-based algorithms that further 
increased classification performance up to 95%-100%.  

An additional benefit of our method is the reparametrization to a unique and universal 
interval [0, 1]. SBR values are commonly in the range [0,5-4] depending on the camera, and the 
absolute values of recently proposed voxel-based aproches (Salas-Gonzalez et al., 2013, Brahim et 
al., 2014, Brahim et al., 2015), while effective for harmonization, are still dependent on the 
intensities of the analyzed dataset. By reparametrizating the image to an harmonized interval [0,1],  
mean ROI intensities (e.g., putamen and caudate) will be always comparable across studies and 
could be pooled for meta-analyses. 
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Conclusions  

 
1. Parkinson’s disease patients who present with a tremor onset and maintain predominance 

of tremor, or, to a lesser extent, an intermediate phenotype, have higher levels of uric acid 
and striatal DAT binding than those who develop postural instability and gait disorder 
phenotype. Low levels of this natural antioxidant may lead to a lesser degree of 
neuroprotection and could therefore influence motor phenotype and the clinical course 

 
2. APOE2 allele, and the polymorphisms SNCA rs356219 and COMT Val158Met influence 

striatal dopaminergic depletion; APOE4 allele influences dementia and deleterious variants 
in GBA influence both. The dichotomy of the dual syndromes may be driven by a broad 
dichotomy in these genetic factors  

 
3. The imaging of DAT with SPECT is a useful tool for discriminating vascular parkinsonism from 

Parkinson’s disease. The use of machine learning algorithms using either the regional striatal 
quantification or the voxel-wise data of the striatum gives high discrimination accuracy. 
Hence, objective and automated algorithms can be deployed to aid the differential diagnosis 
of these two parkinsonisms 

 
4. The use of multivariate spatial models using a linear superposition of basis functions 

constitutes an elegant and efficient method to analyze brain images. The model is flexible 
and can be adapted to test different families of basis functions. The coefficients associated 
with the basis functions can be utilized to create accurate classification and regression 
models with clinical application. 
 

5. Multi-resolutional parcellations of brain regions, such as the ones generated with the 
instantaneous correlation parcellation (ICP) method, are an effective family of basis 
functions to build spatial models. These models offers unpredecent benefits with respect to 
classical mass-univariate voxel methods, including: biological interpretability, computational 
efficience, and multi-range spatial correlation modeling.  

 
6. The proposed Bayesian analysis framework for neuroimaging analysis - with automatic 

relevance determination of features and posterior distribution optimization - allows to 
automatically identifying meaningful brain subregions/subnetworks for phenotypic 
outcomes and properly quantifying the uncertainty over the predictions.  

 
7. The intensity histogram of a DAT SPECT image can be efficiently modeled as a mixture 

model of Gamma distributions. The parameters shaping the Gamma distributions can be 
used to harmonize the image intensity at the voxel level even when the scans were acquired 
with different Gamma cameras.  
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8. The cumulative density function of the Gamma distribution modeling the specific uptake can 
be used to re-cast the voxel intensity into a new – and universal – normalized feature space 
between 0 and 1. The proposed reparameterization drastically improves the accuracy of PD 
diagnosis when images from different cameras are pooled. Therefore, this harmonization 
method may constitute a key pre-processing step for multi-center studies and studies 
aiming at developing generalizable clinical applications  
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Conclusiones  

 
1. Los pacientes de enfermedad de Parkinson que debutan con temblor y mantienen un 

predominio del temblor en el transcurso de la enfermedad,  tienen mayores niveles de ácido 
úrico  y dopamina estriatal que aquellos que  desarrollan un fenotipo motor con predominio 
del trastorno de la marcha y la inestabilidad postural. Niveles bajos de este antioxidante 
natural pueden disminuir los niveles de neuroprotección y por tanto influenciar el fenotipo 
motor y el curso clínico.  

 
2. El alelo APOE2, y los polimorfismos SNCA rs356219 y COMT Val158Met se asocian con 

degeneración dopaminergica  estriatal; el alelo APOE4 se asocia con el desarrollo de 
demencia; y las variantes deletereas en GBA se asocian con ambos procesos. La dicotomía 
de los síndromes duales puede estar conducida por una dicotomía en dichos factores 
genéticos.   

 
3. El SPECT con [123I]FP-CIT es una herramienta útil para diferenciar el parkinsonismo vascular 

de la enfermedad de Parkinson. El uso de algoritmos de aprendizaje automático ya sea con 
variables de captación estriatal o con información estriatal a nivel de voxel, permiten crear 
modelos con gran exactitud diagnóstica. Por tanto, dicho diagnóstico diferencial podría ser 
asistido con algoritmos objetivos y automáticos. 

 
4. El uso de modelos multivariados espaciales usando superposición lineal de funciones base 

constituye una aproximación eficiente y elegante para el análisis de neuroimagen. El modelo 
es flexible y puede ser adaptado para probar distintas familias de funciones base. Los 
coeficientes asociados a las funciones base se pueden utilizar para crear modelos de 
classificación y regresión con aplicación clínica. 
 

5. Las parcelaciones multiescala de regiones cerebrales, tales como aquellas generadas por el 
método de parcelación por correlaciones instantáneas (ICP), son una familia de funciones 
base efectivapara el desarrollo de modelos espaciales. Esgtos modelos ofrecen ventajes sin 
precedentes con respecto el método clásico univeado basado en vóxel, incluyendo:  
interpretabilidad biológica, eficiencia computacional y modelado de la correlacion espacial a 
múltiples niveles de granularidad.  
 

6. El método Bayesiano propuesto para el análisis de neuroimagen – usando determinación 
automática de variables relevantes y optimización de la distribución a posteriori – permite 
identificar automáticamente las regiones y/o redes cerebrales que se asocian con variables 
fenotípicas a la vez que cuantificar la incertidumbre de las predicciones.  
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7. El histograma de intensidad del SPECT con [123I]FP-CIT puede ser modelado de manera 

eficiente con on modelo mixto de distribuciones Gamma. Los parámetros que dan forma a 
dichas distribuciones Gamma pueden ser utilizados para armonizar la intensidad de la 
imagen a nivel de vóxel incluso cuando las imágenes han sido adquiridas con cámaras 
Gamma distintas.  
 

8. La función de densidad acumulada de la distribución Gamma que modela la región 
específica puede ser usada para reparametrizar la intensidad de voxel a un nuevo espacio 
normalizado – y universal – entre 0 y 1. Dicha reparametrización mejora de manera drástica 
el diagnóstico de enfermedad de Parkinson cuando se crean clasificadores con imágenes de 
distintas cámaras Gamma. Por tanto, la normalización propuesta puede constituir un paso 
de pre-procesado clave en estudios multicéntricos y en el desarrollo de aplicaciones clínicas 
reproducibles.   
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Templates 

In collaboration with the nuclear medicine unit of Virgen del Rocío Hospital (Seville, Spain), we have 
created useful [123I]FP-CIT SPECT templates in standard MNI space
available for the neuroimaging community. 
spatially normalize [123I]FP-CIT SPECT
anterior and ventral subregions within the striatum.  
 
[123I]FP-CIT SPECT template. This template was
scans of 30 normal controls. Available at: 

 

 
 
Striatal VOImap. This template was created 
was divided into 6 sub-regions: ventral caudate, anterior dorsal caudate, posterior dorsal caudate, 
ventral putamen, anterior dorsal put
(J Cereb Blood Flow Metab. 2001;21:1034
segmentation. A nonspecific background volume was drawn in the occipital cortex
http://www.nitrc.org/projects/spmtemplates
 

 

In collaboration with the nuclear medicine unit of Virgen del Rocío Hospital (Seville, Spain), we have 
CIT SPECT templates in standard MNI space (Montreal Neurological Instite) 

available for the neuroimaging community. In this work, we have used two templates: the first to 
CIT SPECT images to standard space; the second

ions within the striatum.   

This template was created by spatially normalizing and averaging the 
rmal controls. Available at: http://www.nitrc.org/projects/spmtemplates

. This template was created with 18F-DOPA PET of 12 normal controls
regions: ventral caudate, anterior dorsal caudate, posterior dorsal caudate, 

ventral putamen, anterior dorsal putamen and posterior dorsal putamen, based on Mawlawi et al. 
(J Cereb Blood Flow Metab. 2001;21:1034–57) and Oh et al. (J Nucl Med.2012;53:399
segmentation. A nonspecific background volume was drawn in the occipital cortex
http://www.nitrc.org/projects/spmtemplates  
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