
FACULTAD DE MATEMÁTICAS
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DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
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RESUMEN

Una aplicación T definida de un espacio métrico M en M se dice no expan-

siva si d(Tx, Ty) ≤ d(x, y) para todo x, y ∈ M . Diremos que un espacio

de Banach X tiene la Propiedad Débil del Punto Fijo (w-FPP) si para toda

aplicación no expansiva T definida de un subconjunto débilmente compacto

convexo C de X en C tiene un punto fijo. En esta disertación, estudiamos

principalmente la w-FPP como una propiedad genérica en el conjunto de

todas las normas equivalentes de un espacio de Banach reflexivo dado. Una

propiedad P se dice genérica en un conjunto A si todos los elementos de A sat-

isfacen P excepto aquellos pertenecientes a un conjunto de tamaño pequeño.

Con el fin de establecer los resultados de este trabajo, consideraremos varias

nociones de conjuntos pequeños, como por ejemplo los conjuntos de Baire de

primera categoŕıa, conjuntos porosos, conjuntos nulos Gausianos o conjuntos

direccionalmente porosos.

M. Fabian, L. Zaj́ıĉek y V. Zizler probaron que casi todos los renor-

mamientos de un espacio uniformemente convexo en cada dirección (UCED),

en el sentido de la categoŕıa de Baire, son también UCED. Debido al resultado

de M.M. Day, R.C. James y S. Swaminathan, todo espacio de Banach sepa-

rable admite una norma equivalente que es uniformemente convexa en cada

dirección. Puesto que esta propiedad geométrica implica la FPP, obtenemos

la siguiente conclusión: Si X es un espacio de Banach reflexivo separable, en-

tonces casi todos los renormamientos de X satisfacen la w-FPP. Este método

no es válido para el caso de los espacios reflexivos no separables. Sin em-

bargo, recientemente T. Domı́nguez Benavides ha probado que todo espacio

de Banach que pueda ser sumergido en c0(Γ), donde Γ es un conjunto arbi-

trario ( en particular, todo espacio reflexivo) puede ser renormado para tener

la w-FPP. Nótese que que el espacio c0(Γ) no es renormable UCED cuando Γ

es no numerable, pero satisface la w-FPP porque R(c0(Γ)) < 2, donde R(·)



es el coeficiente de Garćıa-Falset y todo espacio de Banach X con R(X) < 2

satisface la w-FPP. Usando la misma inmersión, obtenemos el siguiente re-

sultado: Sea X un espacio de Banach tal que para algún conjunto Γ existe

una aplicación continua lineal uno a uno J : X → c0(Γ). Entonces, casi

todas las normas equivalentes q en X (en el sentido de la categoŕıa de Baire)

satisfacen la siguiente propiedad: Toda aplicación q-no-expansiva, definida

desde un subconjunto convexo débilmente compacto C de X, en C, tiene un

punto fijo. En particular, si X es reflexivo, entonces el espacio (X, q) satisface

la FPP. Además, extendemos este resultado a cualquier espacio de Banach

que pueda ser sumergido en un espacio de Banach Y , más general que c0(Γ)

y que satisfaga R(Y ) < 2. Probamos que si X es un espacio de Banach

satisfaciendo R(Y ) < 2 y X un espacio de Banach que pueda ser sumergido

en Y de manera continua, entonces X puede ser renormado para satisfacer

la w-FPP y el conjunto de todas las renormas en X, que no satisfacen la

w-FPP, es de primera categoŕıa. En el caso del espacio C(K), donde K es

un conjunto disperso tal que K(ω) = ∅, obtendremos que existe una norma

| · | que es equivalente a la norma del supremo y R(C(K), | · |) < 2 (luego

tiene la w-FPP). Además, casi todas las normas equivalentes a la norma del

supremo (en el sentido de la porosidad) también satisfacen la w-FPP.
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Introduction

Introduction

Assume that A is a set and P a property which can be either satisfied or not

by the elements of A. The property P is said to be generic in A if “almost

all” elements of A satisfy P . When speaking about almost all elements we

mean all of them except those in a “negligible set”. There are different ways

to define the notion of negligible set, according to the setting where we are

interested. For instance, in measure theory, a set with null measure can

be considered as negligible and many generic results are well known in this

theory. Consider, for instance, the following example: Let f and g be Bochner

integrable functions. If

∫
E

fdµ =

∫
E

gdµ for every µ-measurable set E, then

f = g µ-almost everywhere, i.e. the set {x : f(x) 6= g(x)} is negligible. In

topological space, a Baire first category set can be considered as a negligible

set. The interest of this notion depends on the size of the whole set, because if

the whole set were of Baire first category, then all subsets would be negligible.

Thus, this notion is only interesting in second category topological spaces,

for instance, in complete metric spaces, according to Baire Theorem.

It must be noted that negligibility in the sense of null measure and in

the sense of Baire category can be different in spaces where both notions can

be simultaneously considered. For instance, the real line R is the disjoint

union of a set of first category and a set of Lebesgue measure zero. To avoid

this problem, we can use the concept of “porosity” as a refined notion of

Baire first category. Every σ-porous set is of first category and in a finite

dimensional space, it has Lebesgue measure zero.

Many generic results have appeared concerning different subjects. One

of the first generic result was obtained by W. Orlicz [62], who proved that

the uniqueness of solution of the Cauchy problem for an ordinary differen-

tial equations is a generic property in the space of all bounded continuous

functions mapping from Rn+1 into Rn. Later, this result was extended to
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Introduction

the generic uniqueness of solutions of different equations in infinite dimen-

sional spaces by A. Lasota and J.A. Yorke [53]. In this dissertation, we study

generic property concerning Metric Fixed Point Theory.

Fixed point theory has been usually used to study the existence of solu-

tions of differential equations and also has been applied in many branches

of mathematics.The most well-known fixed point theorem is the Contraction

Mapping Principle, due to S. Banach [5]. The statement is the following:

Theorem. (Banach Fixed Point Theorem) Let X be a complete metric

space and T : X → X a contraction, i.e. there exists k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y) for every x, y ∈ X. Then T has a (unique) fixed point

x0. Furthermore x0 = lim
n
T nx for every x ∈ X.

However, Banach Contraction Principle fails for non-expansive mapping,

i.e. a mapping T : M →M , whereM is a metric space, such that d(Tx, Ty) ≤
d(x, y) for every x, y ∈ M . But in 1965, F. E. Browder, D. Göhde and W.

A. Kirk proved the existence of fixed points for non-expansive mappings in

Banach spaces which satisfy some geometrical properties. Browder [8] proved

that every non-expansive mapping defined from a convex closed bounded sub-

set C of a Hilbert space into C, has a fixed point. In the same year, Browder

[10] and Göhde [39] simultaneously proved that every non-expansive map-

ping defined from a convex closed bounded subset C of a uniformly convex

Banach space into C, has a fixed point, and Kirk [46] observed that a ge-

ometrical property weaker than uniform convexity, called normal structure,

guaranteed the same result in a reflexive Banach space.

These results have started the search of more general conditions for a

Banach space and for a subset C which assure the existence of fixed points. In

order to formulate the problem, it was introduced the following definition in a

natural way: A Banach space X is said to have the fixed point property (FPP)

if for every nonempty closed bounded convex subset C of X, every non-

expansive mapping T : C → C has a fixed point. Similarly, a Banach space
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Introduction

X is said to have the weak fixed point property (w-FPP) if for every nonempty

weakly compact convex subset C of X, every non-expansive mapping T :

C → C has a fixed point.

In the last forty years, many papers have appeared proving the FPP and

the w-FPP for different classes of Banach spaces according to the geometrical

structure.

Furthermore, many fixed point theorems have been extended to multi-

valued mappings, which has useful applications in Applied Sciences, in par-

ticular, in Game Theory and Economical Mathematics. For instance, S. B.

Nadler [61] extended the Banach Contraction Principle to multi-valued con-

traction mappings in 1969. He proved that for a complete metric space X,

if T : X → 2X is a contraction with closed bounded values, then T has a

fixed point. In 1974, Lim [54] proved the existence of a fixed point for a

non-expansive multi-valued mapping defined from a closed bounded convex

subset C of a uniformly convex Banach space X into the set of all compact

subsets of C. Similarly, we say that a Banach space X has the weak multi-

valued fixed point property (w-MFPP) if every multi-valued non-expansive

mapping T : C → K(C) has a fixed point, where C is a weakly compact

convex subset of X and K(C) is the family of all nonempty compact subsets

of C.

Concerning Metric Fixed Point Theory and Genericity, there are some

classical results about generic existence of fixed points for non-expansive

mappings which are defined on a given Banach space. One of the first generic

fixed point results was proved by G. Vidossich [89] saying that if C is a

bounded closed convex subset of a Banach space X and F is the complete

metric space of all non-expansive mappings from C into itself endowed with

the uniform convergence metric, then almost all mappings in F (in the sense

of Baire category) do have a (unique) fixed point. Afterward, many mathe-

maticians have studied the generic fixed point property within the space of
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all non-expansive mappings. For instance, F.S. De Blasi and J. Myjak [15]

proved the stronger result that the set of all mappings f such that f has

unique fixed point x0 and fnx → x0 as n → ∞ for all x ∈ C, is residual in

the set of all non-expansive mappings. S. Reich and A.J. Zaslavski (in [79])

have improved De Blasi and Myjak’s result by showing that almost all (in

the sense of Baire category) non-expansive mappings are, in fact, contractive.

We recall that a mapping T is called contractive if there exists a decreasing

function φ : [0, d(C)]→ [0, 1] such that

φ(t) < 1 for all t ∈ (0, d(C)]

and

ρ(Tx, Ty) ≤ φ(ρ(x, y))ρ(x, y) for all x, y ∈ C

where C is a metric space. Contractive mappings are known to have a unique

fixed point and their iterates do converge in all complete metric spaces.

Additionally, Reich and Zaslavski proved later that the complement of

the set of all non-contractive mappings is not only of the first category but

also σ-porous [81]. In Chapter 3, we extend this result to the case of multi-

valued non-expansive mappings: we prove that the complement of the set of

all multi-valued contractive mappings, which are known by the result of H.

Kaneko [42] to have a fixed point, is σ-porous.

Besides the generic fixed point property on the set of all non-expansive

mappings, we are interested in the generic fixed point property concerning

Renorming Theory. Assume that (X, ‖ · ‖) is a Banach space. The most

common aim of the Renorming Theory is to find an equivalent norm |·| which

satisfies (or which does not satisfy) some specific properties. Deep and wide

information about this subject can be found in the monographs [18], [29],

[33]. It is remarkable that the FPP and the w-FPP are not preserved under

isomorphisms. Indeed, P.K. Lin [55] has proved that `1 can be renormed to

have the FPP. We recall that this space does not satisfy the FPP for the
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usual norm. On the other hand, it is well known that the space L1([0, 1])

does not satisfy the w-FPP as proved by D.E. Alspach [1]. However this

space (and any separable Banach space) can be renormed to have normal

structure [88] and so the w-FPP [46].

Thus, very natural questions relating to the three topics: Genericity,

Metric Fixed Point Property and Renorming Theory could be the following

(1-a) Let X be a Banach space. Is it possible to renorm X so that the

resultant space has the FPP or the w-FPP?

(2-a) Do almost all renormings of X satisfy the FPP or the w-FPP?

The answer, in general, is negative if X is nonreflexive. Indeed it was

proved by P. Dowling, C. Lennard and B. Turett [28], that every renorming

of c0(Γ) when Γ is uncountable contains an asymptotically isometric copy of

c0 and so it fails to have the FPP. Analogously, any renorming of `1(Γ) (Γ

uncountable) contains an asymptotically isometric copy of `1 so it also fails

to satisfy the FPP. In the case of the w-FPP, J. Partington [63], [64] has

proved that every renorming of `∞(Γ) for Γ uncountable and any renorming

of `∞/c0 contain an isometric copy of `∞ and so they fail the w-FPP (again

due to Alspach’s example). For more examples of nonreflexive Banach spaces

which cannot be renormed to satisfy the FPP see for instance [25].

Hence, we restrict the above questions to reflexive Banach spaces. Note

that for reflexive spaces, the FPP and the w-FPP coincide. In other words,

we consider the following problems:

(1) Let X be a reflexive Banach space. Can X be renormed in such a way

that the resultant space has the FPP?

(2) Do almost all renormings of X satisfy the FPP?

The problem (1) was, in fact, long time open ( see in [44], Open problem VI

and [18], Problem VII.3).
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The answers to both problems have been known in the case of separable

spaces for a long time. Indeed, M.M. Day, R.C. James and S. Swaminathan

[14] have proved that every separable Banach space has a uniform convex in

every direction (UCED) renorming. Since, uniform convexity in every direc-

tion implies normal structure (proved in [14]) and so the FPP for reflexive

spaces (see [46]) we easily obtain: Every separable reflexive space can be

renormed to satisfy the FPP. Uniform convexity in every direction is not

only used as a condition to obtain the FPP but it can be also used as a

property for obtaining the MFPP. According to the result proved by Kirk

and Massa [45], by using the asymptotic center method, UCED spaces have

the w-MFPP. Hence every separable reflexive space can be renormed to have

the MFPP.

For the problem (2), it was proved by M. Fabian, L. Zaj́ıĉek and V. Zizler

[30] the following: Let (X, ‖ · ‖) be a UCED Banach space and (P , ρ) be

the space of all equivalent norms on X, endowed with the metric ρ(p, q) :=

sup{‖p(x)− q(x)‖ : x ∈ BX}, for each p, q ∈ P , where BX is the closed unit

ball of X. Then there is a residual subset R of P such that every norm p ∈ R
is UCED. Consequently, if X is a separable reflexive space and P is defined

as above then almost all norms in P satisfy the FPP and the MFPP.

These arguments do not work for non-separable reflexive spaces. Indeed,

D. Kutzarova and S. Troyanski [49] have proved that there are reflexive spaces

without equivalent norms which are UCED. It is also known that the space

c0(Γ), where Γ is uncountable, has no UCED renormings. However, c0(Γ)

enjoys the w-FPP by using a different approach. The geometric coefficient

R(X) of a Banach space X is defined in the following way:

R(X) := sup
(

lim inf
n→∞

‖xn + x‖
)

where the supremum is taken over all weakly null sequences (xn) of the unit

ball and all points x of the unit ball. J. Garćıa-Falset [31] has proved that
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a Banach space X with R(X) < 2 satisfies the w-FPP. Accordingly, c0(Γ)

satisfies the w-FPP since R(c0(Γ)) = 1.

Since some Banach spaces which cannot be renormed with a UCED norm

satisfy the w-FPP, it would be interesting to know that if X is a Banach

space which satisfies the w-FPP, then is the w-FPP generic on the space

of all equivalent norms on X? The answer to this question is true when X

satisfies R(X) < 2. We prove that if a Banach space X satisfies R(X) < 2,

then all equivalent norms p also satisfy R(X, p) < 2 (so that (X, p) enjoys

the w-FPP), except those equivalent norms a σ-porous set.

Apart from the fact that the space c0(Γ), which is not UCED renormable,

has the w-FPP, some interesting renorming results have been obtained for

non-separable spaces. For instance, D. Amir and J. Lindenstrauss [2] have

proved that every WCG Banach space has an equivalent norm which is

strictly convex, and S. Troyanski [87] has proved that every WCG Banach

space has an equivalent norm which is locally uniformly convex. An impor-

tant tool in the proofs of these results is the following fact (proved in [2]):

For any WCG Banach space X, there exist a set Γ and a bounded one-to-one

linear operator J : X → c0(Γ). This property is satisfied by a very general

class of Banach spaces, for instance subspaces of a space with Markushevich

basis, as WCG spaces (and so either separable or reflexive spaces), duals

of separable spaces as `∞, etc (see [29]). Using this embedding, in [20] the

following result is proved: Assume that X is a Banach space such that there

exists a bounded one-one linear operator from X into c0(Γ). Then, X has

an equivalent norm such that every non-expansive mapping T for the new

norm defined from a convex weakly compact set C into C has a fixed point.

As a consequence, we obtain: Every reflexive space can be renormed in such

a way that the resultant norm has the FPP.

Following this method, we prove the generic fixed point result as follows:

Let X be a Banach space such that for some set Γ there exists a one-to-one
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linear continuous mapping J : X → c0(Γ). Let P be defined as before. Then,

there exists a residual subset R in P such that for every q ∈ R, every q-non-

expansive mapping T defined from a weakly compact convex subset C of X

into C has a fixed point. Particularly, if X is reflexive, then the space (X, q)

satisfies the FPP. This result positively answers the problem (2).

It would be interesting to extend the result in [20] and the above result

to any Banach space which can be embedded in more general Banach spaces

than c0(Γ), but still satisfying that their Garćıa-Falset coefficient is less than

2. In this dissertation, we actually prove this extension in the following sense:

Assume that Y is a Banach space such that R(Y ) < 2 and X is a Banach

space which can be continuously embedded in Y . Then, X can be renormed

to satisfy the w-FPP. For the generic fixed point result, following the same

assumption on the space X, let P be defined as before. We obtain that the

set of all renormings on X which do not satisfy the w-FPP is of the first

category.

On the other hand, if we endow Γ with the discrete topology and denote

by K the one-point compactification of Γ, then c0(Γ) is isomorphic to C(K)

(and isometrically contained in C(K)) where K is a topological compact

space which satisfies K(2) = ∅. Thus, any space which can be continuously

embedded in c0(Γ) can also be embedded in C(K) where K is a scattered

compact topological space such that K(ω) = ∅. Since C(K) satisfies the

w-FPP [22] when K is a scattered compact topological space K such that

K(ω) = ∅, another natural question would be the following: Assume that X

is a Banach space which can be continuously embedded in C(K) for some K

as above. Can X be renormed to satisfy the w-FPP? In this work we prove

that there is the case. Nominally we prove the following: Let C(K) be the

space of real continuous functions defined on a scattered compact topological

space K such that K(ω) = ∅. Then, it can be renormed in such a way that

R(C(K), ‖ · ‖) < 2 where ‖ · ‖ is the new norm. By applying this result with
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the previous results, we can easily obtain the following two results

(i) Let X be a Banach space which can be continuously embedded into

C(K) where K is a scattered compact topological space such that

K(ω) = ∅. Then, it can be renormed in such a way that X satisfies

the w-FPP.

(ii) Assume that P is the set of all norms in C(K) which are equivalent to

the supremum norm with the metric ρ(p, q) = sup{|p(x) − q(x)| : x ∈
B}. Then, there exists a σ-porous set A ⊂ P such that if q ∈ P \ A
the space (C(K), q) satisfies the w-FPP.

The first result is a strict improvement of the result in [20], because, as

proved in [34], when K is a Ciesielski-Pol’s compact, then K(3) = ∅, but

C(K) cannot be continuously embedded in c0(Γ) for any set Γ. And the

second result can be understood as a continuation of the result in [22] which

says that C(K) endowed with the supremum norm, K as above, satisfies the

w-FPP. Now we can add that C(K) satisfies the w-FPP for almost all norms

which are equivalent to the supremum one.

The answers to our problems (1) and (2) seem to be much more difficult

in the case of multi-valued fixed point property on non-separable reflexive

spaces. Until now, it is still unknown if a reflexive space can be renormed

to have the w-MFPP. However, if a given Banach space satisfies some geo-

metrical properties, it can satisfy the w-MFPP. For instance, by the result of

T. Domı́nguez and P. Lorenzo, every nearly uniform convex (NUC) Banach

space enjoys the w-MFPP for compact convex valued mappings. Following

this assumption, we prove the generic multi-valued fixed point property: if

X is a NUC Banach space and P is defined as before, then all norms in P ,

except those in a set of first category, are also NUC (so, they satisfy the

w-MFPP for compact convex valued mappings). And by using the Szlenk

index, which has been introduced in order to show that there is no universal
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space for the class of separable reflexive spaces, we can determine the w-

MFPP renormability and genericity in the following way: if X is a reflexive

space such that Sz(X
∗) ≤ ω, where Sz(·) denotes the Szlenk index and X∗

is the dual space of X, then X can be renormed to satisfy the w-MFPP.

Furthermore, if P is defined as before, there exists a residual subset R of P
such that for every p ∈ R, the space (X, p) satisfies the w-MFPP for compact

convex valued mappings.

We must note that for a general reflexive Banach space, both problem (1)

and (2) are still open in the case of the multi-valued fixed point property.

The dissertation is divided into six chapters and organized in the following

way:

Chapter 1 deals with basic notations, definitions, concepts and back-

ground which will be needed in the following chapters.

Chapter 2 is devoted to the concept of negligible sets. Some notions of

negligible sets are studied with detail. For instance Baire category, porosity,

Gaussian null sets, Aronszajn null sets and directional porosity. There are

several ways to define the notions of porosity and directional porosity. In this

chapter, we present two different definitions of each notions and give some

examples to show the non-equivalence among those definitions.

Chapter 3 contains some classical generic fixed point existence results on

the complete metric space of all non-expansive mappings. One of the main

result is proved by Reich and Zaslavski: all non-expansive mappings are

contractive except those in the σ-porous set. We consider the same setting

but equipped with another metric, which introduces a stronger topology, the

same results still holds.

Chapter 4 is dedicated to the generic fixed point existence on the set of

all equivalent norms of a separable reflexive space. The main important tool

used in this chapter is the uniform convexity in every direction. The porosity

version of the result of Fabian-Záıček-Zizler is proved in this chapter under
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some equivalent metrics.

Chapter 5 incorporates two main subjects: Fixed point renormability on

(non-separable) reflexive spaces and generic fixed point property on renorm-

ings of a (non-separable) reflexive Banach space. We begin the chapter by

proving that if X is a Banach space with R(X) < 2, then almost all renom-

ings of X (in the sense of porosity) have the w-FPP. The answers to our main

problems (1) and (2) and also their extensions are proved in this setting. The

chapter ends with the fixed point renormability and genericity on the space

C(K).

Chapter 6 handles with the multi-valued fixed point property on non-

separable reflexive spaces and the Szlenk index.
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Chapter 1

Notations and Preliminaries

In this first chapter, we recall some notations, definitions, background and

results that we will need in the following chapters.

1.1 Hyperbolic metric spaces

Let (X, ρ) be a metric space. We say that a mapping c : R→ X is a metric

embedding of R into X if

ρ(c(s), c(t)) = |s− t|

for all real numbers s and t. The images of R and a real interval [a, b]

under a metric embedding will be called a metric line and a metric segment,

respectively.

Assume that (X, ρ) contains a family M of metric lines such that for each

points x 6= y in X there is a unique metric line in M which passes through

x and y. This metric line determines a unique metric segment joining x and

y and we denote this segment by [x, y]. For each 0 ≤ t ≤ 1 there is a unique

point z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

1



1.2 Fixed points for non-expansive mappings

We denote the point z by (1− t)x⊕ ty.

Definition. 1.1. X, or more precisely (X, ρ,M), is said to be hyperbolic

space if

ρ

(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y and z in X.

From the definition of a hyperbolic space, it is equivalent to say that

ρ

(
1

2
x⊕ 1

2
y,

1

2
w ⊕ 1

2
z

)
≤ 1

2
(ρ(x,w) + ρ(y, z))

for all x, y, z and w in X. The previous inequality immediately implies that

ρ ((1− t)x⊕ tz, (1− t)y ⊕ tz) ≤ (1− t)ρ(x, y) + tρ(z, w)

for all x, y, z and w in X and all 0 ≤ t ≤ 1.

It is clear that all normed linear spaces are hyperbolic.

1.2 Fixed points for non-expansive mappings

Fixed point theory has many applications in many branches of mathematics.

The most simplest fixed point result is a consequence of the Intermediate

Valued Theorem. Indeed, let f : [a, b] → [a, b] be a continuous function.

Since f(a) ≥ a and f(b) ≤ b, we have a− f(a) ≤ 0 ≤ b− f(b). By applying

the Intermediate Valued Theorem to the continuous function x− f(x), there

exists x ∈ [a, b] such that x−f(x) = 0. Another well known fixed point result

is the Contraction Mapping Principle which first appeared in S. Banach’s

1922 thesis [5].

Definition. 1.2. Let (M,d) be a complete metric space. A mapping T :

M →M is said to be contraction if there exists k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈M.

T is called non-expansive if k = 1.
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1.2 Fixed points for non-expansive mappings

Theorem 1.3 (Banach Contraction Mapping Theorem). Let (M,d) be a

complete metric space and T : M → M be a contraction mapping. Then

T has a unique fixed point in M . For any x0 ∈ M the sequence of iterates

x0, T (x0), T
2(x0), ... converges to the fixed point of T .

The Banach contraction mapping principle is a basic tool in functional

analysis, nonlinear analysis and differential equation. However, there are

some trivial examples which show that the Banach Theorem does not hold

for non-expansive mappings.

Example 1.4. Fix a ∈ R. Let Ta : R→ R be a mapping defined by

Tax = x+ a, x ∈ R.

Then for every x, y ∈ R, we have |Tx − Ty| = |x − y|, hence T is a non-

expansive mapping. But T has no fixed point in R.

The following surprising theorem was proved in 1965 independently by

F. Browder [8], D. Göhde [39], and by W. Kirk [46] in a more general form.

Theorem 1.5 (Browder-Göhde Theorem). If C is a closed, bounded, convex

subset of a uniformly convex Banach space X, and if T is a non-expansive

mapping from C into C, then T has a fixed point.

We recall that a Banach space X is called uniformly convex if for any two

sequences (xn), (yn) in X such that

‖xn‖ = ‖yn‖ = 1 and lim
n→∞

‖xn + yn‖ = 2,

lim
n→∞

‖xn − yn‖ = 0 holds.

The above result was the starting point for applying the geometric theory

of Banach spaces to fixed point theory. However, the next example demon-

strates the failure of the Browder-Göhde Theorem in general Banach spaces.

3



1.2 Fixed points for non-expansive mappings

Example 1.6. Let C := B+
c0

= {(xn) ∈ c0 : 0 ≤ xn ≤ 1 for all n}. Define

mappings T1, T2 : C → C by, for (xn) ∈ C

T1(xn) := (1, x1, x2, ...) and T2(xn) = (1− x1, x1, x2, ...).

We easily see that ‖Ti(xn) − Ti(yn)‖ = ‖(xn) − (yn)‖, i = 1, 2, for any

(xn), (yn) ∈ C. Thus T1 and T2 are non-expansive mappings, indeed metric

isometries. But the only possible fixed point for T1 is (1, 1, ...) while the only

possible fixed point for T2 is (1
2
, 1
2
, ...) neither of which is in C.

In this case, the non-existence of fixed point is due to the fact that the

set B+
c0

is not weakly compact, because B. Maurey [59] proved that any non-

expansive mapping T defined from a weakly compact convex subset C of

c0 into C has a fixed point. For many years, it was an open problem to

determine if Browder’s Theorem can fail for some weakly compact convex

subset of a Banach space. This question was solved by Alspach [1] who

proved the failure of Browder’s Theorem in a weakly compact convex subset

of L1([0, 1]). To simplify the notation, we give the following definition.

Definition. 1.7. Let X be a Banach space and C a closed bounded convex

subset of X. We say that the space X enjoys the fixed point property (FPP)

if every non-expansive mapping T : C → C has a fixed point.

Analogously, X is said to have the weak fixed point property (w-FPP) if for

every nonempty weakly compact convex subset C of X, every non-expansive

mapping T : C → C has a fixed point.

Note that for reflexive Banach spaces, the FPP and the w-FPP are equiv-

alent.

As we mentioned before, the fixed point result for non-expansive mapping

by Kirk is more general than the result by Browder and Göhde. This result

was proved by using the concept of normal structure which implies uniform

convexity, in fact, he proved that every Banach space with the weak normal
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1.2 Fixed points for non-expansive mappings

structure does satisfy the w-FPP. Normal structure was firstly introduced in

1984 by M.S. Brodskĭi and D.P. Milman [7] in order to study the existence

of common fixed points of certain sets of isometries.

Definition. 1.8. A convex subset C of a Banach space X is said to have nor-

mal structure (respectively weak normal structure) if for each closed bounded

(respectively weakly compact) convex subset K of C which contains more

than one point, there is some point x ∈ K which is not a diametral point of

K.

Recall that x is a diametral point ofK if sup {‖x− y‖ : y ∈ K} = diam(K).

After the publication of Kirk’s celebrated result, many papers appeared

concerning different geometric properties of a Banach space which imply

normal structure. We are interested in uniform convexity in every direction.

Definition. 1.9. Let X be a Banach space. Given z ∈ SX and ε > 0, the

following convexity modulus can be considered:

δX(z; ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε, x− y = tz

}
.

The space X is said to be uniformly convex in every direction(UCED) if

δX(z; ε) > 0 for all ε > 0 and every z ∈ SX .

UCED can be also characterized without using the modulus δX(z; ε). Sev-

eral equivalent conditions to UCED are given as in the next theorem.

Theorem 1.10.

(a) A Banach space X is UCED if and only if lim
n→∞

‖xn−yn‖ = 0 whenever

(xn), (yn) are sequences in X such that lim
n→∞

‖xn‖ = 1, lim
n→∞

‖yn‖ =

1, lim
n→∞

‖xn + yn‖ = 2 and there is z ∈ SX with xn− yn ∈ span({z}) for

each n.
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1.2 Fixed points for non-expansive mappings

(b) A Banach space X is UCED if and only if whenever (xn), (yn) are se-

quences in BX such that lim
n→∞

‖xn + yn‖ = 2 and there is a real sequence

(λn) and z ∈ SX such that xn− yn = λnz for each n, then lim
n→∞

λn = 0.

(c) A Banach space X is UCED if and only if whenever xn, yn ∈ X,n =

1, 2, ... are such that lim (2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2) = 0, {xn} is

bounded and there is a z ∈ X\{0} and real numbers λn, n = 1, 2, ...

which satisfy xn − yn = λnz for each n, then limλn = 0.

The class of all UCED spaces is quite large. For instance, all Hilbert

spaces are UCED due to the approaching example.

Example 1.11. Let X be a Hilbert space. By using the parallelogram law,

it is not difficult to figure out

δX(z; ε) = 1−
√

1−
( ε

2

)2
for every z ∈ X and every ε ∈ [0, 2].

By following the remarkable result proved by M.M. Day, R.C. James

and S. Swaminathan in [14] and independently by V. Zizler in [95], every

separable Banach space can be renormed to be UCED.

Theorem 1.12. Let X be a separable Banach space. Then there exists an

equivalent norm in X which is UCED.

The proof of this theorem is based on the fact that every separable Banach

space is isometric to a subspace of C([0, 1]) and there is a bounded one-to-one

linear operator from C([0, 1]) into `2 which is known to be UCED.

It is well known by the result in the same paper of Day-James-Swaminathan

[14] that UCED spaces have normal structure, so that UCED spaces enjoy

the w-FPP.
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1.3 Fixed points for non-expansive multi-valued mappings

Theorem 1.13 (Day-James-Swaminathan). UCED spaces have normal struc-

ture.

Uniform convexity in every direction is not only used as a property for

obtaining the w-FPP but it can also be used as a condition to obtain the

w-FPP for multi-valued non-expansive mapping which will be considered in

the next section.

1.3 Fixed points for non-expansive multi-valued

mappings

The study of the fixed point theory for multi-valued contractions and non-

expansive maps was initiated by J.T. Markin [56] by using the Hausdorff

metric. We first recall some definitions and notations.

Let (X, d) be a metric space and we denote by CB(X) the set of all

nonempty closed bounded subsets of X. For A,B ∈ CB(X), let

H(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
where dist(a,B) = inf{d(a, b) : b ∈ B}. We obtain that H is a metric on

CB(X) and it is called the Hausdorff metric.

Definition. 1.14. Let T be a mapping of a metric space X into CB(X).

Then T is called contraction if there exists k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

T is said to be non-expansive if k = 1.

Denote by K(C) and KC(C) the family of all nonempty compact and

compact convex subsets of C, respectively.
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1.3 Fixed points for non-expansive multi-valued mappings

Definition. 1.15. Let X be a Banach space and C a closed bounded convex

(weakly compact) subset of X. Then X is said to have the (weak) multi-

valued fixed point property ((w)-MFPP) if every multi-valued non-expansive

mapping T : C → KC(C) has a fixed point, i.e., there exists x ∈ C such

that x ∈ Tx.

Some classical fixed point theorems for single-valued mappings have been

extended to multi-valued non-expansive mappings. In 1969, S.B Nadler [61]

extended the Banach Contraction Principle to multi-valued contractive map-

pings in complete metric spaces.

Theorem 1.16 (Nadler). Let E be a nonempty closed subset of a Banach

space X and T : E → CB(E) a contraction. Then T has a fixed point.

T.C. Lim [54], by using Eldelstein’s method of asymptotic centers, has

proved the existence of a fixed point for multi-valued mapping when X is a

uniformly convex Banach space in 1974. In order to state Lim’s result, we

recall some definitions and notations relating to asymptotic centers.

Let C be a nonempty weakly compact convex subset of a Banach space

X and {xn} a bounded sequence in X.

Definition. 1.17. Denote by r(C, {xn}) and A(C, {xn}), the asymptotic

radius and the asymptotic center of {xn} in C, respectively, defining by

r(C, {xn}) = inf

{
lim sup
n→∞

‖xn − x‖ : x ∈ C
}

and

A(C, {xn}) =

{
x ∈ C : lim sup

n→∞
‖xn − x‖ = r(C, {xn})

}
.

Definition. 1.18. The sequence {xn} is called regular with respect to C

if r(C, {xn}) = r(C, {xni}) for all subsequences {xni} of {xn}, and {xn} is

called asymptotically uniform with respect to C if A(C, {xn}) = A(C, {xni})
for all subsequences {xni} of {xn}.
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1.4 Weakly compactly generated spaces

It is known that A(C, {xn}) is a nonempty weakly compact convex set

whenever C is.

Theorem 1.19 (Lim). Let E be a nonempty closed bounded convex subset of

a uniformly convex Banach space X and T : E → K(E), where K(E) is the

family of nonempty compact subsets of E, a non-expansive mapping. Then

T has a fixed point.

This result was later extended by W.A. Kirk and S. Massa [45].

Theorem 1.20 (Kirk and Massa). Let C be a nonempty weakly compact

convex subset of a Banach space X and T : C → KC(C) a non-expansive

mapping. Suppose that the asymptotic center in C of each bounded sequence

of X is nonempty and compact. Then T has a fixed point.

In particular, this result holds for UCED spaces, because in this case

asymptotic centers are singleton.

Theorem 1.21. Let X be a UCED space. Then, X has the w-MFPP.

1.4 Weakly compactly generated spaces

The study of weakly compactly generated spaces was initiated by D. Amir

and J. Lindenstrauss in [2] to prove the existence of a bounded linear one-

to-one map from such a space into c0(Γ).

Definition. 1.22. A Banach space X is said to be weakly compactly gener-

ated (WCG) if there exists a weakly compact subset K of X which generates

X, that is, X is a closed linear span of K.

Let us show some examples of WCG spaces and also non-WCG spaces.

Example 1.23.
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1.5 Cardinal numbers and Ordinal numbers

(1) All separable spaces are WGC spaces. Indeed, if X is a separable space,

define K = {xn/n : n ∈ N} ∪ {0} where (xn) is a dense sequence in a

unit ball of X. It is clear that X is the closed linear span of K.

(2) Every reflexive space is WCG space because it is a closed linear space

generated by its unit ball.

(3) Spaces L1(µ), µ is a finite or σ-finite measure, are WCG spaces. By

taking K =
{
f :
∫
|f |2 ≤ 1

}
, i.e., the unit ball of L2(µ) can be con-

sidered as a subset of L1(µ), then K is a weakly compact set which

generates L1(µ).

(4) The non-separable spaces `∞, L∞[0, 1] and `1(Γ), Γ is uncountable, are

not WCG.

As mention before, the most remarkable result on WCG spaces is con-

cerning an injection into c0(Γ) as follows:

Theorem 1.24 (Amir-Lindenstrauss). Let X be a weakly compactly gener-

ated Banach space. Then there exist a set Γ and a bounded one-to-one linear

operator T from X into c0(Γ).

The injection of WCG spaces into c0(Γ) leads to some renorming results.

For instance, since c0(Γ) has a strictly convex equivalent norm, hence every

WCG space can be renormed to be strictly convex (see for instance [60]).

1.5 Cardinal numbers and Ordinal numbers

The term cardinality and ordinal were first used by G. Cantor. Cardinality

was used as an instrument to compare finite sets while ordinal is the type of

well-ordered sets. In order to define both numbers, we need some definitions

and notations.
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1.5 Cardinal numbers and Ordinal numbers

Definition. 1.25. Let ≤ be a partial ordering on a set P . This order is

said to be a well ordering if every non-empty subset A of P has the smallest

element, i.e. there exists a ∈ A such that a ≤ x for every x ∈ A.

The following theorem, which is also known as Zermelo’s Theorem, is

equivalent to the Axiom of Choice.

Theorem 1.26 (Well-ordering Theorem). Every set can be well ordered, that

is, if S is a set then there exist some well-orderings on S.

In the original definition, an ordinal number is genuinely an equivalence

class of well-ordered sets. However, this definition must be abandoned in

some systems because these equivalence classes are too large to form a set.

Hence to avoid this problem, we can define directly ordinal and cardinal

numbers following von Neumann’s definition, where an ordinal is the set of

all preceding ordinals.

Definition. 1.27. A set S is said to be an ordinal if S is strictly well-ordered

with respect to set membership and every element of S is also a subset of S.

In this way, the first ordinal, zero, is the empty set 0. The second ordinal

is the set 1 = {0} consisting of one element. The third ordinal is the set

2 = {0, 1} = {0, {0}}, and so on. The first infinite ordinal is the set of

all finite ordinals, i.e. ω = {0, 1, 2, 3, ...}. The next is ω + 1 = ω ∪ {ω} =

{0, 1, 2, 3, ..., ω}, and so on.

An ordinal number α is called compact ordinal if α = β + 1 for some

ordinal number β. Otherwise α is said to be a limit ordinal.

Definition. 1.28. Two sets A and B are said to have the same cardinality

if there exists a one-to-one mapping from A onto B. A cardinal number is an

ordinal number which is the first ordinal between all ordinals with the same

cardinality. It is equivalent to say that an ordinal number α is cardinal if

for every ordinal γ 6= α which has the same cardinality as α we have α ≤ γ

(equivalently: α ∈ γ or α ⊂ γ).
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1.6 Gâteaux and Fréchet differentiability

1.6 Gâteaux and Fréchet differentiability

The Gâteaux derivative and Fréchet derivative are a generalization of the

concept of directional derivative and total derivative in differential calculus.

They are commonly used to formalize the functional derivative in mathemat-

ical analysis, calculus of variations and nonlinear functional analysis.

Definition. 1.29. Let X be a Banach space. The function f : X → R is

said to be Gâteaux differentiable at a point x0 if for each h ∈ X the limit

f ′(x0)(h) = lim
t→0

f(x0 + th)− f(x0)

t
(1.1)

exists and f ′(x0) ∈ X∗. Then f ′(x0) is called the Gâteaux derivative of f at

x0. In additional, if the limit in (1.1) is uniform in h ∈ SX , we say that f is

Fréchet differentiable at x0, and then f ′(x0) is called the Fréchet derivative

of f at x0.

If f is Fréchet differentiable, then it is also Gâteaux differentiable and its

Fréchet and Gâteaux derivatives agree. The converse is clearly not true.

Lemma 1.30. A real function f defined on a Banach space X is Fréchet

differentiable at x0 if and only if for each ε > 0, there exists δ > 0 such that

if 0 < ‖h‖ < δ then x0 + h ∈ X and

|f(x0 + h)− f(x0)− f ′(x0)| < ε‖h‖.

Example 1.31. Let X be a Banach space and f : X → R be defined by

f(x) := ‖x‖2 for every x ∈ X. Then f is Fréchet differentiable at 0 = 0X ,

with f ′(0) = 0X∗ . Indeed, given ε > 0, take δ = ε. If h ∈ X with 0 < ‖h‖ < δ,

then

|f(0 + h)− f(0)− 0X∗(h)| = ‖h‖2 < ε‖h‖.

Thus f is Fréchet(and also Gâteaux) differentiable at 0.
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1.6 Gâteaux and Fréchet differentiability

Example 1.32. Let f : R2 → R be defined as follow

f(x, y) :=

{
x3y
x4+y2

+ x+ y, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

For every h = (h1, h2) ∈ R2, we have

f ′(0, 0)(h) = lim
t→0

f((0, 0) + th)− f(0, 0)

t
= h1 + h2.

Hence, f ′(0, 0)(h) exists and the mapping h 7→ f ′(0, 0)(h) is linear and con-

tinuous. Thus f is Gâteaux differentiable at (0, 0). However, f is not Fréchet

differentiable at (0, 0, ).

Notice that a norm ‖ ·‖ of a space X is Gâteaux differentiable if and only

if

lim
t→0−

‖x+ ty‖ − ‖x‖
t

= lim
t→0+

‖x+ ty‖ − ‖x‖
t

for any vectors x, y ∈ X, x 6= 0. There are some other obvious differentiation

rules. For instance, if f is continuous and linear, then f is its own Fréchet

derivative. If the composition f ◦ g is defined and if g and f are Fréchet dif-

ferentiable at x0 and at g(x0), respectively, then f ◦g is Fréchet differentiable

at x0 and the usual chain rule formula holds

(f ◦ g)′(x0) = f ′(g(x0)) ◦ g′(x0).

If g is Gâteaux differentiable at x0 and if f is Fréchet differentiable at g(x0),

then f ◦ g is Gâteaux differentiable at x0 and the same formula holds.
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Chapter 2

Negligible sets

In mathematics, negligibility concerns the global behavior of a set, of a func-

tion, of a class of sets or of functions or of another entity. In this setting we

consider negligibility related to the behavior of a set. Negligible set is a set

which is “small” enough. But, how to know the size of a set? In set theory,

negligibility refers usually to cardinality. In some other settings, measure,

topology, other meanings are also possible. Consider the following examples:

Any monotonous real function f : [a, b]→ R can only have countably many

discontinuities in [a, b], i.e. f is continuous in each point of [a, b], except a

countable set; f is also differentiable in each point of [a, b], except a set of

Lebesgue measure zero. Any real function defined on [a, b], which is in [a, b]

the limit of a sequence of continuous functions is continuous in each point

of [a, b], except a set of first Baire category. In the first example, the excep-

tional set is negligible with respect to cardinality; in the second example it is

negligible with respect to Lebesgue measure; and in the third example it is

negligible with respect to Baire category (which is of a topological nature).

It turns out that there are several nonequivalent ways to define appropri-

ate notions of negligible sets. These notions are of interest in themselves. In

this chapter we present a rather detailed study of some interesting notions
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2.1 Porosity

of negligible sets which are interesting for fixed point problems.

2.1 Porosity

In a metric space, a natural class of negligible sets is that of sets of first

category. Let us recall here some definitions about Baire category. Let X be

a topological space.

Definition. 2.1. A subset E of X is called nowhere dense if the interior of

its closure Ē is empty, that is, Int(Ē) = ∅.

Definition. 2.2. A subset M of X is said to be of the first Baire category

if M is a countable union of nowhere dense subsets of X.

In the sense of Baire, the set M can be considered negligible. All other

sets are said to be of the second Baire category and are considered “large”

(or at least non small). However, the notion of first category is not suitable

enough for defining negligible sets in some senses as it is apparent on the real

line.

Example 2.3 (Decomposition on the real line). Let (ri)i∈N ⊂ R be an enu-

meration of all rational numbers on the real line R. For each pair of natural

numbers i and j, let Iij be the open interval of length l(Iij) = 2−(i+j) centered

at ri. Set

Gj :=
∞⋃
i=1

Iij, j = 1, 2, ...

and

A :=
∞⋂
j=1

Gj.

Then each Gj is open and dense. Thus its complement G′j is nowhere dense.

Put

B :=
∞⋃
j=1

G′j.
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It follows that B = A′ and B is also of the first Baire category. On the other

hand, given ε > 0, there is a natural number j such that 2−j < ε. Then

A ⊂
⋃
{Iij : i = 1, 2, ...} with

m(A) =
∞∑
i=1

l(Iij) =
∞∑
i=1

2−(i+j) = 2−j < ε

where m is the Lebesgue measure. Hence A is of Lebesgue measure zero.

Therefore the real line R can be decomposed into a disjoint union R = A∪B
of two small sets: A is a null set and B is of the first category.

There is also another interesting example showing that a first Baire cat-

egory subset of the real line needs not be Lebesgue null.

Example 2.4 (First category sets of positive measure). Consider the tradi-

tional Cantor-like construction. Let 0 < t < 1 and let B0 = [0, 1]. Suppose

we have constructed Bk, 0 ≤ k < n and each Bk consists of 2k disjoint uni-

formly distributed closed intervals of lengths 2−k(1 − 2−1t − ... − 2−kt) =

2−k(1 − t(1 − 2−k)) > t2−2k. Each of the closed intervals making up Bn−1

has length > t22−2n and therefore we can remove from each the middle open

interval of length t21−2n < t22−2n. This construction yields Bn. Now let

A(t) =
∞⋂
n=1

Bn.

The longest interval in Bn has length 2−n(1 − 2−1t − ... − 2−nt) < 2−n.

Hence A(t) contains no nonempty intervals and therefore IntA(t) = ∅. Since

Bn ↓ A(t) and Bn has Lebesgue measure 2n × 2−n(1 − 2−1t − ... − 2−nt) we

see that A(t) has measure 1− t. Since A(t) is closed we have A(t) is a closed

nowhere dense subset of [0, 1] with Lebesgue measure 1− t. Now let

An = A

(
1

n

)

17



2.1 Porosity

and let

A =
⋃
n≥1

An.

Then A is a first Baire category subset of [0,1] and A has Lebesgue measure

1. Consider now the complement C = [0, 1]\A. Since [0,1] is a complete

metric space, [0, 1] = A ∪ C and A is of the first Baire category, we see by

Baire’s theorem that C cannot be of the first category. Thus C is a dense

second Baire category subset of [0,1] and C has Lebesgue measure 0.

A natural way for a strengthening of the notion of the first category is the

concept of “porosity”. The concept of porosity in the real line R was used,

under different terminology, already by A. Denjoy in 1920. But the theory

of σ-porous sets was started in 1967 by E. Dolženko who applied σ-porous

sets in the theory of boundary behavior of functions [19]. The term “porous

set” was used the first time also by Dolženko.

After Dolženko introduced the term porosity, the definition of porous set

was modified in several different ways. In this present chapter, we give two

different types of porosity. Both concepts give porosity of a set at a point

and uniform porosity for a set. All notions of porosity presented in here are

in the setting of normed linear spaces but they also work for metric spaces.

We start with the notion of porosity which was first considered by L.

Zaj́ıček ( see in [92] or [93]).

Definition. 2.5. Let (X, ‖·‖) be a normed linear space, M ⊂ X and a ∈ X.

We denote a ball center at x ∈ X with a radius s > 0 by B(x, s). Then we

say that

(i) M is said to be porous at a if there exists c > 0 such that for each

ε > 0 there exist b ∈ X and s > c‖a − b‖ such that ‖a − b‖ < ε and

M ∩B(b, s) = ∅.

(ii) M is porous if M is porous at each of its points.

18



2.1 Porosity

(iii) If the number c in (i) is fixed for every x ∈M , then M is called c-porous.

(iv) M is σ-porous (σ − c-porous) if it is a countable union of porous (c-

porous) sets.

The next concept of porosity is stronger than the one in Definition 2.5.

To avoid misunderstanding, we call porosity in the following definition, very

porosity.

Definition. 2.6. Let (X, ‖·‖) be a normed linear space, M ⊂ X and a ∈ X.

We say that

(i) M is very porous at a if there exist α > 0 and r0 > 0 such that for each

r ∈ (0, r0], there exists b ∈ X for which B(b, αr) ⊂ B(a, r)\E.

(ii) M is very porous if M is porous at each of its points.

(iii) If the numbers α and r0 are fixed for every x ∈ M , then M is called

globally very porous.

(iv) M is σ-very porous (σ-globally very porous) if it is a countable union

of very porous (globally very porous) sets.

One easily see that every very porous set is a porous set and every globally

very porous set is c-porous for some fixed c > 0. The following example

indicates that there is a porous set which is not very porous.

Example 2.7. Consider the closed unit interval [0, 1], define a set A as a

subset of [0, 1] in the following way:

Step 1. Divide the interval [0, 1] into 4 disjoint subintervals, each subin-

terval has length 1
4

(see Figure A). Define a set A1 to be the set of right end

points of the 2nd, the 3rd and the 4th subinterval, that is, A1 =
{

1
2
, 3
4
, 1
}

.

Step 2. Consider the interval [0, 1
4
], divide it into 8 disjoint subintervals,

each subinterval has length 1
25

. Let A2 be the set of right end points of the

2nd, the 3rd, ... , the 7th and the 8th subinterval. Hence A2 =
{

1
24
, 3
25
, ..., 1

4

}
.

19



2.1 Porosity

Step 3. Construct the set A3 by consider the interval [0, 1
25

], divide it

into 16 disjoint subintervals, each subinterval has length 1
29

. Let A3 be a set

of right end points of the 2nd, ... , the 15th and the 16th subinterval. Hence

A3 =
{

1
28
, 3
29
, ..., 1

25

}
.
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Figure A. Showing Step 1, 2, 3 to construct the sets ��, �� and �� 

 

Following the same argument we can construct the set An, n ∈ N by di-

viding the interval [0, 1
2an

] where an := n2+n−2
2

into 2n+1 disjoint subintervals,

each subinterval has length 1
2
a(n+1) . Then let An =

{
k

2an+1 : k = 2, ..., 2n+1
}

for each n ∈ N.

Now define A :=

(
∞⋃
n=1

An

)
∪ {0}.
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2.1 Porosity
 

 

 

 

0                                      
�

�
                    �                   

�

�
                                       

�

�
                                        1                  

 

 

 

Figure B. An example of how to construct a ball ���, 
� when � 
 � 

 

We prove that A is porous at 0. To see this, choose c = 1
4
. For a given

ε > 0, there exists n ∈ N such that 1
2an

< ε. Take b to be a middle point

between 1
2
a(n+1) and 2

2
a(n+1) , that is, b = 1

2
a(n+1) + 1

2·2a(n+1) = 3
2·2a(n+1) and choose

s = 1
2·2a(n+1) . Hence

|0− b| = 3

2 · 2a(n+1)
< ε

and

s >
1

4
· 3

2 · 2a(n+1)
=

1

4
|0− b|.

It is clear, by the definition of A, that B(b, s) ∩ A = ∅.
However, the set A is not very porous at 0. Indeed, fix r0 > 0 and

let r ∈ (0, r0]. Then we can find n ∈ N such that 1
2an

< r. Let I be an

interval in B(0, r)\A and denote by `(I) the length of I. Then we obtain

that `(I) ≤ 1
2
a(n+1) . Thus the maximum radius of an open ball contained in

B(0, r)\A is 1
2·2a(n+1) . Hence we must choose α ≤ 2an

2·2a(n+1) = 1
2n+2 , it follows

that the number α depends on n which depends on r.

We go on to the next example which shows that a c-porous set needs not

be globally very porous.

Example 2.8. Consider the set M :=
⋃
n∈N

{
n+

k

n
: k = 0, 1, ..., n− 1

}
.
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Figure C. The black dots show numbers on the real line which contained in the set M 

 

It is not difficult to see that M is a 1
2
-porous set. Indeed, fix ε > 0 and let

x ∈M . Then there exist n ∈ N such that x = n+ k
n

where k ∈ {0, 1, ..., n−1}.
Choose y = x + 1

2n
and take s = 1

2n
. Then we have |x − y| = 1

2n
and

s > 1
2
· 1
2n

= 1
2
|x− y|. Obviously, the ball B(y, s) does not meet any element

of the set M .
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Figure D. Example of how to construct a ball 	
�, 
� when � � � 

 

To see that the set M is not globally very porous, fix a positive number

r. Then for each x ∈ M can be written as x = n + k
n

for some n ∈ N and

k ∈ {0, 1, ..., n−1}. We also can find a natural number t ∈ N such that t
2n
≤

r ≤ t+1
2n

. Since the maximum radius of an open ball which can be contained

in B(x, r)\M is 1
2n

, we must choose α ≤ 1
t

to obtain B(y, αr) ⊂ B(x, r)\M
for some y ∈ (x, x + 1

n
). Evidently, the number α is not independent from

the element x.

To point out the difference between very porous and nowhere dense sets,

note that if a subset E of a metric space (Y, d) is nowhere dense, y ∈ Y

22



2.1 Porosity

and r > 0, then there are a point z ∈ Y and a number s > 0 such that

Bd(z, s) ⊂ Bd(y, r) \E. If, however, E is also porous, then for small enough

r we can choose s = αr, where α ∈ (0, 1) is a constant which depends only

on E.

Some simple examples of globally very porous sets (so porous sets, very

porous sets and also c-porous sets) are the following: R is a globally very

porous subset of Rp+1, p ∈ N with r0 = 1 and the Cantor-third set is a

globally very porous set in R with r0 = 1
4
. The next result shows that

every σ-porous set is a set of Baire first category and, in a finite-dimensional

Euclidean space, σ-porous sets are also of Lebesgue measure zero.

Proposition 2.9.

i) Every σ-porous (σ-very porous, σ-globally very porous) subset of a met-

ric space is a subset of Baire 1st category.

ii) Every porous (very porous, globally very porous) subset of Rn is a null

Lebesgue measurable subset.

Proof. i) Let E be a σ-porous subset of a metric space (X, d). Hence E

is a countable union of porous sets, say that, E =
⋃
i∈N

Ei. According

to the definition of porosity, it’s clear that every open subset of each

Ei contains a nonempty open subset which does not meet Ei. Thus Ei

is nowhere dense for all i ∈ N, which implies E is a set of Baire 1st

category.

ii) We will prove for n = 1. A similar proof holds for any dimension. Let

m be the Lebesgue measure on R. Assume that A ⊂ R is porous. We

recall that the density of A in an ε-neighborhood of x ∈ R is defined

by

dε(x) =
m(A ∩Bε(x))

m(Bε(x))

23



2.2 Gaussian null sets

where Bε(x) denotes the ball centered at x with radius ε. Let x ∈ A
and ε > 0. By the definition of porous set, we obtain a constant c > 0,

an element y ∈ R and a number s > c‖x− y‖ such that y ∈ Bε(x) and

Bs(y) ∩ A = ∅. Denote ε′ = |a− b|. Then we obtain that

m(A ∩Bε′(x))

m(Bε′(x))
≤ m(Bε′(x)\Bε′(y))

m(Bε′(x))
=

2ε′ − cε′

2ε′
= 1− c

2
.

Hence for each x ∈ A,

lim inf
ε→0

dε(x) < 1

which implies that the density d(x) = lim
ε→0

dε(x) < 1 when it exists.

According to the Lebesgue Density Theorem, for almost every point x

of A the density at x exists and is equal to 1. Thus m(A) = 0.

The existence of a non-σ-porous subset of Rn which is of the first Baire

category and of Lebesgue measure zero was established in [92]. Let E be the

family of all non-σ-porous subsets of Rn which are of the first Baire category

and of Lebesgue measure zero. Suppose that A ⊂ Rn is σ-porous, then the

set A∪ P belongs to E for every P ∈ E . Moreover, if Q ∈ E is the countable

union of the set Qi ⊂ Rn, i = 1, 2, ..., then there is a natural number j for

which the set Qj is non-σ-porous. Evidently, this set Qj also belongs to E .

Therefore one can see that the family E is quite large. Also every complete

metric space without isolated points contains a closed nowhere dense set

which is not σ-globally very porous [93].

2.2 Gaussian null sets

As we state in Proposition 2.9, every σ-porous subset of a finite-dimensional

Banach space is of Lebesgue measure zero. However, in an infinite-dimensional

space the situation is different. It turns out that there is no analogous to
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2.2 Gaussian null sets

Lebesgue measure in this space. In fact, every translation-invariant measure

on an infinite-dimensional separable Banach space, which is not identically

zero, assigns infinite measure to all open subsets. To see this, suppose that

for some ε > 0, the open ball of radius ε, Bε, has finite measure. Since the

space has infinite dimension, we can construct an infinite sequence of dis-

joint open balls of radius ε
4

which are contained in Bε. By the translation

invariance, each of these balls has the same measure. Since the sum of their

measure is finite, the ε
4
-balls must have measure 0. Because the space is

separable, so it is second countable and Lindelöf, it can be covered with a

countable collection of ε
4
-balls. Thus the whole space must have measure 0.

In the absent of a reasonable translation-invariant measure, we cannot

simply use the class of null sets of some fixed measures. We can, however,

obtain a natural generalization of the class of Lebesgue null sets. In 1978

R.R. Phelps introduced the class of negligible sets which is called “family of

Gaussian null sets” [66].

Definition. 2.10. A non-degenerated Gaussian measure µ on the real line

R is one having the form

µ(B) = (2πb)−
1
2

∫
B

exp

(
−(t− a)2

2b

)
dt (2.1)

where B is a Borel subset of R and the constant b is positive. The point a is

called the mean of µ.

Definition. 2.11. Let X be a separable Banach space. A probability mea-

sure λ on the Borel subsets of X is said to be a non-degenerated Gaussian

measure of mean x0 ∈ X if for each f ∈ X∗, f 6= 0, the measure µ = λ ◦ f−1

has the form (2.1), where a = f(x0).

A Borel subset B of X is called a Gaussian null set if µ(B) = 0 for every

non-degenerated Gaussian measure µ on E. The family of all Gaussian null

sets will be denoted by G.
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2.2 Gaussian null sets

Proposition 2.12. The family G of Gaussian null sets has the following

properties:

(i) The countable union of elements in G is an element in G and a Borel

subset of an element of G is in G.

(ii) For all B ∈ G and x ∈ X, the translation x+B is in G.

(iii) If S : X → X is an isomorphism, then S(B) ∈ G for every B ∈ G.

(iv) If U ⊂ X is open and nonempty, then U /∈ G.

(v) If X is finite-dimensional, then a Borel set B is in G if and only if B

has Lebesgue measure zero.

It is known that a σ-porous subset of a finite-dimensional space is Lebesgue

null, so it is Gaussian null. However, a σ-porous subset of an infinite-

dimensional space needs not be Gaussian null. Indeed, it was proved in [69]

that if X is a Banach space with separable dual then any convex continuous

function f : X → R is Fréchet differentiable outside a σ-porous set. On the

other hand, it was shown in [57] and [58] that in every infinite dimensional

super-reflexive space, in particular in `2, there is an equivalent norm which

is Fréchet differentiable only on a Gaussian null set. It follows from these

two facts that an infinite dimensional separable super-reflexive space X can

be decomposed into the union of two Borel sets A∪B with A Gaussian null

and B σ-porous. Such a decomposition was earlier and directly known to

hold in every infinite dimensional separable space as the following [68]:

Theorem 2.13 (Preiss and Tĭser). Every infinite dimensional separable Ba-

nach space X can be decomposed into two sets A and B such that A is

negligible in the Gaussian sense and B is a countable union of closed porous

sets.
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2.3 Aronszajn null sets

2.3 Aronszajn null sets

There is another class of negligible sets which is equivalent to the class of

Gaussian null sets, namely the class of Aronszajn null sets. Suggestively by

its name, it was introduced by N. Aronszajn in 1976 [3]. We first need some

notations and definitions.

Definition. 2.14. Let X be a separable Banach space. Fix 0 6= v ∈ X.

(i) DefineA(v) as the system of all Borel sets B ⊂ X such that B∩(a+Rv)

is Lebesgue null on each line a+ Rv, a ∈ X.

(ii) If {xn} is a sequence of nonzero elements in X, we denote by A({xn})
the collection of all Borel sets A which can be decomposed as A =⋃
n∈N

An, where An ∈ A(xn) for every n.

(iii) A set A is called Aronszajn null if for every given complete sequence

{xn} in X, i.e., span{x1, x2, x3, ...} = X, the set A belongs to A({xn}).

Aronszajn has shown that the family of Aronszajn null sets has all the

properties listed for the family G of Gaussian null sets in Proposition 2.12.

For their equivalence, it was first observed by Phelps that every Aronszajn

null set is Gaussian null [66].

Proposition 2.15 (Phelps). If a Borel subset E is Aronszajn null, then it

is a Gaussian null set.

The remarkable result that Gaussian null sets are Aronszajn null was

later proved by M. Csörnyei [13].

Proposition 2.16 (Csörnyei). In every separable Banach space, Aronszajn

null set and Gaussian null set are coincident.
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2.4 Directional porosity

Connectively with the next upcoming section, we state one noteworthy

theorem of Aronszajn [3] concerning with the existence of Gâteaux derivative

and Aronszajn null set. But first we recall the definition of a notion which

enters into its statement.

A Banach space Y is said to have the Radon-Nikodým property (RNP) if

every Lipschitz function f : R→ Y is differentiable almost everywhere.

Theorem 2.17 (Aronszajn). Let X be a Banach space. If Y is a Banach

space with Radon-Nykodým property, then every Lipschitz function f : U →
Y , where U is an open subset of X, is Gâteaux differentiable outside an

Aronszajn null set.

2.4 Directional porosity

We describe one more class of negligible sets which is stronger than the class

of σ-porous sets, Gaussian null sets and Aronszajn null sets, it is called the

class of directionally porous sets. This class was introduced by L. Zaj́ıček [91]

and was also studied by D. Preiss and Zaj́ıček himself in [70] and [71]. There

are also certain different ways to define the notion of directional porosity as

well as the notion of porosity. We start with the commonest concept.

Definition. 2.18. Let (X, ‖ · ‖) be a normed linear space, M ⊂ X and

a ∈ X. We denote a ball center at x ∈ X with a radius s > 0 by B(x, s).

Then we say that

(i) M is said to be directionally porous at a if there exists c > 0 such that

for each ε > 0 there exist a direction h ∈ X and a positive real number

s such that s > ct and M ∩B(a+ tv, s) = ∅ for some t ∈ (0, ε).

(ii) M is directionally porous if M is directionally porous at each of its

points.
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2.4 Directional porosity

(iii) If the number c in (i) is fixed for every a ∈ M , then M is called c-

directionally porous.

(iv) M is σ-directionally porous (σ-c-directionally porous) if it is a countable

union of directionally porous (c-directionally porous) sets.

Clearly every directionally porous set (σ-directionally porous set) is also

porous (σ-porous). The additional requirement is that the vector b in 2.5 (i)

is restricted to be of the form b = a+ tv for a fixed v (depending on a). By

following the notion of directional porosity in the above definition, it can be

proved that porous sets and directionally porous sets of finite-dimensional

Banach spaces are coincident.

Proposition 2.19. Let X be a finite-dimensional Banach space and M ⊂ X.

Then M is porous if and only if M is directionally porous.

Proof. Assume that M is porous. Hence for every x ∈M , there exist c = c(x)

such that for each ε > 0, there are y ∈ M and a number s > c‖x − y‖ such

that ‖x− y‖ ≤ ε and B(y, s) ∩M = ∅.
Let t = ‖x − y‖, i.e., t ∈ (0, ε). Since the space X is finite-dimensional,

the unit ball B is compact. Thus there exists {w1, w2, ..., wn} ⊂ B such

that B ⊂
n⋃
i=1

B

(
wi,

ct

2

)
. Then we can find wk ∈ {w1, w2, ..., wn} such that∥∥∥wk − y−x

‖y−x‖

∥∥∥ ≤ c
2
. We obtain that

‖(x+ twk)− y‖ = t

∥∥∥∥wk − y − x
‖y − x‖

∥∥∥∥ ≤ ct

2
. (2.2)

Take r∗ = ct
2

. Then r∗ > c
3
t = c

3
‖x− (x+ twk)‖. Since the distance between

y and x+ twk, by (2.2), is less than ct
2

and ct
2
< s

2
, the ball B(x+ twk, r

∗) is

contained in the ball B(y, s). Hence B(x + twk, r
∗) ∩M = ∅ which implies

that M is porous at x in the direction of wk with the porous constant ć = c
3
.

It completes the proof.
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2.4 Directional porosity

However, we give another notion of directional porosity which is stronger

than the notion in Definition 2.18 and does not coincide with the notion of

porosity even in a finite-dimensional space.

Definition. 2.20. Let (X, ‖ · ‖) be a normed linear space, M ⊂ X and

a ∈ X. Then we say that

(i) M is said to be directionally very porous at a if there exist λ ∈ (0, 1),

a number r0 > 0 and a direction h ∈ X such that for each r ∈ (0, r0]

there exists t ∈ (0, r) for which B(a+ th, λr) ⊂ B(a, r)\M .

(ii) M is directionally very porous if M is directionally porous at each of

its points.

(iii) If the numbers λ and r0, and the direction h in (i) are fixed for every

a ∈M , then M is called globally directionally very porous.

(iv) M is σ-directionally very porous (σ-globally directionally very porous)

if it is a countable union of directionally very porous (globally direc-

tionally very porous) sets.

It is clear that directionally very porosity implies very porosity. Even so

in finite dimensional spaces, the converse is not true. The following example

shows that there is a subset of the real line R which is very porous at 0 but

not directionally very porous at this point.

Example 2.21. Let (An) be sequences of subsets of the interval [0, 1] defined

as in the Example 2.7. For each n ∈ N, define a set Bn in the following way:

Bn = An if n is an odd number and Bn = −An if n is an even number.

Hence, for instance, B1 =
{

1
2
, 3
4
, 1
}

, B2 =
{
−1

4
,− 7

25
, ...,− 1

24

}
and A3 ={

1
28
, 3
29
, ..., 1

25

}
as shown in Figure E. Let B =

⋃
n∈N

Bn

 ∪ {0}.
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Figure E. Showing Step 1, 2, 3 to construct the sets ��, �� and �� 

 

First we show that B is a very porous subset of the interval [−1, 1] at 0.

Fix r0 = 1 and α = 1
4
. Then for each r ∈ (0, r0] there exists n ∈ N such that

1
2
a(n+1) < r < 1

2an
, recall that an = n2+n−2

2
. Assume that n is an odd number.

We consider 2 possible situations.

(1) If i
2
a(n+1) < r < i+1

2an
, i = 2, 3, ..., 2n+1, then by the construction of B, we

know that the interval
[
− 1

2an
,− 1

2
a(n+1)

)
does not contain any element

of B. Choose y = −3
4
r. Since r

2
> i

2·2a(n+1) ≥ 1
2
a(n+1) , B(y, αr) =

B
(
−3

4
r, 1

4
r
)
⊂
[
− 1

2an
,− 1

2
a(n+1)

)
, i.e., it does not meet any element of

B. Hence B(y, 1
4
r) ⊂ B(0, r)\B.

(2) If 1
2
a(n+1) < r < 2

2an
, then consider the positive side of the interval

[−1, 1]. We obtain that the intersection between the set B and the

interval
(

1
2
a(n+2) ,

1
2
a(n+1)

]
is empty. Let y = 3

4
r. Then B(y, αr) =

B
(
3
4
r, 1

4
r
)
⊂
(

1
2
a(n+2) ,

1
2
a(n+1)

]
because r

2
> 1

2·2a(n+1) ≥ 1
2
a(n+2) . Thus

B(y, 1
4
r) ⊂ B(0, r) does not meet the set B.

The following figure shows how to construct a ball B(y, αr) when n = 1,

that is, 1
4
< r < 1.
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2.4 Directional porosity

1) Assume that 
�

�
� � �

�

�
, then we can choose � and construct an ball �	�,

�

�
�� as the following: 
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2) Assume that 
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�

�
, then consider the positive side of the interval [-1,1] and choose �	�,

�

�
�� 

as follow: 
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Figure F. Showing how to construct a ball 
	�,
�

�
�� which contained in the ball 
	�, �� and does not 

meet any elements of 
 when 
�

�
� � � 1 

From both cases, we can see that there exists y ∈ [−1, 1] such that

B(y, αr) ⊂ B(0, r)\B. If n is an even number, we can apply the same

argument. Thus B is very porous at 0.

On the other hand the set B is not directionally very porous at 0. To see

this, note that there are only 2 possible directions on the interval [−1, 1]: the

unit vectors 1 and -1. Consider the direction of the unit vector 1, as it was

explained in Example 2.7, the valued of α is depending on r, i.e., we cannot

choose an appropriate α which holds for every r. The same problem happens

as well in the case of the direction of the unit vector -1.

Let us list some facts about σ-directionally very porous sets.

Proposition 2.22.

(i) Every σ-directionally very porous subset of a separable Banach space is

Gaussian null.
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2.4 Directional porosity

(ii) Every Banach space contains a σ-very porous set which is not σ-directionally

very porous.

Proof. (i) Let X be a separable Banach space and E a σ-directionally very

porous subset of X. Let dE(x) be defined as the distance of the point

x ∈ X to the set E. Since d attains a minimum at a ∈ E, there are two

possibilities: the directional derivative of dE at a ∈ E in the direction

h ∈ SX fails to exist or dE is Gâteaux differentiable at a ∈ E if and

only if

lim
t→0+

dE(a+ th)− dE(a)

t
= 0

for any h ∈ X.

If x ∈ E, h ∈ X, λ = λ(x) ∈ (0, 1) and r0 = r0(x) > 0 such that

E ∩B(x+ th, λr) = ∅ for every r ∈ (0, r0] and t ∈ (0, r), then we have

dE(x+ th)− dE(x) = dE(x+ th) ≥ λr > λt. Hence

lim sup
t→0+

dE(x+ th)− dE(x)

t
≥ λ > 0

which implies that dE is not Gâteaux differentiable at x ∈ E. Due to

Aronszajns theorem (Theorem 2.17) E is an Aronszajn null set. So it

it Gaussian null.

(ii) It is a consequence of the first fact.

All properties in the above proposition show that the notion of σ-directional

porosity is really a very strong notion of smallness of sets.

Remark 2.23. For σ-directionally porous sets, property (i) (Proposition 2.22)

is also true but property (ii) holds only in the case of infinite dimensional

Banach spaces.

33





Chapter 3

Generic fixed point results in a

classic sense

Assume that A is a set and P a property which can be either satisfied or not

by the elements of A. The property P is said to be generic in A if “almost all”

elements of A satisfy P . When speaking about almost all elements we mean

all of them except those in a negligible set. As we present in Chapter 2, there

are different ways to define the notion of negligible sets. In this dissertation,

negligibility refers to Baire category or porosity. When we mention about

porosity, from now on we have in mind that porous set means globally very

porous set and σ-porous set means σ-globally very porous set (see definition

2.6) which are the strongest notions of porosity.

3.1 Generic fixed point results on the set of

non-expansive mappings

As far as we know, the first generic result concerning metric fixed point

theory was obtained by G. Vidossich in 1974 [89]. This result shows that
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3.1 Generic fixed point results on the set of non-expansive mappings

certain extension of the classical Browder-Göhde-Kirk fixed point theorem,

obtained within the framework of spaces with normal structure, still remain

valid for almost all mappings in general Banach spaces. From the starting

of Vidossich’s result, the generic fixed point property on the set of all non-

expansive mappings has been widely studied by many mathematicians. We

will call the generic fixed point results in this sense, “generic fixed point

results in a classic sense ”. Vidossich’s original result was proved on a normed

linear space. In this setting we will state it on a hyperbolic complete metric

space which is more general than a linear space.

Let (X, ρ) be a hyperbolic complete metric space, C a bounded, closed,

and ρ-convex subset of X. Denote by A the set of all non-expansive self-

mappings of C equipped with the metric h defined by, for each A,B ∈ A,

h(A,B) := sup{ρ(Ax,Bx) : x ∈ C}.

It’s clear that (A, h) is complete.

Theorem 3.1 (Vidossich). Let F0 be the subset of all F ∈ A which have a

unique fixed point. Then F0 is a residual subset in A.

By the celebrated theorem of Banach, it is well-known that a contraction

mapping which maps a complete metric space into itself has a unique fixed

point and the successive approximations of any point in the space converge

to its fixed point. A generic result of constructive type stating that, for

almost all (in the sense of Baire category) non-expansive self-mappings on

C the sequence of successive approximations actually do converge to their

fixed points, was first proved by F. S. De Blasi and J. Myjak [15]. Later the

same authors obtained a stronger result [16] in the sense of porosity as the

following:

Theorem 3.2 (De Blasi and Myjak). There exists a subset F1 ⊂ A such

that the complement A\F1 is σ-porous in (A, h) and for each A ∈ F1 the

following property holds:
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3.1 Generic fixed point results on the set of non-expansive mappings

There exists a unique xA ∈ C for which AxA = xA and Anx → xA as

n→∞ uniformly on C.

However, the iterates of non-expansive mappings do not converge in gen-

eral. In contrast with this fact, The first significant generalization of Ba-

nach theorem was obtained by E. Rakotch [74] who replaced Banach’s strict

contraction by a mapping which satisfies a weaker condition. To avoid mis-

understanding, from now on we will call a contraction due to Banach con-

traction principle, a strict contraction, and a weaker contraction introduced

by Rakotch, a contractive mapping. In contrast with the fact that the iter-

ates of non-expansive mappings do not converge in general, the iterates of

contractive mappings do converge in all complete metric spaces.

Definition. 3.3. A mapping A ∈ A is called contractive if there exists a

decreasing function φ : [0, d(C)]→ [0, 1] such that

φ(t) < 1 for all t ∈ (0, d(C)]

and

ρ(Ax,Ay) ≤ φ(ρ(x, y))ρ(x, y) for all x, y ∈ C.

It is clear that every strict contraction is a contractive mapping.

Theorem 3.4 (Rakotch). Assume that A ∈ A is contractive. Then A has a

unique fixed point xA ∈ C and the iterates Anx → xA as n → ∞ uniformly

on C.

S. Reich and A.J. Zaslavski (in [79]) have improved the result of De Blasi

and Myjak by showing that almost all (in the sense of Baire category) non-

expansive mappings are, in fact, contractive. Afterward, they shown that

the complement of the set of all non-contractive mappings is not only of the

first category but also σ-porous [81].
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3.2 Generic non-expansive mappings with another metric

Theorem 3.5 (Reich and Zaslavski). There exists a set F2 ⊂ A such that

A\F2 is σ-porous in (A, h) and each A ∈ F2 is contractive (so that A has a

fixed point).

3.2 Generic fixed point results on the set of

non-expansive mappings equipped with

another metric

Let (X, | · |) be a Banach space and C a closed convex bounded subset of X.

Assume that L is the set of all Lipschitz mappings T : C → C, and endowed

this set with a metric ‖ · ‖ defined by

‖T‖ = ‖T‖∞ + ‖T‖Lip

where ‖T‖Lip is the Lipschitz constant of T . It is not difficult to verify that

(L, ‖ · ‖) is a Banach space.

Let F be a subset of L formed by all non-expansive self-mappings of C.

Then (F , ‖ · ‖) is a closed subspace of (L, ‖ · ‖), hence a complete metric

space. To see this, let T be a limit point of F , then there exists a sequence

(Tn) ⊂ F such that Tn → T . Given ε > 0. Then there exists n0 ∈ N for

which ‖T − Tn‖ < ε for all n ≥ n0. Hence for every n ≥ n0, we obtain that

ε > ‖T − Tn‖

= ‖T − Tn‖∞ + ‖T − Tn‖Lip
≥ ‖T − Tn‖Lip
≥ |‖T‖Lip − ‖Tn‖Lip|

which implies ‖T‖Lip = 1. Thus T belongs to F , so that F is closed in L.
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3.2 Generic non-expansive mappings with another metric

Furthermore, the topology induced by ‖ · ‖ is stronger than the one we

used in the previous section.

Let C and Ĉ be subsets of L formed by all contractive mappings and strict

contractions, respectively. Recall that both strict contraction and contractive

mapping are well-known to have a fixed point.

Theorem 3.6. Ĉ is an open dense subset of L.

Proof. Let T ∈ L and ε > 0. Fix θ ∈ C. Consider a mapping

Sx :=

(
1− ε

1 + d(c)

)
Tx+

ε

1 + d(c)
θ, x ∈ C

where d(C) denote the diameter of C. It immediately implies that S is a

contraction mapping with a Lipschit constant k = 1− ε
1+d(c)

< 1, thus S ∈ Ĉ.
Then for each x ∈ C, we have

|Tx− Sx| =
∣∣∣∣ ε

1 + d(c)
(Tx− θ)

∣∣∣∣ =
ε

1 + d(c)
|Tx− θ| ≤ εd(C)

1 + d(c)

which implies

‖T − S‖∞ = sup {|Tx− Sx| : x ∈ C} ≤ εd(C)

1 + d(c)
.

Moreover, for every x, y ∈ C

|(T − S)x− (T − S)y| =
(

ε

1 + d(c)

)
|Tx− Ty| ≤ k1

(
ε

1 + d(c)

)
|x− y|

where k1 is a Lipschitz constant of T . Thus

‖T − S‖ = ‖T − S‖∞ + ‖T − S‖Lip

≤ εd(C)

1 + d(c)
+ k1

(
ε

1 + d(c)

)
≤ εd(C)

1 + d(c)
+

ε

1 + d(c)
= ε.
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3.2 Generic non-expansive mappings with another metric

Therefore the subset Ĉ is dense in L.

Additionally, we obtain that Ĉ is open. Indeed, for every T ∈ Ĉ with a

contraction constant k < 1, the open ball with radius r < 1− k around T is

a subset of Ĉ. To see this, assume that S ∈ B(T, r), then since ‖S−T‖Lip ≤
‖S − T‖ ≤ r we have

‖S‖Lip ≤ ‖T‖Lip + r < k + (1− k) < 1.

As a consequence of the previous result, L\Ĉ is nowhere dense. Since

Ĉ ⊂ C and every subset of nowhere dense set is also nowhere dense, we

obtain the following result on C.

Corollary 3.7. L\C is a nowhere dense subset of L.

Usually a generic result is obtained when it is shown that the set of

“good” points in a complete metric space contains a dense Gδ subset. Note

that our result is, in fact, stronger because we construct an open everywhere

dense subset of “good” points. Moreover we can show that the complement

of non-contractions is not only nowhere dense in L but also σ-porous in L as

follow:

Theorem 3.8. L\C is σ-porous in L.

Proof. Let Cn, n ∈ N be a set of all T ∈ L satisfying the following property:

P(1) There exists k ∈ (0, 1) such that |Tx − Ty| ≤ k|x − y| for all

x, y ∈ C satisfying ‖x− y‖ ≥ d(C)
2n

.

For each n ∈ N, we claim that L\Cn is porous in L with α = min{d(C),1}
24n(d(C)+1)

and r0 = 1. Fix θ ∈ C. For T ∈ L and r ∈ (0, 1] define a mapping

Tλ : C → C by

Tλx = (1− λ)Tx+ λθ
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3.2 Generic non-expansive mappings with another metric

when λ = r
2(d(C)+1)

. It is easy to check that Tλ is a contraction mapping for

k = 1− λ. For each x, y ∈ C, we obtain that

|(T − Tλ)x| = λ|Tx− θ| ≤ λd(C)

and

|(T − Tλ)(x− y)| = λ|T (x− y)| ≤ λ|x− y|.

Thus

‖T − Tλ‖ = ‖T − Tλ‖∞ + ‖T − Tλ‖Lip ≤ λ(d(C) + 1).

Let S ∈ B‖·‖(Tλ, αr). Then S ∈ Cn. Indeed, let x, y ∈ C for which |x− y| ≥
d(C)
2n

. Since

|Sx− Sy| ≤ |Sx− Tλx|+ |Tλx− Tλy|+ |Tλy − Sy|

≤ 2‖Tλ − S‖+ |Tλx− Tλy|

≤ 2αr + (1− λ)|x− y|

we have

|x− y| − |Sx− Sy| ≥ λ|x− y| − 2αr

≥ λ
d(C)

2n
− 2αr

≥ r

2

(
d(C)

2n(d(C) + 1)
− 4d(C)

16n(d(C) + 1)

)
=

rd(C)

8n(d(C) + 1)

≥ r

8n(d(C) + 1)
|x− y|.

This implies |Sx − Sy| ≤
(

1− r
8n(d(C)+1)

)
|x − y|. Thus B‖·‖(Tλ, αr) ⊂ Cn.
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3.2 Generic non-expansive mappings with another metric

Furthermore, for each S ∈ B‖·‖(Tλ, αr), we obtain that

‖T − S‖ ≤ ‖T − Tλ‖+ ‖Tλ − S‖

≤ λ(d(C) + 1) + αr

≤ r

2
+

r

16
< r

which gives us

B‖·‖(Tλ, αr) ⊂ B‖·‖(T, r) ∩ Cn.

Therefore the porosity of L\Cn is proved.

Put C0 =
⋂
n∈N
Cn. Then L\C0 =

⋃
n∈N
L\Cn is a σ-porous set in L.

Furthermore, we claim that any mapping T ∈ C0 is contractive. To see

this, define ϕ : [0, d(K)]→ [0, 1] by

ϕ(0) := 1

and, for 0 < t ≤ d(K)

ϕ(t) := sup

{
|Tx− Ty|
|x− y|

: |x− y| ≥ t

}
.

Clearly, ϕ is decreasing and |Tx − Ty| ≤ ϕ(|x − y|)|x − y| for all x, y ∈ K.

Given 0 < t ≤ d(K), let n be an integer satisfying d(K)
2n
≤ t. If |x − y| ≥ t,

then |x − y| ≥ d(K)
2n

. By the property P(1), there exists k ∈ (0, 1) such that

|Tx− Ty| ≤ k|x− y|. Thus

ϕ(t) = sup

{
|Tx− Ty|
|x− y|

: |x− y| ≥ t

}
≤ k < 1

which implies that T is contractive.

Since C0 ⊂ C, we have L\C ⊂ L\C0 and thus L\C is σ-porous in L.
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3.3 Generic multi-valued non-expansive mappings

3.3 Generic fixed point results in the set of

multi-valued non-expansive mappings

Assume that (X, ‖ · ‖) is a Banach space. Denote by S(X) the set of all

nonempty closed convex subsets of X. For the set S(X) we consider the

uniformity determined by the following base:

G(n) =

{
(A,B) ∈ S(X)× S(X) : H(A,B) ≤ 1

n

}
where H is the Hausdorff metric on S(X) and n = 1, 2, .... The set S(X)

with this uniformity is metrizable and complete. We endow the set S(X)

with the topology induced by this uniformity.

Assume now that K is a nonempty closed convex subset of X and denote

by S(K) the set of all A ∈ S(X) such that A ⊂ K. It is clear that S(K) is

a closed subset of S(X). We equip the topological subspace S(K) ⊂ S(X)

with its relative topology.

Let N be the set of all non-expansive set-valued self-mappings of K which

have nonempty bounded closed convex point images. Fix θ ∈ K. For the set

N we consider the uniformity determined by the following base:

E(n) =

{
(T1, T2) ∈ N ×N : H(T1(x), T2(x)) ≤ 1

n
, for all x ∈ K; ‖x− θ‖ ≤ n

}
n = 1, 2, . . .. The space N with this uniformity is also metrizable and com-

plete.

The following result, proved by S. Reich and A.J. Zaslavski [82], shows

that a generic non-expansive mapping does have a fixed point.

Theorem 3.9 (Reich and Zaslavski). Assume that Int(K) 6= ∅. Then there

exists an open every where dense set M⊂ N with the following property:

For each T̂ ∈ M there exists x̄ ∈ K and a neighborhood U of T̂ in N
such that x̄ ∈ T (x̄) for each T ∈ U .
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3.3 Generic multi-valued non-expansive mappings

Next we turn back to the concept of contractive mappings. In the follow-

ing we will assume that K is a bounded closed convex set. Thus we can use

the Hausdorff metric instead of a uniformity. The definition of multi-valued

contractive mapping is the following:

Definition. 3.10. A mapping T ∈ N is called contractive if there exists a

decreasing function φ : [0, d(K)]→ [0, 1] such that

φ(t) < 1 for all t ∈ (0, d(K)]

and

H(Tx, Ty) ≤ φ(‖x− y‖)‖x− y‖ for all x, y ∈ K.

As we know from the case of single-valued mappings, a single-valued con-

tractive mapping does have a fixed point and its successive approximations

converge to the fixed point. It turns out with the same result in the case of

multi-valued mapping due to the result by H. Kaneko ([42]).

Theorem 3.11 (Kaneko). Let (X, d) be a complete metric space and T :

X → P (X). If φ is a monotone increasing function such that 0 ≤ φ(t) < 1

for each t ∈ (0,∞) and if H(Tx, Ty) ≤ φ(d(x, y))d(x, y) for each x, y ∈ X,

then T has a fixed point.

In 2002, Reich and Zaslavski [80] have shown that the set of all non-

expansive non-contractive mappings from K into S(K) is a Baire set of first

category in the complete metric space of all non-expansive mappings from

K into S(K). In other words, generically all non-expansive mappings are

contractive. In this section, we will prove that the set of all non-expansive

non-contractive mappings from K into S(K) is smaller than the set of Baire

first category, in fact it is σ-porous.

Theorem 3.12. There exists a subset M of N such that the complement

N\M is σ-porous and each T ∈ M is contractive (so that it has a fixed

point).
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3.3 Generic multi-valued non-expansive mappings

Proof. For each n ∈ N, let Nn be the set of all T ∈ N which have the

following property:

P(2) There exists k ∈ (0, 1) such that H(Tx, Ty) ≤ k‖x − y‖ for all

x, y ∈ K satisfying ‖x− y‖ ≥ d(K)
2n

.

Let n ≥ 1 be an integer. We will show that N\Nn is porous in (N , h).

Take

α =
min{d(K), 1}

(16n(d(K) + 1))
.

Fix θ ∈ K, let T ∈ N and r ∈ (0, 1] and put

γ =
r

2(d(K) + 1)
.

Consider the mapping Tγ : K → S(K) defined by

Tγx := {(1− γ)a+ γθ : a ∈ Tx}, x ∈ K.

It is clear that Tγ ∈ N . We also obtain that

h(Tγ, T ) ≤ γd(K)

and for all x, y ∈ K

H(Tγx, Tγy) ≤ (1− γ)H(Tx, Ty) ≤ (1− γ)‖x− y‖. (3.1)

Assume that S ∈ N satisfies h(S, Tγ) ≤ αr. Then S ∈ Nn. Indeed, let

x, y ∈ K for which ‖x− y‖ ≥ d(K)
2n

. It follows from (3.1) that

‖x− y‖ −H(Tγx, Tγy) ≥ γ‖x− y‖ ≥ γd(K)

2n
.

We also have

H(Sx, Sy) ≤ H(Sx, Tγx) +H(Tγx, Tγy) +H(Tγy, Sy)

≤ 2αr +H(Tγx, Tγy).
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3.3 Generic multi-valued non-expansive mappings

It now implies that

‖x− y‖ −H(Sx, Sy) ≥ ‖x− y‖ −H(Tγx, Tγy)− 2αr

≥ γd(K)

2n
− 2αr

=
rd(K)

2n (2(d(K) + 1))
− 4α

r

2

=
r

2

(
d(K)

2n(d(K) + 1)
− 4α

)
=

r

2

d(K)

4n(d(K) + 1)
.

Thus H(Sx, Sy) ≤
(

1− r
8n(d(K)+1)

)
‖x− y‖.

Since this inequality holds for all x, y ∈ K satisfying ‖x− y‖ ≥ d(K)
2n

, we

conclude that S ∈ Nn. Hence

B(Tγ, αr) = {S ∈ N : h(S, Tγ) ≤ αr} ⊂ Nn. (3.2)

Moreover, if S ∈ B(Tγ, αr) we have

h(S, T ) ≤ h(S, Tγ) + h(Tγ, T )

≤ αr + γd(K)

≤ r

16
+
r

2
< r.

Thus

{S ∈ N : h(S, Tγ) ≤ αr} ⊂ {B ∈ N : h(T, S) ≤ r}. (3.3)

From (3.2) and (3.3), we have

{S ∈ N : h(S, Tγ) ≤ αr} ⊂ {S ∈ N : h(T, S) ≤ r}\(N\Nn)

that is, N\Nn is porous in (N , h).

Let M =
⋂
{Nn : n ∈ N}. Then N\M =

∞⋃
n=1

N\Nn is σ-porous.
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3.3 Generic multi-valued non-expansive mappings

By follow the same argument used in Theorem 3.8, we shall have each

mapping T ∈M is contractive. This completes the proof.
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Chapter 4

Generic fixed point property in

separable reflexive spaces

In this chapter, our framework of the generic fixed point existence is varied

from the set of all non-expansive mappings to the set of all renormings of a

Banach space. Note that the FPP neither the w-FPP is not preserved under

isomorphisms. Indeed, P.K. Lin [55] has proved that `1 can be renormed to

have the FPP (recall that this space does not satisfy the FPP for the usual

norm). On the other hand, the space L1([0, 1]) does not satisfy the w-FPP as

proved by D.E. Alspach [1]. However this space (and any separable Banach

space) can be renormed to have normal structure [88] and so the w-FPP [46].

It is known that there are some nonreflexive Banach spaces which cannot

be renormed to have the FPP or the w-FPP. For instance, as proved by

P. Dowling, C. Lennard and B. Turett [28], every renorming of c0(Γ) when

Γ is uncountable contains an asymptotically isometric copy of c0 and so it

fails to have the FPP. Analogously, any renorming of `1(Γ) (Γ uncountable)

contains an asymptotically isometric copy of `1 so it also fails to satisfy the

FPP. In the case of the w-FPP, J. Partington [63], [64] has proved that every

renorming of `∞(Γ) for Γ uncountable and any renorming of `∞/c0 contain
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4.1 Generic fixed point results on renormings of a Banach space

an isometric copy of `∞ and so they fail the w-FPP (again due to Alspach’s

example). Hence we restrict our framework to study the generic existence

of fixed points on renormings of a reflexive Banach space. Recall that in

reflexive spaces, the FPP and the w-FPP are equivalent.

We divide our work into two parts: generic fixed point property in separa-

ble reflexive spaces and generic fixed point property in nonseparable reflexive

spaces. Methods using for the separable case and nonseparable case are quite

different. In this chapter, we present the generic fixed points existence on

renormings of a separable reflexive Banach space.

4.1 Generic fixed point results on the set of

all equivalent norms on a Banach space

If a reflexive Banach space X is separable, it is well known that X can be

renormed to have the w-FPP. Indeed, it was independently studied in the

paper by V. Zizler [95] and another paper by M.M Day, R.C. James and S.

Swaminathan [14] that every separable Banach space admits an equivalent

uniformly convex in every direction (UCED) norm (See Chapter 1, Definition

1.2.8 and Theorem 1.2.11). Recall that UCED is a geometrical property

which implies normal structure (Chapter 1, Theorem 1.2.12) and so the FPP

for reflexive spaces (or the FPP for Banach spaces). Concerning fixed point

existence renorming and genericity, it comes out that almost all renormings

(in the sense of Baire category) of a separable reflexive Banach space satisfy

the FPP. Indeed, let P denote the space of all equivalent norms on a given

Banach space (X, ‖ · ‖). Define a metric ρ on P by: for each p, q ∈ P

ρ(p, q) = sup {|p(x)− q(x)| : x ∈ BX}

where BX = {x ∈ X : ‖x‖ ≤ 1}. Then (P , ρ) is an open subset of the

space (Q, ρ) of all continuous semi-norms on (X, ‖ · ‖) endowed with the
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metric ρ defined as above. Since (Q, ρ) is a complete metric space, by Baire

Theorem, it is a Baire space. Hence (P , ρ) is also a Baire space due to the

fact that every open subset of a B aire space is also a Baire space. Following

this approach, M. Fabian, L. Zaj́ıček and V. Zizler [30] proved the following

result:

Theorem 4.1 (Fabian-Zaj́ıček-Zizler). Let (X, r) be a uniformly convex in

every direction Banach space and P be as above. Then, there exists a residual

subset R (in fact a dense-Gδ) of P, such that for all p ∈ R, the space (X, p)

is uniformly convex in every direction.

Proof. For p ∈ P and j ∈ N, let

R(p, j) =

{
q ∈ (P , ρ) : sup

{
|p2(x) +

1

j
r2(x)− q2(x)| : x ∈ BX(r)

}
<

1

j2

}
For k ∈ N, define

Rk =
⋃
{R(p, j) : p ∈ P , j ≥ k}

and set

R =
∞⋂
k=1

Rk.

It is clear that Rk is open in (P , ρ). We show that R is a dense Gδ in (P , ρ).

Let k ∈ N and p ∈ P be given. Observe that for each j ≥ k,

(p2 +
1

j
r2)

1
2 ∈ R(p, j) ⊂ Rk.

Since ρ((p2 + 1
j
r2)

1
2 , p) → 0 as j → ∞, we have p ∈ Rk. It follows that Rk

is dense in (P , ρ) and also R is a Gδ set in (P , ρ). The density of R in P
follows from the fact that (P , ρ) is a Baire space.

It remains to show that for each p ∈ R, (X, p) is UCED. Let p0 ∈ R. Let

(xn), (yn) ∈ X be sequences such that

lim(2p0(xn)2 + 2p0(yn)2 − p0(xn + yn)2) = 0, (4.1)
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(xn) is bounded and there is a z ∈ X\{0} and real numbers λn, n = 1, 2, ...

which satisfy xn − yn = λnz for each n. We need to show that limλn = 0.

Since (4.1) implies the boundedness of (yn), and from the assumption

(xn) is bounded, we can assume without loss of generality that lim
n
r(xn) ≤ 1

2

and lim
n
r(yn) ≤ 1

2
for each n.

Since p0 ∈ R =
∞⋂
k=1

Rk, for every k, there exist jk ≥ k and pk ∈ P such

that p0 ∈ R(pk, jk), i.e.,

sup

{
|p2k(x) +

1

jk
r2(x)− p20(x)| : x ∈ BX(r)

}
<

1

j2k
. (4.2)

According to the convexity of p2k and (4.2), for each k, n ∈ N, we obtain
1
jk

(2r2(xn) + 2r2(yn)− r2(xn + yn))

≤ 2p2k(xn) + 2p2k(yn)− p2k(xn + yn) +
1

jk
(2r2(xn) + 2r2(yn)− r2(xn + yn))

= 2(p2k +
1

jk
r2)(xn) + 2(p2k +

1

jk
r2)(yn)− (p2k +

1

jk
r2)(xn + yn)

≤ 5

j2k
+ 2p20(xn) + 2p20(yn)− p20(xn + yn).

Then for each k ∈ N,
1

jk
lim sup

n

(
2r2(xn) + 2r2(yn)− r(xn + yn)

)
≤ 5

j2k
+ lim sup

n

(
2p20(xn) + 2p20(yn)− p20(xn + yn)

)
.

By using (4.1), we have for each k ∈ N

lim sup
n

(
2r2(xn) + 2r2(yn)− r(xn + yn)

)
≤ 5

jk
.

Thus

lim
(
2r2(xn) + 2r2(yn)− r(xn + yn)

)
= 0.

From the uniform convexity in every direction of r, it follows that limλn = 0.
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By applying the fact that every separable reflexive Banach space is UCED

renormable, we obtain the following result:

Corollary 4.2. Let X be a separable reflexive Banach space and P be as

above. Then, there exists a residual subset R (in fact a dense-Gδ) of P, such

that for all p ∈ R, the space (X, p) has the w-FPP.

In particular, this result can be applied for some classical Banach spaces

for instance L1([0, 1]), C([0, 1)]) which do not satisfy the w-FPP. In fact,

we can obtain a stronger result as a consequence of Fabian-Zaj́ıček-Zizler’s

result. We recall that a Banach space (X, ‖·‖) is strictly convex if
∥∥x+y

2

∥∥ < 1

whenever x, y ∈ SX , x 6= y. It is equivalent to say that X is strictly convex

if and only if the unit sphere SX does not contain a nontrivial segment. It

is not difficult to see that a UCED space is strictly convex. In 1965, F.E.

Browder [9] published his well known fixed point result as follow:

Theorem 4.3 (Browder). Let C be a nonempty, closed, convex subset of a

strictly convex Banach space X and let T : C → C be a non-expansive map.

Then the set F (T ) of fixed points of T is closed and convex.

Consequently, we obtain the following generic fixed point result on the

set P .

Corollary 4.4. Let X be a separable reflexive Banach space, P as in Theo-

rem 4.1. Then, there exists a residual subset F of P, such that for all p ∈ F ,

and every non-expansive mapping T defined from a convex weakly compact

subset C of (X, p) into itself, the set of fixed point of T is non-empty and

convex.

The problem of determining “how large” the first category subset of P\R
formed by the norms which do not have the FPP or the w-FPP is, seems to

be very difficult, because, for instance, it is unknown if `2 can be renormed
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in such a way that the new norm does not have the FPP, or, more generally,

it is unknown if there exists a reflexive space which does not satisfy the

FPP. It can be interesting to know if the Fabian-Zaj́ıček-Zizler result can be

reformulated in the sense of porosity.

Theorem 4.5. Let X be a separable reflexive Banach space. Assume that P
is defined as above with the metric ρ. Then, there exists a σ-porous subset

R of P such that for every norm p ∈ P \R, (X, p) is UCED (and so, it has

the w-FPP).

Proof. Since X is separable, there exists a norm r on X such that (X, r) is

UCED. For any p ∈ P , denote m(p) = inf
r(x)=1

p(x) and let pj =
√
p2 + (r2/j).

It is easy to check that d(p, pj) ≤ 1
jm(p)

. Indeed, for every x ∈ SX we have

|pj(x)− p(x)| =
|p2j(x)− p2(x)|
pj(x) + p(x)

≤ r2(x)

jp(x)
≤ 1

jm(p)
.

Denote

An =

{
p ∈ P :

1

n
≤ m(p)

}
and

Gk =
⋃

p∈P ,j≥k
B

(
pj,

1

kj

)
.

We claim that An \Gk is porous for r0 = 1
k

and α = 1
4kn

. Indeed, let s < 1
k
,

then 2n
s
≥ 1

s
> k ≥ 1. This implies that there exists an integer j ≥ k such

that j ∈
(
2n
s
, 4n
s

)
. Thus s

4n
≤ 1

j
< s

2n
. Assume p ∈ An \Gk. If q ∈ B(pj,

s
4kn

),

we have

ρ(p, q) ≤ ρ(p, pj) + ρ(pj, q)

≤ 1

jm(p)
+

s

4kn

≤ n

j
+

s

4kn

≤ s

2
+
s

2
= s.
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Thus B(pj,
s

4kn
) ⊂ B(p, s). Furthermore, we have that B(pj,

1
kj

) lies in Gk.

Since s
4kn

< 1
kj

, the ball B(pj,
s

4kn
) does not meet An \Gk.

Hence,

R =
∞⋃

n,k=1

An \Gk

is a σ-porous set. We claim that p is UCED if p ∈ P \ R. Indeed, note that

R =
∞⋃

n,k=1

(An \Gk) =
∞⋃
k=1

(P \Gk) = P \
∞⋂
k=1

Gk

which implies that P \R =
∞⋂
k=1

Gk. Assume that q ∈
∞⋂
k=1

Gk. Since, for every

k, q belongs to Gk, there exist p = p(k) ∈ P and j ≥ k such that q belongs

to B(pj,
1
kj

). Note that for every x ∈ X such that r(x) ≤ 1 we have

|q2(x)− p2j(x)| = |q(x)− pj(x)||q(x) + pj(x)| ≤ 2

kj
(M(q) + 1).

Let (xn), (yn) be sequences in X such that r(xn) ≤ 1
2
, r(yn) ≤ 1

2
and xn−yn =

λnz for some z ∈ X and

lim inf
n

2q2(xn) + 2q2(yn)− q2(xn + yn) = 0.

Thus

lim inf
n

2p2j(xn) + 2p2j(yn)− p2j(xn + yn) ≤ 10

kj
(M(q) + 1).

Hence

lim inf
n

2r2(xn) + 2r2(yn)− r2(xn + yn) ≤ 10

k
(M(q) + 1).

Since k is arbitrary and r is UCED we obtain that λn → 0.
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4.2 Equivalent metrics on the set of all equiv-

alent norms of a Banach space

We can define in the natural way another metric on P . Denote by CB(X)

the set of all nonempty closed bounded subsets of X. Define a metric h on

P in the following way

h(p, q) := H(Bp, Bq)

where H is the Hausdorff metric, Bp and Bq are the unit balls in (X, p) and

(X, q), respectively. It is not difficult to see that (P , h) is a complete metric

space. We obtain also the equivalence between ρ and h.

Proposition 4.6. The metric spaces (P , ρ) and (P , h) are equivalent.

Proof. Let p, q ∈ P and ε a given positive real number. If h(p, q) ≤ ε,

then Bp ⊂ B(Bq, ε) = {y ∈ X : there exist x ∈ Bq such that |x− y| ≤ ε}
and Bq ⊂ B(Bp, ε). Since p and q are equivalent to | · |, there exist ai, bi ∈ R
(i = 1, 2) such that for every x ∈ X

a1|x| ≤ p(x) ≤ b1|x| and a2|x| ≤ q(x) ≤ b2|x|.

Let x ∈ X. If x ∈ Bp, then x ∈ B(Bq, ε) and there exists y ∈ Bq such that

|x− y| ≤ ε. Thus q(x)− q(y) ≤ q(x− y) ≤ εb2. Since x
p(x)
∈ Bp, we have

q(x) ≤ (1 + εb2)p(x). (4.3)

In the same way, we obtain that

p(x) ≤ (1 + εb1)q(x). (4.4)

From (4.3) and (4.4) we have, for x ∈ SX

p(x)− q(x) ≤ εb1q(x) ≤ εb1b2
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and

p(x)− q(x) ≥ −εb2p(x) ≥ −εb1b2.

Hence |p(x)− q(x)| ≤ εb1b2 which implies that ρ(p, q) ≤ εb1b2.

In the other hand, assume that ρ(p, q) ≤ ε. Thus for every x ∈ BX we

have |p(x)− q(x)| ≤ ε. Let x ∈ Bp. Then we have

q(x) ≤ p(x) + ε|x| ≤ 1 + ε|x|

which implies x
1+ε|x| ∈ Bq and∣∣∣∣x− x

1 + ε|x|

∣∣∣∣ = |x|
∣∣∣∣1− 1

1 + ε|x|

∣∣∣∣ ≤ 1

a1
· ε|x|

1 + ε|x|
≤ ε

a21
.

Using the same argument, for each x ∈ Bq, we obtain that∣∣∣∣x− x

1 + ε|x|

∣∣∣∣ ≤ ε

a22

where x
1+ε|x| ∈ Bp. Denote d = min {a21, a22}. It follows that h(p, q) ≤ ε

d
.

Remark 4.7. Even though the metrics ρ and h are equivalent, they are not

uniformly equivalent. Consider the following easy example: Assume that X

is R2 with the maximum norm. Define

pn((x1, x2)) = max

{
|x1|,

1

n
|x2|
}
.

Then {pn} is a Cauchy sequence in (E , ρ), but h(pn, pm) = |n − m| which

implies that {pn} is not h-Cauchy.

In the general theory of Banach space, it is usual to identify isometric

spaces. However, when we consider the metric introduced in [30], we have

ρ(p, q) = 2 if p is the original norm and q = 2p. To avoid this, we can restrict

to “normalized” norms, i.e. norms which satisfy sup
x∈BX

p(x) = 1. Denote by E
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4.2 Equivalent metrics on the set of renormings of a Banach space

the set formed by all equivalent normalized norms endowed with the metric

ρ. Again E is an open subset of the complete metric space formed by all

continuous normalized semi-norms defined on (X, ‖ · ‖), and so E is a Baire

space.

On the other hand, following the idea of the Banach-Mazur distance, we

can also define a metric in E by

d(p, q) = log
bp,q
ap,q

= log ‖i‖‖i−1‖

where

ap,q = inf

{
p(x)

q(x)
: x ∈ SX

}
; bp,q = sup

{
p(x)

q(x)
: x ∈ SX

}
and i is the identity mapping from (X, p) into (X, q).

Assume that ε < 1. Then eε < 1 + 3ε. Hence, if d(p, q) < ε, we have
bp,q
ap,q

< 1 + 3ε. Furthermore, the normalization condition implies that bp,q ≥
1 ≥ ap,q, so that we obtain bp,q < 1 + 3ε and ap,q > 1 − 3ε. Thus for every

x ∈ BX we have

(1− 3ε)q(x) ≤ p(x) ≤ (1 + 3ε)q(x) (4.5)

which implies

|p(x)− q(x)| ≤ 3εq(x) ≤ 3ε.

Proposition 4.8. (E , d) is a complete metric space.

Proof. It is easy to see that d is a metric on E . Furthermore (E , d) is complete.

Indeed, let {pn} be a Cauchy sequence in E and let ε > 0. Then there exists

n0 ∈ N such that d(pm, pn) < ε for all m,n ≥ n0. According to (4.5), for

every x ∈ SX we have

|pm(x)− pn(x)| ≤ 3ε

for every m,n ≥ n0. Hence {pn} is a uniform Cauchy sequence on SX . If

x0 ∈ X, we have pn(x0) = ‖x0‖pn
(

x0
‖x0‖

)
→ ‖x0‖ lim

n
pn

(
x0
‖x0‖

)
. Thus
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{pn(x)} is convergent for all x ∈ X. Define p(x) = lim
n
pn(x). We will show

that p belongs to E . For any x, y ∈ X and a scalar α, we obtain that

p(x+ y) = lim
n
pn(x+ y) ≤ lim

n
pn(x) + lim

n
pn(y) = p(x) + p(y)

and

p(αx) = lim
n
pn(αx) = |α| lim

n
pn(x) = |α|p(x)

which implies p is a semi-norm.

It remains to show that p is equivalent to ‖·‖. According to the normalized

condition of pn, for each n ∈ N, pn(x) ≤ ‖x‖ for all x ∈ X. This implies

p(x) ≤ ‖x‖ for every x ∈ X. Furthermore, sup
x∈SX

p(x) = 1 because pn(x) →

p(x) uniformly on SX and sup
x∈SX

pn(x) = 1 for every n.

On the other hand, denote

an = apn,‖·‖ = inf
x∈SX

pn(x)

‖x‖
.

Then

d (pn, ‖ · ‖) = log
bpn,‖·‖
apn,‖·‖

= log
1

an
.

Since (pn) is a Cauchy sequence, it is bounded. So that there exists a positive

number M such that

d(pn, ‖ · ‖) = log
1

an
≤M, for every n ∈ N.

Due to the property of the logarithm function, 1
an
≤ K for every n ∈ N,

where K is a positive real number. Thus an ≥ 1
K
> 0 for every n ∈ N,

and we obtain that p(x) ≥ 1
K
‖x‖ for every x ∈ X. Hence p is an equivalent

normalized norm and so p ∈ E . Moreover, the uniform convergence of pn(x)

to p(x) on SX easily implies that pn → p on E .

To point out the relation between the metrics ρ, h and d, we will check

that these metrics are equivalent in the next proposition.
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Proposition 4.9. The metric spaces (E , ρ), (E , h) and (E , d) are equivalent.

Proof. The equivalence of ρ and h was proved in proposition 4.6. It remains

to show that either ρ or h is equivalent to the metric d. We will prove here

that ρ and d are equivalent.

Let p, q ∈ E . Assume that d(p, q) < d < 1, then we obtain that

%(p, q) = sup
x∈BX

|p(x)− q(x)|

≤ sup
x∈BX

q(x)

∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣
≤ sup

x∈BX

∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣
≤ max{bp,q − 1, 1− ap,q}

≤ bp,q − ap,q

= ap,q

(
bp,q
ap,q
− 1

)
≤ bp,q

ap,q
− 1

≤ ed − 1

≤ 2d.

Conversely, let m(p) = inf
x∈SX

p(x). Assume that ρ(p, q) < % < m(p)
2

. For

every x ∈ SX we have

1− %

m(p)
≤ 1− %

p(x)
≤ q(x)

p(x)
=
q(x)− p(x)

p(x)
+ 1 ≤ 1 +

%

m(p)
.

Thus
bp,q
ap,q
≤

1 +
%

m(p)

1− %
m(p)

which implies

d(p, q) ≤ log
1 +

%
m(p)

1− %
m(p)

.
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Remark 4.10. The metric d is not uniformly equivalent to the metric ρ nor

to the metric h. Indeed, assume that X is R2 with the maximum norm.

Consider the following sequences:

(i) Define the Cauchy sequence {pn} as in remark 4.7,

pn((x1, x2)) = max {|x1|, n|x2|} .

It was shown that {pn} is a Cauchy sequence in (E , ρ). But we obtain

that for every m,n ∈ N, d(pn, pm) =
∣∣log

(
m
n

)∣∣ which implies that {pn}
is not d-Cauchy.

(ii) For the nonuniform equivalence of d and h. Consider as well the

Cauchy sequence {pn} as in remark 4.7. It is not difficult to see

that for every n ∈ N, H(Bpn , Bpn+1) = 1 where Bpn , Bpn+1 are the

unit balls corresponding to the norm pn and pn+1, respectively. But

d(pn, pn+1) = log n+1
n

which converges to 0. Thus for ε = 1, we cannot

obtain δ > 0 such that if p, q ∈ P and d(p, q) < δ then h(p, q) < ε.

4.3 Porosity version of Fabian-Zaj́ıček-Zizler’s

result on the set E with equivalent met-

rics

In this setting we prove the result of Fabian-Zaj́ıček-Zizler in the sense of

porosity on the set E of all normalization norms equipped with the equivalent

metrics ρ and d. Since these metrics are not uniformly equivalent, we must

prove our result independently on (E , ρ) and (E , d).

Theorem 4.11. Let X be a separable reflexive Banach space. Assume that E
is defined as above with the metric ρ (resp.: d). Then, there exists a σ-porous
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subset Rρ (Resp.: Rd) of E such that for every norm p ∈ E \ R, (X, p) is

UCED (and so, it has the FPP).

Proof. Due to the separability of X, assume that r is a norm on X which is

UCED. We prove first the result for the metric ρ. For any p ∈ E denote

m(p) = inf
r(x)=1

p(x).

Let hp =
√

1 + (m(p)3/j) and pj = 1
hp

√
p2 + (r2m(p)3/j). It is easy to check

that pj ∈ E . Furthermore ρ(p, pj) ≤ 1
j
. Indeed, for every x ∈ SX we have

|pj(x)− p(x)| =
|p2j(x)− p2(x)|
pj(x) + p(x)

≤

∣∣∣p2(x) + m(p)3

j
− h2pp2(x)

∣∣∣
h2pm(p)

=
m(p)3|1− p2(x)|

jh2pm(p)

≤ 1

j
.

Denote

Gk =
⋃

p∈E ,j≥k
B

(
pj,

1

kj

)
.

We claim that E \ Gk is porous for r0 = 1
k

and α = 1
4k

. Indeed, for s < 1
k

choose j > k such that s
4
≤ 1

j
< s

2
. Assume p ∈ E \Gk. Then, pj ∈ B(p, s

2
).

Furthermore, we have that B(pj,
1
kj

) lies in Gk and the ball B(pj,
s
4k

) does

not meet E \Gk.

Hence,

R =
∞⋃
k=1

(E \Gk)
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is a σ-porous set, and we claim that p is UCED if p ∈ E \R. Indeed, assume

that q ∈
∞⋂
k=1

Gk. For every k, q belongs to Gk, there exist p = p(k) ∈ E and

j ≥ k such that q belongs to B(pj,
1
kj

). Note that for every x ∈ X such that

r(x) ≤ 1 we have |q2(x) − p2j(x)| = |q(x) − pj(x)||q(x) + pj(x)| ≤ 2
kj

. Let

(xn), (yn) be sequences in X such that r(xn) ≤ 1
2
, r(yn) ≤ 1

2
and xn−yn = λnz

for some z ∈ X and

lim inf
n

2q2(xn) + 2q2(yn)− q2(xn + yn) = 0.

Thus

lim inf
n

2p2j(xn) + 2p2j(yn)− p2j(xn + yn) ≤ 10

kj
.

Hence

lim inf
n

2r2(xn) + 2r2(yn)− r2(xn + yn) ≤
10h2p
km(p)3

≤ 20

km(p)3
.

Since q ∈ B(pj,
1
kj

) and ρ(p, pj) ≤ 1
j
, we obtain that |p(x) − q(x)| ≤ 2

j
for

every x ∈ BX . This implies 1
m(p)
≤ 1

|m(q)− 2
j |

.

Thus

lim inf
n

2r2(xn) + 2r2(yn)− r2(xn + yn) ≤ 20

k
∣∣∣m(q)− 2

j

∣∣∣3 .
Since k is arbitrary and r is UCED we obtain that λn → 0.

Let us turn to the metric d. Let tp =
√

1 + (m(p))2

j
and pj = 1

tp

√
p2 + (m(p))2

j
r2.

It is easy to check that pj ∈ E . Furthermore d(p, pj) ≤ 1
j
. Indeed,

bpj ,p = sup
x∈S1

√
p2(x) + (m(p))2

j

tpp(x)
= sup

x∈S1

√
1 + (m(p))2

jp2(x)

tp
≤

√
1 + 1

j

tp
.

On the other hand

apj ,p = inf
x∈S1

√
p2(x) + (m(p))2

j

tpp(x)
≥ inf

x∈S1

√
p2(x)

tpp(x)
=

1

tp
.
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Thus

d(p, pj) = log
bp,pj
ap,pj

≤ log

√
1 +

1

j
<

1

2j
.

For k ≥ 2 define

Gk =
⋃

p∈E ;j≥k
B

(
pj,

1

kj

)
.

If q ∈ Gk for some k, there exist p ∈ E depending on k and j ≥ k such that

d(q, pj) <
1
kj

. For each x ∈ B1, we obtain that

|q2(x)− p2j(x)| = |q(x)− pj(x)||q(x) + pj(x)| ≤ 3

kj
|q(x) + pj(x)|

≤ 3

kj
|q(x) + q(x) +

3

kj
|

≤ 9

kj
.

Assume that (xn), (yn) ∈ B( 1
2
), xn − yn = λnz where z ∈ X and

lim 2q2(xn) + 2q2(yn)− q2(xn + yn) = 0.

An argument as above lets obtain

lim inf 2r2(xn) + 2r2(yn)− r2(xn + yn) ≤
45t2p
km(p)

≤ 90

km(p)
.

Furthermore, since j ≥ k ≥ 2

1

m(p)
= br,p ≤ br,qbq,pjbpj ,p ≤ br,q

(
1 +

3

kj

)√
1 +

1

j
≤ 3

m(q)
.

Thus

lim inf 2r2(xn) + 2r2(yn)− r2(xn + yn) ≤ 810

k(m(q))2
.

Let G =
⋂
k≥2

Gk. If q ∈ G and (xn), (yn) are sequences as above, we obtain

that

lim inf 2r2(xn) + 2r2(yn)− r2(xn + yn) = 0.
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4.3 Porous Fabian-Zaj́ıček-Zizler’s result on normalized renormings

By the uniform convexity in every direction of r, λn → 0. Therefore q is

UCED.

Next we will show that for each k, E \Gk is porous for ρ0 = 1
k

and α = 1
2k

.

Assume p ∈ E and ρ < 1
k
. Choose j ≥ k such that ρ

2
≤ 1

j
< ρ. Then we have

B
(
pj,

ρ

2k

)
⊂ B

(
pj,

1

kj

)
⊂ B(p, ρ) ∩Gk = B(p, ρ) \Gc

k.

Take R =
⋃
k(E \Gk). Then R is σ-porous and this completes the proof.
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Chapter 5

Generic fixed point results on

nonseparable reflexive Banach

spaces

It seems to be more difficult to prove the generic fixed point results on non-

separable reflexive spaces. The arguments used in Chapter 4 do not work for

non-separable reflexive spaces. Indeed, D. Kutzarova and S.L. Troyanski [49]

have proved that there are reflexive spaces without equivalent norms which

are UCED. However, some interesting renorming results have been obtained

for non-separable spaces. In this chapter we present some interesting fixed

point renorming results on non-separable Banach spaces and later prove that

such fixed point properties are generic on the set of all renormings.

67
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5.1 Generic fixed point results on spaces with

the coefficient R(X) less than 2

It was proved by M. Day, R. James and S. Swaminathan [14] that there is

no UCED renorming of c0(Γ) when Γ is uncountable. However, c0(Γ) enjoys

the FPP. In fact, this is a consequence of a more general result. In 1997,

J. Garćıa-Falset introduced a Banach space coefficient and proved that a

Banach space with this coefficient less than 2 satisfies the w-FPP [31].

Definition. 5.1. Let X be a Banach space. The coefficient R(X) is defined

by

R(X) = sup{ lim inf ‖xn + x‖ : xn is weakly null with ‖xn‖ ≤ 1 ;

lim ‖xn‖ = 1 , ‖x‖ = 1}.

Theorem 5.2 (J. Garćıa-Falset). Let X be a Banach space, such that the

coefficient R(X) < 2. Then, X satisfies the w-FPP.

By using Garcia-Falset coefficient we can obtain that the space c0(Γ),

when Γ is uncountable, has the w-FPP.

Lemma 5.3. R(c0(Γ)) = 1.

Proof. Let X = c0(Γ). Assume that (xn) is a weakly null sequence in the

unit ball of X and x is an element in X with ‖x‖ = 1. Choose an arbitrary

ε > 0. There exists a finite subset F of Γ such that |x(t)| < ε if t /∈ F . Since

the evaluation functionals are linear and continuous on X we have xn(t)→ 0

for each t ∈ Γ. Thus, xn(t) < ε for every t ∈ F and n large enough and

lim inf ‖xn + x‖ ≤ 1 + ε which implies R(X) = 1 because ε is arbitrary.

Since, we can prove that some Banach spaces which cannot be renormed

with a UCED norm satisfy the w-FPP, it would be interesting to obtain that

for a general Banach space which can be a renormed to have the FPP, almost
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5.1 Generic w-FPP on spaces with R(X) less than 2

all renormings of it are able to be renormed to satisfy the w-FPP as well.

Conjecture. Let X be a Banach space which satisfies the w-FPP. Is the

w-FPP a generic property for all renormings of X?

First we give a partial answer for spaces which satisfy the Garcia-Falset

coefficient less than 2. In this chapter, the set P will refer to the set of all

equivalent norms on a Banach space equipped with the metric ρ as it was

defined in the previous chapter. We need some technical lemmas.

Lemma 5.4. Let X be a Banach space. Then

R(X) = sup{lim inf ‖xn + x‖ : xn is weakly null with ‖xn‖ ≤ 1 ; ‖x‖ ≤ 1}.

Proof. Denote a the number defined in the statement of this lemma. It is

clear that a ≥ R(X). On the other hand, assume that a > c > R(X).

There exists a weakly null sequence (xn) such that ‖xn‖ ≤ 1 and x such that

‖x‖ ≤ 1, lim inf ‖xn + x‖ > c. Taking a subsequence we can assume that

lim ‖xn‖ = d ≤ 1. Denote b = ‖x‖. We claim that

lim inf
n

∥∥∥∥ xn
‖xn‖

+
x

b

∥∥∥∥ > c.

Indeed, otherwise we have, if d > b

lim inf
n
‖xn + x‖ ≤ lim

n

(∥∥∥∥(‖xn‖ − b)
xn
‖xn‖

∥∥∥∥)+ lim inf
n

(∥∥∥∥b( xn
‖xn‖

+
x

b

)∥∥∥∥)
≤ (d− b) + bc

≤ dc

≤ c.
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Analogously, if d < b we have

lim inf
n
‖xn + x‖ ≤ lim

n

(∥∥∥(b− ‖xn‖)
x

b

∥∥∥)+ lim inf
n

(∥∥∥∥‖xn‖( xn
‖xn‖

+
x

b

)∥∥∥∥)
≤ (b− d) + dc

≤ bc

≤ c.

Thus lim inf
n

∥∥∥∥ xn
‖xn‖

+
x

b

∥∥∥∥ > c > R(X) when
(

xn
‖xn‖

)
is a weakly null sequence

with
∥∥∥ xn
‖xn‖

∥∥∥ ≤ 1, lim
n

∥∥∥∥ xn
‖xn‖

∥∥∥∥ = 1 and
∥∥x
b

∥∥ = 1. This contradicts to the

definition of R(X). Therefore R(X) = a.

Lemma 5.5. Let (X, ‖ · ‖) be a Banach space and p ∈ P with m(p) =

inf{p(x) : x ∈ BX}, M(p) = sup{p(x) : x ∈ BX}, where BX is the unit

ball corresponding with the norm ‖ · ‖. Assume that λ ∈ (0, 1) and pλ(x) =

p(x) + λ‖x‖. Then

R(X, pλ) ≤ 2− λ

M(p) + λ
(2−R(X)).

Proof. Assume that (xn) and x are a sequence and an element in X such that

pλ(xn) ≤ 1, pλ(x) = 1, pλ(xn)→ 1. We can assume that ‖xn‖ → a, ‖x‖ = b.

Then p(xn)→ 1− λa, p(x) = 1− λb. Denote c = max{a, b}, d = min{a, b}.
Note that, if a < b

lim inf
n
‖xn + x‖ ≤ lim inf

n

(∥∥∥(b− a)
x

b

∥∥∥+
∥∥∥a(xn

a
+
x

b

)∥∥∥)
≤ (b− a) + aR(X)

= (c− d) + dR(X)
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and if a > b,

lim inf
n
‖xn + x‖ ≤ lim inf

n

(∥∥∥(a− b)xn
a

∥∥∥+
∥∥∥b(xn

a
+
x

b

)∥∥∥)
≤ (a− b) + bR(X)

= (c− d) + dR(X).

Thus we have

lim inf (p(xn + x) + λ‖xn + x‖) ≤ lim inf (p(xn) + p(x) + λ‖xn + x‖)

= 1− λc+ 1− λd+ lim inf λ‖xn + x‖

≤ 1− λc+ 1− λd+ λ(c− d) + λdR(X)

= 2− λd(2−R(X)).

Since p(y) ≤M(p)‖y‖ for every y ∈ X, we have p(y)+λ‖y‖ ≤ (M(p)+λ)‖y‖
which implies ‖y‖ ≥ pλ(y)

(M(p)+λ
, for every y ∈ X. Thus we obtain that

1

M(p) + λ
= lim

n

pλ(xn)

M(p) + λ
≤ lim

n
‖xn‖ = a

and
1

M(p) + λ
=

pλ(x)

M(p) + λ
≤ ‖x‖ = b.

Hence d ≥ 1
M(p)+λ

and we have the result.

Lemma 5.6. Let p, q ∈ P such that ρ(p, q) < ε. Denote m(p) as above.

Then

R(X, q) ≤ m(p)R(X, p) + 2ε

m(p)− ε
.

Proof. Assume q(x) = 1, q(xn) ≤ 1 and q(xn)→ 1. Since p(x) ≤ q(x) + ε‖x‖
for every x ∈ X, so that if x ∈ X with ‖x‖ = 1 we have p(x) − ε ≤ q(x).
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5.1 Generic w-FPP on spaces with R(X) less than 2

Thus p(x)
q(x)
≤ p(x)

p(x)−ε . Since the function t 7→ t
t−ε is a decreasing function and

p(x) ≥ m(p) for all x ∈ SX ,

p(x) ≤ p(x)

p(x)− ε
q(x) ≤ m(p)

m(p)− ε
q(x)

which implies that p
(
m(p)−ε
m(p)

y
)
≤ 1, if q(y) ≤ 1. Thus we have p

(
m(p)−ε
m(p)

xn

)
≤

1 and p
(
m(p)−ε
m(p)

x
)
≤ 1 because q(xn) ≤ 1 and q(x) ≤ 1. Moreover, since

m(p) ≤ p
(

x
‖x‖

)
for all x ∈ X, ‖x‖ ≤ p(x)

m(p)
. Therefore

lim inf q(xn + x) ≤ lim inf (p(xn + x) + ε‖xn + x‖)

= lim inf

(
m(p)

m(p)− ε
p

(
m(p)− ε
m(p)

(xn + x)

)
+ ε‖xn + x‖

)
≤ m(p)

m(p)− ε
R(X, p) + ε · p(xn + x)

m(p)

≤ m(p)

m(p)− ε
R(X, p) + ε · q(xn + x)

m(p)− ε

≤ m(p)R(X, p) + 2ε

m(p)− ε
.

Theorem 5.7. Let X be a Banach space such that R(X) < 2. Then, there

exists a σ-porous subset R of (P , ρ) such that for every norm p ∈ P \R, we

have R(X, p) < 2 (and so (X, p) has the w-FPP).

Proof. Denote Bn =
{
p ∈ P : 1

n
< m(p) < M(p) < n

}
where m(p) and M(p)

are defined as in Lemma 5.5 and

An = Bn \
⋃

λ∈(0,1),p∈P
B

(
pλ,

2−R(X)

8n(n+ 2)
λ

)
.

We claim that An is a porous set for r0 = 1 and β = 2−R(X)
16n(n+2)

. Indeed, let r

be any positive number less than 1. Take λ = r
2
. Note that for each x ∈ BX ,
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5.1 Generic w-FPP on spaces with R(X) less than 2

|p(x) − p r
2
(x)| = r

2
‖x‖ ≤ r

2
. Hence ρ(p, p r

2
) ≤ r

2
. Then if q ∈ B(p r

2
, βr) =

B
(
p r

2
, 2−R(X)
16n(n+2)

r
)

, we have

ρ(p, q) ≤ ρ(p, p r
2
) + ρ(p r

2
, q) ≤ r

2
+

2−R(X)

16n(n+ 2)
r ≤ r

2
+
r

2
= r.

Thus the ball B(p r
2
, βr) is contained in B(p, r). The conclusion is clear

because for β = 2−R(X)
16n(n+2)

we have B(p r
2
, βr) = B

(
pλ,

2−R(X)
8n(n+2)

λ
)
. Thus R =

∞⋃
n=1

An is a σ-porous set.

It remains to show that R(X, q) < 2 if q ∈ P \ R. Assume that q ∈ Bn.

Hence 1
n
< m(q) ≤ M(q) < n. Since q ∈ P \ An, we have that q belongs to

B
(
pλ,

2−R(X)
8n(n+2)

λ
)

for some p ∈ P and λ ∈ (0, 1). Hence

ρ(q, pλ) ≤
2−R(X)

8n(n+ 2)
λ

≤ 2−R(X)

8n(M(q) + 2)
λ

≤ 2−R(X)

8n(M(p) + 1)
λ

≤ 2−R(X)

8n(M(p) + λ)
λ.

By lemma 5.5, we obtain

ρ(q, pλ) ≤
2−R(X, pλ)

8n
≤ (2−R(X, pλ))(m(p) + λ)

8
.
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5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

By Lemma 5.6, we obtain that

R(X, q) ≤
m(pλ)R(X, pλ) + 2

(
(2−R(X,pλ))(m(p)+λ)

8

)
m(pλ)−

(
(2−R(X,pλ))(m(p)+λ)

8

)
=

2m(pλ) (4R(X, pλ) + (2−R(X, pλ)))

m(pλ) (8− (2−R(X, pλ)))

=
6R(X, pλ) + 4

R(X, pλ) + 6
.

Since the function t 7→ 6t+4
t+6

is less than 2 if t < 2 and R(X, pλ) < 2 from

Lemma 5.5, hence R(X, q) < 2.

A similar result can be proved for the space (P , h), (E , ρ), (E , d) and

(E , h).

Remark 5.8. In fact, the above result holds in the sense of directional poros-

ity. According to the definition of directionally porous set (in this case we

refer to Definition 2.20), our space P does not have any direction because it is

a just a metric space not a normed space. However, the sum of two equivalent

norms is still an equivalent norm. Hence by following the proof in Theorem

5.7, we obtain that for each n ∈ N, An is directionally porous for r0 = 1,

β = 2−R(X)
16n(n+2)

and h = ‖ · ‖ in the sense that for each p ∈ P and r ∈ (0, r0],

there exists t = r
2

for which B(p+ th, βr) = B
(
p+ r

2
‖ · ‖, βr

)
⊂ B(p, r)\M .

Thus R =
∞⋃
n=1

An is a σ-directionally porous set.

5.2 Generic fixed point results on a Banach

space which can be embedded into c0(Γ)

There are some other interesting fixed point renorming results for non-separable

spaces. For instance, D. Amir and J. Lindenstrauss [2] have proved that ev-
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5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

ery WCG Banach space has an equivalent norm which is strictly convex,

and S.L. Troyanski [87] has proved that every WCG Banach space has an

equivalent norm which is locally uniformly convex. An important tool in the

proofs of these results is the following fact (proved in [2]): For any WCG Ba-

nach space X, there exist a set Γ and a bounded one-to-one linear operator

J : X → c0(Γ). This property is satisfied by a very general class of Banach

spaces, for instance subspaces of a space with Markushevich basis, as WCG

spaces (and so either separable or reflexive spaces), duals of separable spaces

as `∞, etc (see [29]). By using this embedding, T. Domı́nguez-Benavides [20]

has proved the following result:

Theorem 5.9 (Domı́nguez-Benavides). Assume that X is a Banach space

such that there exists a bounded one-one linear operator from X into c0(Γ).

Then, X has an equivalent norm such that every non-expansive mapping T

for the new norm defined from a convex weakly compact set C into C has a

fixed point.

Consequently, we obtain that every reflexive Banach space can be renormed

in such a way that the resultant norm has the FPP. We extend the above

result to obtain a generic fixed point result on a reflexive Banach space.

Let X be a Banach space. Assume that C is a weakly compact convex

subset of X and T : C → C is a non-expansive mapping. By using Zorn’s

lemma it is easy to prove that there exists a convex closed subset K of C

which is T -invariant and minimal for these conditions. This set must be sep-

arable (see [37] pages 35-36, for details). If K is not a singleton (i.e. a fixed

point), then by multiplication we can assume that diam (K) = 1. Further-

more, we can easily construct a sequence {xn} in K formed by approximated

fixed points, i.e. lim
n

(Txn−xn) = 0, and, by using the weak compactness and

a translation, we can assume that the sequence is weakly null. The following

lemmas are basic tools for proving our result.
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5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

Lemma 5.10 (Goebel-Karlovitz’s Lemma [36], [43]). Let K be a weakly

compact convex subset of a Banach space X, and T : K → K a non-expansive

mapping. Assume that K is minimal under these conditions and {xn} is an

approximated fixed point sequence for T . Then, lim
n→∞

‖xn − x‖ = diam(K)

for every x ∈ K.

Lemma 5.11. Let K be a weakly compact convex subset of a Banach space

X, and T : K → K a non-expansive mapping. Assume that K is minimal

under these conditions, diam (K) = 1 and {xn} is a approximated fixed point

sequence for T which is weakly null. Then, for every ε > 0 and t ∈ [0, 1],

there exist a subsequence of {xn}, denoted again {xn}, and a sequence {zn}
in K such that:

(i) {zn} is weakly convergent to a point z ∈ K.

(ii) ‖zn‖ > 1− ε for every n ∈ N.

(iii) ‖zn − zm‖ ≤ t for every n,m ∈ N.

(iv) lim sup
n
‖zn − xn‖ ≤ 1− t.

The proof of Lemma 5.11 is implicitly contained in the proof of Theorem

1 in [41], and explicitly proved in [20].

Lemma 5.12. Let {xn} be a weakly null sequence and x a vector in c0(Γ),

where Γ is an arbitrary set. Assume that lim
n
‖xn‖ exists. Then,

lim
n
‖xn + x‖ = max

{
lim
n
‖xn‖, ‖x‖

}
.

Proof. For an arbitrary positive number ε, there exists a finite subset F of

Γ such that |x(t)| < ε if t ∈ Γ\F . Since xn(t) → 0 at any t ∈ Γ, we

can choose n0 large enough such that |xn(t)| < ε for every n ≥ n0 and

t ∈ F . Thus |xn(t) + x(t)| < max {‖xn‖, ‖x‖} + ε for every n ≥ n0 and
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5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

t ∈ Γ, which implies lim sup
n
‖xn + x‖ ≤ max

{
lim
n
‖xn‖, ‖x‖

}
. Analogously,

limn ‖xn + x‖ ≥ max {limn ‖xn‖, ‖x‖}

We state our result in a setting more general than reflexive Banach spaces:

Theorem 5.13. Let X be a Banach space such that for some set Γ there

exists a one-to-one linear continuous mapping J : X → c0(Γ). Then, there

exists a residual subset R in P such that for every q ∈ R, every q-non-

expansive mapping T defined from a weakly compact convex subset C of X

into C has a fixed point.

In particular, if X is reflexive, then the space (X, q) satisfies the FPP.

Proof. For any p ∈ P and k ∈ N, we denote by pk the norm defined by

p2k(x) = p2(x)+ 1
k2
‖Jx‖2 and choose a positive number δ = δ(k) < 1/(400k7).

It is straightforward to prove that

16k2δ +
1 + δk

2

√
1 + 12δk − 1

k4
<

1

2
. (5.1)

Define

R =
∞⋂
j=1

⋃
p∈P ; k≥j

B(pk, δ(k)).

It is clear that R is a dense Gδ-set and so a residual set. We shall prove

that for every q ∈ R, the space (X, q) satisfies the properties in the state-

ment of this theorem. By contradiction, assume that there exists a weakly

compact convex and separable set K ⊂ X, which is not a singleton, and a

q-non-expansive mapping T : K → K such that K is minimal under these

conditions. We can assume that q-diam(K) = 1 and there exists a weakly

null approximated fixed point sequence {xn} for T .

Denote a = sup
{∥∥Jx

4

∥∥ : x ∈ K
}

. Choose a positive integer k such that

sup{q(x) : x ∈ B} < k, inf{q(x) : x ∈ S} > 1
k

and 1
a
< k. Since q ∈ R

there exists p ∈ P such that q belongs to B(pk, δ(k)). In order to simplify the
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5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

proof and using the separability of K and J(K), we assume that lim
n
p(xn−x),

lim
n
q(xn − x) and lim

n
‖Jxn − Jx‖ do exist for every x ∈ K (see Lemma 1.1

[76] for the existence of a subsequence satisfying this property).

For every x ∈ X, we have

|q(x)− pk(x)| ≤ δ‖x‖ ≤ δkq(x) (5.2)

and since δk < 1, we have from (5.2)

|q2(x)− p2k(x)| ≤ δkq(x)(q(x) + pk(x)) ≤ 3kδq2(x).

Since q(x− xn) ≤ 2 for x, xn ∈ K, we have

|q2(x− xn)− p2k(x− xn)| ≤ 12kδ. (5.3)

Claim. For any weakly null approximated fixed point sequence {xn} for

T in K, we have lim
n
‖Jxn‖ ≥ 2a.

Assume, by contradiction, that lim
n
‖Jxn‖ < 2a. We can choose x ∈ K

such that

∥∥∥∥Jx2
∥∥∥∥ > lim

n
‖Jxn‖. Since {Jxn} is weakly null in c0(Γ), from

Lemma 5.12 we have

lim
n

∥∥∥∥Jxn − Jx

2

∥∥∥∥ = max

{
lim
n
‖Jxn‖,

∥∥∥∥Jx2
∥∥∥∥} =

∥∥∥∥Jx2
∥∥∥∥ (5.4)

and, in the same way,

lim
n
‖Jxn − Jx‖ = ‖Jx‖. (5.5)

From Goebel-Karlovitz’ lemma, (5.3) and (5.5), we have

1 = lim
n
q2(x− xn)

≥ lim
n
p2k(x− xn)− 12δk

= lim
n
p2(x− xn) +

1

k2
lim
n
‖J(x− xn)‖2 − 12δk

= lim
n
p2(x− xn) +

1

k2
‖J(x)‖2 − 12δk
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which implies

lim
n
p2(x− xn) ≤ 1 + 12kδ − 1

k2
‖Jx‖2. (5.6)

Since 1 = lim
n
q(xn) by Goebel-Karlovitz’ lemma, we have from (5.2)

lim
n
p(xn) ≤ lim

n
pk(xn) ≤ (δk + 1) lim

n
q(xn) = δk + 1. (5.7)

Thus (5.1), (5.3), (5.4), (5.6) and (5.7) imply

limn q
2
(
xn − x

2

)
≤ 12δk + lim

n
p2k

(
xn −

x

2

)
≤ 12δk + lim

n
p2
(
xn −

x

2

)
+

1

k2

∥∥∥∥Jx2
∥∥∥∥2

≤ 12δk + lim
n

(
p(xn − x) + p(xn)

2

)2

+
1

k2

∥∥∥∥Jx2
∥∥∥∥2

= 12δk +
1

4
lim
n

(
p2(xn − x) + 2p(xn − x)p(xn) + p2(xn)

)
+

1

k2

∥∥∥∥Jx2
∥∥∥∥2

≤ 12δk +
1

k2

∥∥∥∥Jx2
∥∥∥∥2

+
1

4

(
1 + 12δk − 1

k2
‖Jx‖2 + 2(δk + 1)

√
1 + 12δk − ‖Jx‖

2

k2
+ (δk + 1)2

)

= 12δk +
1

2
+

1

4

(
14δk + δ2k2 + 2(δk + 1)

√
1 + 12δk − ‖Jx‖

2

k2

)

≤ 16δk2 +
1

2
+

1 + δk

2

√
1 + 12δk − 1

k4

< 1

which is a contradiction according to Goebel-Karlovitz’ lemma, because x
2

belongs to K.
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Denote b = a
k
. Note that b ∈ (0, 1/2). Indeed, for every x ∈ K we have

q(x) ≤ 1 which implies

‖Jx‖
4k
≤ pk(x)

4
≤
√

1 + δk

4
<

1

2
.

Choose a positive number

ε < min

{
b2

32
, b

(
1− b− b2

18
−
√

1 +
7

8
b2 − 2b

)
,
1

2

(
97

50
− 2

√
9

10

)
b(1− b)

}
.

We can apply Lemma 5.11 to the sequence {xn}, t = 1−b, and ε as above, to

obtain a sequence {zn} satisfying (i) to (iv). Denote z = w − lim
n
zn. Taking

a subsequence of {zn} (and also of {xn}) and using the separability of K we

can assume as above that lim
n
p(zn − y), limn q(zn − y) and lim

n
‖Jzn − Jy‖

do exist for every y ∈ K. Since lim
n
‖Jxn‖ ≥ 2a, lim sup

n
q(xn − zn) ≤ b by

Lemma 5.11 (iv) and using (5.2), we have

1

k
lim
n
‖Jzn‖ ≥

1

k

(
lim
n
‖Jxn‖ − lim sup

n
‖Jxn − Jzn‖

)
≥ 2a

k
− lim sup

n
pk(xn − zn)

≥ 2a

k
− (δk + 1) lim sup

n
q(xn − zn)

≥ 2a

k
− (δk + 1)b

≥ (1− δk)b.

Since δ ≤ 1
10k

, we have

lim
n
‖Jzn‖ ≥ a(1− δk) ≥ 9

10
a. (5.8)

Moreover, from Lemma 5.11 (iii) and the weak lower semi-continuity of the

norm q we have

q(zn − z) ≤ lim
m
q(zn − zm) ≤ 1− b

80



5.2 Generic w-FPP on a Banach space embedded into c0(Γ)

and so

lim
n
q(zn − z) ≤ 1− b. (5.9)

Analogously from Lemma 5.11 (iv), we obtain

q(z) ≤ lim
n
q(zn − xn) ≤ b. (5.10)

Hence, by (5.3), Lemma 5.11 (ii) and Lemma 5.12 we have

(1− ε)2 ≤ lim
n
q2(zn)

≤ 12δk + lim
n
p2k(zn)

≤ 12δk + lim
n

(p(zn − z) + p(z))2 +
1

k2
lim
n
‖J(zn − z) + Jz‖2

= 12δk + lim
n

(p(zn − z) + p(z))2 +
1

k2

(
max

{
lim
n
‖J(zn − z)‖, ‖Jz‖

})2
.

(5.11)

We split the proof into two cases:

Case A. Assume that limn ‖Jzn − Jz‖ ≥ ‖Jz‖. In this case, (5.11)

becomes

(1− ε)2 ≤ 12δk + lim
n
p2k(zn − z) + p(z)

(
p(z) + 2 lim

n
p(zn − z)

)
. (5.12)

We still have two possibilities:

Case A1. Assume ‖Jz‖ ≥ a
2
. In this setting we have from (5.12) and

(5.3)

(1− ε)2 ≤ 24δk + lim
n
q2(zn − z) + p(z)

(
p(z) + 2 lim

n
p(zn − z)

)
. (5.13)

Since 1
a
< k by the choice of k, we have

12δk <
12

400k6
<

1

8k4
<

a2

8k2
.

Thus, from (5.3) and (5.10) we have

b2 ≥ q2(z) ≥ p2(z) +
a2

4k2
− 12kδ ≥ p2(z) +

a2

8k2
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which implies

p2(z) ≤ b2 − a2

8k2
=

7b2

8
. (5.14)

According to the fact that b ∈ (0, 1
2
), note that b(1−b) < 1 and 26δk < 26b3

400
<

26b2

800
< b2

16
. Hence by (5.13), (5.14), (5.2), (5.9) we obtain the contradiction

(1− ε)2 ≤ 24δk + (1− b)2 +

√
7

8
b

(√
7

8
b+ 2(1 + δk) lim

n
q(zn − z)

)

≤ 24δk + (1− b)2 +

√
7

8
b

(√
7

8
b+ 2(1 + δk)(1− b)

)

< 26δk + (1− b)2 +
7

8
b2 + 2

√
7

8
b(1− b)

< 26δk + (1− b)2 + b2 + 2b(1− b)− b2

8

= 26δk + (1− b+ b)2 − b2

8

= 1 + 26δk − b2

8

< 1 +
b2

16
− b2

8

= 1− b2

16
< 1− 2ε

Case A2. Assume ‖Jz‖ ≤ a
2
. In this case (5.8) implies lim

n
‖Jzn−Jz‖ ≥

lim
n
‖Jzn‖ − ‖Jz‖ ≥

9a

10
− a

2
=

2a

5
. Furthermore, from (5.3) and (5.9) we

have

(1− b)2 ≥ lim
n
q2(zn − z)

≥ lim
n
p2k(zn − z)− 12δk

≥ lim
n
p2(zn − z)− 12δk +

4b2

25
.
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Since 12δk < 3
100k6

< 3b3

100
< 3b2

200
< 7b2

200
, we have

lim
n
p2(z − zn) ≤ (1− b)2 − 4

25
b2 + 12δk < 1− 2b+

7

8
b2. (5.15)

Note that δk < 1
100k6

< a3

100k3
< b3

100
which implies

p(z) ≤ q(z) + δk ≤ b+ δk ≤ b+
b3

100
. (5.16)

As above 24δk < 24
400k6

< a3

16k3
= b3

16
. Furthermore, 1 − 2b + 7b2

8
< 1. Thus

(5.12), (5.9), (5.15) and (5.16) imply the contradiction

(1− ε)2 ≤ 24kδ + (1− b)2 +

(
b+

b3

100

)(
b+

b3

100
+ 2

√
1− 2b+

7b2

8

)

≤ b3

16
+ (1− b)2 +

(
b+

b3

100

)(
b+

b3

100
+ 2

√
1− 2b+

7b2

8

)

≤ 1− 2b+ b2 +
b3

16
+ b2 +

4b3

100
+ 2b

√
1− 2b+

7b2

8

≤ 1− 2b+ b2 +
b3

9
+ b2 + 2b

√
1− 2b+

7b2

8
< 1− 2ε.

Case B. Assume lim
n
‖Jzn−Jz‖ ≤ ‖Jz‖. Since lim

n
‖Jzn‖ ≥

9a

10
by (5.8),

we have

‖Jz‖ ≥ lim
n
‖Jzn‖ − lim

n
‖Jzn − Jz‖ ≥

9a

10
− ‖Jz‖.

Thus ‖Jz‖ ≥ 9a
20

. Since q(z) ≤ b by (5.10), we have by (5.3) that

pk(z) ≤
√
b2 + 12δk <

√
b2 +

7b2

200
≤ 21b

20
.

Hence
441b2

400
≥ p2(z) +

‖Jz‖
k2
≥ p2(z) +

81b2

400
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which implies

p2(z) ≤ 9b2

10

and so

p(z) ≤
√

9

10
b. (5.17)

Note that the choice of k > 1
a

implies k ≥ 2, so that 24δk < 6b
100k4

≤ 6b
(100)(24)

<
b

(100)(2)
< b(1−b)

100
. From Lemma 5.11 (ii), Lemma 5.12, (5.9), (5.10) and (5.17)

we have the contradiction

(1− ε)2 ≤ lim
n
q2(zn)

≤ 12δk + lim
n
p2k(zn)

= 12δk + lim
n
p2(zn) +

1

k2
lim
n
‖Jzn‖2

≤ 12δk + lim
n

(p(zn − z) + p(z))2 +
1

k2
lim
n
‖J(zn − z) + Jz‖2

≤ 12δk + lim
n

(p(zn − z) + p(z))2 +
1

k2

(
max

{
lim
n
‖J(zn − z)‖, ‖Jz‖

})2
= 12δk + lim

n
p(zn − z) (p(zn − z) + 2p(z)) + p2(z) +

1

k2
‖Jz‖2

= 12δk + lim
n
p(zn − z) (p(zn − z) + 2p(z)) + p2k(z)

≤ 24δk + q2(z) + lim
n
p(zn − z)(p(zn − z) + 2p(z))

≤ 24δk + b2 + (1− b)(1 + δk)

(
(1− b)(1 + δk) + 2

√
9

10
b

)

≤ 24δk + b2 + (1− b+ δk)

(
1− b+ δk + 2

√
9

10
b

)

≤ 1

100
b(1− b) + b2 +

(
1− b+

1

100
b(1− b)

)(
1− b+

1

100
b(1− b) + 2

√
9

10
b

)
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=
1

100
b(1− b) + b2 + (1− b)2 +

1

100
b(1− b)2 + 2

√
9

10
b(1− b) +

1

100
b(1− b)2

+
1

100
b(1− b)2 +

1

104
b2(1− b)2 +

2

100

√
9

10
b2(1− b)

≤ 6

100
b(1− b) + b2 + (1− b)2 + 2

√
9

10
b(1− b)

= 1−

(
97

50
− 2

√
9

10

)
b(1− b)

< 1− 2ε.

We obtain also the following result.

Corollary 5.14. Let X be a reflexive Banach space. Then, for almost all

q ∈ P, the space (X, q) has the FPP and for every q-non-expansive mapping

T defined from a convex closed bounded set C into C, the set of fixed points

of T is convex.

Proof. According to the results in [2], every reflexive Banach space has a

strictly convex renorming. By Theorem 4.1.1, if there is a strictly convex

renorming, then almost all norms in P are strictly convex. Thus, from Theo-

rem 5.13 almost all norms in P are strictly convex and satisfy the FPP. The

convexity of the set of fixed points is a consequence of the strict convexity of

the space [37].
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5.3 Generic fixed point results on a Banach

space which can be embedded into a Ba-

nach space Y satisfying R(Y ) < 2

According to the result of T. Domı́nguez-Benavides (Theorem 5.9), every

Banach space which can be embedded into the space c0(Γ) can be renormed

to have the w-FPP. The proof of this result is strongly based upon some

specific properties of the space c0(Γ), specially the equality R(c0(Γ)) = 1.

Thus, a natural conjecture could be to extend the above result to any Banach

space which can be embedded in more general Banach spaces than c0(Γ), but

still satisfying R(Y ) < 2. In this section, we actually prove this extension.

In order to stating our result, we give a necessary lemma.

Lemma 5.15. Let (Y, ‖ · ‖Y ) be a Banach space with R(Y ) < 2, {yn} a

sequence in Y weakly convergent to 0. Assume that 0 < α = lim
n
‖yn‖Y and

0 < β = ‖y‖Y . Then

lim sup
n
‖yn + y‖Y ≤ c

(
lim
n
‖yn‖Y + ‖y‖Y

)

where c =
R(Y )−1+max

{
α
β
,
β
α

}

1+max

{
α
β
,
β
α

} < 1.

Proof. It is clear that c < 1. Assume that α > β. Then we obtain that

lim sup
n
‖yn + y‖Y ≤ β lim sup

n

∥∥∥∥ynα +
y

β

∥∥∥∥
Y

+

(
1− β

α

)
lim
n
‖yn‖Y

≤ βR(Y ) + α− β

= β(R(Y )− 1) + α

=
β(R(Y )− 1) + α

α + β
(α + β)

=
R(Y )− 1 + α

β

1 + α
β

(α + β).

(5.18)
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Slight modification of the above argument shows that if β ≥ α, then

lim sup
n
‖yn + y‖Y ≤

R(Y )− 1 +
β
α

1 +
β
α

(α + β).

It follows that

lim sup
n
‖yn + y‖Y ≤ c

(
lim
n
‖yn‖Y + ‖y‖Y

)
because the inequality R(Y ) < 2 implies that the function t 7→ R(Y )−1+t

1+t
is

increasing on the interval [0,+∞).

Theorem 5.16. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Assume

that R(Y ) < 2 and there exists a one-to-one linear continuous mapping J :

X → Y . Then there exists an equivalent norm in X such that X endowed

with the new norm satisfies the w-FPP.

Proof. Define, for each x ∈ X,

|x|2 = ‖x‖2X + ‖Jx‖2Y .

It is not difficult to check that | · | is an equivalent norm on X. We will show

that the space (X, | · |) enjoys the w-FPP.

Assume that C is a weakly compact convex subset of X and T : C → C is

a | · |-non-expansive mapping. By Zorn’s lemma, there exists a convex closed

subset K of X which is T -invariant and minimal under these conditions.

This set must be separable (see [37], page 35-36) and each point of K is

diametral. We will assume by contradiction that K is not a singleton. Then

by multiplication, we can assume that |·|−diamK = 1 and we can also assume

that there exists a weakly convergent approximated fixed point sequence {xn}
for T in K. By translation, we can assume that {xn} is weakly null and so,

0 ∈ K. By Goebel-Karlovitz’ lemma, lim
n
|xn| = lim

n
|xn − 0| = diamK = 1.
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Due to the separability of K, we can assume that lim
n
|xn−x|, lim

n
‖xn−x‖X

and lim
n
‖J(xn − x)‖Y do exist for every x ∈ K.

We claim that for the weakly null approximated fixed point sequence

{xn}, lim
n
‖Jxn‖Y > 0. To see this, assume by contradiction that lim

n
‖Jxn‖Y =

0. Since diamK = 1 and J is a one-to-one linear mapping, we can choose x

in K such that ‖Jx‖Y = a > 0. According to Goebel-Karlovitz’ lemma,

1 = lim
n
|xn − x|2

= lim
n

(
‖xn − x‖2X + ‖J(xn − x)‖2Y

)
= lim

n
‖xn − x‖2X + a2.

(5.19)

Thus,

lim
n
‖xn − x‖2X = 1− a2. (5.20)

By (5.20), we obtain that

lim
n

∣∣∣xn − x

2

∣∣∣2 = lim
n

(∥∥∥xn − x

2

∥∥∥2
X

+
∥∥∥J(xn −

x

2
)
∥∥∥2
Y

)
≤ 1

4
lim
n

(
(‖xn − x‖X + ‖xn‖X)2 + (‖J(xn − x)‖Y + ‖Jxn‖Y )2

)
=

1

4
lim
n

(
|xn − x|2 + |xn|2 + 2(‖xn − x‖X‖xn‖X + ‖J(xn − x)‖Y ‖Jxn‖Y )

)
≤ 1

4

(
1 + 1 + 2

√
1− a2

)
< 1

which contradicts to Goebel-Karlovitz’ lemma since x
2

belongs to K. Thus,

lim
n
‖Jxn‖Y > 0.

Assume that lim
n
‖Jxn‖Y = 3b for some positive real number b. Note that

b ∈ (0, 1
3
]. Indeed, since J is one-to-one linear continuous and |·|−diamK = 1,

then 3b = lim
n
‖Jxn‖Y ≤ 1. Choose 0 < γ < b(1−b−

√
1−2b)

2
and let ĉ =

max
{

1, 1−bγ

}
. Denote c = R(Y )−1+ĉ

1+ĉ
< 1.
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We apply lemma 5.11 for t = 1− b and

ε < min

{
γ2

2
(1− c2), b(1− b−

√
1− 2b)

2

)
to obtain a subsequence of {xn}, denoted again by {xn}, and a sequence {zn}
in K which satisfy (i)-(iv).

Assume that z = w − lim zn. By (iv) and the weak lower semi-continuity of

the norm, we have

|z| ≤ lim inf
n
|zn − xn| ≤ 1− t = b (5.21)

and by (iii),

lim
n
|zn − z| ≤ lim

n
lim
m
|zn − zm| ≤ t = 1− b. (5.22)

Moreover, again by using (iv), we obtain

b2 ≥ lim sup
n
|xn − zn|2 ≥ lim sup

n
‖J(xn − zn)‖2Y .

Thus

b ≥ lim sup
n
‖J(xn − zn)‖Y ≥ lim sup

n
(‖Jxn‖Y − ‖Jzn‖Y )

which implies

lim
n
‖Jzn‖Y ≥ lim

n
‖Jxn‖Y − b = 2b. (5.23)

We will split the proof into two cases:

Case I. Assume that ‖Jz‖Y ≤ γ.

In this case, we have, by (5.23)

lim
n
‖J(zn − z)‖Y ≥ lim

n
‖Jzn‖Y − ‖Jz‖Y ≥ 2b− γ.

By (5.22), we have

(1− b)2 ≥ lim
n
|zn − z|2

= lim
n

(
‖zn − z‖2X + ‖J(zn − z)‖2Y

)
≥ lim

n
‖zn − z‖2X + (2b− γ)2.
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Since γ < b we have

lim
n
‖zn − z‖2X ≤ (1− b)2 − (2b− γ)2 < (1− b)2 − b2 = 1− 2b. (5.24)

Thus, by using (ii), (5.21), (5.22) and (5.24), we obtain the following contra-

diction:

(1− ε)2 ≤ lim
n
|zn|2

= lim
n

(
‖zn‖2X + ‖Jzn‖2Y

)
≤ lim

n

(
(‖zn − z‖X + ‖z‖X)2 + (‖J(zn − z)‖Y + ‖Jz‖Y )2

)
= lim

n

(
|zn − z|2 + |z|2 + 2(‖zn − z‖X‖z‖X + ‖J(zn − z)‖Y ‖Jz‖Y )

)
≤ (1− b)2 + b2 + 2b

√
1− 2b+ 2γ

≤ (1− b)2 + b2 + 2b
√

1− 2b+ b(1− b−
√

1− 2b)

≤ (1− b)2 + b2 + 2b
√

1− 2b+ 2b(1− b−
√

1− 2b)− b(1− b−
√

1− 2b)

< 1− 2ε.

Case II. Assume that ‖Jz‖Y ≥ γ.

By the assumption, we have

0 < γ ≤ ‖Jz‖Y ≤ |z| ≤ b.

Furthermore,

lim
n
‖J(zn − z)‖Y ≥ lim

n
‖Jzn‖Y − ‖Jz‖Y ≥ 2b− b = b.

Hence

0 < b ≤ lim
n
‖J(zn − z)‖Y ≤ lim

n
|zn − z| ≤ 1− b.

Applying lemma 5.15 with {yn} = {J(zn − z)} and y = Jz, we obtain that

lim
n
‖J(zn − z) + Jz‖Y ≤

R(Y )− 1 + ĉ

1 + ĉ

(
lim
n
‖J(zn − z)‖Y + ‖Jz‖Y

)
= c

(
lim
n
‖J(zn − z)‖Y + ‖Jz‖Y

)
.

(5.25)
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Then by (ii) and (5.25), we have

(1− ε)2 ≤ lim
n
|zn|2

= lim
n

(
‖zn‖2X + ‖Jzn‖2Y

)
≤ lim

n

(
(‖zn − z‖X + ‖z‖X)2 + ‖J(zn − z) + Jz‖2Y

)
≤ lim

n
(‖zn − z‖X + ‖z‖X)2 + c2

(
lim
n
‖J(zn − z)‖Y + ‖Jz‖Y

)2
= lim

n

(
(‖zn − z‖X + ‖z‖X)2 + (‖J(zn − z)‖Y + ‖Jz‖Y )2

)
+ (c2 − 1)

(
lim
n
‖J(zn − z)‖Y + ‖Jz‖Y

)2
≤ lim

n

(
|zn − z|2 + |z|2 + 2(‖zn − z‖X‖z‖X + ‖J(zn − z)‖Y ‖Jz‖Y )

)
− (1− c2)‖Jz‖2Y .

(5.26)

Assume that lim
n
|zn − z| = u and |z| = v. Denote t = lim

n
‖zn − z‖X and

s = ‖z‖X . Then we have

lim
n
‖J(zn − z)‖Y =

(
lim
n
|zn − z|2 − lim

n
‖zn − z‖2X

) 1
2

=
√
u2 − t2

and

‖Jz‖Y =
(
|z|2 − ‖z‖2X

) 1
2 =
√
v2 − s2.

Consider the function of two variables

f(t, s) = 2ts+ 2
√
u2 − t2

√
v2 − s2.

By elementary calculus, we obtain that

max
[0,u]×[0,v]

f(t, s) = 2uv

hence

2
(
‖z‖X lim

n
‖zn − z‖X + ‖Jz‖Y lim

n
‖J(zn − z)‖Y

)
≤ 2|z| lim

n
|zn−z|. (5.27)
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By applying (5.21), (5.22) and (5.27), then (5.26) becomes

(1− ε)2 ≤ lim
n

(
|zn − z|2 + |z|2 + 2|zn − z||z|

)
− (1− c2)‖Jz‖2Y

≤ (1− b)2 + b2 + 2b(1− b)− (1− c2)γ2

= 1− (1− c2)γ2

< 1− 2ε

and we again reach the contradiction.

Therefore the space (X, | · |) enjoys the w-FPP.

We also prove a stronger result than Theorem 5.16, the w-FPP property

is generic on all renormings of a Banach space which can be embedded into

a Banach space Y with R(Y ) < 2.

Theorem 5.17. Let X be a Banach space and P as above. Assume that

there is a one-to-one linear continuous mapping J : X → (Y, ‖ · ‖Y ) where

(Y, ‖·‖Y ) is a Banach space with R(Y, ‖·‖Y ) < 2. Then there exists a residual

subset R in P such that every q ∈ R, the space (X, q) has the FPP.

Proof. For each p ∈ P and k ∈ N, define a norm pk by

p2k(x) = p2(x) +
1

k2
‖Jx‖2Y , x ∈ X.

For each k ∈ N, let γ = γ(k) and ĉ1 = ĉ1(k) be positive real numbers such

that

0 < γ <
1

6k

1− 1

3k2
−

√(
1− 1

3k2

)2

− 1

90k4


and

ĉ1 =
31k

30γ
.
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Note that γ < 1
6
< 1

2
. Take c1 = c1(k) = R(Y )−1+ĉ1

1+ĉ1
< 1 and choose a positive

real number

δk < min

 1

30k5
,

1

30k3

1− 1

3k2
−

√(
1− 1

3k2

)2

− 1

90k4

 ,
1− c21

6k3
γ2

 .

Define

R =
∞⋂
j=1

⋃
p∈P ; k≥j

B(pk, δk).

It is clear that R is a dense Gδ-set, hence R is residual. We will prove that

for each q ∈ R, the space (X, q) enjoys the FPP.

We will assume by contradiction that (X, q) fails to have the w-FPP.

Assume that C is a weakly compact convex subset of X and T : C → C is

a q-non-expansive mapping. Then by Zorn’s lemma, there exists a convex

closed subset K of X which is not a singleton, T -invariant and minimal

for these conditions. This set must be separable and each point of K is

diametral. Then by multiplication, we can assume that q − diamK = 1

and we can also assume that there exists a weakly null approximated fixed

point sequence {xn} for T in K. Since 0 ∈ K, by Goebel-Karlovitz’ lemma,

lim
n
q(xn) = lim

n
q(xn − 0) = q − diamK = 1.

We claim that lim inf
n
‖Jxn‖Y > 0. Assume that lim inf

n
‖Jxn‖Y = 0.

Since q−diamK = 1 and J is a one-to-one linear mapping, we can choose 0 6=
x ∈ K such that ‖Jx‖Y = a > 0. Let k1 ∈ N such that k1 > sup{q(x) : x ∈

BX}, 1
k1
< inf{q(x) : x ∈ SX} and

(
80k41+1

10k21(10k
4
1+1)

) 1
2
< a. It is straightforward

to verify that the last condition implies(
1− a2

k21
+

1

10k41

)(
1 +

1

10k41

)
< 1− 3

5k41
. (5.28)

Since

1− 3

5k4
<

(
1− 3

10k4

)2
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we have √(
1− a2

k21
+

1

10k41

)(
1 +

1

10k41

)
< 1− 3

10k41
. (5.29)

Since q ∈ R, we can assume that there exists p ∈ P such that q ∈ B(pk1 , δk1).

Then for each x ∈ X, we obtain that

|q(x)− pk1(x)| ≤ k1δk1q(x) (5.30)

and ∣∣q2(x)− p2k1(x)
∣∣ ≤ 3k1δk1q

2(x). (5.31)

By using the separability of K, we can assume that lim
n
q(xn−x), lim

n
‖J(xn−

x)‖Y and lim
n
p(xn − x) do exist for every x ∈ K.

According to Goebel-Karlovitz’ lemma and (5.31), we have

1 = lim
n
q2(xn − x)

≥ lim
n
p2k1(xn − x)− 3k1δk1

> lim
n

(
p2(xn − x) +

1

k21
‖J(xn − x)‖2Y

)
− 1

10k41

≥ lim
n

(
p2(xn − x) +

1

k21
(‖Jx‖Y − ‖Jxn‖)2

)
− 1

10k41

= lim
n
p2(xn − x) +

a2

k21
− 1

10k41
.

Thus

lim
n
p2(xn − x) < 1− a2

k21
+

1

10k41
. (5.32)

Now consider
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lim
n
q2
(
xn −

x

2

)
≤ lim

n
p2k1

(
xn −

x

2

)
+ 3k1δk1

≤ lim
n

(
p2
(
xn −

x

2

)
+

1

k21

∥∥∥J (xn − x

2

)∥∥∥2
Y

)
+

1

10k41

≤ 1

4
lim
n

(
(p(xn − x) + p(xn))2 +

1

k21
(‖J(xn − x)‖Y + ‖Jxn‖Y )2

)
+

1

10k41

=
1

4
lim
n

(
p2k1(xn − x) + p2(xn) + 2p(xn − x)p(xn)

)
+

1

10k41

≤ 1

4
lim
n

(
q2(xn − x) + q2(xn) + 6k1δk1 + 2

√
p2(xn − x)(q2(xn) + 3k1δk1)

)
+

1

10k41

<
1

2

(
1 +

1

10k41
+

√(
1− a2

k21
+

1

10k41

)(
1 +

1

10k41

))
+

1

10k41

<
1

2

(
1 +

1

10k41
+ 1− 3

10k41

)
+

1

10k41

= 1

which contradicts to Goebel-Karlovitz’ lemma since x
2
∈ K. Hence lim inf

n
‖Jxn‖Y >

0.

Thus, we can denote lim inf
n
‖Jxn‖Y = 4b for some positive real number

b. Let k be a natural number which satisfies k > sup{q(x) : x ∈ BX},
1
k
< inf{q(x) : x ∈ SX} and 1

3k
< b. We can assume that there exists p ∈ P

such that q ∈ B(pk, δk). For each x ∈ X, we also obtain that

|q(x)− pk(x)| ≤ kδkq(x) (5.33)

and ∣∣q2(x)− p2k(x)
∣∣ ≤ 3kδk. (5.34)

95



5.3 On a Banach space embedded into Y satisfying R(Y ) < 2

Since 1
3k
< b, then

1− b

k
−
√

1 +
1

10k4
− 2b

k
= 1− b

k
−

√(
1− b

k

)2

− b2

k2
+

1

10k4

> 1− b

k
−

√(
1− b

k

)2

− 1

9k4
+

1

10k4

= 1− b

k
−

√(
1− b

k

)2

− 1

90k4
.

(5.35)

Consider the real valued function f(t) = t −
√
t2 − r, where r is a positive

real number. By using the elementary calculus we can see that this function

is decreasing. Since 1− b
k
< 1− 1

3k2
, from (5.35) we have

1− 1

3k2
−

√(
1− 1

3k2

)2

− 1

90k4
< 1− b

k
−
√

1 +
1

10k4
− 2b

k
. (5.36)

It follows that

10kδk <
1

3k2

1− 1

3k2
−

√(
1− 1

3k2

)2

− 1

90k4


<
b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
.

(5.37)

Moreover, note that for every k ∈ N
b

k

(
1− b

k

)
<

1

2
. (5.38)

By (5.37) and (5.38),

0 <
b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
− 10kδk <

1

2
. (5.39)

Let ĉ = max

{
k(1+kδk)(1− bk)

γ , 1+kδk
1−kδk

}
and fix c = R(Y )−1+ĉ

1+ĉ
. It can be checked

that c < c1. From the choice of choosing δk, we have

6kδk <
1− c21
k2

γ2 <
1− c2

k2
γ2. (5.40)
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Since γ < 1
2
, we also obtain that

0 <
1− c21
k2

γ2 − 6kδk <
1

2
. (5.41)

Apply lemma 5.11 for t = 1− b
k

and

ε < min

{
1

2

(
b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
− 10kδk

)
,
1

2

(
(1− c2)γ2

k2
− 6kδk

)}
.

We can see that, by (5.39) and (5.41), ε is a positive number strictly less

than 1
2

and there exist a subsequence of {xn}, denote again by {xn}, and a

sequence {zn} in K satisfy (i)-(iv).

Taking a subsequence of {zn} and using the separability of K, we can assume

that lim
n
q(zn−y), lim

n
‖J(zn−y)‖Y and lim

n
p(zn−y) do exist for every y ∈ K.

Assume that z = w− lim zn. Since {zn− xn} converges weakly to z, then by

(iv) we obtain that

q(z) ≤ lim inf
n

q(zn − xn) ≤ b

k
. (5.42)

Furthermore by using (iii), we have

lim
n
q(zn − z) ≤ lim

n
lim
m
q(zn − zm) ≤ 1− b

k
. (5.43)

It follows from (5.33) that

1

k
lim
n
‖Jzn‖Y ≥ 1

k
lim
n

(‖Jxn‖Y − ‖J(xn − zn)‖Y )

≥ 4b

k
− lim

n
pk(xn − zn)

≥ 4b

k
− (1 + kδk) lim

n
q(xn − zn)

≥ 4b

k
− (1 + kδk)

b

k

≥ 2b

k
.
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Thus

lim
n
‖Jzn‖Y ≥ 2b. (5.44)

Moreover, we obtain

lim
n
‖J(zn − z)‖Y ≤ k lim

n
pk(zn − z)

≤ k(1 + kδk) lim
n
q(zn − z)

≤ k(1 + kδk)

(
1− b

k

)
.

(5.45)

Next we will split the proof into two cases:

Case I. Assume that ‖Jz‖Y ≤ γ.

In this case, we have, by (5.44)

lim
n
‖J(zn − z)‖Y ≥ lim

n
‖Jzn‖Y − ‖Jz‖Y ≥ 2b− γ

which implies that(
1− b

k

)2

≥ lim
n
q2(zn − z)

≥ lim
n
p2k(zn − z)− 3kδk

≥ lim
n

(
p2(zn − z) +

1

k2
‖J(zn − z)‖2Y

)
− 3kδk

≥ lim
n
p2(zn − z) +

(2b− γ)2

k2
− 3kδk.

Hence

lim
n
p2(zn − z) ≤

(
1− b

k

)2

− (2b− γ)2

k2
+ 3kδk

≤
(

1− b

k

)2

− b2

k2
+ 3kδk

≤ 1− 2b

k
+ 3kδk

≤ 1− 2b

k
+

1

10k4
.

(5.46)
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We also obtain, from (5.33) and (5.42)

p(z) ≤ pk(z) ≤ (1 + kδk)q(z) ≤ (1 + kδk)
b

k
. (5.47)

Then by (ii), (5.34), (5.42), (5.43), (5.45), (5.46) and (5.47) we obtain that

(1− ε)2 ≤ lim
n
q2(zn)

≤ lim
n
p2k(zn) + 3kδk

= lim
n

(
p2(zn) +

1

k2
‖Jzn‖2Y

)
+ 3kδk

≤ lim
n

(
(p(zn − z) + p(z))2 +

1

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2

)
+ 3kδk

= lim
n

(
p2k(zn − z) + p2k(z) + 2

(
p(zn − z)p(z) +

1

k2
‖J(zn − z)‖Y ‖Jz‖Y

))
+ 3kδk

≤ lim
n

(
q2(zn − z) + q2(z) + 2

(
p(zn − z)p(z) +

1

k2
‖J(zn − z)‖Y ‖Jz‖Y

))
+ 9kδk

≤
(

1− b

k

)2

+

(
b

k

)2

+ 2

(
b

k
(1 + kδk)

√
1 +

1

10k4
− 2b

k
+
γ

k
(1 + kδk)

(
1− b

k

))
+ 9kδk.

≤
(

1− b

k

)2

+

(
b

k

)2

+ 2

(
b

k
(1 + kδk)

√
1 +

1

10k4
− 2b

k
+
γ

k
(1 + kδk)

)
+ 9kδk.

(5.48)

According to (5.36), we obtain that

γ <
1

6k

1− 1

3k2
−

√(
1− 1

3k2

)2

− 1

90k4


<
b

2

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
.

(5.49)
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Thus, by (5.49) and (5.38), the inequality (5.48) gives a contradiction as

follow:

(1− ε)2 <
(

1− b

k

)2

+

(
b

k

)2

+
2b

k
(1 + kδk)

√
1 +

1

10k4
− 2b

k
+ 9kδk

+
b

k
(1 + kδk)

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)

<

(
1− b

k

)2

+

(
b

k

)2

+
2b

k
(1 + kδk)

√
1 +

1

10k4
− 2b

k
+ 9kδk

+
2b

k
(1 + kδk)

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
− b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)

=

(
1− b

k

)2

+

(
b

k

)2

+ 2(1 + kδk)

(
1− b

k

)(
b

k

)
+ 9kδk

− b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)

= 1 + 2kδk

(
1− b

k

)(
b

k

)
− b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
+ 9kδk

< 1− b

k

(
1− b

k
−
√

1 +
1

10k4
− 2b

k

)
+ 10kδk

< 1− 2ε.

Case II. Assume that ‖Jz‖Y > γ.

Due to equation (5.47),

‖Jz‖Y ≤ kpk(z) ≤ (1 + kδk)b

which implies

‖J(zn − z)‖Y ≥ ‖Jzn‖Y − ‖Jz‖Y ≥ 2b− (1 + kδk)b = (1− kδk)b.

Since we have

0 < γ < ‖Jz‖Y ≤ (1 + kδk)b
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and, by (5.45),

0 < (1− kδk)b ≤ ‖J(zn − z)‖Y ≤ k(1 + kδk)

(
1− b

k

)
,

applying lemma 5.15 with the sequence {J(zn − z)} and the element Jz of

Y , noting that γ ≤ α ≤ (1 + kδk)b, (1− kδk)b ≤ β ≤ k(1 + kδk)
(
1− b

k

)
and

using that the map t 7→ R(Y )−1+t
1+t

is increasing, then we obtain that

lim
n
‖J(zn − z) + Jz‖Y ≤ c

(
lim
n
‖J(zn − z)‖Y + ‖Jz‖Y

)
. (5.50)

Then by (ii), (5.34) and (5.50), we have

(1− ε)2 ≤ lim
n
q2(zn)

≤ lim
n
p2k(zn) + 3kδk

= lim
n

(
p2(zn) +

1

k2
‖Jzn‖2Y

)
+ 3kδk

≤ lim
n

(
(p(zn − z) + p(z))2 +

c2

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2

)
+ 3kδk

≤ lim
n

(
(p(zn − z) + p(z))2 +

1

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2

)
+ 3kδk

− 1− c2

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2

= lim
n

(
p2k(zn − z) + p2k(z) + 2

(
p(zn − z)p(z) +

1

k2
‖J(zn − z)‖Y ‖Jz‖Y

))
+ 3kδk −

1− c2

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2.

(5.51)

For fixed n ∈ N, denote u = pk(zn − z), v = pk(z), t = p(zn − z) and

s = p(z). Then we have

1

k
‖J(zn − z)‖Y =

√
p2k(zn − z)− p2(zn − z) =

√
u2 − t2

and
1

k
‖Jz‖Y =

√
p2k(z)− p2(z) =

√
v2 − s2.
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Consider the function of two variables

f(t, s) = 2ts+ 2
√
u2 − t2

√
v2 − s2.

By the elementary calculus, we obtain that

max
[0,u]×[0,v]

f(t, s) = 2uv.

Hence

lim
n

(
p2k(zn − z) + p2k(z) + 2

(
p(zn − z)p(z) +

1

k2
‖J(zn − z)‖Y ‖Jz‖Y

))
≤ lim

n

(
p2k(zn − z) + p2k(z) + 2pk(zn − z)pk(z)

)
= lim

n
(pk(zn − z) + pk(z))2

≤ (1 + kδk)
2 lim

n
(q(zn − z) + q(z))2

≤ (1 + kδk)
2.

(5.52)

Then according to (5.51) and (5.52), it follows that

(1− ε)2 ≤ (1 + kδk)
2 + 3kδk −

1− c2

k2
(‖J(zn − z)‖Y + ‖Jz‖Y )2

< (1 + kδk)
2 + 3kδk −

1− c2

k2
‖Jz‖2Y

< 1 + 6kδk −
(1− c2)γ2

k2

< 1− 2ε

we reach a contradiction again.

Therefore the space (X, q) satisfies the w-FPP, this completes the proof.

Finally, we give some remarks for all generic fixed point results presented

in this chapter.
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Remark 5.18.

(1) A natural question would be to study if the word “almost” can be

removed from our main result. The answer is unknown even for a

Hilbert space because it is unknown if any Banach space isomorphic to

a Hilbert space satisfies the FPP. In fact, it is unknown if there exists

a reflexive Banach space which do not have the FPP (see [75], [77]).

(2) It would be also interesting to determine the size of the set of all equiva-

lent norms which do not satisfy the FPP or the w-FPP (if non-empty).

We can say that, in general, this set is not dense. This is due to the fol-

lowing fact: There are some results proving that several properties of a

Banach space X implying the FPP are stable, in the sense, that if Y is

isomorphic to X and the Banach-Mazur distance between X and Y is

small, then Y shares this property. For instance, it is known that if H

is a Hilbert space and X is a renorming of H such that ρ(X,H) < .37...,

then X satisfies the FPP.

(3) Recall that, in general, a non-reflexive Banach space cannot be renormed

to satisfy the FPP. It would be interesting to determine those non-

reflexive Banach spaces, such that our result holds for them. In partic-

ular, it would be interesting to know if this result holds for `1 because

this is the unique non-reflexive Banach space which is known to have

a renorming which satisfies the FPP [55].

(4) Generic results can be useful to obtain standard results. For instance

Corollary 5.14 assures that every reflexive space can be renormed in

such a way that for every non-expansive mapping (for the new norm)

defined from a convex bounded closed subset C of X into C, the set of

fixed points is convex and nonempty. It seems to be very difficult to

give a direct proof of this result.
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5.4 Generic fixed point results on space of

continuous functions C(K)

Let K be a compact metrizable space and let C(K) be the Banach space of

all real continuous functions x = x(t) defined on K with the maximum norm

‖x‖∞ = max
t∈K
|x(t)|. It is well known (see [65], [84]) that many topological

properties of K are strongly related to geometrical properties of C(K). It

is proved (in [65] Main Theorem) that C(K) isometrically contains C[0, 1],

which fails to have the w-FPP by Alpachs example, if and only if K is a

compact set which is not scattered. Thus C(K) fails to have the w-FPP if K

is not scattered compact. We recall the definition of scattered compact set.

Definition. 5.19. Let K be a topological space and A a subset of K. The

set A is said to be perfect if it is closed and has no isolated points, i.e., A is

equal to the set of its own accumulation points. The space K is said to be

scattered if it contains no perfect nonempty subset.

If A is a subset of a topological space M , the derived set of A is the set

A(1) of all accumulation points of A. If α is an ordinal number, we define the

αth-derived set by transfinite induction:

A(0) = A A(α+1) = (A(α))(1) A(λ) =
⋂
α<λ

A(α)

when λ is a limit ordinal.

We first show that in some cases the space C(K) can be renormed to have

an equivalent norm ‖·‖ such that the Garcia-Falset coefficientR(C(K), ‖·‖) <
2, hence it satisfies the w-FPP. We need the following technical lemma.

Lemma 5.20. Let A be the subset of Rn formed by all vectors x = (α1, ..., αn)

such that 0 ≤ αn ≤ ... ≤ α1, α
2
1 + ... + α2

n ≤ 1, and B the subset of Rn

formed by all vectors y = (β1, ..., βn−1, 0) such that 0 ≤ βn−1 ≤ ... ≤ β1,
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β2
1 + ...+ β2

n−1 ≤ 1. Define φ : A×B → R by

φ(x, y) = max{α2
1, (β1 + α2)

2}+ ...+ max{α2
n−1, (βn−1 + αn)2}+ α2

n.

Then, max{φ(x, y) : x ∈ A, y ∈ B} ≤ 4− n−1.

Proof. Since A×B is a compact subset of R2n and φ is a continuous function,

we know that φ attains a maximum M at a point in A × B. We will check

that M ≤ 4− n−1. First, we will prove that M ≤ 4− n−1 if for some

k ∈ {1, ..., n− 1} we have max{αk, (βk + αk+1)} = αk. Indeed, assume that

for some k ∈ {1, ..., n− 1} we have that max{αj, βj + αj+1} = βj + αj+1 for

j = 1, ..., k − 1 and max{αk, βk + αk+1} = αk. Thus,

φ(x, y) ≤ (β1 + α2)
2 + ...+ (βk−1 + αk)

2

+ α2
k + (βk+1 + αk+1)

2 + ...+ (βn−1 + αn−1)
2 + α2

n

= ‖u+ v‖2

where u = (β1, ..., βk−1, 0, βk+1, ..., βn−1, 0), v = (α2, ..., αk, αk, αk+1, ..., αn−1, αn)

and ‖ · ‖ denotes the Euclidean norm. Since ‖v‖2 = ‖x‖2 + α2
k − α2

1 and

‖u− v‖ ≥ αk, the parallelogram identity implies

‖u+ v‖2 ≤ 2 + 2‖x‖2 + 2α2
k − 2α2

1 − α2
k

≤ 2 + 2‖x‖2 − α2
1

≤ 2 +

(
2− 1

n

)
‖x‖2

≤ 4− 1

n
.

Now, consider the case max{αk, βk + αk+1} = βk + αk+1 for every k =

1, ..., n− 1. Then φ(x, y) = (β1 + α2)
2 + ... + (βn−1 + αn)2 + α2

n = ‖u + y‖2
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where u = (α2, ..., αn, αn). Since ‖u − y‖ ≥ αn, the parallelogram identity

gives us

‖u+y‖2 ≤ 2+2‖u‖2−α2
n ≤ 2+2‖x‖2+2α2

n−2α2
1−α2

n ≤ 2+2‖x‖2−α2
1 ≤ 4− 1

n
.

Theorem 5.21. Assume that K(m) = ∅. Then, there exists a norm ‖ · ‖
equivalent to the supremum norm ‖·‖∞ such that R(C(K), ‖·‖) ≤

√
4−m−1.

Proof. For any x ∈ C(K) denote by αk = max
{
|x(t)| : t ∈ K(k−1)} and

define ‖x‖2 = α2
1 + ... + α2

m. It is clear that this norm is equivalent to

the supremum norm. Assume that x ∈ C(K), ‖x‖ ≤ 1 and {xn} is a

weakly null sequence in C(K) such that ‖xn‖ ≤ 1 for all n ∈ N. We will

prove that lim sup
n
‖x + xn‖ ≤

√
4−m−1. Let ε be an arbitrary positive

number. By induction, we will define some subsets of K depending on ε.

Denote L0 = K. Since K(m−1) is a finite set , there exists an open subset

U1 of K, containing K(m−1), such that |x(t)| ≤ αm + ε for t ∈ U1. Denote

L1 = K \ U1. We have L
(m−1)
1 = ∅ which implies that L

(m−2)
1 is a finite set

contained in K(m−2). Thus, there exists an open set U2, containing L
(m−2)
1

such that |x(t)| ≤ αm−1 + ε for every t ∈ U2. We define L2 = L1 \U2. Then,

L
(m−3)
2 is a finite subset of K(m−3). By induction, we can assume that we

have defined open sets U1, ..., Uk and compact sets L1, ..., Lk such that for

j = 1, ..., k we have Lj = Lj−1 \ Uj , L
(m−j−1)
j is a finite subset of K(m−j−1),

L
(m−j)
j−1 ⊂ Uj and |x(t)| ≤ αm−j+1 + ε for every t ∈ U j. Since L

(m−k−1)
k

is a finite subset of K(m−k−1), there exists an open set Uk+1, containing

L
(m−k−1)
k such that |x(t)| ≤ αm−k + ε for every t ∈ Uk+1. We have that

L
(m−k−1)
k+1 ⊂ L

(m−k−1)
k \ Uk+1 = ∅, which implies that L

(m−k−2)
k+1 is a finite set.

Thus, we can construct open sets U1, ..., Um−1 and compact sets L1, ..., Lm−1

such that for j = 1, ...,m − 1 we have Lj = Lj−1 \ Uj, L(m−j−1)
j is a finite

subset of K(m−j−1), L
(m−j)
j−1 ⊂ Uj and |x(t)| ≤ αm−j+1 + ε for every t ∈ U j.
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Moreover, L
(m−m)
m−1 = Lm−1 is a finite set. Since the sequence {xn} is weakly

null, we can assume |xn(t)| < ε for every t ∈ L(m−j−1)
j for j = 0, ...,m−1 and

n large enough. Denote βj = βj(n) = max
{
|xn(t)| : t ∈ K(j−1)}. We claim

that ‖x+ xn‖2 ≤ φ(x, y) + O(ε), where φ is the function in lemma 5.20 and

O(ε)→ 0 as ε→ 0. Since (A ∪B)′ = A′ ∪B′ and K ⊂ Lj ∪ U1 ∪ ... ∪ Uj for

j = 1, ...,m− 1, we have

K(m−j−1) ⊂ L
(m−j−1)
j

⋃ j⋃
i=1

Ui.

We should compute max
{
|(x+ xn)(t)| : t ∈ K(m−j−1)} for j = 1, ...,m − 1.

We have two possibilities:

(1) Assume that t ∈
⋃j
i=1 Ui. In this case we have that |x(t)| ≤ αm−j+1+ε

and so, |x(t) + xn(t)| ≤ αm−j+1 + βm−j + ε.

(2) Assume that t ∈ K(m−j−1) \
⋃j
i=1 Ui. In this case t ∈ L(m−j−1)

j which

implies that |xn(t)| ≤ ε and |x(t) + xn(t)| ≤ αm−j + ε.

Thus,

max
{
|x(t) + xn(t)| : t ∈ K(m−j−1)} ≤ max

{
αm−j+1 + βm−j, αm−j

}
+ ε

for j = 1, ...,m− 1 and

max
{
|x(t) + xn(t)| : t ∈ K(m−1)} ≤ αm + ε.

Hence,

‖x+ xn‖2 ≤ max{(α1 + ε)2, (β1 + α2 + ε)2}

+ ...+ max{(αm−1 + ε)2, (βm−1 + αm + ε)2}+ (αm + ε)2

≤ φ(x, y) +O(ε)
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where O(ε) tends to 0 as ε → 0. Thus, by Lemma 5.20 we have that

lim supn ‖x + xn‖ ≤
√

4−m−1 + O(ε). Since ε is arbitrary we easily ob-

tain the conclusion.

Remark 5.22. By Cantor-Bendixson Theorem ([84], page 148), it is known

that K(α) = ∅ for some ordinal number α if and only if K is scattered. Recall

C(K) fails to have the w-FPP if K is not scattered.

Assume that Γ is an uncountable set. We can assume that Γ is en-

dowed with the discrete topology. Let K be the one-point compactifica-

tion of Γ. Then, (c0(Γ), ‖ · ‖∞) is isomorphic to (C(K), ‖ · ‖∞) by defining

S : C(K) → c0(Γ) by S(x(γ)) = (x(γ) − x(∞)). Thus, any space which

can be continuously embedded in (c0(Γ), ‖ · ‖∞), can be also embedded in

(C(K), ‖·‖∞), where K(2) = ∅. From, Theorem 5.3.2 we obtain the following

result which strictly improves the result of T. Domı́nguez-Benavides (Theo-

rem 5.2.1) saying that any Banach space that can be continuously embedded

into c0(Γ) has an equivalent norm with the w-FPP.

Corollary 5.23. Let X be a Banach space which can be continuously em-

bedded in (C(K), ‖ · ‖∞) for some compact set K such that K(ω) = ∅. Then,

X can be renormed to satisfy the w-FPP.

K. Ciesielski and R. Pol [12] have constructed a (non-metrizable) compact

set K which satisfies K(3) = ∅, however, there is no weak-to-weak continuous

injective map, in particular no bounded linear injective map from C(K) to

any c0(Γ). Hence Corollary 5.23 is a strict improvement of T. Domı́nguez-

Benavides result.

Due to Theorem 5.7 and Theorem 5.21, we also obtain the generic fixed

point result on the space C(K) which can be regarded as an improvement of

the result in [22].
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Corollary 5.24. Assume that K(ω) = ∅ and P is the set of all norms in

C(K) which are equivalent to the supremum norm with the metric ρ(p, q) =

sup{|p(x) − q(x)| : x ∈ B}. Then, there exists a σ-porous (in fact, σ-

directionally porous) set A ⊂ P such that if q ∈ P \ A the space (C(K), q)

satisfies the w-FPP.
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Chapter 6

Generic multi-valued fixed

point property on renormings

of a Banach space

From Chapter 3, in the classic sense, we know that almost all non-expansive

multi-valued mappings (in the sense of porosity) do have a fixed point (The-

orem 3.12). In this chapter we consider the multi-valued fixed point property

on the set of all renormings of a Banach space. Furthermore, we determine

the multi-valued fixed point property renormability and genericity on a Ba-

nach space by using the value of its Szlenk index.

6.1 Generic multi-valued fixed point result

on renormings of a reflexive Banach space

Regarding to some results in Chapter 4 and Chapter 5, we know that every

reflexive Banach space can be renormed to have the FPP and also almost

all its renormings satisfy the FPP. What happen in the case of the MFPP?
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Concerning with renorming theory and genericity, two natural questions show

up:

(i) Does every reflexive Banach space admit an equivalent norm which

satisfy the MFPP?

(ii) If a reflexive Banach space admits an equivalent norm which satisfy the

MFPP, then do almost all its renormings also satisfy the MFPP?

In the case of separable reflexive spaces, the answers to both questions are

known by using the concept of uniform convexity in every direction. It is

known, according to Lim’s result [54], every UCED Banach space does sat-

isfy the weak multi-valued fixed point property(w-MFPP). And since every

separable Banach space is UCED renormable, hence by Theorem 4.1.6, we

obtain the following generic multi-valued fixed point result:

Corollary 6.1. Let X be a separable reflexive Banach space and P the set

of all equivalent norms on X equipped with the metric ρ. Then, there exists

a σ-porous subset R of P, such that for all p ∈ R, the space (X, p) satisfies

the MFPP.

The situation is rather different in the case of non-separable reflexive

spaces. We only know that Banach spaces with some geometrical properties,

for instance nearly uniform convexity, uniform smoothness and uniform Opial

property, satisfy the w-MFPP. We attend to the nearly uniform convexity.

By a consequence of the result by T. Domı́nguez-Benavides and P. Lorenzo

[23], a nearly uniformly convex reflexive space does have the MFPP. Let us

recall the definition of nearly uniform convexity which was introduced by R.

Huff in [40].

Definition. 6.2. A Banach space X is said to be nearly uniformly convex

(NUC) if for every ε > 0 there exists δ > 0 such that if (xn) is a sequence in

BX such that ‖xn − xm‖ > ε for n 6= m, then co{xn} ∩B(0, 1− δ) 6= ∅.
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On the other hand, the modulus of convexity of a Banach space X is

defined as follows:

4X(ε) = inf
{

1− ‖x‖ : (xn) ⊂ BX , xn ⇀ x, lim inf
n
‖xn − x‖ ≥ ε

}
and the characteristic of convexity as

40(X) = sup{ε > 0 : 4X(ε) = 0}.

Remark 6.3. The modulus of convexity of X can also be written as

4X(ε) = inf
{

1− ‖x‖ : (xn) ⊂ BX , xn ⇀ x, lim inf
n
‖xn − x‖ ≥ ε, lim

n
‖xn‖ = 1

}
because if lim

n
‖xn‖ < 1, there exists a subsequence of (xn), denote again by

(xn), satisfying xn ⇀ x, lim inf
n
‖xn − x‖ ≥ ε and lim

n
‖xn‖ = r < 1. Thus

the sequence (yn) =
(

xn
‖xn‖

)
satisfies (yn) ⊂ B(0, 1), lim

n
‖yn‖ = 1, yn ⇀

x
r
,

lim inf
n

∥∥∥yn − x

r

∥∥∥ ≥ ε

r
> ε and ‖x‖ ≤ ‖x‖

r
.

It is known that a Banach space X is NUC if and only if X is reflexive

and 4X(ε) > 0 for each ε > 0, or equivalently 40(X) = 0.

Theorem 6.4 (Domı́nguez-Benavides and Lorenzo). Let X be a Banach

space with 40(X) < 1. Then X satisfies the w-MFPP.

In particular, every NUC Banach space has the MFPP.

Remark 6.5. It would be nice if every reflexive space could be renormed to

have an equivalent NUC norm. The first question would be positively solved.

Unfortunately, it was proved in [40] that there exist a reflexive space which

does not admit an equivalent NUC norm.

By following the concept of nearly uniform convexity, we could give a

partial answer to the second question as well. In order to state our result,

we prove some needed lemmas. Let (X, ‖ · ‖) be a Banach space and P the

set of all equivalent norms on X equipped with the metric ρ.
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Lemma 6.6. For p ∈ P, denote by mp = inf
{

1
p(x)

: x ∈ SX
}

and Mp =

sup
{

1
p(x)

: x ∈ SX
}

and define pλ(x) = p(x) + λ‖x‖, λ ∈ (0, 1). Then

4pλ(ε) ≥ λmp

1 + λmp

4‖·‖
(

εmp

Mp(1 + λmp)

)
for every ε > 0.

In particular, the space (X, pλ) is NUC for every λ ∈ (0, 1) whenever the

space (X, ‖ · ‖) is.

Proof. Given ε > 0 and let {xn} be a sequence inB(X,pλ) such that lim
n
pλ(xn) =

1, xn ⇀ x and lim inf
n

pλ(xn − x) ≥ ε. Note that for each x ∈ X,

mpp(x) ≤ ‖x‖ ≤Mpp(x). (6.1)

By taking a subsequence, we can assume that lim
n
‖xn‖ and lim

n
p(xn) do

exist. Denote by a = lim
n
‖xn‖ and b = lim

n
p(xn). Then, the sequence(

xn
‖xn‖

)
⊂ B(X,‖·‖) and xn

‖xn‖ ⇀
x
a
. Moreover, since

ε ≤ lim inf
n

pλ(xn − x)

= lim inf
n

(p(xn − x) + λ‖xn − x‖)

≤ 1 + λmp

mp

lim inf
n
‖xn − x‖

we also have

lim inf
n

∥∥∥∥ xn
‖xn‖

− x

a

∥∥∥∥ = lim inf
n

∥∥∥∥xn − xa

∥∥∥∥ ≥ εmp

a(1 + λmp)
.

Hence

‖x‖ ≤ a

(
1−4‖·‖

(
εmp

a(1 + λmp)

))
.

It follows from the weak semi-continuity of the norm p that

p(x) ≤ lim inf p(xn) = b = 1− λa.
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From (6.1), we have

mp(1− λa) ≤ a ≤Mp(1− λa)

which implies

a ≥ mp

1 + λmp

and a ≤ Mp

1 + λMp

≤Mp.

Thus we obtain that

pλ(x) = p(x) + λ‖x‖

≤ 1− λa+ λa

(
1−4‖·‖

(
εmp

a(1 + λmp)

))
= 1− λa4‖·‖

(
εmp

a(1 + λmp)

)
≤ 1− λmp

1 + λmp

4‖·‖
(

εmp

Mp(1 + λmp)

)
.

Thus

4pλ(ε) ≥ λmp

1 + λmp

4‖·‖
(

εmp

Mp(1 + λmp)

)
.

In the following lemma we prove a continuity result for4p(ε) as a function

of p ∈ P .

Lemma 6.7. Assume that p, q ∈ P such that ρ(p, q) < δ for some δ > 0,

then

4q(ε) ≥ 4p

(
ε
1− δMp

1 + δMp

)
− 2δMp

1− δMp

.

Proof. Denote mp and Mp as in Lemma 6.6. Since ρ(p, q) < δ, for each x ∈ X
we have

|p(x)− q(x)| < δ‖x‖ ≤ δMpp(x). (6.2)
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Fix ε > 0 and let {xn} be a sequence in B(X,q) such that xn ⇀ x and

lim inf
n

q(xn − x) ≥ ε. Since by (6.2) we have

lim
n
p(xn) ≤ 1

1− δMp

lim
n
q(xn),

it follows that {(1− δMp)xn} ⊂ B(X,p). It is clear that (1 − δMp)xn ⇀

(1− δMp)x. Again by using (6.2) we obtain that

lim inf
n

p(xn − x) ≥ 1

1 + δMp

lim inf
n

q(xn − x) ≥ ε

1 + δMp

.

Hence

(1− δMp) lim inf
n

p(xn − x) ≥ ε
1− δMp

1 + δMp

.

It follows from the definition of the modulus of convexity that

p(x) ≤ 1

1− δMp

(
1−4p

(
ε
1− δMp

1 + δMp

))
. (6.3)

By (6.2) and (6.3), we have

q(x) ≤ 1 + δMp

1− δMp

(
1−4p

(
ε
1− δMp

1 + δMp

))
= 1−

(
1 + δMp

1− δMp

4p

(
ε
1− δMp

1 + δMp

)
− 2δMp

1− δMp

)
.

Thus

4q(ε) ≥
1 + δMp

1− δMp

4p

(
ε
1− δMp

1 + δMp

)
− 2δMp

1− δMp

≥ 4p

(
ε
1− δMp

1 + δMp

)
− 2δMp

1− δMp

Theorem 6.8. Assume that (X, ‖ · ‖) is a NUC Banach space. Then there

exists a residual subset R of P such that for every q ∈ R, the space (X, q) is

NUC.
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Proof. For each p ∈ P denotemp = inf
{

1
p(x)

: x ∈ SX
}

andMp = sup
{

1
p(x)

: x ∈ SX
}

and for each λ ∈ (0, 1) define

pλ(x) = p(x) + λ‖x‖, x ∈ X.

Choose

δ = δ(p, λ, n) < min

{
1

3Mp

,
λmp

8Mp(1 + λmp)
4‖·‖

(
mp

2nMp(1 + λmp)

)}
.

Define

Rn =
⋃

p∈P ,λ∈(0,1)
B(pλ, δ(p, λ, n))

and take

R =
∞⋂
n=1

Rn.

It is clear that R is residual, indeed, it is a dense Gδ subset of P . Let

q ∈ R. We shall prove that the space (X, q) is NUC. Since q ∈ R, for

each n ∈ N, there exist p = p(n) ∈ P and λ = λ(n) ∈ (0, 1) such that

q ∈ B(pλ, δ(p, λ, n)) = B(pλ, δ). Since ρ(pλ, q) ≤ δ, by Lemma 6.7, for every

n ∈ N we have

4q

(
1

n

)
≥ 4pλ

(
1− δMpλ

n(1 + δMpλ)

)
− 2δMpλ

1− δMpλ

. (6.4)

For each x ∈ SX , we have

1

pλ(x)
=

1

p(x) + λ
<

1

p(x)

which implies

mpλ ≤ mp and Mpλ ≤Mp.

Hence

4q

(
1

n

)
≥ 4pλ

(
1− δMp

n(1 + δMp)

)
− 2δMp

1− δMp

. (6.5)
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Since pλ = p+ λ‖ · ‖, it follows from Lemma 6.6 that

4pλ

(
1− δMp

n(1 + δMp)

)
≥ λmp

1 + λmp

4‖·‖
(

mp

Mp(1 + λmp)

1− δMp

n(1 + δMp)

)
. (6.6)

By the choice of δ < 1
3Mp

, it is straightforward to prove that

1− δMp

1 + δMp

>
1

2
. (6.7)

Equation (6.7) implies that

1− δMp >
1

2
. (6.8)

According to (6.5), (6.6), (6.7), (6.8) and the choice of δ, we obtain that

4q(
1

n
) ≥ λmp

1 + λmp

4‖·‖
(

mp

Mp(1 + λmp)

1− δMp

n(1 + δMp)

)
− 2δMp

1− δMp

≥ λmp

1 + λmp

4‖·‖
(

mp

2nMp(1 + λmp)

)
− 4δMp

>
λmp

1 + λmp

4‖·‖
(

mp

2nMp(1 + λmp)

)
− λmp

2(1 + λmp)
4‖·‖

(
mp

2nMp(1 + λmp)

)
=

λmp

2(1 + λmp)
4‖·‖

(
mp

2nMp(1 + λmp)

)
> 0.

It is equivalent to say that 4q(ε) > 0 for every ε > 0, thus the space (X, q)

is NUC.
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6.2 Generic multi-valued fixed point property

concerning with the Szlenk index

In this section, we use the valued of the Szlenk index of a Banach space

to determine its multi-valued fixed point renormability and genericity. The

Szlenk index Sz(X) is an ordinal number which was introduced by W. Szlenk

([86]) to prove that there is no separable reflexive Banach space universal

for the class of all separable reflexive Banach spaces. Later this index has

been used in various areas of the geometry of Banach spaces (see [52]). By

following the survey [52] we consider the definition of Szlenk index which is

more general than the Szlenk original index. However, both definitions are

equivalent for separable spaces which do not contain `1 ([50] Proposition 3.3).

Definition. 6.9. Let X be a Banach space and X∗ its dual. For any closed

bounded subset A ⊂ X∗ and ε > 0, we define a Szlenk derivation by

〈A〉′ε = {x∗ ∈ A : ∀U ω∗-neighborhood of x∗, diam(A ∩ U) > ε}.

By iteration, the set 〈A〉αε are defined for any ordinal α, taking intersection

in the case of limit ordinals, i.e., 〈A〉αε =
⋂
β<α

〈A〉βε . The indices Sz(X)ε are

ordinal numbers defined as

Sz(X)ε = inf
{
α : 〈BX∗〉αε = ∅

}
if such an ordinal exists. Otherwise we write Sz(X)ε =∞. The Szlenk index

is defined by Sz(X) = sup
ε>0

Sz(X)ε.

In connection with the Szlenk index, it is not difficult to see that if the

dual space X∗ is NUC, then Sz(X)ε is finite for every ε > 0. We can see this

through the concept of uniform Kadec Klee which was first introduced also

by R. Huff in [40].
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Definition. 6.10. A Banach space X is said to be uniformly Kadec Klee

(UKK) if for every ε > 0 there exists δ > 0 such that if (xn) is a sequence

in the unit ball BX such that ‖xn − xm‖ > ε for n 6= m and (xn) converges

weakly to x, then x ∈ B(0, 1− δ).

Later G. Lancien formulated the different concept of UKK in [51]. How-

ever Lanciens UKK definition coincides with Huffs definition in reflexive

spaces in the following way.

Lemma 6.11. Let X be a reflexive Banach space. Then X is UKK if and

only if for every ε > 0 there is θ(ε) ∈ (0, 1) such that every x ∈ BX with

‖x‖ > 1− θ(ε) has a weak open neighborhood U with diam(BX ∩ U) < ε.

Proof. Assume that X is UKK. Let ε > 0 and x ∈ BX such that for every

weak neighborhood U of x, diam(U∩BX) > ε. We shall prove that ‖x‖ < 1−δ
where δ is a positive real number depending on ε.

First, note that x ∈ BX\B
(
x, ε

2

)ω
. Otherwise, if V = X\

(
BX\B

(
x, ε

2

)ω)
,

then V is a weakly open set which contains x and diam(V ∩BX) < ε. By the

reflexiveness of the space X, the unit ball BX is weakly compact. Then it fol-

lows that BX is weakly sequentially compact (by Eberlein-S̆mulian Theorm).

Thus there exists a sequence (xn) ⊂ BX\B
(
x, ε

2

)
converging weakly to x.

The weak lower semi-continuity of the norm implies that, for each n ∈ N

lim inf
m
‖xn − xm‖ ≥ ‖xn − x‖ >

ε

2
.

Choose y1 = x1. Then there exists n0 ∈ N such that ‖y1−xm‖ > ε
2

for every

m ≥ n0. Then choose y2 = xn0 , we have ‖y1 − y2‖ > ε
2
. Following the same

argument, since lim inf
m
‖y2 − xm‖ >

ε

2
, there exist n1 ∈ N, n1 > n0 such that

‖y2 − xm‖ > ε
2

for every m ≥ n1. Denote y3 = xn1 . Then we obtain that

‖yi − yj‖ > ε
2
, for i, j = 1, 2, 3 and i 6= j. By induction, we can construct

a sequence (yn) ⊂ BX which is ε
2
-separated and yn ⇀ x. Since X is UKK,

‖x‖ < 1− δ where δ ∈ (0, 1) and depends on ε.
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In the other hand, let ε > 0 and assume that θ(ε) ∈ (0, 1) satisfies the

condition stated in the lemma. Let (xn) ⊂ BX with sep(xn) > ε and xn ⇀ x,

x ∈ BX . Then for every weak neighborhood U of x, for n,m ∈ N large

enough,

diam(BX ∩ U) ≥ ‖xn − xm‖ ≥ sep(xn) > ε.

It follows that x ∈ B(0, 1− θ(ε)), i.e., X is UKK.

Note that any Banach space X satisfying the condition in the previous

lemma is UKK. We have shown that both conditions are equivalent for re-

flexive Banach spaces. It is known by Huff that nearly uniform convexity is

equivalent to reflexiveness and uniform Kadec Klee.

Theorem 6.12 (Huff). A norm on a Banach space X is NUC if and only

if it is UKK and X is reflexive.

Assume that X∗ is NUC. Hence it is reflexive and UKK (in case of dual

spaces, some authors prefer to call it UKK*), then for each ε > 0, there exists

θ(ε) ∈ (0, 1) such that

〈BX∗〉
′

ε ⊂ (1− θ(ε))BX∗ .

By iteration of this inclusion, we can deduce that Sz(X)ε is finite for every

ε > 0.

The converse was later proved in separable spaces in [48], the authors also

shown that the equivalent NUC norm satisfies θ(ε) = cεp for some c, p > 0.

Analogously to G. Pisier’s result about super-reflexive spaces [67]. Recently,

M. Raja [73] completely solved this problem.

Theorem 6.13 (Raja). A Banach space X with Sz(X) ≤ ω can be renormed

in such a way that the dual norm on X∗ is UKK (hence, it is NUC) with

modulus of power type θ(ε) = cεp.
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Particularly, a reflexive Banach space with Sz(X
∗) ≤ ω is NUC renormable.

Thus Domı́nguez-Benavides and Lorenzo’ result together with Theorem 6.8

can be restated in the following way:

Corollary 6.14. Let X be a reflexive Banach space and X∗ the dual space

of X. Assume that Sz(X
∗) ≤ ω. Then there exists a residual subset R of P

such that for every q ∈ R, the space (X, q) satisfies the w-MFPP.
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Lopez Acedo, G. Measures of noncompactness in metric fixed

point theory, vol. 99 of Operator Theory: Advances and Applications.
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[31] Garćıa-Falset, J. The Fixed Point Property in Banach Spaces with

the NUS-Property. Journal of Mathematical Analysis and Applications

215, 2 (1997), 532 – 542.

126



Bibliography

[32] Garkavi, A. On the optimal net and best cross-section of a set in a

normed space. Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87–106.

[33] Godefroy, G. Renormings of Banach spaces. Handbook of the geom-

etry of Banach spaces, Vol. I. North-Holland, Amsterdam, 2001.

[34] Godefroy, G., Pelant, J., Whitfield, J. H. M., and Zizler,

V. Banach Space Properties of Ciesielski-Pol’s C(K) Space. Proceedings

of the American Mathematical Society 103, 4 (1988), 1087–1093.

[35] Godefroy, G., Troyanski, S., Whitfield, J., and Zizler, V.

Smoothness in weakly compactly generated Banach spaces. Journal of

Functional Analysis 52, 3 (1983), 344 – 352.

[36] Goebel, K. On a fixed point theorem for multivalued nonexpan-

sive mappings. Ann. Univ. Mariae Curie-Sklodowska Sect. A 29(1975)

(1977), 69–72.

[37] Goebel, K., and Kirk, W. Topics in metric fixed point theory,

Cambridge Studies in Advanced Mathematics, 28. Cambridge University

Press, Cambridge, 1990.

[38] Goebel, K., and Reich, S. Uniform convexity, hyperbolic geometry,

and nonexpansive mappings, vol. 83 of Monographs and Textbooks in

Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1984.
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[68] Preiss, D., and Tĭser, J. Two unexpected examples concerning dif-

ferentiability of Lipschitz functions on Banach spaces. Geometric aspects

of functional analysis Oper. Theory Adv. Appl. 27 (1995), 219–238.
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[83] Sadovskĭi, B. On a fixed point principle. Funkcional. Anal. i Priloen.

1, 2 (1967), 74–76.

[84] Semadeni, Z. Banach spaces of continuous functions, vol. 1. Polish

Scientific Publishers, Warsaw, 1971.

[85] Strobin, F. A comparison of two notions of porosity. Comment. Math.

(Prace Mat.) 48, 2 (2008), 209 – 219.

[86] Szlenk, W. The non-existence of a separable reflexive Banach space

universal for all separable reflexive Banach spaces. Stud. Math. 30

(1968), 53–61.

[87] Troyanski, S. On locally uniformly convex and differentiable norms

in certain non-separable Banach spaces. Studia Math. 31 (1970/71),

173–180.

[88] van Dulst, D. Equivalent Norms and the Fixed Point Property for

Nonexpansive Mappings. J. London Math. Soc. s2-25, 1 (1982), 139–

144.

[89] Vidossich, G. Existence, uniqueness and approximation of fixed points

as a generic property. Bol. Soc. Brasil. Mat. 5, 1 (1974), 17–29.
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Mat 101 (1976), 350–359.

[91] Zaj́ıček, L. Differentiability of the distance function and points of

multivaluedness of the metric projection in Banach space. Czechoslovak

Math. J. 33(108), 2 (1983), 292–308.

132



Bibliography
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