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Wavelet and Neural Structure: A New Tool for
Diagnostic of Power System Disturbances
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Abstract—The Fourier transform can be used for analysis of
nonstationary signals, but the Fourier spectrum does not provide
any time-domain information about the signal. When the time lo-
calization of the spectral components is needed, a wavelet trans-
form giving the time-frequency representation of the signal must
be used. In this paper, using wavelet analysis and neural systems
as a new tool for the analysis of power system disturbances, distur-
bances are automatically detected, compacted, and classified. An
example showing the potential of these techniques for diagnosis of
actual power system disturbances is presented.

Index Terms—Harmonic distortion, neural networks, signal
analysis, transforms, wavelets.

I. INTRODUCTION

I N ORDER to determine the sources and causes of harmonic
distortion of the voltage signal delivered by utilities, one

must be able to detect and localize those disturbances and clas-
sify the different types. Software procedures applying the fast
Fourier transform (FFT) have been developed for this purpose
[1], but due to the great amount of stored data and the time re-
quired for processing, such procedure is slow and not very effi-
cient.

Continuous and discrete wavelet transforms (CWTs and
DWTs) have been used in analysis of nonstationary signals, and
several recent papers, such as [2] and [3], have proposed the
use of wavelets for power systems analysis. Wavelet transforms
are mathematical tools with powerful structure and enormous
freedom that decompose a given signal into several scales at
different levels of resolution. At each scale, the WT coefficients
corresponding to a given disturbance are larger than those not
corresponding to such disturbance. Thus, related coefficients
are kept, while others not related to the disturbance are dis-
carded. As a consequence, data could be reduced considerably
in number with very little loss of information.
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In this work, a WT approach is proposed to detect and classify
various types of power systems disturbance. The method selects
the most suitable type of wavelet and applies the DWT. The re-
construction process is thereby obtained both with and without
the disturbed signal, using a reduced number of coefficients. The
algorithm of coefficient filtering to compress the signal is based
on the procedures described in [4]. A neural network structure
may be used to classify typical disturbances found in power sys-
tems.

Definitions and concepts of WT are introduced in Section II.
The proposed method is described in Section III-A. Finally, re-
sults of simulation are given in Section III-B and conclusions in
Section IV.

II. WAVELET THEORY

Wavelets are functions that satisfy certain mathematical re-
quirements and are used in representing data or other functions.
This idea is not new. Approximation using superposition of
functions has existed since the early 19th century with Fourier
analysis. The Fourier transform (FT) uses basis functions (sines
and cosines) to analyze and reconstruct a function. The wavelet
approach is more suitable than the Fourier one, especially when
signals are nonstationary. Wavelet algorithms process data at
differentscale or resolution. In wavelet analysis,the scalethat
we use to look at data plays a special role. A basis function
varies in scale by chopping up the same function or data space
using different scale sizes. Various wavelets are obtained from
a single wavelet (mother wavelet) by scaling and shifting
operations.

A signal or function can often be better analyzed or pro-
cessed if expressed as a linear decomposition by

(1)

where is an integer index, are the real coefficients, and
is a set of functions if the expansion (1) is unique. If the basis is
orthogonal, it should also satisfy

(2)

where is theinner product.
For the wavelet expansion, (1) is expressed as

(3)
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Fig. 1. Multiresolution signal decomposition.

where and are integer indexes and are the wavelet
functions that form an orthogonal basis. The set of coefficients

is calledDWTof function, and can be calculated by

(4)

The DWT is implemented using a multiresolution signal
decomposition algorithm [5], [6] to decompose a given signal
into scales with different time and frequency resolution. In this
sense, a recorder-digitized function , which is a sampled
signal of , is decomposed into its smoothed version
(containing low-frequency components), and detailed version

(containing higher-frequency components), using filters
and , respectively. This is a first-scale decomposition.

The next higher scale decomposition is now based on signal
and so on (Fig. 1). The analysis filter bank divides the

spectrum into octave bands. The cutoff frequency for a given
level is found by

(5)

where is the sampling frequency.
After a looked selection, in the present work, Daubechies’s

wavelets are chosen because they provide a much more effective
analysis than that obtained with other wavelets (Haar, Coifman,
etc.). This choice is fundamental in order to evaluate wavelets’
suitability for signal analysis and data compression by the pro-
posed method.

III. D ETECTION, LOCALIZATION, AND DISCRIMINATION OF

POWER SYSTEM DISTURBANCES

A. Method

In this section, we propose an effective method (Fig. 2) to an-
alyze and discriminate power system disturbances using wavelet
decomposition. The DWT (Daubechies family Db4) is applied
to a digitized function with samples, getting signals
and , according to [8], where are the index levels. The
number of samples equals two to the power of the number of
levels. The conceptual block diagram is represented in Fig. 3.

1) Detection and Compression:The information about the
position and length of a power system disturbance is obtained
from the detail coefficients . This signal is nonzero
when a disturbance exists.

After detection of the disturbance, a parallel process begins,
on the one hand to compress the input signal, and on the other to
classify the disturbance, based upon the wavelet decomposition.

Fig. 2. Flow chart of the proposed method.

Fig. 3. Conceptual block diagram.

In a first step, an umbral process begins, based at maximum
absolute value of original signal. The initial threshold is ex-
pressed by

(6)

where is the sampled input signal andis a parameter that
varies between 0.01–0.1. Thus, , the threshold is 3%
of the maximum value of the input signal. A process of compar-
ison between the input signal and the reconstructed signal
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begins. Starting at middle level, comparison between signals
and input signal gives the error signal

(7)

The absolute maximum value of is compared to a fixed
threshold . If the magnitude of the error signal is less than,
then the resulting signal (reconstructed signal) is the estimated
function , i.e.,

if (8)

One of the goals of the present work is to reach a high com-
pression ratio

compressed signal data
original signal samples

(9)

for expressing the minimum amount of data, i.e., the essen-
tial information, necessary for recovering the input signal (

%).
If , then % and the algorithm begins a second

step to determine a new estimated function without ignoring the
coefficients, which at these levels contain useful informa-

tion about the disturbance. In this case, for a compromise be-
tween a good approach and a high rate of compression, we ex-
amine thehard-thresholdingestimator. The absolute values of
all wavelet coefficients are compared to a threshold. If the
magnitude of the coefficient is less than, the new coefficient
value is zero, otherwise the coefficient value is , i.e.,

if

if .
(10)

The threshold filters out the coefficients with value close to
zero, allowing the significant coefficients related with the distur-
bance to pass. As most of the coefficients are close to zero,
a valid criterion to select is the use of the root-mean-square
value at each level of; thus,

(11)

where is the number of coefficients at level.
When the algorithm executes this second step, a new recon-

structed signal is obtained

(12)

where the level depends on the sampling frequency.
In both steps, the optimal relative error (ORE) between the

input and the reconstructed signal

ORE (13)

is used for measuring the quality of the estimator.
In this method, we find a higher compression ratio and lower

ORE.

Fig. 4. Three-layer neural network.

TABLE I
FIGURES OFELECTRICAL DISTURBANCES(P) TO BE MAPPED INTO

CORRESPONDINGCLASSES(C)

Fig. 5. Map of input patterns (disturbances).
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2) Classification: We select from among the levels of
coefficients that with the highest energy content. This
is essential for classifying the disturbance and localizing its
timespan. At the same time, coefficients are compared
with the equivalent coefficients of a previously stored sinu-
soidal signal which has followed the same process as
the input signal. The result is a vector whose elements are
differences of coefficients

(14)

where is the coefficient order for the selected level of max-
imum energy. The components of vector (14) will be different
from zero in the field where the signal disturbance exits.

The vector elements are used as inputs (input vector) of a
learning vector quantization (LVQ) neural network with com-
petitive learning in order to obtain stability during identification
(Fig. 4). This three-layered LVQ network [9] automatically clas-
sifies eight types of electrical disturbance (Table I), associating
each disturbance with one and only one of the set.

A representation of input patterns (disturbances) obtained by
(14) is given in Fig. 5. These are the incoming vectors to be
classified, and their coefficients are normalized to a two–dimen-
sional (2-D) form for their graphical representation, using the
“plotvec” function of MATLAB.

As we can see in Table I, there are eight types of disturbance
to train, but they are grouped into nine different zones. As is well
known, it is desirable to minimize the number of groups and the
number of different perturbations belonging to each group, in
order to obtain a minimum number of LVQ networks and a set of
simplest training, thereby avoiding problems due to linear sepa-
rability. In accordance, training sets formed by the input/output
values are grouped in nine types of sets to train nine LVQ net-
works. The outputs of each LVQ network are 11 vectors rep-
resenting the corresponding class for such disturbance.

As a result, the classification block consists of a set of nine
LVQ networks with an output vector . The elements

of the output vector of the neural network block have values
from 1 to 8, depending on the class of the recognized distur-
bance. If a disturbance is not recognized by the corresponding
group, its value will be set to 10. (Fig. 6). Each LVQ network is
specialized in recognizing a single group of disturbances. Only
one LVQ network will give a valid output as the result of the
classification, according to the classes defined in Table I.

To use the described architecture, once we have obtained the
vectorof a disturbance, it is presented to the whole neural net-
work classification block, feeding each LVQ network to process
the same vector at the same time.

To achieve parallel processing of the incoming disturbance
toward the classification block, the vectors used in the training
sets are selected from the boundaries between adjacent groups.
Some vectors belonging to the inside zone of the group are also
used.

The training set for all the LVQ networks use these vectors,
but it is only set a valid output class in the LVQ network which
will be specialized in the recognition of the disturbance (or sets
of disturbances if there are more than two different ones in the
same group). The other outputs are set to 10, indicating a non-
recognized class.

Fig. 6. Global architecture of the neural network block.

TABLE II
TRAINING SET FOR EACHLVQ NETWORK

Fig. 7. Momentary voltage interruption (input signal).

InTableII,wecanseethosetrainingsets.Inputs(I)areincoming
vectors of disturbances (D). Outputs of the net (G) are the classes
to be mapped. In order to simplify the tables, we represent only
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some values used as recognized disturbances for each group.Kbi
represents acoefficient vectorobtained by a wavelet processing
of theelectricaldisturbance.Thenumbersof trainingsetsand test
setsusedare indicatedinthelastcolumnof thetable.

In order to define the evaluation criteria, we must consider
that each LVQ network has been mapped to a different group of
classes which contains one or more different disturbances, and
also mapped to a code of nonrecognized disturbance (10). We
collect the outputs of each block forming a 91 vector of nine
artificial neural network (ANN) outputs. The output is correct
if there is only one element different from code 10, and such
output belongs to a class mapped by the LVQ network.

B. Simulation Results

The MATLAB program is used to calculate the DWT for
two digitized signals, each with 16 384 sample points. Figs. 7
and 14 show both signals used in the simulation: a momen-
tary voltage interruption and a disturbed signal with two tran-
sients, respectively. A display of all the sampled points for a
given “window” containing two transients cannot distinguish
clearly two recorded disturbances. In the studied example, we
show only the first 2000 sampled points contained in the first
transient, instead of the input signal. The same is done with the
simulation results. The data are sampled at 12 800 samples per
second. Figs. 8 and 15 show the decomposition of the above sig-
nals into and respectively, according to Section II.
In our case, for , the number of coefficients and frequency
bands, at each level of, are shown in Table III.

1) Momentary Voltage Interruption:In order to recover and
compress the input signal, thresholding of wavelet transform co-
efficients can be performed according to the proposed method.
Thus, by setting , the initial threshold is
3% of the maximum value of input signal, and condition (8) is
fulfilled for ( ). The smaller the ORE,
the higher the quality of the reconstructed signal. In our case,
ORE , which means that a good reconstruction
of the signal is obtained, as shown in Fig. 9. The result and the
data to be stored is only 2054 (Table III), which corresponds to
a compression ratio %.

The 13th and 14th levels are not shown because their fre-
quency bands are a fraction of a hertz.

The differences between the input and reconstructed signal
(error signal) are shown in Fig. 10.

The detail coefficient level ( ) of the higher energy level
is , which is shown in Fig. 11 for the sinusoidal signal and
in Fig. 12 for the example signal.

The input vector obtained from (14) is shown in Fig. 13.
2) Transients: In this case, there is no level (

and ) that fulfills condition (8), so the algo-
rithm goes to the second step. We find a compromise between a
good approximation for the input and reconstructed signal and a
high rate of compression in the fourth level. For the considered
levels, thresholds of , , , and

were found. The numbers of nonzero elements in
signals , , , and are 61, 48, 27, and 24
respectively. To obtain we store the position and magnitude
of modified coefficients at each level for the compressed signal,

Fig. 8. Wavelet decomposition corresponding to Fig. 7.

TABLE III
NUMBER OF COEFFICIENTS ANDFREQUENCYBAND

Fig. 9. Reconstructed signal of Fig. 7.

Fig. 10. Error signal.
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Fig. 11. d coefficients of the sinusoidal signal.

Fig. 12. d coefficients of the momentary voltage interruption.

Fig. 13. Input vector.

Fig. 14. Transients (input signal).

so 1350 data ( are
necessary.

The input signal is shown in Fig. 14 and its wavelet decom-
position in Fig. 15.

The reconstructed signal is shown in Fig. 16, and the differ-
ence between the input and reconstructed signals (error signal)
in Fig. 17. The ORE is 0.0191, and %. Thus, although
in this case the ORE is higher, the rate of compression is im-
proved.

The level of the higher energy is also , (Fig. 18), and the
input vector is shown in Fig. 19.

Table IV shows the results of several simulations. Each
column represents the output vector of the neural network
block, and we can see that the element, that is, the output
of group , recognizes the corresponding disturbance. In
particular, we can note the results obtained using the two
disturbances described in the paper (momentary interruption,
kb22shown in Fig. 13 and transient,kb17shown in Fig. 19).

Fig. 15. Wavelet decomposition of Fig. 14.

Fig. 16. Reconstructed signal of Fig. 14.

Fig. 17. Error signal.

Fig. 18. d coefficients of the transients.

Fig. 19. Input vector.
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TABLE IV
OUTPUT VECTORCORRESPONDING TOSEVERAL SIMULATIONS

IV. CONCLUSION

The most relevant and typical disturbances in electrical power
systems can be analyzed by means of the method proposed in
this paper. Furthermore, we study data compression and propose
an optimal solution in the wavelet domain. A neural classifica-
tion system using wavelet analysis has been used to distinguish
eight typical disturbances.

This work leads us to believe that wavelet analysis together
with neural structure, as a new tool, offers a great potential
for diagnosis of electrical power systems in the area of power
quality problems.
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