
A Tradeoff Analysis of a Cloud-Based Robot
Navigation Assistant Using Stereo Image Processing

Javier Salmerón-Garcı́a, Pablo Íñigo-Blasco, Fernando Dı́az-del-Rı́o, and Daniel Cagigas-Muñiz

Abstract—The use of Cloud Computing for computation of-
floading in the robotics area has become a field of interest today.
The aim of this work is to demonstrate the viability of cloud of-
floading in a low level and intensive computing task: a vision-based
navigation assistance of a service mobile robot. In order to do so,
a prototype, running over a ROS-based mobile robot (Erratic by
Videre Design LLC) is presented. The information extracted from
on-board stereo cameras will be used by a private cloud platform
consisting of five bare-metal nodes with AMD Phenom 965 4
CPU, with the cloud middleware Openstack Havana. The actual
task is the shared control of the robot teleoperation, that is, the
smooth filtering of the teleoperated commands with the detected
obstacles to prevent collisions. All the possible offloading models
for this case are presented and analyzed. Several performance
results using different communication technologies and offloading
models are explained as well. In addition to this, a real navigation
case in a domestic circuit was done. The tests demonstrate that
offloading computation to the Cloud improves the performance
and navigation results with respect to the case where all processing
is done by the robot.

Note to Practitioners—Cloud computing for robotics is very
promising for several reasons, like robot's energy saving, larger
storage capacity, stable electric power, better resource utilization
and the difficulty of upgrading the robots' embedded hardware.
The presented application extracts 3D point clouds from the
stereo image pairs of a camera situated on the robot. Using these
3D points, a shared control is implemented to help the remote
teleop-eration of a robot. That is, the commands sent by a joystick
are attenuated when a possible collision is detected (by checking
the future commanded trajectory against the 3D points). All of
these computationally heavy tasks (difficult to perform by a
mobile robot) are done in the cloud. The offloading models
proposed in this paper are generic enough to be used in other
applications. Obtained results show that further improvement in
communica-tion technologies will suppose a significant
performance boost for offloading computation.

Index Terms—Cloud offloading, cloud robotics, image point
cloud, mobile robots, navigation assistance, shared control.

I. INTRODUCTION

C LOUD computing is an emerging technology for robotics,
especially for mobile service robots. The needs come

from the huge amount of information that a service robot has
to process in order to interact and interpret the environment
correctly. For this reason, during the last few years, an im-
portant number of research papers and projects are addressing
the use of cloud infrastructures in robotics [1]–[4]. Research
fields where clouds are of interest are those where computation
is very intensive. But, where and how can high computing
tasks be identified in mobile robots? According to [5], a robot
usually has a layered architecture. Layers in the top level of the
hierarchy can contain processes that, for example, perform cog-
nitive tasks similar to humans. In the middle layers, tasks also
involve complex processes like path planning, object handling,
speech recognition, etc. Finally, in the lowest levels reactive
and real-time control operations are performed (e.g., obstacle
avoidance, guidance, beacon detection, signal communications
processing, etc). The amount of computation is not necessarily
proportional to the level. For instance, in [6], it is pointed out
that an intelligent mobile robot in an office-like environment
can be modeled by the Soar cognitive architecture with only a
few milliseconds of computational cost. However, other middle
and low-level tasks that feed higher layers in a robot architec-
ture, can be very computing demanding. The main example is
that of artificial vision and higher level tasks arising from it,
such as object detection, recognition and tracking, surveillance,
gesture recognition, etc. Another very promising field is that
related to multi-robot cooperation at different levels, where
new cooperative algorithms are being developed like multi-
robot simultaneous localization and mapping (SLAM) [7], map
merging (acquired by several robots), networked information
repository for robots [8], amongst others.
The main properties that make cloud infrastructures com-

pelling are the following: high reliability, larger storage
capacity, stable electric power, reutilization of hardware, dy-
namic scalability and better resource utilization. In particular,
the dynamic scalability property (adaptation of the computing
power at runtime) is extremely useful in Robotics, because it
allows the almost instant incorporation of new computation
demanding algorithms as soon as they are implemented. Be-
sides, the term “Cloud Robotics” has emerged to include this
area, which promises fast development of complex distributed
robotics tasks in the forthcoming years.
Consequently, the use of cloud computing is expected to be

widespread in the next few years in the service and rehabilita-
tion robotics field. Its use can offer them additional advantages,

such as: supplementing local information collected by the robot
with that coming from Intelligent Environments, Ambient As-
sisted Living applications likemonitoring user's health and daily
activities, multirobot cooperation and so on. In this respect, it
must be noticed that images captured by on-board cameras are
to be required by higher robotics levels (like object detection
and recognition, gesture recognition, etc., which must run in the
cloud), or by a human teleoperator that must make a decision
over the robotics system or simply teleoperate the robot itself.
Therefore, these images will be transmitted to the cloud in any
case, and these transfers would not be a burden for the whole
system.
Navigation assistance and human-computer shared control,

are common application cases for intelligent wheelchairs. Many
wheelchairs incorporate high-ended sensors, like stereo cam-
eras, laser rangers, and Ambient Intelligence aids [9] to address
this question. However, despite great advancements in power
wheelchair technology, research shows that wheelchair related
accidents occur frequently, especially for users with consider-
able handicaps [10]. Daily wheelchair maneuvers could be chal-
lenging due to the users' pathologies, poor maneuvering skills,
user's fatigue, and unknown or adverse environments. There-
fore, a safe maneuverability of a wheelchair using on-board or
external high-ended sensors has great importance in this kind of
situations. Moreover, remote teleoperation of the wheelchair by
an external caregiver could be sometimes necessary.
In addition to this, the results obtained in our Lab research in

advanced wheelchairs control [11], [12] support the necessity of
navigation assistance in certain situations. Because of the prob-
able omnipresence of cloud infrastructures for service robots,
in this work a prototype is implemented as a first step to an-
alyze and demonstrate the viability of carrying out in a cloud
the lower (but intensive computing) levels of a mobile robot
navigation assistant. The presented prototype is running over a
Robotic Operating System (ROS)-based mobile robot (Erratic
by Videre Design LLC) due to its software deploying and de-
bugging ease. However, this idea will be applied to other de-
vices like intelligent wheelchairs or other mobile service robots,
extending our previous research. More precisely, the task con-
sists of the teleoperation by a local or remote (which has little
influence because the inherent distributed architecture of the de-
veloped system) user, who is helped by using the sensing in-
formation extracted from an on-board (but processed in a cloud
infrastructure) stereo camera. In order to exploit the cloud capa-
bilities, a dynamic parallel algorithm has been implemented, so
the solution is able to scale out and back. Hence, the robot gets
the results faster when more computation power is required.
The Computation offloading of a robotics task includes sev-

eral tradeoffs. The software architecture (and its components) of
a complex robotic system must cater for a variety of character-
istics, distinguish it from other systems. The most relevant are
[13]: concurrent and distributed architecture, modularity (sev-
eral components of high cohesion but low coupling), robustness
and fault tolerance, and real-time efficiency. The first two char-
acteristics primarily benefit from cloud offloading, while the
third introduces new challenges (network robustness and fault
tolerance appear as a new aspect to considerate). Nevertheless,
the main issue that offloading must address for a navigation
task is the fourth of them. In this respect, a short quantitative

comparison of times involved in local versus remote computing
follows. This demonstrates the theoretical real-time viability of
cloud offloading and it points out new considerations.
The first mandatory bound is the time spent in data transmis-

sion to the cloud. If the bandwidth rate of communication tech-
nology is , and data size to be transmitted and received is
, it is concluded that must be inferior to the dead-

line of the task. Nowadays, there are wireless networks whose
bandwidths [14] are approaching to 1 Gbps, with a steady in-
cremental ratio of more than 40% per year, or two times every
two years (see http://www.wi-fi.org/). For a typical navigation
control loop, frequencies around 20 Hz (period s) are
usually enough. This gives us a limit of 0.05 Gbits, or equiva-
lently, a 3 Mpixel raw stereo image, per period. There-
fore, offloading computing is feasible, which, indeed, has the
aforementioned benefits.
A secondary aim is that cloud accelerates timing execution.

Let us suppose that the robot computer can execute at a rate of
instructions per second (millions of or is a

common magnitude in computer architecture [15]), and that the
cloud can speedup an application times more that this .
Therefore, local and remote execution times for computer
instructions could be expressed as

For stereo vision applications, is very big because the cloud
is supposed to have far more computational resources than the
local computer, and many operations are performed in parallel.
Being that the case, timing comparison gets to a short formula,
which indicates whether computation offloading is faster than
local execution, that is, , if

The first term of this inequality is entirely dependent on
each application. This means that high intensive computing
tasks benefit from cloud computing. With respect to image
processing, many of the filters that extract features used in
point cloud processing have computational complexity orders
higher than , being the number of pixels. For example,
in our experiments, a frame pair is computed by the Erratic
in s (see Section V). As the Erratic CPU (Intel
Celeron-M) runs at a frequency of GHz and has a
Clocks per Instruction (CPI) around 2.0 [16], then, the number
of instructions is [15]

Besides, transmitted data in this experiment (see Section V)
mainly consists of a color 1024 768 frame pair, that is:

bits. Hence

On the contrary, the second member of the inequality is
mainly technology dependent. Nowadays, is
[15], so for the Erratic CPU, it rounds instr/s.
Therefore, networking bandwidth is crucial to have success in
the offloading. Using WiFi IEEE 802.11ac, 400 Mbps data rate

transmissions can be easily achieved and, hence, the second
term has a very much lower value (1.75 for actual case) that the
first one, which promises a successful offloading. On the whole,
it can be concluded that many tasks from the top, middle, and
even lowest, level of a common layered robot architecture are
presently candidates to be remotely executed, or they would be
it in a few years.
The rest of this paper is organized as follows. Section II sum-

marizes several related works. Next, two sections analyze the
practical case study: Section III explains the architecture of the
system, especially the navigation assistant and a timing anal-
ysis. This timing analysis is vital for studying the computa-
tion offloading possibilities of the presented solution, which will
be explained in Section IV. Experimental results are shown in
Section V to quantify the benefits of the cloud approach, and
finally conclusions are summarized in Section VI.

II. RELATED WORK

Cloud robotics has two major lines of work. The first one
corresponds to the creation of an “Internet for robots” [8],
where all robots extend their knowledge using a predefined lan-
guage and collaborative build and merge/retrieve information
[17]–[20]. The second line of work (though not being com-
pletely separated of the former) is the one studied in this work:
computation offloading. This paradigm is being used by many
works and projects that accomplish high-level vision tasks,
though they do not have real-time requirements [2], [3], [21].
However, some papers have appeared in the last few years that
propose the external processing of several parts of the sensor
feedback information, achieving close to real-time performance
for these operations. In [22], they combine GPUs and cloud
offloading (to a private cloud infrastructure) to perform SLAM,
with successful results in different environments. They study
different virtual resources configurations as well: 1 virtual
machine per bare metal node, several VM's per node, amongst
others, finding that virtualization overheads imply a degradation
in speedup (they use Xen as virtualization technology). In this
sense, the method for identifying the optimal balance between
a cloud system overhead and performance presented in [7] can
be useful. Executing SLAM in the cloud is also studied in [23],
where they develop a cloud mapping framework (C2TAM).
They combine both computation offloading and collaborative
work, as the framework allows fusing the information obtained
from several robots. They work with a 640 480 pixel RGBD
camera and an average data flow of 1 MB/s, below 3 MB/s,
which is the usual wireless bandwidth and hence the mapping
is successfully done (moreover, they work with keyframes,
reducing the amount of images to send). Another computation
offloading example is proposed in [24], where a high-resolution
SIFT-based object detection is speeded up by transmitting
on-board preprocessed image information instead of raw image
data to external servers. The configuration of these external
servers is specific to this work, so some properties of the cloud
computing paradigm are not exploited.
The idea of Computation Offloading is studied in [25], and an

estimation of the computation and communication times needed
for the recognition and object tracking tasks is presented in
order to minimize the total execution time (approaching the

Fig. 1. Block diagram of the Cloud-Based Navigation Assistant for the teleop-
eration of a mobile robot. The different types of data transfer are the following:
Stereo frame pairs, 3DPC, robot velocity commands, and user input commands.
Also, bond status messages are required by ROS bond library.

real-time constraints). Their analysis permits making offloading
decisions for object recognition for different bandwidths, back-
ground complexities, and database sizes.
Authors of [26] present an object-tracking scenario for

a 14-DOF industrial dual-arm robot using a UDP transport
protocol for transmitting large-volume image over an Ethernet
network. Thanks to the very low sending and cloud image
processing times that are achieved, a stabilizing control law can
be implemented, with time-varying feedback time delay.
The work [27] also asks whether the performance of dis-

tributed offloading tasks can be compared with those executed
on-board. The experiment performed consists of a simple con-
troller that guides the robot in order to follow a line according
to the images acquired from a single low-resolution (320 240)
camera that points to the floor.
Compared with the described literature, the work presented

in our paper is the first that tries to analyze the cloud offloading
of such a real-time task as navigation assistance. In addition
to this, a thorough explanation of all the offloading possibili-
ties, together with the role of communication technologies, adds
more novelty to our work.

III. OVERVIEW OF THE SYSTEM
The analyzed robotic application consists of a teleoperated

mobile robot using a shared control via on-board cloud-based
stereo vision (continuing the work presented in [28]) and the
robotic software framework ROS (http://www.ros.org). The ex-
perience of our Lab in shared control for wheelchairs [29] has
inspired this present proposal, whose aim is to enable inexpe-
rienced or handicapped pilots to safely drive vehicles in chal-
lenging scenarios.
Section III-A summarizes the different modules of the ap-

plication and Section B explains the stereo vision processing
implementation. Section III-C explains how the navigation as-
sistance system works and Section III-D addresses the timing
analysis of the computation offloading.

A. Block Diagram of the System
Fig. 1 shows a simple diagram of a vision navigation assisted

robot. The robot carries a stereo camera which sends frames
to the teleoperator and to those processes responsible for 3D
Point Cloud (3DPC) extraction. Once a 3DPC is obtained from
a stereo frame pair, it is sent to a navigation assistant node.
This navigation assistant node will also receive input commands
from the local command interface (a joystick in this case), which
are translated to the desired linear and angular speeds
With the previously received obstacle information (that is, the

3DPC), and the historic buffering of robot velocities, the nav-
igation assistant will be able to calculate the correct that
avoids an obstacle collision. Once this has been computed,
a velocity command which satisfies the same curvature
suggested by the user through the joystick, is sent to the robot.
This fusion of information is usually called “continuous shared
control” [29], which is frequently preferable for most naviga-
tion assistance systems, because the desired commands were
smoothly and continuously combinedwith a collision avoidance
criteria [30].
The distributed implementation and the discussion of where

should each node run, whether the robot or the cloud, are more
deeply discussed in Section IV.

B. Stereo Image Processing

Processing stereo images is currently a very heavy compu-
tation task. However, the use of stereo cameras as the sensing
technology implies several advantages against other simpler
sensors (such as infrared or ultrasonic sensors). First, the infor-
mation obtained with these cameras is more complete. Second,
cameras have usually wider fields of vision. In addition to this,
as explained in Section I, the stereo pairs will serve for the
teleoperator or will presumably be required by other high-level
application. Hence, images need to be transferred out of the
robot in any case. Nevertheless, there is always the possibility
of combining the visual processed information with that of
more basic and reactive sensors. Besides, RGB-D cameras
are being developed quickly and at relatively low prices [31].
However, low priced RGB-D cameras are currently aimed for
the game market, and, hence, they present several disadvan-
tages. Regarding to our system, their drawbacks are: they do
not work well when there is lot of sunlight (even indoors), their
FOV is much more limited, maximum and minimum distance
detection is bounded, amongst others.
For a successful navigation assistance, the frequency of stereo

frame processing must be sufficiently high, whereas its latency
small enough. This requirement can become very difficult to
meet when more accurate reconstruction of the environment is
demanded. Hence, the heavy task of 3DPC extraction must be
processed in a powerful computing system. Furthermore, this
processing must be designed, not only to be parallel, but also to
exploit the special properties that a cloud system offers (more
importantly, that of dynamic scalability).
The 3DPC extractors (Fig. 1) are implemented thanks to

a ROS package called stereo image proc, which uses two
large-scale, open source libraries for 2D/3D point cloud pro-
cessing and computer vision libraries: the Point Cloud Library
(PCL, http://www.pointclouds.org) and OpenCV Library. More
precisely, this stereo image proc ROS package offers a node
which takes a pair of synchronized stereo frames and, after
rectifying the images, produces a point cloud with all the 3D
information. ROS implements an inner pipeline (using ROS
nodelets) with several stages: image debayer, image rectifica-
tion, disparity map creation and point cloud building. As each
stage is dependent from the previous one, no parallelism can be
achieved for an unique frame pair.
In order to make the image processing dynamically scal-

able, a parallel solution for different frame pairs has been

Fig. 2. Stereo frame pipeline process. 3DPC Extractor nodes process (in a
pipeline fashion) the frame pairs that the front-end node delivers.

implemented. The idea developed is based on the ability to
replicate the 3DPC extractor nodes (see Fig. 2), in several
virtual instances in the cloud. Each stereo frame pair will be
sent to a different node in a round-robin fashion. If were
the time to process a frame pair and the frame acquiring
period, the minimum number of nodes would be (in
practice some additional nodes are added due to the variance of
processing times). This scattering method requires a front-end
frame buffering node (“Buffer” node in Fig. 1) that will be
responsible of determining how many 3DPC extractor nodes
are alive at any moment, as well as distributing the stereo
stream. This parallel solution increases the performance of the
whole system, which is especially evident when bigger frame
resolutions are used. The main advantage of this solution is
its inherent dynamic nature. If the solution needs to scale out,
more 3DPC extractors can be launched at runtime. Once the
buffering node detects them (thanks to ROS bond library, using
bond status messages), they will start receiving stereo pairs for
processing. Reversely, if the system must be scaled back, some
nodes will be shut down and hence resources would be freed.

C. Overview of the Navigation Assistance

The “Navigation assistant” node receives the 3DPC, which
includes the obstacle information. A shared control that con-
tinuously filters user commands by means of the obstacle in-
formation is implemented as follows. Due that frontal view of
cameras only allows controlling small curvature arcs, a simpli-
fied version of [29] is used here. Nevertheless, as the user can
receive visual feedback of the operated scene, he/she can com-
mand pure turns in those areas where no lateral obstacle have
been seen by her/him.
The first step is the projection of all those points in the XY

plane. After that, for each point in the 3DPC, a trajec-
tory from the driven wheel axle center O (axis origin in Fig. 3)
is calculated. This process is done by finding a circumference
whose radius has endpoints at O and at . This circum-
ference supposes a feasible circular path of the robot, whose
center is and whose equation is

As the circumference has endpoints at and , the
radius , curvature value and can be calculated as follows:

Fig. 3. Plot of the navigation assistant approach. The upper circles are points
of the Point Cloud. The circumference that crosses a point and the middle driven
wheel axis is calculated.

Finally, using the angle between X axis and the radius, the
arc distance from O to is obtained (see Fig. 3)

For each point , a pair is calculated, and thus
it is possible to interpolate a function with all this
information, that is, the distance to collision for each curvature.
Every time a new stereo pair is received, will be up-
dated.
Simultaneously, the user is sending joystick commands,

which are proportionally translated to a desired pair of linear and
angular velocities , and a curvature . This
desired curvature is mapped to a distance value .
Using the uniformly accelerated motion equations, the max-

imum linear velocity that guarantees a stop without col-
lision can be obtained: , where
is the maximum braking acceleration of the robot. Every time

is updated, is reviewed and updated. If is
less than , the input command cannot be allowed, and the
speed sent to the robot is . Angular speed is cal-
culated so the resulting pair sent to the robot retains
the same curvature asked by the user. This way the teleoper-
ator does not feel that the navigation aids change the desired
trajectory. Should be updated fast enough, this event
would occur naturally, and the robot brakes progressively. Oth-
erwise, the navigation assistant will automatically send brake
commands at a certain frequency.

D. Communication Time Analysis
When working with real-time navigation, an analysis over

the average latency is required. Most of the latency comes from
the time the system takes to process the visual information. A
simplified timing diagram of system is shown in Fig. 4 (the
front-end buffer node is not shown because its delay times
are negligible with respect to the other involved times). The
robot's on-board computer comprises the stereo camera and
the motor actuation subsystem . Depending on the offloading
model, the following nodes can be either in the robot or in the
cloud (Section IV analyzes these possibilities): the point cloud
extraction C and the navigation assistant (and). is
responsible for creating and updating the function

Fig. 4. Time diagram of the system. Camera captures a frame pair that sends
it to the Point Clod extraction . This extracts the 3DPC and sends it to the Nav-
igation assistant, which fuses this information with the user command coming
from the joystick . Finally, the actuators receives the velocity commands.
Different interval times increment the total latency of the system.

explained in Section III-C and fuses the information from
the joystick J with .
Pairs of frames are continuously sent from camera node O to

C (via the buffer) at a specified frequency. The transfer time of
this message is named . As explained in Section III.-A, the C
nodes receive the stereo pairs in a round-robin fashion (in the
figure only one node is represented for simplicity). After
computing time , this new extracted 3DPC is sent to the nav-
igation assistant (taking). There, the function is
obtained and updated in a time . On the other side of the figure,
each time the joystick J sends a command, a new action will
be computed by . Time intervals and involved in this
sending, are negligible with respect to the others. This action
is sent back to the robot, where module applies the desired
speeds to the actuators. These speeds need to be recalculated
until a new action arrives, as the period of the actuation sub-
system is inferior to the time to transfer a new frame pair. At
the moment, a simple interpolation taking into account the real
robot speeds and the last sensed obstacle map is carried.
If, for instance, one new stereo pair tried to enter the

stereo image proc pipeline (see Section III-C) and no nodes
were free, this new pair would be discarded. In the case of only
one node , as the processing times in Fig. 4) are usually
longer than the period of , many frames would be discarded
(shown like clear rectangles in the figure) until the node were
idle again. In order to cut down the number of discarded frames,
this timing analysis gives us another bound to the minimum
number of 3DPC extractor nodes. As images are to be sent
by a single physical channel (that is, wirelessly), transfer times

are not overlapped. Due to this, frame acquiring period
cannot be inferior than . Furthermore, the mean time to

process a pair of frames must be less than the transfer
time to send it. In order to get rid of this issue and, as we
are working with high scalability systems, is overestimated.
Hence, is always guaranteed.
Another two critical aspects arise from the proper network

characteristics: 1) a strict periodical controller cannot be imple-
mented as WiFi networks (proper candidate for mobile robots)
have considerable fluctuations in transmission times and 2) the
presence of delays in control loops tends to produce oscillations.
Nevertheless, these oscillations are overcome by two reasons.

Fig. 5. Example case of delay correction in distance to collision s calculation.
As the obstacle information is delayed, time predictive corrections must be ap-
plied. At , the system would calculate that an obstacle is at meters,
but the robot is actually closer. A simple predictive correction consists of sub-
tracting an estimated distance , where , and
is the commanded speed.

First, the effect of these oscillations are mitigated or counter-
acted by the user, because he/she is conscious of this kind of
problem when remotely driving a slow robot. Second, some
delay corrections have been incorporated (see Fig. 5) in the ac-
tuation subsystem. As the information obtained from the stereo
cameras is delayed, obstacles are actually nearer than
states. Let us suppose that the system calculates at that
an obstacle is at meters. Due to the timing latencies (see
Fig. 4), the robot is actually closer. To be conservative, we have
supposed that during this latency time the robot has moved at
the maximum speed asked by the user, named . Therefore, a
simple predictive correction consists of subtracting an esti-
mated distance , where .
One final critical issue must also be considered: the case

where the actuation subsystem does not receive any command
for a long time. This case is addressed automatically due to
the way the interpolation is implemented. The idea is that the
robot speeds are gradually reduced at each actuation period
to prevent a collision, according to the last obstacle reading.
In this case, the robot speeds will tend to zero. There is an
even more critical circumstance: when last camera processing
did not find any obstacle, so sends to U an obstacle-free
signal, and no other obstacle information is received anymore.
Due to this, a deadline internal time is considered by U: if it
is exceeded, robot speeds are progressively decremented to
prevent a collision.

IV. COMPUTATION OFFLOADING ANALYSIS

This section analyzes and debates how the cloud can serve
to offload the implied computation of the previously explained
robotic application. It should be noted that the discussion pre-
sented here is generic enough to be applied to other applications.
For example, a cloud offload autonomous robot has similar pro-
cessing nodes to those shown in this section.
As stated in Section I, there are inherent tradeoffs when

moving computation into the cloud: the communication over-
heads, the amount of computing resources used, along with

Fig. 6. Possible configurations for Cloud offloading. Mandatory wireless com-
munications (those which origin or destination is the robot) are represented by
dotted arrows while communications that can be wired are depicted by contin-
uous arrows.

others. Different options will be presented, justifying which is
the best one among them (for the current application).
For this reason, a summary table, which classifies the dif-

ferent options qualitatively, is presented at the end of this sec-
tion. The selected parameters of this table have been chosen due
to their relevance in cloud computing and robotic technologies.
They are: a) Best scalability, which indicates if the involved pro-
cessing can be easily scaled out or back. b) Least communica-
tion bandwidth, as bandwidth is a precious resource in cloud
computing and a source of timing delays. c) Least virtual com-
puting resources. It indicates the amount of cloud resources used
by an option. d) Cheapest cloud pricing, which must be consid-
ered when using public clouds, such as Amazon EC2. In addi-
tion to this, Section V will include experimental numerical re-
sults that quantifies which option is the best for the presented
application.
Fig. 6 shows the most interesting ways of distributing the

main computation tasks to be carried out in the navigation
assisted teleoperation. These tasks are: the Frame buffering
process (“Buffer” in Fig. 6), 3DPC extractors (“3DPC Ext.”
replicated in nodes in Fig. 6), and the navigation assistant.
For the current system, experiments in Section V show that
the 3DPC extraction is more computationally complex than
the navigation assistant, which basically includes the

TABLE I
QUALITATIVE CLASSIFICATION OF DIFFERENT OFFLOADING MODELS. THE HIGHER THE NUMBER,

THE WORSE THE OPTION IS REGARDING THAT PROPERTY

function processing (see Section III). The necessary messages
between these tasks are: 1) Color frames from camera to
buffer, whose size is approximately proportional to image
resolution; 2) Color frames from the buffer to the 3DPC ex-
tractors; 3) 3DPCs sent to the navigation assistant, which size
in bytes ranges from 2 to 3 times that of raw color frames; and
4) Velocity commands that will be received by the actuation
subsystem, which suppose just a few bytes.
For obtaining more reliable performance measures, every

node moved to the cloud is isolated in one virtual machine.
As explained in Section III, the different nodes of this solution
have inherent distributed nature thanks to ROS middleware.
Fig. 6 shows 3DPC extractor nodes, because this processing
part was designed to be dynamically scalable (see Section III).
Last option 4 is the classical robot centralized approach, but,

when cloud offloading can be considered, other options are con-
ceivable. As moving the camera to the cloud makes no sense (it
must stay in the robot), and the buffer must reside in the same
platform that the 3DPC extractors to prevent a waste of frame
transfers, three additional options appear (see Fig. 6).
Option 1: 3DPC extraction and navigation assistance in the

Cloud. This first configuration aims to move all the existing
computation to the Cloud. A first advantage is that the robot has
practically all its computing power available for other robotic
tasks.Moreover, this configuration allows the exploitation of the
cloud properties, due to the following fact: should the robot re-
quire more computing power, more 3DPC virtual machines can
be spun up at runtime, and therefore the quality of the navigation
will presumably increase (as it will be able to reach higher fre-
quency rates or to process bigger frame resolutions). In terms of
communication bandwidth usage, this configuration requires the
transmission of stereo frame pairs (which size in bytes increases
linearly with the frame resolution) to the cloud and reception of
velocity commands (which size is commonly very short).
Option 2: Navigation assistance in the Cloud. This choice

tries to better balance the computing tasks between local and
cloud computation, but it is less scalable. Scaling out and back
in the robot is far more limited than doing it in the Cloud. In
terms of bandwidth usage, instead of sending frames to the
cloud, 3DPCs will be sent (whose size ranges from 2 to 3
times that of frames’), and velocity commands (a few bytes)
will be received. Therefore, the wireless bandwidth usage is
bigger than the previous case, not being the case of virtual
computing requirements. For a fully autonomous robot, images
must not come out of the robot. However, for our current
teleoperated application, video streaming must also be sent to
the teleoperator, thus increasing bandwidth interferences and
consumption. With respect to the current application, in terms
of cloud pricing, this solution is cheaper than the previous one.

However, because 3DPC extraction is more computationally
complex than the navigation assistance, the robot will probably
be unable to respond correctly when a better quality of the
navigation is required (for example a bigger frame resolution,
as delays in Section V exhibit).
Option 3: 3DPC extraction in the Cloud. In this case, the

heaviest processing is moved to the cloud, whereas the navi-
gation assistant node (which could be more reactive if the robot
included another simple sensor) stays in the robot. This configu-
ration seems the sensiblest in terms of typical real-time applica-
tions. In terms of scalability, it is possible to scale out and back
3DPC nodes depending on the needs. In terms of virtual com-
puting power requirements, it is very similar to the first choice
since the main core of computation resides in the 3DPC extrac-
tion. However, the main drawback of this configuration for the
current application is the big amount of wireless communication
that takes place: the robot sends stereo frame pairs and receives
3DPCs. As a consequence, if the communication technologies
are not good enough, this solution can yield bad performance
results. In addition to this, this solution may be the most expen-
sive in terms of pricing due to the high bandwidth consumption.
Option 4: All processing in the robot. In this case, the only

communication overheads will be internal to the robot node,
which nowadays are usually inferior to those of remote commu-
nication. This choice does not use the cloud, hence it requires
the robot's embedded hardware to be powerful enough. For the
real application considered here, the next section demonstrates
its poor performance results (even for Erratic Robot, which in-
corporates medium-end hardware). Just like option 2, the use of
remote communication would be necessary if robot camera im-
ages were sent to the teleoperator.
Table I classifies all the choices according to all the properties

analyzed. Taking into account all the advantages and disadvan-
tages, it seems that options 1 and 3 are the most suitable for the
described application. Section V proves that option 1 yields the
best performance results.

V. EXPERIMENTAL RESULTS
This section presents the performance results for different

experiments using the aforementioned example robotic appli-
cation. The main objective is to prove which cloud computing
options are viable for a real-time robotic system. In [28], it was
proved that the scalability of the cloud works properly when
changing the number of virtual cloud nodes. The system was
tested with the hardest computing and communication pro-
cessing: high definition resolution images (HD 1080i frames),
the most consuming bandwidth model (option 3 in Fig. 6),
but with the fastest available TCP network (Gigabit). It was
showed that a significant speedup (ratio between total time for

1 node and for nodes) can be obtained. This means that cloud
elasticity makes it possible for the robot to change between
different computing resources depending on the frequency and
image resolution required by the system. Despite the fact that
in some applications low-quality images and small updating
frequencies could be enough, the stereoscopic formula for the
depth error [32] says that this error is proportional to the real
size of a pixel (that is, for a given CCD size, the more horizontal
resolution, the less depth error exists. As an extension of this
idea, it is evident that with perfect lighting and essentially infi-
nite SNR, the highest accuracy is achieved using a combination
of high framerate and high resolution, with limits only set by
the available computational budget [33].
Section V-A analyzes the performance impact of current

communication technologies, which has direct impact in the
offloading. In that sense, Section V-B shows the application
qualities when choosing the different offloading options pre-
sented in Section IV. Finally, Section V-C presents a real
navigation experiment, both using the cloud and the robot on
its own.
The cloud infrastructure used for the experiments is the fol-

lowing: a cluster consisting of five bare-metal machines (one
front-end and four compute machines) with AMD Phenom 965
x4 CPU (with virtual extensions enabled) and 8 GB of RAM
each one. They are all connected using Gigabit Ethernet band-
width and Openstack Havana is the Infrastructure-as-a-Service
(IaaS) cloud middleware installed. KVM has been chosen as
the virtualization technology. Other well known solutions such
as Hadoop were not suitable for real-time systems. The Erratic
robot hardware has a 1.4 GHz Core 2 Duo Processor with 1 GB
of RAM.
When moving computation to the cloud, the following map-

ping between nodes and virtual machines has been considered:
each 3DPC extractor node is executed in a separate virtual ma-
chine with 2 Virtual CPUs (VCPU) and 2 GB of RAM (the
front-end buffer VM has exactly the same properties). In the
case of the navigation assistant node, a larger VM was chosen,
consisting of 4 VCPUs and 8 GB of RAM (as the parallelization
of function is obvious).

A. Analysis of Communication Technologies
This first experiment is done to compare how different com-

munication technologies affect to the achievable processing
rates. Moreover, using the cloud for mobile robot navigation,
more realistic technology choices such as IEEE 802.11n WiFi
and IEEE 802.11ac WiFi must be considered. The second one
is quite recent and promises an expected bandwidth close to
that of Gigabit Ethernet. In this experiment, the stereo camera
and the image transmission has been carried out by a real
mobile robot (in this case Videre Erratic). The cloud offloading
configuration chosen is option 3, so this experiment checks
if the bandwidth limitations are being a burden in the whole
performance of the system.
Table II shows the frequency of the system for different

technologies and different frame resolutions. In order to give
a proper comparison, the table contains the results of option 4
as well (that is, the robot without cloud). Two conclusions can
be extracted from these results. First of all, when using small

TABLE II
PERFORMANCE MEASURES FOR DIFFERENT COMMUNICATION TECHNOLOGIES

TABLE III
NAVIGATION ASSISTANT UPDATE FREQUENCIES FOR THE DIFFERENT

OFFLOADING MODELS OF SECTION V USING 802.11AC WIFI

resolution frames (for extracting 3DPCs), a boost of perfor-
mance when using an external platform is not obtained with
the communication technologies used here. The reasons are the
following: the robot hardware is fast enough, and the networks
used do not have enough bandwidth (for Infiniband or 10 Gbps
Ethernet results might be better). This means that, for other
simpler robots, offloading this process might be beneficial.
Despite this, when the quality of the frames is increased, the
robot hardware limitations arise. Therefore, the Cloud can be
used not only for a simple computation offloading, but also for
speeding it up.
It must be pointed out that, when changing the hardware plat-

form from that of the robot to a modern laptop, the frequencies
obtained for Gigabit Ethernet differ from that of [28]. This fact
is easily understood because both the CPU and RAM are four
times better in the case of the laptop. Even though the robot
has been freed from heavy computations, there are other fac-
tors that do affect in the whole performance of the system (peer
to peer connection management, frame buffering and sending,
3DPC reception, along with others). The second fact discovered
is that current wireless technologies are not enough to handle
this process successfully due to the big amount of data trans-
ferred (not only the frames are transferred but also the 3DPCs).
However, it must be noted that the offloading model chosen was
not beneficial for limited communication technologies.

B. Comparison of Offloading Models
In order to compare all the offloading models of Section IV,

two tests were carried out: the first one compares the frequencies
in which is updated for different frame sizes, while the
second one measures the latencies of the whole application.
Table III shows the results for different frame sizes and

models using 802.11ac WiFi. The faster gets updated,
the higher the quality of the navigation will be. Just as expected,
the option 1, which has less bandwidth consumption, has the
best results, even though option 3 seems a more common
configuration for a real-time system. Only when the frame
resolution is small, the required computation can be assumable
by the robot (option 4) on its own. Due to the communication
overheads, the speedup between options 1 and 4 becomes
greater when the size of the frame increases, being worth having

TABLE IV
AVERAGE DELAYS OF THE SYSTEM FOR 1024 768 FRAMES AND DIFFERENT

OFFLOADING MODELS USING 802.11AC WIFI

Fig. 7. Histogram of 1024 768 frames using option 1 and 802.11ac WiFi.

communication overheads in exchange of higher frequency of
the whole system.
The second test measures the latencies of the whole applica-

tion, that is, the difference between the time the stereo frame
pair was taken and the time was calculated for them.
Table IV shows that the main cause of delays in the system are
again the communication overheads. Thus, an offloading model
that minimizes them is benefited. The robot on its own is unable
to get acceptable latencies; this time due to the heavy computa-
tion. With these two tests, it is certain that option 1 is the best of-
floading model for this case, obtaining decent results even with
wireless technologies.
Finally, as communication latencies cannot be constant, it is

interesting to show a histogram for (in Fig. 7, 1024 768
stereo frame pairs were used for option 1 and Wifi AC). Al-
though variance is not very big, some messages (only a 2%)
present a high variability of the latency. This is due to four
main factors: 1) the ROS middleware used; 2) complexity of
3DPC filters; 3) TCP protocols; and 4) interferences, and packet
rejection with backoff periods in MAC layer. As percentage
of late packet is very low, a simple predictive timing correc-
tion algorithm (see Section III) mitigates possible oscillations
in the control loop. Besides, further improvements in 802.11ac
MAC layer like time-division multiple-access (TDMA) proto-
cols, would reduce substantially this latency variance. An al-
ternative to TDMA protocols is the use of the Contention Free
Period in the infrastructure mode with fixed size packets. This
could not reduce the variability as much as the use of TDMA,
but it guarantees a minimum bandwidth reservation, which may
be suitable for many real-time systems.

C. Analysis of a Real Navigation Case
Two final tests show that cloud-based robot navigation (op-

tion 1) is possible and even can improve its on-board counter-
part. The vehicle has been configured with: m/s,

rad/s, maximum linear acceleration

Fig. 8. Example of (in meters).

Fig. 9. Response of the navigation assistant to joystick commands.

TABLE V
NAVIGATION RESULTS FOR TEST 2 USING OPTIONS 1, 4, AND TWO FRAME

RESOLUTIONS. THE RATIO IS CALCULATED OVER 70 MANEUVERS

, maximum linear brake m/s . Circuit of
the first test contains obstacle free areas (where the robot is able
to move at maximum speed) and four walls, where the robot
should stop to prevent a collision. Figs. 8 and 9 demonstrate the
viability of option 1. Fig. 8 shows when approaching
one of these walls. Fig. 9 shows the difference between the joy-
stick linear velocity and the final computed linear speed com-
mand when completing a turn of the circuit.
The second test compares the navigation of the robot in an of-

fice environment for options 1 and 4, and for low and medium
resolutions (320 240 and 640 480 pixels) at 10 fps. The cir-
cuit is completed ten times per case. The number of collisions
are measured as a quality magnitude, because, due to the delay
variances in the navigation assistant computation, some colli-
sions are difficult to avoid. For each obstacle approaching ma-
neuver, the joystick is pushed to its extreme positions (desired
commands are always those of maximum speeds), in order to
test the shared control in the worst conditions. As there are seven
of these maneuvers for each turn of the circuit, we have a total
of 70 possible collisions. Table V shows the number and ratio
of collisions for the four tested alternatives. The first conclu-
sion is that for the stereo algorithm used here, low resolutions
are not enough to detect properly some of the walls (when the
robot is in movement), and collisions are very frequent for any
computing option. The second important conclusion is obtained

for the 640 480 pixel resolution. Collision rate is very much
reduced when the cloud is working, which is mainly explained
because frame processing frequencies are more than double for
option 1 than for 4 (see Table III). In this case, the only collisions
are produced against an metallic furniture which texture is very
much homogeneous. Another additional trouble is the limited
FOV of the camera. This means that unavoidable collisions are
produced when robot makes brusque turns (this must be solved
by the inclusion of more cameras in the future). A demonstra-
tion video can be found in [34].

VI. CONCLUSION
This work analyzes and shows that running a vision based

navigation assistant completely on an external cloud is feasible.
Twomain evidences allow this: a) cloud scalability is pretty well
achieved and b) processing times run in parallel to the transmis-
sion ones, being the latter the bottleneck of the cloud offloading.
In fact, the mean processing frequencies are almost proportional
to bandwidth network. It is expected that the extension and nat-
ural evolution of wireless networks would improve their band-
width in the next few years. Experiments demonstrate that the
proper computation offloading model must be carefully chosen.
In that sense, the computation versus communication tradeoff
has to be analyzed. Moreover, the key to success in computation
offloading is the scalability of the developed solutions. Finally,
the implemented prototype (a teleoperated mobile robot using
shared control) can be useful for the teleoperation of wheel-
chairs of other service robots, which can be done by the user or
by an external caregiver. As a better navigation is obtained when
using higher resolution images, the necessity of the cloud has
been empirically demonstrated. It is also shown that the naviga-
tion assistant must contemplate a predictive temporal correction
that should prevent a possible collision, caused by the sensoring
delay, mainly due to the transmission latencies.

ACKNOWLEDGMENT

The authors wish to thank Prof. D. Cascado for his interesting
comments. In addition to this, they really wish to thank the re-
viewers for all the feedback of our work, together with all the
recommendations for future work.

REFERENCES
[1] D. Hunziker, M. Gajamohan, M. Waibel, and R. D'Andrea, “Rapyuta:

The RoboEarth cloud engine,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2013, pp. 438–444.

[2] E. Guizzo, “Robots with their heads in the clouds,” IEEE Spectrum,
vol. 48, no. 3, pp. 16–18, Mar. 2011.

[3] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. Kumar, K. D. Meng, and G.W. Kit, “DAvinCi: A cloud com-
puting framework for service robots,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2010, pp. 3084–3089.

[4] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Trans. Autom. Sci. Eng.
(T-ASE), vol. 12, no. 2, pp. 398–409, Apr. 2015.

[5] Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin, Germany: Springer-Verlag, 2008.

[6] J. Laird, The Soar Cognitive Architecture. Cambridge, MA, USA:
MIT Press, 2012.

[7] B. D. Gouveia, D. Portugal, D. C. Silva, and L.Marques, “Computation
sharing in distributed robotic systems: A case study on SLAM,” IEEE
Trans. Autom. Sci. Eng. (T-ASE), vol. 12, no. 2, pp. 410–422, Apr.
2015.

[8] M. Waibel, M. Beetz, J. Civera, R. D'Andrea, J. Elfring, D.
Galvez-Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A.
Perzylo, B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molen-
graft, “RoboEarth,” IEEE Robot. Autom. Mag., vol. 18, no. 2, pp.
69–82, Jun. 2011.

[9] J. Sevillano, D. Cascado, D. Cagigas, S. Vicente, C. Lujan, and F.
del Rio, “A real-time wireless sensor network for wheelchair naviga-
tion,” in Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. (AICCSA),
May 2009, pp. 103–108.

[10] J. Fu, W. Hao, T. White, Y. Yan, M. Jones, and Y.-K. Jan, “Capturing
and analyzing wheelchair maneuvering patterns with mobile cloud
computing,” in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Bio. Soc.
(EMBC), Jul. 2013, pp. 2419–2422.

[11] A. Civit-Balcells, F. Diaz Del Rio, G. Jimenez, J. Sevillano, C.
Amaya, and S. Vicente, “SIRIUS: Improving the maneuverability of
powered wheelchairs,” in Proc. Int. Conf. Control Appl., 2002, vol. 2,
pp. 790–795.

[12] S. V. Diaz, C. A. Rodriguez, F. Diaz del Rio, A. C. Balcells, and D.
C. Muniz, “TetraNauta: A intelligent wheelchair for users with very
severe mobility restrictions,” in Proc. Int. Conf. Control Appl., 2002,
vol. 2, pp. 778–783.

[13] P. I. Blasco, F. Diaz-del Rio, M. C. Romero-Ternero, D. Cagigas-Muiz,
and S. Vicente-Diaz, “Robotics software frameworks for multi-agent
robotic systems development,” Robot. Auton. Syst., vol. 60, no. 6, pp.
803–821, Jun. 2012.

[14] E. Charfi, L. Chaari, and L. Kamoun, “PHY/MAC enhancements and
QoS mechanisms for very high throughput WLANs: A survey,” IEEE
Commun. Surveys Tutorials, vol. 15, no. 4, pp. 1714–1735, 2013.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Waltham, MA, USA: Morgan Kaufmann, 2012.

[16] B. P. John, Effectiveness of SPEC CPU2006 and Multimedia Applica-
tions on Intel's Single, Dual and Quad Core Processors. Ann Arbor,
MI, USA: ProQuest, 2009.

[17] M. Tenorth, A. Perzylo, R. Lafrenz, andM. Beetz, “The RoboEarth lan-
guage: Representing and exchanging knowledge about actions, objects,
and environments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2012, pp. 1284–1289.

[18] M. Tenorth, A. Perzylo, R. Lafrenz, and M. Beetz, “Representation and
exchange of knowledge about actions, objects, and environments in the
RoboEarth framework,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3,
pp. 643–651, Jul. 2013.

[19] M. Tenorth, K. Kamei, S. Satake, T. Miyashita, and N. Hagita,
“Building knowledge-enabled cloud robotics applications using the
ubiquitous network robot platform,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), Nov. 2013, pp. 5716–5721.

[20] L. Wang, M. Liu, and M. Meng, “Real-time multi-sensor data retrieval
for cloud robotic systems,” IEEE Trans. Autom. Sci. Eng. (T-ASE), vol.
12, no. 2, pp. 507–518, Apr. 2015.

[21] H. M. Do, C. J. Mouser, Y. Gu, W. Sheng, S. Honarvar, and T. Chen,
“An open platform telepresence robot with natural human interface,”
in Proc. IEEE 3rd Annu. Int. Conf. Cyber Technol. Autom., Control,
Intell. Syst. (CYBER), Nanjing, China, May 2013, pp. 81–86.

[22] K. Ayush and N. K. Agarwal, “Real time visual SLAM using cloud
computing,” in Proc. 4th Int. Conf. Comput., Commun. Netw. Technol.
(ICCCNT), Tiruchengode, India, Jul. 2013, pp. 1–7.

[23] L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2tam: A cloud frame-
work for cooperative tracking and mapping,” Robot. Auton. Syst., vol.
62, no. 4, pp. 401–413, Apr. 2014.

[24] H. Bistry and J. Zhang, “A cloud computing approach to complex robot
vision tasks using smart camera systems,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), Oct. 2010, pp. 3195–3200.

[25] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. S. G. Lee, “Real-time
moving object recognition and tracking using computation offloading,”
in Proc. EEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Oct. 2010, pp.
2449–2455.

[26] H. Wu, L. Lou, C.-C. Chen, S. Hirche, and K. Kuhnlenz, “Cloud-based
networked visual servo control,” IEEE Trans. Ind. Electron., vol. 60,
no. 2, pp. 554–566, Feb. 2013.

[27] L. Agostinho, L. Olivi, G. Feliciano, F. Paolieri, D. Rodrigues, E.
Cardozo, and E. Guimaraes, “A cloud computing environment for
supporting networked robotics applications,” in Proc. IEEE 9th Int.
Conf. Dependable, Auton. Secure Comput. (DASC), Dec. 2011, pp.
1110–1116.

[28] J. Salmerón-Garcı́a, P. I. Blasco, F. Diaz-del Rio, and D. Cagigas-
Muñiz, “Mobile robot motion planning based on cloud com-
puting stereo vision processing,” in Proc. 41st Int. Symp. Robot.
(ISR/Robotik), Jun. 2014, pp. 1–6.

[29] P. I. Blasco, F. Diaz-del Rio, S. Vicente-Diaz, and D. Cagigas-Muńiz,
“The shared control dynamic window approach for non-holo-
nomic semi-autonomous robots,” in Proc. 41st Int. Symp. Robot.
(ISR/Robotik), Munich, Germany, Jun. 2014, pp. 1–6.

[30] P. Nisbet, “Who's intelligent? Wheelchair, driver or both?,” in Proc.
Int. Conf. Control Appl., Sep. 2002, vol. 2, pp. 760–765.

[31] A. To, G. Paul, and D. Liu, “Surface-type classification using RGB-d,”
IEEE Trans. Autom. Sci. Eng., to be published.

[32] M. Kytö;, M. Nuutinen, and O. Pirkko, “Method for measuring stereo
camera depth accuracy based on stereoscopic vision,” in Proc. SPIE/
IS&T Electron. Imag., 2011, pp. 1–9.

[33] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison, “Real-time
camera tracking: When is high frame-rate best?,” in Computer Vision
ECCV 2012, ser. Lecture Notes in Computer Science, A. Fitzgibbon, S.
Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Germany:
Springer-Verlag, Jan. 2012, pp. 222–235, no. 7578.

[34] “Cloud-based robot navigation assistant using stereo image
processing,” (accessed Nov. 12, 2014.) [Online]. Available:
http://www.rtc.us.es/cloud-based-robot-navigation-assistant-using-
stereo-image-processing/

