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Abstract

This paper discusses the numerical exponentiahbilgy of the transfer matrix method (TMM) in the
framework of the symmetry formalism. This numerieaakness is attributed to a series of increasingly
extreme exponentials that appear in the TMM wheis iapplied to geometries involving total internal
reflection (TIR) or very high absorption. We desagitMM formalism that identifies the internal synnies

of the multilayer geometry. These symmetries suggagicular transformations of reference systerthin
TMM that improve its ill-conditioned exponential§o illustrate the numerical improvements, we présen

examples with calculations of electric fields.
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1. Introduction

The solution to the Maxwell’s equations associatéith an interactive electromagnetic system can be
reached with several mathematical methods thaesept different approximations to the same solutvan,
one method can be better than the other in ternanaliytical structure, numerical stability and canep
time. These differences are fundamental for olgirefficient calculations in cases that are paldity

susceptible to numerical errors [1, 2].

The Transfer Matrix Method (TMM) is one of the mdsgquently used methods to understand the
propagation of electromagnetic waves in one-dinmeradi multilayer structure. It is a very simple, aate
and fast method where a dielectric multilayer strrecis decomposed to more easily solvable findesp
TMM is a propagation method in the sense thakitdanto account the transfer functions for ondtjmwsto
obtain the transfer function in other position loé tstructure. This procedure is iteratively repaatetil all
the different points of the structure are connedted specific form, which is represented by thkitsan.
However, the propagation of the electromagneticesam a multilayer is not one-directional becauseach
interface where refractive index changes, therinly transmission but also reflection. Therefdhe set
of interfaces generates multiple reflections altmg structure which generates both forward and wak
exponential waves in each layer (see chap. 3[3pf.In this sense, the propagation in each poirihe one-
dimensional multilayer is the result of an inteefece process between transmitted and reflected swave

which come from the whole structure.

The well known issue of the TMM is that it can showmerical instabilities under certain extreme
conditions concerning to the forward decreasing @adkward increasing exponential waves. These
exponential instabilities arise from the inversiwinthe propagation matrices appearing in the TMMe T
numerical instabilities can be classified by thdipalar parameter in the exponential waves whiehegates
them: @) instability associated with evanescent fieldsteglato total internal reflection (TIR) [1], which
comes from the imaginary component of the angld,tamstability associated with attenuated fields tue

absorption in layers that have high thickness/wength ratio [2], which comes from the imaginary



component of the refractive index. The combinatidrthese two contributions increases the chance and

level of instability [1].

From the numerical point of view, the origin of $kenstabilities is the accumulation of scaleslégca
real numbers with an absolute value higher thar) amsociated with two exponential terms in the TMM:
one related to the forward propagation — a deangaskponential term — and other related to the Wwaok
propagation — an increasing exponential term. Thesedifferent orders of magnitude in the TMM can
produce round off inaccuracy in the calculations ttulimited arithmetic precision of the computémen
calculations exceed the arithmetic precision aretitav instability occurs due to very small numbarsl

an overflow instability due to very large numbet§ |

To improve the numerical behaviour of the TMM, matable methods have been developed, like
TMM algorithms that use normalization and factatica of transfer matrix to avoid the instabilitizem the
exponentials terms [1]. There are also methods @éRpand the interaction problem in a non-exponkntia
basis to avoid the problem [5]. One important méttsothe Scattering Matrix Method (SMM) [2, 5] whic
resolves the exponential instabilities by sepagatthe forward-decreasing and backward-increasing
exponentials and, as a consequence, shows a ftegregion of stability than the usual TMM [6]. 86
matrix recursive algorithm is a SMM where exponantverflow is avoided by simply deleting the
increasing exponential terms from the analyticaluttan [2]. Some relatively recent methods have
successfully improved the TMM stability, like th@hanced transmittance matrix approach [1] and an
analytically modified 2x2 TMM [7]. Numerical methsedfor particular cases of 1- and 2-dimensional
photonic crystals (periodic structures) at difféerspecific conditions have been developed by dffer

groups [8-11].

This paper aims to clarify the theoretical foundiatthat allows obtaining equivalent solutions af th
Maxwell’s equations with TMM by means of referergestem transformations in one dimension. We
identify the internal symmetry of the TMM as a fadgnt symmetry that arises from the electromagnetic
homogeneity-isotropy inside each domain of thecstme. This internal symmetry induces different TBIM

configurations: those considering internal symmaitng those that do not consider it. The aim ofpdyeer is
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to demonstrate theoretically how the solutions twaisider the internal symmetries of the TMM impralie
numerical stability and provide a simpler analftisiructure than solutions that do not considers¢he
symmetries. The numerical improvements are illtsttahrough simulations of a total internal refieat
(TIR) multilayer that works either with an opticathin or a thick layer. The main contribution bfg paper
is that an improved TMM solution, which has beeopmsed in the literature [12] is explained herdétail

through a novel symmetry based insight.

2. Theoretical development

Classical propagation and interaction of electrame#ig waves with a physical medium is describedhay
Maxwell’s equations with a set of boundary condiiaefined by the geometry of the interaction syste
The interaction system consists of a finite noriqukc one-dimensional dielectric stack, called laer
multilayer, the external media surrounding the itayler, and the electromagnetic waves interactiith the

former. The multilayer is infinitely extended thghuthe X -axis and stratified along the-axis direction im
layers, which are indexed gs=1, 2,... ,n (see Fig. 1). Eaclj layer is characterized by the thickned;]s
the complex electric permittivity; = & («w) and the complex magnetic permeabilifiy = /7;(¢) . Then
layers are sandwiched between two semi-infinite-alosorptive external media, indexed jps 0,n+ 1, and
characterized by the electromagnetic properigs &,(«w), [, = f,(w) for the incoming propagation
medium, andé&,, =&, ,,(w), ., =M., (w) for the outgoing propagation medium (see Fig. Tihe
electromagnetic properties of the domains, i.e.ldyers and the external media, are given by comple
frequency-dependent scalar refractive indid?efs(a)):‘éj(a))[/j(a)), the real part of which describes

dispersion and the imaginary part absorption. Tleet@magnetic properties define each domain in a
homogeneous, isotropic and linear manner. The henwity and isotropy indicate that electromagnetic

properties are scalar numbers, i.e. invariant utrdeslations and rotations inside each domain.liflearity



of each domain allows using matrix methods to attarize the interaction system, like the Transfextrit

Method (TMM).

The complex electromagnetic fieIcEj(r), I:|j(r) are described in a vectorial form using the
framework of the classical electrodynamics. The mglem angle 9]. between the complex wavevector
direction IZ]. and the stratified unitary direction vectgr of the multilayer is taken into account as a

variable; therefore,@’j , @ are the complex wavevector projections alopgaxis and X- axis respectively,

which are given by

2 (A)cos@ )y +sin@ X} ()

kj:Bj9+~)'ZE 7

X 21, (@)cos(@)7 +sin@, R}=

where ] =0,1,.. n,n+ I(see Fig. 2). The Maxwell’s equations are definédout free charges inside the

multilayer and their solution is considered inradtindependent approximation by using harmonidostaty

modes. Furthermore, a positive convention for iblel time-phase is considered, which gives thetgoilas

E,rD=E (e A er)=H, ¢p @

for the electric fieIdEj(r,t) and magnetic fieldd ;(r,t). Furthermore, following the standard convention,

the field vectors are expressed in the basis ofwagtor components corresponding to the two paton

modes:s-polarization or transversal electric mode TE, psablarization or transversal magnetic mode TM

(see Fig. 2). These polarization components areresepted by {E?(r),ﬂ?(r);ﬁj} and
{Ef’(r),ﬂ?(r);ﬁj}, where each components are completely built um ftbhe Maxwell’'s equations

together with the electric fields associated tcheaodeE}(r), E}(r) (see chap. 3, ref. [3]).



In the following three sections we develop the th&oal analysis of the TMM symmetry. First, we
summarize the solutions that do not consider tsgsemetries, but written in a new TMM formalism more
adequate to detect the internal symmetries of thkilayer geometry. Second, we discuss the oridithe
numerical instabilities in TMM in the framework tifese solutions. Third, we show how transformatioins
reference system considering (preserving) the symesemprove the numerical stability and simplifye

analytical solution.

3. Solutionsthat do not consider the internal symmetries of the TMM

In this section we define a new formalism adeqé@ateanalyzing in detail the geometrical structufethe
TMM by introducing a hew concept: the partial progion matrix.This matrix differs from the propagation
matrix that appears in the literature [12], in #®nse that the propagation matrix is defined foormplete
domain, whereas the partial propagation matrixefined associated to one part of the domain, nathely
part between the origin of that domain and a poiside the same domain. Therefore, the geomesjuatial
structure of the TMM is characterized by a refeeesgstem with its origin. Each point of the muitéa is
described in this reference system by associatipgrgal propagation matrix to this point. This nawatrix
concept allows understanding the TMM iterationhet point-by-point level. Hence, the partial progaga
matrix in one point is obtained from the partiabpagation matrix in any other point by iteratiohattare
propagated in a continuous or discrete form. Iis thork, we use this matrix assignment to develop a
solution in the case of a one-dimensional struciarerder to provide a clear representation ofsyr@metry

method.

The solutions of the Maxwell’s equation that do ocohsider the internal symmetries of TMM, are

associated to a single arbitrary reference sy{tynyo} along y- axis and an arbitrary origity =y, for all

the domains (see Fig. 3). These solutions are sgpdein the new formalism by
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where | =1,...,n. The multiple reflection in each layer are takatoiaccount through the forward and

backward wave amplitudeE'}' and E']T respectively. The semi-infinite external mediassgtconditions
y, =—0; Yy . =+, aswell asE’~, =0, which means that there are no reflected wavélseutgoing

medium, andE"} =1, which means that all the incident waves are nbzedto unity. We have defined in

(3) the partial propagation matrice{ﬁ’j) where j =0,1,... n, that characterize the electromagnetic

Y=Yo'

behaviour in they- point of thej- domain with respect to the origig,. Note that each solution (3) has a

reference syster{1y; yo} characterized with the same origyg for all the domains (Fig. 3).

The field amplitudesE’}', E'IT in (3) are obtained from the initial field ampties E ;=0

and E'(’;:l by means of a recursive rule that links them betwreighboring domains via the interface
boundary conditions. These boundary conditionsegrevalent to the integral form of Maxwell’s eqoat

at all the interfacey = Y where j =0,1,... n—1,n. The boundary conditions establish a connection fo
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the field amplitudes associated to consecutive dmnpist at the interface between both. When those

relations are recursively iterated from the init@hditions E'~,,=0 and E"7=1, then all the rest of the

field amplitudesE’}', E'IT are obtained. The recursive method is called taasfer Matrix Method (TMM),

and it can be propagated in the increasing or dstcrg index-direction. The recursive rules that

characterizes the propagation of the TMM in thegasing index-direction, are given by

(PJ)YO [ =,

where @, )

3
3
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with j=1... n+1, and reference system origiryjn  forla regions

where the forward and backward wave propagationgatbe multilayer is factored in two kind of maa#

the dynamical matricesnd thepropagation matrices. The dynamical matriElajsand D ;4 are associated to
the transformation of field amplitudes across titerface j —1, that is between domaing—1 and j, by
the operatorD}le_l. The TMM (4) has the componer(tE’j_l)yj_l(Pj_l)‘1 = (Pj—l)y,--l—yo that correspond to

Yo

partial propagation matricext the pointy;_, of (j —1)- domain, with respect to a common external origin

y =Y, (Fig. 3). The dynamical matrices for each integfaeparate the wave propagatiors-polarization
and p-polarization waves, as described in equation Therefore, it is necessary to introduce the natatio

E’?", E'f”' for the complex field amplitudes of tleeand p modes in the forward propagating wave, and

E’?‘, E'f" for the complex field amplitudes of tlseandp modes in the backward propagating wave. Note



that the exponent signs in these forward-backwampggating waves are established by the positive

convention for the fields time-phases given in ¢gua(2).

The finiteness conditions for the spatial propamaif the fieIdsE’?(r), E’Jp(r) impose that the

limits lim E’T’, E'JP*, lim E’?‘, E’f' and lim E"T’, E’f", E’?‘, E'JP' are finite numbers, and they are

Y — +oo Yy - =00 X = +00

fulfilled by the wavevector conditions

Im(3,)<0, Im@)<0;, wherg= 0,1, n,n+ (5)

where Im([)] is the imaginary part of the corresponding waveseprojection. These conditions must be

fulfilled for the propagation waves in all domaiasd interfaces — that is, all position space; anlyhis

manner the analytical infinite-instability is aveml from the spatial exponential functions. The skt
equations (3)-(4)-(5), together with single arbigraeference systen{ Y; yo} for all the homogeneous

domains, constitutes an analytical solution of kexwell’s equations that does not consider therriale
symmetries of the TMM. The solution is invariantfarm under arbitrary transformations of the refiee

system.

4. Origin of the numerical instabilitiesin TMM

The main problem of the TMM concerns to the nunatrilestabilities that come from the forward deciegs
and backward increasing exponential waves. Thaymaie from the imaginary component of the angé th
is associated to total internal reflection (TIRpgesses [1], as well as from the imaginary compbogkthe
refractive index that is associated to absorptolayers that have high thickness/wavelength fafioThese
parameters generate in the iterative TMM an accatian of scales which can be close to (inaccuracies

exceed (overflow) the arithmetic precision of tieenputer.



In this section we intend to give a summarized axation about the origin of the TMM instabilities

by following the references [1, 2]. We considerotuson (3)-(4)-(5) in a single reference systéryl; yo}
with an arbitrary fixed origin iny =y, for all the domains (see Fig. 3). From the iniaahplitude field
conditions E';,;=0 and E'}=1, the iteration of the recursive rule for the TMM) (provides the field

amplitudes for all the domainE”}', E]' This TMM propagation along the whole thicknedstlme

multilayer (not be confused with the waves propagatresults in accumulation of the scale throuigh t

exponential components of (4) due to the recunsig&ix multiplications. In this situation, if theawvevector
projection ,éj is a pure real number, such as in the cases ofabsorptive structures and non-TIR
processes, the exponential corresponds to a pai&tsn with a maximum value of 1 normalized tp the
initial condition E’;=1 and numerical problems do not exist. Howevemhéf vavevector has an imaginary

component, such as in the cases of absorptivetstescor TIR processes, the oscillatory part appear
multiplied by exponentially increasing and decreggdierms (scale terms) with a maximum numericaleal
that could be so very high to generate numericahlrilities. It can therefore be concludes thatinerical

instabilities originate from a non-zero imaginargripin the y-wavevector. The scales and oscillations

appearing in the partial propagation matri¢9§) of the TMM are represented as follows

Yi=Yo
(P) B e_|m[3].(yj—y0)eiRe[?,-(y,--yo) 0
ilyi-vo © 0 e+|m[3](Yj_YO)e_iRe[;i(yi_yo)
(¥;-%0) x
o (Ve D)y j A, 7
where &™) = &7 {ImIn; ()] Refcos (@, )1+ Re(; ()] Im{cos(®) )}
R (57%0) _ éiz”@{%lwn Relcos(@))] - Im{A, ()] Im{cos(é )}

at. i) @ i) the oscillations.

where Re([)] are the real part of the argume the scales an
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We know that the imaginaries parts[;(A)], Im[cos(éj )] can be zero or non-zero; the non-zero
imaginary part gives origin to the exponential @ases and increases. In relation (6), we can uaderghat

ﬁj (Yj=Yo)

the exponential decrease and increasé are originated from a non-null imaginary parttod tingle

Im[cos(éj )] and/or a non-null imaginary part of refractive emdlm[fi;(4)] , and are enhanced by both

real partsRe[fi; (1)], Re [COSéj ) and the ratio of thickness (position coordinat)the wavelength

(Y= ¥o) /1.

The physical-geometrical processes that can produnrical exponential instabilities in the TMM

are the total internal reflection (TIR) from theaginary component of the anglen[cos(éj )], as well as

absorption in layers from the imaginary componéithe refractive indeXm[fi;(A)] . If there appears one

or both of these previous physical processes, thenerical instabilities can arise and be accumdlate

through a high geometrical thickness/wavelengtiordly; —y,)/ A (see relations in (6)). Hence, the

exponential instabilities appear more frequentlhyiriteraction systems with absorption layers and/igt
that, additionally, work at high thickness/waveléngatio [1, 2]. The scale accumulation, quantified6),

can be improved by reference system transformatraisconsider the internal symmetries of the TMM.

5. Solutions that consider theinternal symmetriesof the TMM
The solution (3)-(4)-(5) in reference systéry\; yo} is invariant in form under transformations of refece

system. Therefore, it is possible to get the dififérequivalent solutions by means of mappings af th
solution associated to reference system transfawnga({see Fig. 3). These invariances are assodatdge
fact that there is neither a special referenceesygtranslation) nor a fundamental length scalat@tion)

for the Maxwell’s equations (see pp. 34-35, rel).[The dilatational invariance is merely a claakic
electrodynamics property — from the physical poftiew the quantum electrodynamics restricts the

applicability of these considerations below the @salar and atomic length scales.

11



Additionally, the solution (3)-(4)-(5) in referent.'&ystem{y; yo} has implicit internal symmetries,

associated to the homogeneity-by-domain (domaim-wismogeneity) of the multilayer structure. These
internal symmetries can be incorporated in the TMM choosing an adequate reference system that
simplifies the analytical structure and improves tlumerical behaviour of the TMM.

The electromagnetic homogeneity of each domainhmm dtructure is the origin of the internal

symmetries of the TMM. Mathematically, the homoggnean be stated as: if two arbitrary poirys, Y,
are localized inside the same homogeneoudomain of the interaction system, then it followstttheir

electromagnetic behaviour through partial propagatmatrices (F,), _, . ®,),,-, . referred to any

reference systerfy; y,}, commute [(Pu)yl_yo,(Pu)yz_yo:l =(R)yy.R)y, .- Ry, (R, , =0 1In
this last sense, the partial propagation matricesrdgernal symmetries of the TMM which, conseqlyent
can be used to build up the mappings. The manageafighe numerical exponential instability through
these particular internal symmetries is the kethepresent paper. They are defined as internaingries

because they come from a symmetry that appeargatuaal form inside the TMM structure.
We employ the solution (3)-(4)-(5) in referencetem;{ \2 yo} to build up a new improved solution

from the mapping associated to the reference systrsformation (see Fig. 3), expressed analyyica|

Y=Yy - Y-y;<0, forj=0 (inconmy external medie
Y=Y - Y—Y,..>0, for j=1..nn+ 1 (restof the regions)

which impose the fundamental conditions thayif y, [J j-region in the reference system of the solution
(3)-(4)-(5), theny - yj_lD j-region in the new reference system (mapping each donmainitiself), and

each interface remains invariant (mapping eachrfate into itself). The physical reason why the
transformation (7) makes explicit the internal syetmes of the TMM is based on the preference gtedahe
interface positions in the new reference systenichwvaare assigned as origins of their correspondorgains

(see Fig. 3). The mathematical reasons will be nebearly explained at the end of this section. This
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transformation (7) corresponds to the compositibioree translation that comes from the real parthef

wavevector, with one dilatation that comes fromithaginary part of the wavevector, both quantifsdthe

new origin values iny =y, , for each j-region(see Fig. 3). The associated mapping between thésts

(see Fig. 3) are given by

(PO)YO[ .
(Pj)YO(

where matrices(Pj)yk are defined in equations (3)-(4). The mappingtft comes from the reference

m 1
I -+
]|
~
U
N
S

VY
m
— 4+

' J; for incoming mediunj =

(8)

’,

M

T E’
E']' E(Pj)yj_l( ’J; for regionsj= 1,. n n+
j

system transformation (7) is right because equati@-(4)-(5) are invariant in form under an awdniyr

transformation of the reference system, as alr@agiytioned. From the operational point of view, magp

(8) is built up as the action of the internal syrimpeperators(R,),_, , (P,),-, , (Pi)y-y;-l on the field

amplitude vectors. Furthermore, note that the fomrmation of reference system (7) changes the anddi
coefficients through the relation (8). The finalutimn that considers the internal symmetries ef TMM is

achieved by introducing the mapping (8) in theahisolution (3)-(4)-(5), which gives
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where j=1,...,n; the semi-infinite external media satisfying , =—o, y . =+, E" =0 and
Eg =1. The matrix (Pi)v-y;-l E(Pj)y(Pj);il_1 is the partial propagation matrix for the poigt in the
j- domain with respect to the origity; ;. The recursive rules for transfer matrix methodf1) that

consider the internal symmetries can be obtain@liyeqyg mapping (8) and multiplying b{(Pj);jl_1 in both

sides of the equation (4), with the following resul

13

; -1 1 Er -1 -1 Etl T
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The complete solution of the Maxwell’s equatioret ttonsider the internal symmetries of the TMM

is provided by the equations (5)-(9)-(10) in a refeee system that has one origin at the initiahjpof each
domain defined a#(y; Yo U (Y Y- Yo O...O(y; Y, — yn_l)} (see Fig. 3). The mathematical reason of

the simplification of the iterative rule for the TW(10) with respect to the iterative rule (4) isasiated

directly with the mapping (8) between both rulesheT substitutions for that special mapping

Ry, = (R, (P, - (P, )y,-_l’ wherej =1...,n+1, render that each matriXP;), in the first
member of the TMM (4) is exactly canceled with eatdrix (Pi)y,-_l in the second member of (4), for all

domain j =1,...,n+1. This fact corresponds to an analytical and nuraésimplification of the TMM
given by (5)-(9)-(10) with respect to the TMM given (3)-(4)-(5). This simplified solution arisesdageise

the transformation (7) and its mapping (8) areditto the internal symmetries of the TMM.

The solution (5)-(9)-(10) is used in the referefit®], where it is proposed without any explanation
about its analytical or numerical improvement widspect to other equivalent solutions. Here, weehav
shown that solution (5)-(9)-(10) represents anedjty and numerically an improved mapping with estp
to the solution (3)-(4)-(5), reachable by considgrthe internal symmetries of the TMM. The TMM rule
defined by (10) is analytically simpler than the WMule defined in (4). Additionally, (10) shows lew
values in the components of its propagation matriban (4) which results to better numerical sitgbihs is
demonstrated by simulations in the following settidhe analytical structure and numerical behavfour
both two solutions are different because they aferred to different reference systems. Although ibw
mapping method proposed for the TMM is discussea lwgth regards to the specific case of a one-
dimensional optical multilayer, it is easy to emwsthat it would be applicable also to more complgo-
and three-dimensional structures, taking into astdheir particular internal symmetries, and yieti

similar analytical and numerical benefits as inphesent one-dimensional case.
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6. Calculations and results

In this section, we illustrate through numericalcaktions how the mapping obtained in the lastisac
improves the numerical stability. We present onefie comparison of the model given by (3)-(4)-(®d}He
improved model given by (5)-(9)-(10) under criticainditions that come from the imaginary partstaf t
refractive index and/or the angle. The situatioalsdated here are) total internal reflection with a very
thin absorptive layer, ang) total internal reflection with a thick absorptila/er. The numerical calculations
were performed with Matlab version 7.11.0.584 (R®f)1using a processor Intel Xeon CPU E3-1230 @

3.20 GHz.

We employ a multilayer structure that shows totééiinal reflection (TIR) with either a very thin
absorptive layer (first simulations) or a thick almive layer (second simulations), and performleng

dependent calculations for the reflectanBg transmittanceT and absorptanceA at fixed 600 nm

wavelength. The multilayer structure consists ofrmoming medium of F2-glassy =1.67), a silica layer
(n,=1.46; d= 400 nr), a light absorbing layerf, =1.8— 0.02 ; d) and an outgoing medium of

silica (N, =1.46). The simulations for the two thicknesses are mivethe Figures 4 and 5. The case with

thin absorptive layer serves to demonstrate a noaiemnaccuracy of the ill-conditioned model (i.e.
inaccurate results), whereas the case with thiskrgltive layer demonstrates a numerical singukstability

of the ill-conditioned model (i.e. singular resyltgt certain critical conditions.

The first simulations are given for a thin absogbiayer withi, =1.8— 0.02 ; d = 10 nr (see Fig.

4). It can be observed that the (3)-(4)-(5) modeldg R+T + A>1 and R>1;, T >1; A<1, which are
physically invalid, indicating inaccuracies in thamerical calculation. The origin of these inaccigsa is

nevertheless not the exponential instabilitiesusised in detail in thin paper, but a bad matrixdiazation
of the TMM that is enhanced at the critical anélg, = arcsir{n1 /no] = 61 (see Fig. 4). We can see this

and classify it as a round off error by investiggtthe numerical values in the sub-matrices ofillhe

conditioned case, as follows. First, note thattthasfer matrix for the well-conditioned model (8)-(10)

16



in the case of this simple multilayer is represerig M = D;'D,P,'D,'D P;' D, D . The same multilayer

is represented in the ill-conditioned model (3H#) with the same transfer matrix, but with thegmgation
matrices defined slightly differently due to theanlge of the reference system. Using above mattitina

of the well-conditioned model, the transfer matok the ill-conditioned model can thus be written as
M =[(P),-»D5' ][ D2 (P) gy D3] [ D1 Py, D[ D6 Py, )| In addition to this, in
order to access the numerical values of the subigeatcorresponding to each layer (the squarechpiaesis

in the transfer matrix), we have to pay attentiorthte normalization that is implicit in the TMM vihe
continuity boundary conditions of the Maxwell’s atjans. As a result of these boundary conditionsli(w
known, and thus not shown here explicitly), theosecrow in the sub-matrices becomes the derivative
position of the first row (more precisely the dative divided by the magnetic permeability for the
polarization, and the derivative divided by thectie permittivity for the p-polarization in the corresponding

layer). We denote this by super-index R:

R _ AR _ _R _ R . . .
M =[(P),-yD5' | [Ds Py D3] [Py (PY -y, DT [Do(PY gy, )| - This normalization
recovers the original structure of the transferrimdtking into account the continuity boundary ditions

of the Maxwell’s equations without any other addiiil change. It turns out that in the presented,dh®

ill-conditioned model showed numerical inaccuragig(4b) originating from two of the the matrix gpmsy
-1 R -17R
namely[DO (PO)(YO_YQ):' , that depends ofy,, and[(P\,})(yz_YO)D3 J , that depends oy, =y, +d, where

d =410 nris the total thickness of the multilayer ayg =0 nmis the origin. To show this we computed
these two grouped matrices separately from the TfdMboth thes- and p-polarization modes, for the
particular case of wavelength =600 nm and anglef, = 70° = 2x 77x 70/ 360 ra, and the results are

shown below.
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e_iﬂo()’o_YO) e'ﬁo(Yo‘Yo)

a R : 1 1
[Ds R, = _2my oS, ) iavve _2Mo COKG Vi (vimvo _(—6_0x 16 6.0¢ 16}
A A
(11)
—15(Yo=Yo) i 5o (Yo=Yo)
LR € © (1 1
[Do (PO)(YO_YO):' o _M)e—iﬁowo—yo) M)eiﬂo(yo—yo) |l 21x16 2.% 16
NA NA
leiﬁa(yom) - A __@Payord)
B} -1\R R |2 4rm, cos@; ) B
(|:D3(P3)(;’-2_YO)} ) _I:(P3)(Y2_YO)D31} 5_ 1 - A - -
S _e_'ﬂs(YO*'d) _ e"ﬂ3(yo+d)
2 4rm, cos@, )
(0.0423- 0.0000 - 18 18 - 11 10
5.9117 +0.0001 -5.&« 10* +1.8 160
(12)
lasowa __ AN Gaoe
- -1\R AR 2 4rrcos@, )
D(P ] ) =[Py, D7 ] = _
(|: 3\ 3/(y, yo):' P I: 3/ (y2-yo)— 3 ]P le_iﬁ3(yo+d) /‘I’]3 _ _i B,(yo+d)
2 4rrcos@, )

0.0423- 0.0000 2.6x 10" +7.% 1T
59117 +0.0001 1% I8 - 10 1D

The calculations shown in (11) and (12) suggestttteorigin for the inaccuracies in this case isund off
due to a large difference in the order of magnitbhe®veen the different components of a same maksx.

can be seen from (11) and (12) the orders of magmitifference in the matrix components comes from
very high ]//1 and very lowA factors multiplying the exponentials. This origifithis inaccuracy is thus

different than the numerical instability associatied large exponentials in the propagation matrices,
discussed in Section 4, which is understandableesin this example, the one absorptive layer in the
multilayer was not very thick, unlike in the secamxmple discussed below. Nevertheless, it turhshad

the normalization used to obtain the well-condigédmodel removes this inaccuracy related to thectee
matrix element scaling bf/A and A, since the well-conditioned model consider a mafzictorization

where these scales are exactly compensated.
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The second simulation example demonstrates the nzahastabilities related the large exponentials

and their prevention by the well-conditioned mod#hjch is main topic of the paper. Simulation résaire

shown for a thick absorbing layer witiy =1.8— 0.02 ; d = 1 mr (see Fig. 5). It can be seen that the (3)-

(4)-(5) model yieldsR+T + A>>1 and R>>1;, T >>1, A<<1, indicating now even higher inaccuracy
(round off) than in the previous case (compareHilge 5b with the Fig. 4b). Furthermore, the rouffideoror
turns now even to an overflow with an exponentiagio due to the a combination of two different
exponential effects: scale accumulation throughirteginary part of the refractive index due to r@sgly

absorbing layer in one hand, and scale accumuldtiento an imaginary part in the angle due to ThRhe

other. Therefore, the overflow arises just at angigher than the TIR critical ang= &, = 61° (see Fig.

5).

The simulations for both thicknesses with the @}@0) model give well-conditioned results (Fig.
4a, Fig. 5a) which arises from the fact that thisdel takes into account the internal symmetrieshef
system (homogeneity by domain). Therefore, the ighy$iomogeneity of the interaction system, which
appears explicitly as internal symmetries in théhmanatical structure of the TMM, represents theaathge
that it not only simplifies the model analyticalgs we showed in the theoretical sections, butiaipooves
its numerical conditioning, as we have illustraitethis section with the practical simulations.

The current paper developed a new general symrf@inalism that improves the numerical accuracy
and stability of non-periodic 1-dimensional systeiiitse new formalism used 1-dimensional translatiomd
dilatations that were possible due to the layeewismogenous and isotropic properties of the raykil
system inherently assumed in the transfer matrithate Although such modifications to the TMM arellwe
known and adopted in practice [12], we believe that symmetry perspective taken here is fruitful fo
understanding, handling and comparing differentyaical modifications to the TMM formalism. As anfal
remark, we point out that since symmetry theory diff@rential geometry are in general powerful ofdr
understanding and solving also higher-dimensiorathlpms in solid state physics (optics, mechamitty, it
is interesting to speculate, and to propose apia for future work, whether the ideas presentea lveuld

be extended also to higher dimensional systemstlamsl help understand and manage their numerical
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instabilities, by introducing adequate 2- and 3lisional transformations adapted to the geometfies

those systems.

7. Conclusions
In this paper we have analytically and numericalyaracterized the effect of the translational-diianal
internal symmetries (homogeneity by domain) in skreicture of the transfer matrix method (TMM) for a
one-dimensional multilayer. These internal symrestiallow using reference system transformationanas
efficient tool to simplify the TMM and improve itsumerical behaviour. The theoretical developmerd wa
based on recognizing botl®) the internal symmetry of the interaction systeriag from the homogeneity
by domain, andb) transformation of reference system towards an ing@doTMM mapping. These
theoretical conclusions were illustrated by simola of specific systems showing numerical inactiesa
and instabilities under the conditions of totakmmal reflection (TIR) and/or high optically thiekosorptive
layers, due to scale accumulation through the esqpiiad terms of the TMM.

In away, this is a geometrical method as it emplogasformations of the reference system in such a
way that they are adequately fitted to the intemahmetries of the interaction system. Therefore, w
propose the symmetry method as a potentially pawprbcedure to analyze and resolve different aically

and numerical problems which could appear in tiseltgion of optical systems at different conditions
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Figure Captions

Figure 1. Structure of the multilayer system with its eleatagnetic and geometrical properties, where

&, H;,N; are the complex electric permittivity, complex matic permeability and the complex refractive
index, respectively, for the layg=1,...,n or external mediaj =0, n+ 1. The thickness of each layer are

characterized bydj with j=1... n, and the interfaces by; with j=0,.. n.

Figure 2. Vectorial electromagnetic propagation in one layreexternal mediafrom the multilayer system,
where j=0,1,.. n,n+ 1 The propagation is split in two modes: the transal electric (TE) ors
polarization (on the left) and the transversal nedign(TM) or p-polarization (on the right). The propagation
of each mode contains both forward and backwaréctions (this last not marked in the figure);
furthermore, each propagation direction contairsrtiultiple reflections generated in the other fiaiges of

the multilayer.

Figure 3. Graphical representation of the multilayer (coloegda) showing &ansformation of reference
system (7) and its mapping between propagationiceat(8) that consider the internal symmetrieshef t
TMM (that is, it considers each domain as homogeseand isotropic). The dynamical matrices (not

showed) that are associated with the interfacetpogre invariant in these transformations. Thdaini

reference systenﬁ Y, yo} corresponds to the solution (3)-(4)-(5), while tieal domain-wise reference

system {(V; ¥o) O (Y; V2= Vo) O...O(Y; ¥, = V.-)} cOrresponds to the solution (5)-(9)-(10). The

reference systems are indicated as follow: thefaate points by blue notation, the domains withdoaéhrk

italic notation and the origins are marked by hell@rcles.
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Figure 4. Calculation at 600 nm wavelength for total interreflection (TIR) with a very thin absorptive
layer, practically without absorption. The refleata, transmittance and absorptance are comparegdiet
a) the improved (well-conditioned) model given by-(8)-(10), andb) the conventional (ill-conditioned)

model given by (3)-(4)-(5). It can be seen that ilheonditioned calculation produces the inaccigac
R+T+A>1andR>1; T >1, A<1 due to the TIR at angles higher than 60, whilewie#-conditioned

calculation yields correct results. The behavidwther visible wavelengths is similar (not shown).

Figure 5. Samecalculations as in Figure 4, but with thicker alpsioe layer. It can be seen that with the ill-

conditioned calculation the numerical inaccura@es now more pronounced, due to the high thickness.
Numerical overflow appears at the critical incidengle and highef = €, ; =61°, due to contributions

from both TIR and strong absorption, while the veelihditioned calculation yields again correct resul

Also in this case the behaviour at other visibleekangths is similar (not shown).
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Figure 1. Structure of the multilayer system with its eleatagnetic and geometrical properties, where

éj , [1j , ﬁj are the complex electric permittivity, complex matic permeability and the complex refractive
index, respectively, for the lay¢r=1,...,n or external mediaj =0, n+ 1. The thickness of each layer are

characterized bydj with j=1... n, and the interfaces by, with j=0,.. n.

25



Figure 2. Vectorial electromagnetic propagation in one layreexternal mediafrom the multilayer system,
where j=0,1,.. n,n+ 1 The propagation is split in two modes: the transal electric (TE) ors
polarization (on the left) and the transversal nedign(TM) or p-polarization (on the right). The propagation
of each mode contains both forward and backwareéctdaons (this last not marked in the figure);
furthermore, each propagation direction contaiesrtiultiple reflections generated in the other fiaiegs of

the multilayer.
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Figure 3. Graphical representation of the multilayer (coloegda) showing &ansformation of reference
system (7) and its mapping between propagationiceat(8) that consider the internal symmetrieshef t
TMM (that is, it considers each domain as homogeseand isotropic). The dynamical matrices (not

showed) that are associated with the interfacetpomre invariant in these transformations. Théaini

reference systen{ Y; yO} corresponds to the solution (3)-(4)-(5), while tial domain-wise reference

system {(V;¥o) O (Y; V2= Vo) O...0(Y; ¥, — V.-)} corresponds to the solution (5)-(9)-(10). The

reference systems are indicated as follow: thefate points by blue notation, the domains withdbaérk

italic notation and the origins are marked by hell@rcles.

27



1 0.1 -
® —s—pol —s—pol :
% - - - p—pol 0.09)l. . p_pol |
co05 ‘ 0.08¢ :
o | ]
T | ,
= | 0.07

0 -
0 20 40 60
Angle/deg
1
8
% —s—pol
= -~ - p—pol
£05
[%2]
c
©
|_
0 1 1
0 20 40 60 80 0 20 40 60 80
Angle/deg Angle/deg
b)
1.5 0 T
8 —s—pol —s—pol
c - = - p—pol - - - p-pol
S 1 p-p _osl p-p
o
Q2
% 05 ‘
o l —
0 o e
0 20 40 60 80 © !
Angle/deg 8_15 1
3 3
3 <
2 —s—pol ol
g 2 |---p-pol
£
a -2.5
©
|_ |
0 ‘ - ‘ ‘
0 20 40 60 80 30 20 40 60 80
Angle/deg Angle/deg

Figure 4. Calculation at 600 nm wavelength for total interreflection (TIR) with a very thin absorptive
layer, practically without absorption. The reflauata, transmittance and absorptance are comparegdiet
a) the improved (well-conditioned) model given by-(8)-(10), andb) the conventional (ill-conditioned)
model given by (3)-(4)-(5). It can be seen that ilheonditioned calculation produces the inaccigac
R+T+A>1andR>1; T >1, A<1 due to the TIR at angles higher than 60, whilewie#-conditioned

calculation yields correct results. The behavidwther visible wavelengths is similar (not shown).
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Figure 5. Samecalculations as in Figure 4, but with thicker alpsioe layer. It can be seen that with the ill-

conditioned calculation the numerical inaccura@es now more pronounced, due to the high thickness.
Numerical overflow appears at the critical incidengle and highef = €, =61°, due to contributions

from both TIR and strong absorption, while the weelhditioned calculation yields again correct resul

Also in this case the behaviour at other visibleekangths is similar (not shown).
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