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ABSTRACT

Membrane Computing is an emergent research area study-
ing the behaviour of living cells to define bio-inspired com-
puting devices, also called P systems. Such devices pro-
vide polynomial time solutions to NP-complete problems by
trading time for space. The efficient simulation of P sys-
tems poses challenges in three different aspects: an intrinsic
massively parallelism of P systems, an exponential computa-
tional workspace, and a non-intensive floating point nature.
In this paper, we analyze the simulation of a family of recog-
nizer P systems with active membranes that solves the Sat-
isfiability (SAT) problem in linear time on three different ar-
chitectures: a shared memory system, a distributed memory
system, and a set of Graphics Processing Units (GPUs). For
an efficient handling of the exponential workspace created by
the P systems computation, we enable different data poli-
cies on those architectures to increase memory bandwidth
and exploit data locality through tiling. Parallelism inher-
ent to the target P system is also managed on each architec-
ture to demonstrate that GPUs offer a valid alternative for
high-performance computing at a considerably lower cost:
Considering the largest problem size we were able to run
on the three parallel platforms involving four processors,
execution times were 20049.70 ms. using OpenMP on the
shared memory multiprocessor, 4954.03 ms. using MPI on
the distributed memory multiprocessor and 565.56 ms. using
CUDA in our four GPUs, which results in speed factors of
35.44x and 8.75x, respectively.
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1. INTRODUCTION

Parallel computing architectures have brought dramatic
changes to mainstream computing. This trend is acceler-
ating as the end of the development of hardware following
Moore’s law looms on the horizon. The number of transis-
tors per die are no longer relying on a single chip design, but
being partitioned among a bunch of simpler cores. Multi-
core CPUs are holding a dozen of cores, and manycore GPUs
gather a myriad of stream processors. These components are
being combined to build heterogeneous parallel computers
offering a wide spectrum of high speed processing functions.
Major hurdles to exploit this raw power are the PCI express
bus to communicate the CPU and the GPU as they do not
share the memory space, and also their different parallel
programming approaches and paradigms. These problems
amplify when we move to heterogeneous clusters.

This paper explores this complex situation for a challeng-
ing application which requires (1) a dynamic handling of
memory space and (2) an exponential workspace growing
as our code increases the number of variables involved to
run the simulation. Our simulation characterizes Membrane
Computing, an emergent research area which studies the
behaviour of living cells to define bio-inspired computing
devices, also called P systems. These devices provide poly-
nomial time solutions to NP-complete problems by trading
time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in poly-
nomial time, through mitosis and autopeosis processes.

Currently, we lack of a feasible biological implementation,
either in vivo or in vitro, of P systems. The only way to
analyze and execute these devices is on silicon-based archi-
tectures which are limited by the physical laws. Although
some simulators and software applications have been derived
[8, 7], most of these simulators were developed for sequential
architectures using languages such as Java, CLIPS, Prolog
or C, where performance is hardly compromised.

Section 2 of this article introduces Membrane Computing
and describes the behaviour of this biologically inspired way
of computation, focusing on computational devices called
P systems to solve the Satisfiability (SAT) problem. This
behaviour is simulated on different architectures, namely, a
shared-memory architecture (HP Superdome), a distributed-



memory machine (cluster of HP Blades), and finally a set
of Nvidia Tesla GPUs. Section 3 describes the parallelism
which can be extracted from a P system simulation with
active membranes, and once this is learnt, we demonstrate
in Section 4 how GPUs can accommodate two levels of par-
allelism in its computational model versus a single level on
shared and distributed memory systems.

The nature of P system computation creates an exponen-
tial workspace leading to polynomial time solutions for NP-
complete problems. Section 5 analyzes different data poli-
cies to increase the memory bandwidth, and also to take
advantage of the data locality on each architecture by pro-
viding a blocking/tiling algorithm. We also get a glimpse of
the memory limitations on each system to simulate larger
datasets and benchmarks. The GPU memory is very lim-
ited compared to the other alternatives, and the only way to
include more GPU memory is actually adding more GPUs
to the system. Finally, Section 6 highlights the main ideas
presented, and provides some directions for future work.

2. BACKGROUND AND RELATED WORK

2.1 Membrane computing and P systems

Gh. P3un introduced Membrane Computing in 1998 [12],
and since then, this bio-inspired computing paradigm has at-
tracted research activities within Natural Computing. The
model starts with the assumption that processes taking place
in the compartmental structure of a living cell can be inter-
preted as computations. Devices of this model are called
P systems, which consist of a cell-like membrane structure,
where compartments allocate multisets of objects, that is,
sets of objects with multiplicities associated to the elements.

P systems have several syntactic elements (see Figure 1):
First, a membrane structure consisting of a hierarchical ar-
rangement of membranes embedded in a skin membrane,
which delimits the internal region of the P system from the
environment. Second, delimiting regions or compartments
where multisets of objects (corresponding to chemical sub-
stances) and sets of evolution rules (corresponding to reac-
tion rules) are placed. Every membrane has associated an
unchangeable label, and depending on the P system model,
it may also contain a charge or polarization that can be
modified during the computation. Besides, P systems pos-
sess two valuable features: inherent parallelism and non-
determinism.

Environment

Membrane

Skin

Multiset of objects

Figure 1: The structure of a P system.

A P system computation is a (finite or infinite) sequence of
instantaneous transitions between configurations. The com-

putation starts with an initial configuration of the system,
where the input data of a given problem is encoded. The
transition from one configuration to the next is performed
by applying rules to the objects inside the regions. This
process iterates until no more rules can be applied to the
existing objects and membranes.

Note that P systems exhibit two levels of parallelism: one
for each region (the rules are applied in a parallel way), and
another one for the system (all regions evolve concurrently).
The objects inside the membranes evolve according to given
rules in a synchronous, parallel, and non-deterministic way.

The two level parallelism and non-determinism can be
used to solve NP-complete problems in polynomial time, re-
ducing this from an exponential time, but at the expense of
using an exponential workspace of membranes and objects
which is created in polynomial (often linear) time.

Up to date, there have not been in vivo nor in vitro im-
plementations of P systems, and researchers have focused on
simulators developed in silicon whose initial versions were
targeted to sequential platforms [7, 8]. From this departure
point, the main challenge for the simulations of P systems
in general is to find the right platform to exploit massively
the parallelism inherent to the definition of P systems.

In this respect, several efforts have been done implement-
ing this massively parallelism on parallel architectures. For
instance, Alonso et al. [3] proposed a circuit implementation
for the class of transition P systems. Moreover, Nguyen et
al. [9] proposed an implementation of transition P systems
in FPGAs, providing several levels of parallelism, one at rule
level and other at region level, releasing a software frame-
work for Membrane Computing called Reconfig-P. A generic
simulator on GPUs for a family of recognizer P system with
active membranes was presented in [5], showing that the
double level of parallelism exposed by GPUs represents a
valid alternative to simulate P systems.

2.2 The Satisfiability (SAT) problem

Propositional Satisfiability problem (SAT) was the first
known NP-complete problem, as proven by Stephen Cook
in 1971 [6]. In computational logic, SAT is a decision prob-
lem aimed to determine, for a formula of the propositional
calculus in Conjunctive Normal Form (CNF), if there is an
assignment of truth values to its variables for which that for-
mula evaluates to true. This is of paramount importance in
many computer science areas, including theory, algorithmic,
artificial intelligence, hardware design, electronic design au-
tomation, and verification.

We assume a formula to be in CNF when it is a conjunc-
tion of clauses, where each clause is a disjunction of literals.
A literal is either a variable or its negation (the negation
of an expression can be reduced to negated variables by De
Morgan’s laws). For example, a; is a positive literal and —as
is a negative literal.

Considering a CNF formula ¢ with n variables (z1...xn)
and m clauses (Ci...Cy,), the time spent by all known deter-
ministic algorithms to solve the SAT problem is exponential
depending of the size of the input (maz{m,n}) in the worst
case. With the help of membrane systems, we are able to
find the solution at linear time but at the expense of creating
an exponential workspace.

The P system simulation algorithm to solve the SAT prob-
lem is based on the P system computation described in [13],
which can be summarized as the following list of stages:



1. Generation. Membranes are structured within a rooted

tree with a single branch. The root node is the skin
membrane, and the second node is called internal mem-
brane. All possible truth assignments to the variables
are generated by using division rules, and they are en-
coded in the internal membranes by executing step by
step the set of P system rules already described in [13].
In this way, 2" internal membranes are created such
that each one encodes a truth assignment to the vari-
ables of the formula.

2. Synchronization. The objects encoding a true clause
(a partial solution to the CNF formula) are unified in
the membrane.

3. Check out. The goal here is to determine how many
(and which) clauses are true in every internal mem-
brane (that is, by the assignment that represents).

4. Output. Internal membranes encoding a solution send
an object to the skin. If the skin has such object from
some membrane, the object Yes is sent to the environ-
ment. Otherwise, the object No is sent.

Algorithm 1 summarizes the sequential code based on pre-
vious stages. First, Generation and Synchronization are the
stages creating an exponential workspace of membranes in
a synchronous way, and also unifying the objects that cod-
ify a partial solution. Both stages are executed in the same
function, which is referred to as Generation from now on.
Note that each membrane runs in parallel at each iteration
of Generation, but a global synchronization is required by
different iterations.

Once the workspace is created, the Check out and Output
stages are performed. First, they determine the clauses be-
ing true in every internal membrane, and then they check
whether there is a solution for the SAT problem. Hereafter,
we combine these two stages into a joint CheckOut function.

Algorithm 1 The sequential pseudocode of the P system
simulation algorithm for the SAT problem with n variables.

Require: n >0
{Start Generation and Synchronization stages}
repeat
Generation
until n
{Start Check out and Output stages}
CheckOut

The specific simulation of the family of P systems that
solves SAT for a single GPU is analyzed in [4], where prob-
lems to carry out the theoretical simulation of P systems
on GPUs are depicted, and some heuristics to accelerate its
computation are provided.

3. THE PARALLEL VERSION FOR THE P
SYSTEM SOLVING THE SAT PROBLEM

The P system for the SAT problem gathers all compu-
tational features of the recognizer P systems with active
membranes [11]. Among them, we highlight the theoretical
double level of parallelism and non-determinism that makes
P systems a computational tool to solve NP-complete prob-
lems in polynomial time.
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Figure 2: Sequential and parallel membranes gener-
ation on four Compute Elements (CE). The Parallel
Preprocessing (PP) is required to set up the parallel
execution.

The first level of parallelism for the SAT P system is found
among membranes, that is, by executing each membrane in
parallel along the computation. The second level of paral-
lelism is found within each membrane. That way, the first
level is coarse-grained and can be characterized by an inter-
task parallelism and exploited by the number of processors
available in the parallel system, whereas the second level of
parallelism is fine-grained and intra-task to be exploited by
the number of cores within each processor, either on multi-
or many-core architectures.

The membrane parallelism is showed in Figure 2. It shows
the execution of the Generation function for the SAT P sys-
tem in a sequential as well as a parallel architecture with
four Compute Elements (CE). In a parallel architecture, a
set of membranes is initially created by the master process,
whose size is equal to the number of C'E's available during
the execution. Then, a membrane is sent to each CE by the
master processor. This step is called Parallel Preprocessing
(PP), and it is developed just before the Generation starts
the computation on each CE. This CE is represented by a
processor (die) on each hardware platform, which can later
be eventually decomposed into multi- or many-cores when
exploiting intra-task parallelism.

Furthermore, Figure 2 shows that each membrane is al-
ways generated by the same membrane and also in the same
computational step on every architecture. For instance,
membrane two is always generated by membrane one in the
first computational step, membrane three is always gene-
rated by membrane one in the second step, and so on. Fi-
nally, each node sends the partial response back to the mas-
ter in order to produce the final result of the P system.

Figure 3 shows the second level of P system parallelism
(that internal to membranes). Once the initial data has
arrived to the CE after the Parallel Preprocessing step, it
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Figure 3: Sequential and parallel execution when
creating the exponential workload.

starts the computation according to algorithm 1, and apply-
ing the P system rules for the SAT problem depicted in [13].
Then, resources on each CE can be exploited at its peak to
cooperate for speeding up the computation of the Genera-
tion and CheckQOut functions. This resources are essentially
hardware cores on shared memory, distributed memory and
GPU platforms, but only GPUs are manycore which can
handle this level of parallelism at large scale using hundreds
of streaming processors (see Table 1).

4. DATA POLICIES DESCRIPTION

Our P system simulator for the SAT problem organizes
data depending on the features of the underlying architec-
ture. We now describe those data policies.

4.1 The shared memory implementation

The simulator was implemented on the shared memory
system using OpenMP [2]. Figure 4 shows the first data
layout used by our simulator. The shared memory space is
equally distributed among the n processes considered, and
the master process performs the Parallel Preprocessing step
by creating as many membranes as number of processors
are involved in the computation. Membranes are placed at
the beginning of the memory space assigned to each process
(see gray squares in Figure 4). Now, the Generation step
is carried out by each individual process, writing the infor-
mation on its own memory fragment. Once the membranes
workspace has been created by the Generation stage, the
CheckOut stage follows, where membranes are read again
by processes to eventually produce the system response.

This data policy does not take advantage of data locality
when the Generation and CheckOut stages are performed,
thus producing many caches misses (in particular, read misses)
that hit the simulator performance. Locality was improved
through a block-based data layout as shown in Figure 5.
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Step1 by Process 1 by Process 2 by Process Pn
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Check out
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by Process 1 by Process 2 by Process n

Figure 4: Initial data placement for our shared

memory implementation.
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Figure 5: The shared memory implementation for n
processes using our block-based data layout.

Again, the master process starts with the Parallel Prepro-
cessing step, which generates as many membranes as pro-
cesses (represented by black squares in Figure 5). But now
each process performs a local preprocessing step (called Block
Preprocessing, (BP)) on its own memory space before start-
ing the Generation stage itself. Block Preprocessing pursues
a tiling or blocking execution between different stages of
the simulation. Each process creates as many membranes
as number of blocks, placing them at the beginning of each
block position (represented by gray squares in Figure 5).
Then, the Generation stage only creates blocksize mem-
branes before the CheckOut stage starts. Once a block has
been checked by the CheckOut stage, processes start again
the Generation on the following block it has assigned to.
The block-based data policy increases the time required
by preprocessing, including a new BP stage, but a shorter
data block can be placed in higher levels of the memory
hierarchy, which benefits from data locality. However, there
is a trade-off between preprocessing computation (PP and
BP) and the data locality benefits for the Generation and
CheckOut stages, being affected by the block size chosen.

4.2 The distributed memory implementation

The P system simulator for the SAT problem on the dis-
tributed memory system was programmed using MPI [1].
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memory architecture.

Again, we compare here a preliminary non-blocking version
with an enhanced version based on a blocking data policy.

In this case, each process allocates memory on its own and
private memory space. The master process also performs the
Parallel Preprocessing step, creating as many membranes
as number of processors are involved in the computation.
Then, membranes are sent to processors by using the MPI
Scatter instruction.

Once the initial data arrives to each node, the P system
computation was developed as in the shared memory case.
For the non-blocking data policy, the Generation is fully per-
formed before the CheckQOut starts its computations. For the
block-based data policy, the Block Preprocessing is required
for a blocking or tiling execution. Figure 6 shows the data
layout for the block-based data policy. Finally, a reduction
is applied using the MPI Reduce instruction to end up with
the system answer.

4.3 Implementation on GPUs

The simulator sets a CUDA thread block for each mem-
brane and a CUDA thread per object (or set of objects) in
the multiset.

This time, the first attempt for the SAT P system simu-
lation on GPUs, the Generation stage, is encoded as a CUDA
kernel, and it starts right after the Parallel Preprocessing
step. Once membranes have been generated, the CheckOut
stage starts its execution. Each thread block loads a mem-
brane from global memory, and then each thread checks
the rules associated with this stage. Finally, each block
returns whether its associated membrane makes true the
CNF formula or not. For these stages, all threads within
a CUDA thread block cooperate with coalesced access to
device memory (threads of the same warp access the same
memory segment either for reading or writing).

Blocking can also be exploited on GPUs, taking advantage
of the on-chip shared memory by using tiles with the aim
of increasing the bandwidth to device memory (see Figure
7). The simulation has to perform the Block Preprocessing
step, which is implemented through a CUDA kernel where a
set of membranes are partially created, placing them apart
from each other at a block size distance.

An additional kernel is created this time at the end of the
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Figure 7: P system simulation on a single GPU.

simulation. This kernel performs the Generation locally to
each block, followed by the CheckOut stage. Each thread on
a thread block cooperates for an efficient load from global
memory to shared memory of the initial membrane gene-
rated by the Block Preprocessing step (represented by black
squares in Figure 7). Then, the Generation stage interacts
with shared memory, saving expensive loads/writes from/to
global memory which are around 400 times slower.

Finally, the CheckOut stage is performed over the data
stored in shared memory after a block-level synchronization.
This checks whether a clause makes true the CNF formula,
and writes its result into device memory.

Figure 8 shows the data policy used by the simulation of
the P system for the SAT problem on a GPU-based plat-
form. This simulator arranges data according to the "best
practices” existing at this moment for CUDA enabled de-
vices with CUDA Compute Capabilities (C.C.C.) 1.3 [10].
Nevertheless, those guidelines are mainly focused on arith-
metic intensive applications on a single GPU. It remains to
be seen whether they are valid on architectures like GPU-
based clusters with a much higher degree of parallelism.

Within a GPU-based cluster, GPUs cannot interact with
each other, and a CPU process has to be created to monitor
each GPU independently. Note that this does not force us
to use parallelism at CPU core level, as we have exactly four
CPUs in our system which can individually host each of the
required processes. This way, our three implementations
lack of using the multithread capabilities of CPU cores.

Figure 8 shows how the master thread creates four CPU
threads (CPU context) to invoke the execution on each GPU
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Figure 8: Data policy on a set of four GPUs.

and manage its resources (i.e allocate device memory, move
data to/from the GPU, and so on). Resources created on
each CPU thread are not accessible by any other thread, and
there is no explicit initialization function for the runtime
API [10], which makes hard to measure time in a reliable
manner, particularly on multi-GPU environments.

For the GPU case, the master process performs the Para-
llel Preprocessing step as usual, generating as many mem-
branes as GPUs are involved in the simulation, and perform-
ing the assignment.

At a starting point, the simulation barely exploits GPU re-
sources because the computation begins with a single CUDA
thread block (which represents the membrane generated by
the Parallel Preprocessing step). However, the number of
CUDA thread blocks grows exponentially in the Generation
stage along with the number of membranes, and GPU re-
sources are fully utilized at early stages of the simulation.
Another alternative consists of creating a larger set of initial
membranes in the Parallel Preprocessing step to fulfill that
GPU resources are occupied right from the beginning, but
we have tested that this initial low usage of GPU resources
has a negligible impact, even on tiny benchmarks.

S.  PERFORMANCE EVALUATION

This section evaluates our P systems implementations in
three different platforms. Hardware features are summa-
rized in Tables 1 and 2.

The shared memory platform is a HP Integrity Superdome
SX2000 endowed with 64 CPUs, Intel Itanium 2 dual-core
Montvale (16 Kbytes L1, 256 Kbytes L2, 18 Mbytes L3).
Total DRAM memory available is 1.5 Tbytes and intercon-
nection network is a 4x DDR Infiniband.

The distributed memory system is a HP BladeSystem
which contains up to 102 nodes and each node is a dual-
socket, each containing a quad-core Intel Xeon E5450 (Ne-
halem with a 12 Mbytes L2 cache). DRAM memory capac-
ity for the whole system is 1072 Gbytes. Interconnection
network is also a 4x DDR Infiniband.

Finally, our GPU-based platform include a four-socket,

Table 1: CUDA and hardware features for the Tesla
C1060 GPU used within our GPU-based platform.

Feature Limitation
Multiprocessors (SM) 30
Streaming processors / SM 8
Total number of streaming processors 240
32-bit registers / SM 16384
Shared memory / SM 16 KB
Threads / SM 1024
Threads / Block 512
Threads / Warp 32
Device (video) memory available 4 GB

<& 13 variables =#-15 variables V- 17 variables =19 variables
+=21 variables <23 variables =+ 25 variables

Speedup factor
OFRP NWbAOOOON O

[N
N

4 8 16 32 64 128
Number of openMP processes

Figure 9: Speed up factor achieved by the blocking
algorithm when varying the number of variables.

quad-core Intel Xeon E5530 (Nehalem with a 8 Mbytes L2
cache), which acts as a host machine for our four Nvidia
Tesla C1060 GPUs whose details are shown in Table 1.

Data policies and simulation performance are evaluated
on each architecture under a set of benchmarks generated by
the WinSAT program [14]. WinSAT can generate random
SAT problems in DIMACS CNF format file by configuring
several parameters: the number of variables (n), the number
of clauses (m) and the number of literals per clause (k).

The number of membranes in our P system depends on
the number of CNF variables, n (Membranes = 2™). We
vary this parameter from n = 13 variables (2'® membranes)
ton = 25 variables (2% membranes), whereas the number of
literals (I = m x k) is kept constant (I = 256 for benchmarks
with n < 22 and [ = 200 for benchmarks with n > 22). Do-
ing so, we reduce memory requirements so that more bench-
marks can be simulated on the GPU-based system. Memory
requirements for each benchmark can be calculated accord-
ing to Equation 1.

Size = 2" (membranes) X l(objects) x 4(uint) bytes (1)

5.1 The shared memory platform

A performance comparison between the blocking and non-
blocking algorithm for 64 membranes per block is shown in
Figure 9. The blocking technique increases performance ei-
ther with the problem size (i.e. the number of variables in
the CNF formula for the SAT problem) or the number of
computational processes (OpenMP processes created). The
former is needed to hide the Preprocessing time (PP and
BP), and the latter involves the memory coherence proto-
col: The network traffic in shared memory systems goes up



Table 2: Summary of hardware features for the architectures used during our experimental survey.

Shared memory

Distributed memory GPU-based

Hardware Hewlett-Packard Integrity Hewlett-Packard 4 Intel Xeon E5530 CPU (plus
platform Superdome SX2000 Blade System 4 Tesla GPUs described in Table 1)
Number of nodes 1 102 1

CPU sockets per node 64 2 4

CPU cores per socket 2 4 4

CPU cores and speed 128 @ 1.6 GHz 816 @ 3 GHz 16 @ 2.4 GHz

Main memory (DRAM) 1536 GB 1072 GB 16 GB. (+ 16 GB. video memory)

Programming model OpenMP (+ Linux 64 bits)

MPI (+ Linux 64 bits)

CUDA (+ Linux 64 bits)

icc Intel 11.1

Compiler

HP MPI 02.03.01

nvee Nvidia 2.3

PP & BP E Generation B Check out
16000
14000 -
12000
10000
8000
6000
4000
2000

Execution time in msecs.

8 64
Block size (in membranes)

524288

Figure 10: Breakdown for the total execution time
using 8 processes for a SAT problem composed of
n = 23 variables and [ = 200 literals.

with the number of cores, but the blocking technique takes
advantage of the local data stored on each node to reduce
the communications burden versus the non-blocking version.

We now present some results about the simulation perfor-
mance of the SAT P system, depending on the block size
for the block-based data layout in our shared memory sys-
tem. Figure 10 shows the breakdown for the total execution
time in the three main functions performed by the OpenMP
simulation, depending on the block size used by the block-
ing technique. We have checked many different block sizes
to find the best configuration, but for the sake of simplicity
Figure 10 only shows three of them for the benchmark with
n = 23 variables: the largest block size configuration, the
shortest one, and finally the one scoring peak performance.

The largest block size (2'%membranes/block, up to 420
Mbytes according to Eq. 1) is the most time-consuming
configuration. The Preprocessing (PP and BP preprocess-
ing) step is the least time-consuming for this configuration
because only a few initial membranes are required in ad-
vance, but the Generation and CheckOut stages are heavier
than in the other two configurations. CheckOut starts read-
ing the first membrane right after the 2'%membranes of a
block are generated by each process. Since the L3 cache size
for the processor in our shared memory architecture system
is 18 Mbytes, many read and write cache misses occur in
those stages, affecting the overall simulation performance.

Similarly, the smallest block size (23membranes/block)
shows the highest Preprocessing time. Although the Gener-
ation and CheckQOut stages behave much better on cache
misses, the simulation finds its best configuration for 2°
membranes (50 Kbytes) per block. This is the turning point
between Preprocessing time and Cache misses (write and
read misses) for this architecture.
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Figure 11: OpenMP code performance varying the
number of variables for the block-based version.

Finally, Figure 11 shows the execution time (in a log scale)
for the SAT P system simulation with the best configuration
under the blocking technique. We executed several bench-
marks varying the number of variables of the SAT problem,
and also varied the number of OpenMP processes involved
in the computation for each benchmark in order to study
the scalability of the system.

2ttotal = tprep'ro + tcpu + toverhead (2)

The total execution time is given by the equation 2. The
first parameter (tprepro) is the preprocessing time spent by
the master process to create the initial set of membranes to
be distributed among remaining processors; this is Parallel
Preprocessing plus the preprocessing time needed by each
process to prepare the blocking execution (that is, Block
Preprocessing). It depends on two values: the number of
processes and the block size. The second parameter (tcpw)
concerns the processing time taken by each node, and de-
pends on the benchmark size. Finally, the last parameter
(toverhead) is the extra overhead added to the OpenMP exe-
cution time (i.e. synchronizations, loop scheduling, commu-
nications among processors, resource sharing, etc...). This
parameter increases widely with the number of OpenMP
processes.

Figure 11 shows that the scalability of the system grows
with the problem size, as processing time (see equation 2)
predominates over remaining parameters as long as the prob-
lem size increases. This scalability gets reduced on smaller
benchmarks.

Note that this version only exploits the intra-task paral-
lelism (that is, among membranes). Remaining stages for
the simulation are sequentially performed on each node.

5.2 The distributed memory platform

In this case, the maximum speed up obtained by the best
configuration for the blocking technique algorithm reaches
up to 2x versus the non-blocking alternative, with this peak
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Figure 13: MPI code performance varying the num-
ber of variables.

reached for the case of the n = 25 variables benchmark.
Memory banks are independent on this platform, so the
blocking algorithm takes advantage of data locality to im-
prove memory bandwidth.

Regarding the optimal data block size, Figure 12 shows
the breakdown of the total execution time for the three main
functions performed by the MPI simulation for the bench-
mark with n = 23 variables. Again, Figure 12 shows only the
largest, shortest, and best performance block size configura-
tions. The optimal case here corresponds to 27 membranes
per block (100 Kbytes per block).

Figure 13 shows the execution time (in a log scale) for the
MPI code, taking the best configuration blocking technique
and varying the number of variables of the SAT problem
and the number of MPI processes. The total execution time
can also be given by the equation 2. Minor differences are
seen based on the architectural features of each system, with
the overhead being influenced by communications among
processors. Data sent to each processor by the master is a
single membrane, and the result returned by each node is
just a boolean, saying whether or not a solution is found.

Figure 13 reveals that the system scalability improves
again with the problem size, but it scales much better than
in the OpenMP case. Results on a single core are missing for
the largest benchmark (that of n = 25 variables), because
the memory available on a single node is not enough to run
the simulation (the benchmark allocates up to 26 Gbytes
and the maximum memory per node is 16 Gbytes).

Note that this version does not exploit the inter-task par-
allelism either: Each membrane is sent to a node and simu-
lations are executed sequentially on that node.
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Figure 14: Breakdown of the total execution time in
a single GPU with n = 22 variables.

5.3 The set of four GPUs

In this case, the tiling technique obtains up to 1.75x speed
up factor versus the non-tiling counterpart.

Figure 14 shows the breakdown of the total execution time
for a single GPU executing the benchmark with n = 22 vari-
ables and using a tiling version. It shows that the 67% of
total execution time is spent by the runtime API initializa-
tion on average, and only 32% corresponds to the actual
execution time. Data transfers are not that important here,
and lose the leadership shown on previous platforms.

The runtime API initialization penalty is not usually con-
sidered when timing GPU applications because it is not sta-
ble between different executions nor related to the actual
GPU computation. But in our case it represents two thirds
of the total execution time, so we decided to include it within
GPU times even though it goes against its performance over
the other two architectures.

First of all, we evaluate the impact of the data block size.
Figure 15 shows the breakdown of the total execution time
for the two main kernels performed by the GPU simulation.
The block size is now limited by the on-chip shared memory
space (16 Kbytes for Tesla C1060). Simulations are tested
for two, four and eight membranes per block, reaching the
best performance for the last case.

The number of global memory accesses and the number
of iterations in the Block Preprocessing kernel intrinsically
depends on block size. In particular, eight membranes per
block require half of the memory accesses and iterations as
compared to the four membranes per block configuration,
which, similarly, cut down to a half those required by the
two membranes per block case. Figure 15 reflects this fact.

Likewise, memory accesses in the Generation and Check-
Out stages are reduced in a similar way as long as the block
size increases. However, the GPU resource occupancy wors-
ens for the eight membranes per block case, because the
shared memory usage per block prevents from allocating
more than one block per SM. As a result, the overall im-
provement is just 14% over the four membranes per block
configuration.

Figure 16 shows the performance for the tiling version of
the GPU simulator with eight membranes per block, and
varying the problem size. The number of GPUs is also in-
creased to study the scalability for the system.

In a multi GPU environment, Figure 16 shows a linear
speed up along with the number of GPUs. This is ex-
pected as the computational workload is evenly distributed
on GPUs. Furthermore, there is more room on each GPU
memory space, so higher workloads may be executed. Figure
16 shows that a single GPU cannot execute the benchmark
with n=23 variables, whose memory requirements are 6400
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Figure 16: CUDA performance when varying the
number of variables (on y axis) and GPUs (x axis).

Mbytes. Similarly, two GPUs cannot execute the bench-
mark with n=24, with its size reaching 12800 Mbytes. At
this point, we recall that a P systems simulation creates an
exponential workspace to obtain polynomial time solutions
for NP-complete problems. So, the benchmark composed of
n=25 variables consumes 25.6 Gbytes, which again becomes
unfeasible on four GPUs.

Times in Figure 16 do not account for overheads like ini-
tial and final data transfers between CPU and GPU, GPU
memory allocation, and CUDA runtime initialization, which
may be significant in practice. Parallel Preprocessing time
spent to arrange the execution on multiple GPUs is also ig-
nored, though this time is negligible as the simulation creates
just four membranes on a four GPUs configuration.

GPUs improve significantly the device memory bandwidth
through shared memory usage, which is explicitly used by
the CUDA programmer. This way, one can control the num-
ber of accesses and the way to access on memory bounded
applications like ours. Even though the small size of the
shared memory decreases GPU occupancy, the benefit of re-
ducing the number of accesses to device memory is much
higher and this strategy is widely rewarded.

5.4 Overall comparison

Figure 17 summarizes the performance for all our imple-
mentations. For the smallest benchmark, GPU performance
gets severely affected by initialization overheads, but this
is quickly amortized as we increase the problem size. The
situation reverses for larger benchmarks, reaching its peak
for n = 23 variables, where the problem size only fits into

two or four GPUs, and that is the reason why the time on
a single GPU is missing. With the last run for n = 25 vari-
ables requiring 25.6 Gbytes, we were unable to execute it on
GPUs even considering together the video memory of our
four GPUs.

Considering the largest problem size and amount of paral-
lelism we were able to expose on the three parallel platforms
for a fair comparison (n = 23 variables and four proces-
sors), execution times were 20049.70 msec. using OpenMP
on the shared memory multiprocessor, 4954.03 msecs. using
MPI on the distributed memory multiprocessor and 565.56
msecs. using CUDA in our set of four GPUs. Consequently,
the speed-up we attain with our set of GPUs reaches 8.75x
versus the distributed memory system and 35.44x versus the
shared memory platform for a much cheaper high-performance
alternative.

6. CONCLUSIONS

In this article, we have described the simulation of a fam-
ily of recognizer P systems with active membranes, solving
the satisfiability (SAT) problem, on three different parallel
architectures base on shared memory, distributed memory
and a set of GPUs. We have also used three different pro-
gramming models: OpenMP, MPI and CUDA, respectively.

Our data placement analysis reveals that blocking increases
the bandwidth in all targeted systems by taking advantage
of data locality, but performance varies depending of the
memory architecture and the way to manage it. We also
dedicate some efforts to reduce the cost of preprocessing
steps required for applying this technique on each platform.

The blocking technique improves the parallel efficiency of
the shared memory architecture, but the OpenMP simulator
reaches the lowest performance as the pressure on shared
resources increases with the number of processors. On the
positive side, this was the only platform where we were able
to execute all benchmarks due to higher memory availability.

The distributed memory system exhibits good scalability
with the number of processors, which can be partially ex-
plained by the low number of communications required by
our simulations.

GPUs constitute the best platform to simulate P systems
for SAT in terms of execution time. The two levels of paral-
lelism that P systems exhibit, one at region level and another
one at system level, were exploited by our GPU implementa-
tion to reach speed-up factors around 10x versus distributed
memory and around 40x versus shared memory when four
processors are used on a given platform.

For the future, the newest generation of many-core GPU
architectures, Nvidia Fermi, enhances the GPU with memory
resources to develop general purpose applications and more
sophisticated models of P systems. Moreover, the combi-
nation of cloud computing and heterogeneous systems can
be an alternative for increasing the memory size without
sacrificing performance at all.

Alternative models of P systems which could be used
to computationally replicate biological systems within the
framework of population and systems biology (i.e., proba-
bilistic/stochastic models) are well positioned to be success-
fully simulated on multi- and many-core systems due to its
arithmetic intensity and large number of iterations required
to adjust the model. A high-performance implementation of
those simulation models looks promising on GPUs and we
have provided some guidelines to succeed by using CUDA.
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Figure 17: Execution time for the three different programming models and architectures: CUDA on GPUs,
OpenMP on a shared memory system and MPI on a distributed memory platform.
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