
Programa de Doctorado “Matemáticas”

PhD Dissertation

RAPID TRANSIT NETWORK
DESIGN AND LINE PLANNING

Author

Alicia De Los Santos Pineda

Supervisor

Prof. Dr. Juan Antonio
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v



Agradecimientos
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Introduction

The transport sector is a key factor for a society continuously growing. The transport

systems can be oriented to move passengers or goods, or both cases. Transport provides

mobility of people, access to employment, development, improving the welfare of a society.

An effective transport makes accessible isolated regions and easy the day-to-day life.

Immersed in a world of constant evolution is difficult to think a future without an efficient

and ecologic transport.

Operations research can help transport planning process. These problems can be de-

scribed and analyzed by means of mathematical models and efficient approaches.

This thesis focusses on Rapid Transit Systems (RTS) which includes metro, bus rapid

transit (BRT), light rail transit, monorail, etc. Bus rapid transit is a RTS special case

which should be studied in a different way. So, some models in this thesis cannot be

applied on a BRT. In the area of passenger transport, much effort has been devoted to

improve the mobility of people, so reducing the traffic congestion, energy consumption and

pollution. In the railway context, the rapid transit planning process has traditionally been

decomposed into a succession of stages, namely, network design, line design, timetabling,

rolling stock, and personnel planning. In RTS with the exception of railway systems,

network design and line planning (without frequency) define an only stage. During last

years it can be observed a certain trend to integrate several stages of the railway planning

process. Recently contributions in this field, integrating network design and line planning

have been proposed. Several authors Guihaire and Hao (2008), Goerigk et al. (2013),

Michaelis and Schöbel (2009), Maŕın et al. (2009), Zhu (2011) consider that, if possible,

the integration of several planning stages will conduce to better solutions. From an

optimization point of view, the solution of an integrated multi-stage problem is preferable

to a succession of optimal solutions to single-stage problems. Obviously, solving the whole

problem is more difficult, but taking decisions stage by stage (design, line planning,..) will

lead to worse solutions than if some of these phases are integrated.
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Introduction

One proposal of this thesis is to integrate network design and line planning problems.

Under this perspective, we are interested in determining simultaneously the infrastructure

network, line planning, train capacity of each line, fleet investment and personnel planning.

Moreover, we incorporate the traffic assignment procedure in the optimization process.

It can be observed that when the infrastructure network is built, it is difficult if not

impossible to change it. Therefore, if the locations of the stations and of theirs connections

are selected at the first stage, the solutions at the following stages (line configuration as

well as the train capacity and frequencies) are conditioned by them. Another relevant

aspect to take into account in the rapid transit network design, is the estimated demand.

The main characteristics of an RTS are set according to the demand. So, it is important

to introduce a competing mode in the model and determine rolling stock levels based on

the captured demand. For these reasons, integrating line and station location as well as

train capacities and frequencies at the planning stage leads to better solutions.

As mentioned, the resulting problems by the integration of network design and line

planning are difficult to solve and they require efficient techniques for solving the prob-

lem. In this thesis we develop mathematical models, efficient techniques and algorithms.

Another important contribution in this thesis is the realistic treatment of the problem.

Thus, we present a rigorous analysis for the calibration of the aspects that appear as a

consequence of the integration of network design and line planning. Moreover, in a real-

istic situation, several input data such as the origin-destination matrix, travel times by

the alternative mode, costs can be uncertain (see Chapter 5).

In this thesis we are also interested in evaluating and analyzing networks by means

of measures in the connectivity and robustness context as well as in studying RTS line

planning problems.

The remainder of this thesis is organized as follows. In Chapter 1 we present a review

of robustness measures in the transportation context. These measures can be used as

objective functions in rapid transit network design and line planning problems. More-

over, robustness measures can be applied to determine where the network is more vul-

nerable and to compare different types of networks. We propose new measures based

on passenger’s perspective: passenger robustness measures, connectivity measures and

passenger-oriented transferability measures.

In Chapter 2 we present a review of rapid transit network design problems and we

analyze the different models found in the literature. The main novelty of this chapter is the

consideration of a general model that contains as particular cases, all models related with

this problem studied in the literature. Another important contribution in this chapter is
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the realistic treatment of the problem and the incorporation of a long term public economic

support in the network design problem. Moreover, with respect to recent published works,

this work goes one step further by considering train capacities and frequencies at the

planning stage in order to adjust the number of users using the RTS and therefore, an

adequate line planning and rolling stock. Specifically, the problem we deal with integrates

network design and line planning including frequency and capacity of each line as decision

variable. We assume a competing mode and integrate the traffic assignment procedure

in the optimization process. So, passengers are assigned to each mode in a continuous

way by means of a logit function and continuous variables. Chapter 3 is devoted to line

planning problems. Specifically, we simultaneously select the frequency and the number

of carriages for each line of the RTS maximizing the net profit. We distinguish two

possible situations: an unlimited number of carriages and a maximum number of carriages.

Last problem may yield to congested networks and it requires a special treatment. We

develop a mathematical model for the first problem as well as efficient approaches such

as linearization constraints and algorithms. For the capacitated problem, we propose an

approach and an algorithm which include a congestion function measuring the level of

in-vehicle crowding on each arc.

In Chapter 4 we review the different algorithms found in the literature about network

design and line planning. We propose a model to solve our problem, considering only

one route for each OD pair in the RTS. In this problem passengers choose between a

competing mode and the shortest path in the RTS.

Then, in Chapter 5 we introduce some robustness aspects in the rapid transit network

design problem. Concretely, we are interested in obtaining feasible solutions under un-

certain circumstances in the infrastructure network design problem. We study different

approaches of robustness that can be applied on such problem.

Finally, we end with some conclusions.
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Chapter 1

Rapid transit networks: robustness and

related measure assessment

1.1. Introduction

In this chapter we will concentrate on describing and analyzing the different measures

found in the literature in the transportation networks context. These measures can be

oriented regarding to connectivity and robustness.

The well-known Graph theory provides a natural way to represent networks as has been

shown in the past. Graph theory was first developed to solve a transportation problem:

Euler (1741) famously analyzed the Seven Bridges of Königsberg and showed it was not

possible to design a path crossing each bridge exactly once. The application of graph

theory to road transportation systems emerged in the late 1950´s. It was mainly treated

from the economics point of view. Garrison and Marble (1962, 1964) pioneered in the field

by introducing three graph theory measures directly linked to network design (circuits α,

degree of connectivity γ and complexity β). At the same time, Kansky (1963) defined new

indicators related to complexity and network specificities. The application of graph theory

to urban transit systems emerged in the early 1980´s. More recently, Gattuso and Miriello

(2005) have applied Garrison and Marble´s and Kansky´s indicators and others to 13

metro networks.

The concept of robustness has been studied in both computer science and in engi-

neering. According to the Glossary of the Institute of Electrical and Electronics Engineers

1



Chapter 1. Rapid transit networks: robustness and related measure assessment

(IEEE) Geraci (1991), robustness can be defined as “the degree to which a system or

component can function correctly in the presence of invalid inputs or stressful environ-

mental conditions.” Gribble (2001) defined system robustness as “the ability of a system

to continue to operate correctly across a wide range of operational conditions, and to fail

gracefully outside of that range.” Ali et al. (2003) have considered an resource allocation

mapping to be robust if it “guarantees the maintenance of certain desired system charac-

teristics despite fluctuations in the behavior of its component parts or its environment”.

In transportation systems, Immers et al. (2004) define the robustness as “the degree to

which a system is capable of functioning according to its design specifications in the case

of a serious disruptions”.

According to Holmgren (2007): “Robustness signifies that the system will retain its

system structure (function) intact (remain unchanged or nearly unchanged) when exposed

to perturbations.” In Nagurney and Qiang (2009) transportation network robustness has

also been quantified in presence of degradable links.

In rapid transit system planning, robustness can be defined with respect to fluctuations

in the input parameters, (i.e., the parameters are estimations), with respect to distur-

bances or disruptions (fails in links, drops in electrical power, trains breaking down, etc.),

or with respect to integration with other subsequent planning phases. The topological

configuration of associated to a transportation network may dramatically affect the system

robustness.

In this chapter we will concentrated on the robustness of a RTS and we will consider

the concept of robustness proposed by Immers et al. (2004). So, the robustness will be

treated respect to disturbances or disruptions in the rapid transit system.

According to different aspects, we can define several measures. These measures can be

used as objective functions in rapid transit network design and line planning problem.

Moreover, robustness measures can be applied to determine where the network is more

vulnerable and to compare different types networks.

1.1.1. Representation of transportation networks

As mentioned, Graph Theory provides a natural way to represent networks. A graph

G(N,E) is an abstract object defined by means of two sets: a set N representing a finite

set of elements called nodes, and a set E formed by pairs of elements in N . Let n andm be

the number of elements of N and E, respectively. Depending on the kind of relationship

defined in E, a graph is classified as undirected or directed graph. In an undirected graph

G(N,E), each element of E called edge, represents a connection between two different

2
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nodes i, j of N . An edge is usually denoted by {i, j}, eij or e. In a directed graph

G(N,A) the order in each element of A is an important aspect. An element (i, j) of A

called arc, has an origin i ∈ N and a destination j ∈ N .

If an edge occurs several times in E, the copies of such edge are called parallel edges

and the corresponding graph is known as multigraph.

For determined situations, it is useful to associate numerical values (weights) to edges

or nodes of an undirected or directed graph. The weighted graphs are usually called

networks. The weights defined on edges (resp. arcs) can be expressed as a function

ω : E → IR (resp. ω : A → IR ) which assigns a weight ω(e) (resp a weight ω(a)) to each

edge e ∈ E (resp. arc a ∈ A). Depending on the context, these weights can describe

different aspects such as cost, travel time, distance, capacity, strength of interaction,

etc. From a network perspective, three different embedded and overlapping layers can be

distinguished:

• A first layer; the infrastructure network, in which only nodes (stations) and edges

(links between adjacent stations) are considered.

• A second layer; the line network, which represents the line set of a RTS. Each line is

characterized by its itinerary and frequency. Note that this layer is defined on the

first layer where trains run. In order to help passengers, this layer is usually shown

at platforms by means of maps.

• A third layer; the passenger system, in which the mobility patterns of users are

taken into account. At this case, passengers travel according to the itinerary of

lines given in the second layer.

Two possible abstraction levels can be considered at the first layer: topological and metric.

In Figure 1.1 we depict the different layers associated to metro of Seville.

The structure of this chapter is as follows. In Section 1.2 we describe measures related

to the infrastructure network of rapid transit systems. The Section 1.3 is devoted to define

and analyze measures on weighted networks. We have presented measures defined on the

above mentioned third layer in Section 1.4. In Section 1.5 we formally describe represen-

tations of a collective transportation network as well as connectivity and transferability

measures. We will end with some conclusions.
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Chapter 1. Rapid transit networks: robustness and related measure assessment

(a) Metro network of Seville. (b) Topological level abstraction (first layer).

(c) Metric level abstraction (first layer). (d) Line network (second layer).

(e) Passenger routes (third layer).

Figure 1.1.: Different layers associated to the metro network of Seville.4



1.2. Measures in the infrastructure network

1.2. Measures in the infrastructure network

Let G = (N,E) be a network representing the infrastructure network of a rapid transit

system, where N is the station set and E the set of links connecting adjacent stations.

Let n and m be the number of stations and edge in G, respectively. Over this level, we

consider the topological distance dij between two nodes i and j, i.e., the number of edges

that the shortest path between i and j contains.

Following sections are devoted to describe the different measures that can be found in

the literature related to robustness measures of transportation networks in the topological

context.

1.2.1. Mean connectivity

The mean connectivity measure defined by Tainitier (1975), measures the probability

of disconnecting a network after eliminating a set of edges. This measure can be useful

in determining whether the connectivity of the network can be improved by adding some

edges. Let ε(G) be the set formed by the m! possible orderings of the edge set and ǫ be an

element of ε(G) representing a possible ordering of the edge set. Starting with a network

G = (N, ∅), we will add edges in the order ǫ until G becomes a connected network. Let

ξ(ǫ) be the position of the edge in ǫ that makes connected the network.

The mean connectivity of G is defined as follows:

M(G) = m−
1

m!

∑

ǫ∈ε(G)

ξ(ǫ). (1.1)

Tainitier proved that this measure satisfies several properties:

1. M(G′) ≤ M(G), for G′ = (N,E ′) with E ′ ⊂ E.

2. λ(G) − 1 ≤ M(G) ≤ m − n + 1, where λ(G) is the edge-connectivity of G, i.e.,

is the smallest number of edges whose removal from G results in a non-connected

network.

For the sake of clarification, we show the following example.

Example 1.2.1 The following Figure 1.2 represents a network with mean connectivity

equal to 4. It can be note that ε(G) is formed by 120 elements as follows:

• ǫ1 = [(1, 2), (2, 3), (1, 4), (2, 4), (4, 5)]. Note that ε(ǫ1) = 5, since we need to add all

edges to G(N, ∅) to transform G in a connected network.
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Figure 1.2.: Computation of the mean connectivity for a sample network.

• ǫ2 = [(1, 2), (2, 3), (1, 4), (4, 5), (2, 4)]. In this case, ε(ǫ2) = 4, since if we introduce

the edges (1, 2), (2, 3), (1, 4), (4, 5) the network is connected.

• ǫ3 = [(1, 2), (2, 3), (2, 4), (1, 4), (4, 5)], ε(ǫ3) = 5. As in ǫ1, we need to add all edges

to transform G in a connected network.

• ǫ3 = [(1, 2), (2, 3), (4, 5), (2, 4), (1, 4)], ε(ǫ4) = 4. In this case the network is con-

nected with 4 edges.

•
...

• ǫ120 = [(1, 2), (2, 3), (1, 4), (2, 4), (4, 5)], ε(ǫ120) = 5. We need to insert all edges in

G.

1.2.2. Pair disconnection measure

An important measure proposed by Ng and Efstathiou (2006) to evaluate how the nodes

of a network are connected is the network disconnectedness. This measure can be applied

for both connected and non-connected networks. Concretely, if G is a non-connected

network, the network disconnectedness is the ratio between the number of pairs of un-

reachable nodes and the maximum number of possible pairs of nodes (n(n − 1)/2). In

contrast, if G is connected, is interesting to study this ratio when a node or an edge is

eliminated of G. The network disconnectedness is defined as

pd(i) = pnd(i)/[n(n− 1)/2], pd(e) = pnd(e)/[n(n− 1)/2], (1.2)

where pnd(i) denotes the number of unreachable node pairs when the node i is eliminated

and pnd(e) is the number of unreachable node pairs when the edge e is interrupted.
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1.2. Measures in the infrastructure network

From this measure, it can be defined the worst (wc) and average (aver) case for pair

disconnection measure.

pdwc
N (G) = max

i∈N
pd(i), pdwc

E (G) = max
e∈E

pd(e)

pdaverN (G) =
1

n

∑

i∈N

pd(i), pdaverE (G) =
1

m

∑

e∈E

pd(e)

(1.3)

We observe that this measure satisfies several desirable properties: it lies within a prede-

fined range and satisfies a monotonicity property.

Proposition 1.1 Let G = (N,E) be a connected network representing a rapid transit

system. The pair disconnection measure holds the following properties.

1. 0 ≤ pdwc
N (G) ≤ (n − 2)/n and 0 ≤ pdwc

E (G) ≤ 1. The nearer to 0, better communi-

cated the nodes are.

2. It is monotone non-decreasing in the sense that, if G′ is a network obtained when

adding a new edge to G connecting two nodes, we have that pdwc
N (G′) ≤ pdwc

N (G) and

pdwc
E (G′) ≤ pdwc

E (G).

Proof 1.2 1. Note that the denominator of pnd(i) and pnd(e) do not depended on i.

Thus, max
i∈N

pd(i)=max
i∈N

pnd(i)/[n(n− 1)/2].

The worst case respect to pnd(i) is obtained for a star network which has all nodes

connected to a central node. If the central node i is eliminated, there not exists

edge in G − i, i.e., G − i = (N \ {i}, ∅) in whose case pnd(i) = (n − 1)(n − 2)/2.

Analogously, the worst case to pdE(G) is obtained in a graph with two nodes and

one edge: N = {i, j}, E = {e}, e = {i, j}, in whose case, pdwc
E (G) = 1.

The minimum value (best case) is reached in a completely connected network Kn

with n nodes and all possible edges, in whose case, pdwc
E (Kn) = 0 and pdwc

N (G) = 0.

2. Adding a new edge in G provides a new couple of connected nodes, which implies

that pd(i) and pd(e) are non-decreasing.

1.2.3. Toughness

The toughness of a network was introduced by Chvátal (2006). It measures the number

of connected components in which the network can be decomposed by the failure of a
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certain number of nodes. The toughness is the minimum ratio between the cardinality of

a subset S of N and the number of connected components resulting after eliminating the

set of nodes S:

T (G) = min
S⊂N,K(G−S)>1

{
|S|

K(G− S)

}
(1.4)

whereK(G−S) is the number of connected components that G is split into when removing

S.

The minimum value is 1/(n− 1) obtained in a start network, i.e., a network in which

all nodes are connected to a central and there not exists more connection between them.

The maximum value can be ∞, for the case of a completely connected network.

Now, we compute the toughness in network shown in Figure 1.3.

Example 1.2.2 For the network of 1.3 the toughness is T (G) = min{1/2, 1, 1} = 1/2.

In this network, the family of subset S of N is the follow:

{{1}, {2}, {3}, {4},

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} .

For S1 = {3}, S2 = {1, 3} and S3 = {2, 3}, K(G− Si) = 2. In other case, K(G− S) = 1.

Figure 1.3.: Computation of the toughness for a sample network.

1.2.4. Diameter

The diameter D(G) of a network is the longest shortest path between any pair of

nodes of G. Dekker and Colbert (2004) and Ng and Efstathiou (2006) consider that this

measure is interesting from robustness point of view when G is a connected network.
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1.2. Measures in the infrastructure network

It can be note that the diameter may increase if an edge or node fails and it may

become infinite if it disconnects the network. Another interesting aspect in the trans-

portation context is that longer diameters imply longer time for completing trips and

therefore higher loads of the edges. If G is a non-connected network and CG1, . . . CGk

are its connected components, we propose the following measure based on its connected

components,

D(G) = max
i=1,...k

D(CGi). (1.5)

This measure gives information on the connectivity of networks. Let G−e be the network

that result after eliminating an edge e. From this measure, we define two interesting

robustness measures: the maximum and average increase of the diameter when an edge

is eliminated. So, the maximum increase is defined as

∆wc
E D(G) = max

e∈E
|D(G− e)−D(G)|, (1.6)

and the average increase

∆aver
E D(G) =

1

n

∑

e∈E

|D(G− e)−D(G)|. (1.7)

These measures can be extended to node eliminations taking into account that when a

node is eliminated, all incident edges are also removed.

It can be observed that if G − e is a connected network, its corresponding diameter

increase is a positive number, i.e., ∆ED(G) = D(G− e)−D(G) ≥ 0. In contrast, if G− e

is a non-connected network, the diameter of G − e is infinity. Last case, we propose to

analyze the connected components as in (1.5).

1.2.5. Characteristic path length and Efficiency indicator

Watts and Strogatz (1998) introduced a class of networks named small-world, in anal-

ogy with the concept of small-world phenomenon developed in social psychology. They

found that these systems can be highly clustered like regular lattices as well as that such

networks have small characteristic path length like random graphs. This class of graphs

interpolates between a regular lattice and random graph. The mathematical characteriza-

tion of the small-world behavior proposed by Watts and Strogatz (1998) is based on the

evaluation of two measures; the characteristic path length L (see (1.8)) and the clustering

coefficient C (see (1.10)) which will be defined in this section. By means of these mesures
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they studied the topological properties of real networks. However, these measures suffer

several limitations: only the topological network is taken into account, in which informa-

tion about the physical length of each link is unknown, multiple edges between the same

couple of nodes are not allowed and, L and C are ill-defined in some cases, as for example

when the network is non-connected network.

In order to overcome the drawbacks previously commented, Latora and Marchiori (2001,

2002, 2004, 2008) and Crucitti et al. (2002) proposed new measures valid both for weighted

and unweighted networks: the global and local efficiency. They argued that the global

efficiency Eglob plays a role of the inverse of the characteristic path length L and the

local efficiency Eloc a similar one to the clustering coefficient C. By means of these mea-

sures, the description of networks in terms of efficiency extends the small-world analysis

to unconnected networks.

Barabási and Albert (1999), Albert et al. (1999), Barabási et al. (1999), Jeong et al.

(2001) and Jeong et al. (2000) have studied the degree distribution of a network P (k)

defined as the proportion of nodes with k incident edges. The authors found that many

large networks as the World Wide Web, Internet, metabolic networks and protein networks

are classified as scale-free, i.e., they have a power-law degree distribution P (k) ∼ K−γ ,

where γ is an exponent that often varies between 2 and 3.

The connectivity of a scale-free network is concentrated in a few highly connected nodes.

These networks are vulnerable to attack but not to random failure since the probability

of failing a node is quite small. Thus, the scale-free networks are robust under random

failures but they are extremely vulnerable to attacks. However, the small-world networks

are robust to attacks and are vulnerable to random failures.

Following sections will be devoted to describe the measures above mentioned.

Characteristic Path Length and Global Efficiency

The average distance between stations, known as the characteristic path length, is de-

fined as

L(G) =
1

n(n− 1)

∑

i,j∈N

dij . (1.8)

Note that L(G) measures the average separation between two nodes in a connected

network. It becomes interesting to study how a network is affected by the elimination of

nodes or edges. However, at this analysis, the original network may be transformed into

a non-connected network. In order to avoid this problem and to extend the analysis to

non-connected networks, Latora and Marchiori (2001, 2002), Crucitti et al. (2002) have

10



1.2. Measures in the infrastructure network

defined the global efficiency Eglob.

The efficiency between node i and j, ǫij , is assumed to be inversely proportional to

the shortest path length, i.e., ǫij = 1/dij. When there is not path linking i and j it is

assumed that dij = ∞ and ǫij = 0. So, the global efficiency of a network G (connected or

non-connected) is the average measure of all possible ǫij, that is,

Eglob(G) =
1

n(n− 1)

∑

i,j∈N

ǫij . (1.9)

At the topological case, Eglob is a positive measure and it cannot exceed 1. As a con-

sequence, this measure allows to compare different networks. Extension to weighted

networks will be presented in Section 1.3.

Local Degree of Clustering and Local Efficiency

An important concept, which comes from social network analysis is the transitivity. In

a social system there is a strong probability a friend of your friend is also your friend.

The most common way to measure the transitivity of a network G is by means of the

fraction of transitive triples, i.e. the fraction of connected triples of nodes which also form

triangles of interactions. This measure can be written as Newman (2001):

T(G) =
3× number of triangles in G

number of possible triples of nodes in G
.

T(G) is a classical measure used in social sciences to indicate how much, locally, a network

is clustered. Note that the number of possible triples of nodes in G is
(
n
3

)
.

Watts and Strogatz (1998) used another measure to evaluate the local degree of clus-

tering. The authors defined the well-known clustering coefficient C as follows. For each

node i ∈ N , the subgraph Gi = (Ni, Ei) formed by all first neighbors of i is considered.

In Gi, node i and all edges incidents to i are eliminated. So, if node i has ki neighbors,

then Gi will have ki nodes and at most ki(ki − 1)/2 edges. Let Ci be the proportion of

these edges that really exist. The clustering coefficient C is the average of Ci, calculated

over all nodes:

C =
1

n

∑

i∈N

Ci, (1.10)

where

Ci =
number of edges in Gi

ki(ki − 1)/2
.
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Example 1.2.3 We consider the network associated to Figure 1.4. In Figure 1.5 we

Figure 1.4.: Computation of the clustering coefficient for a small network.

depict the neighbor subgraph Gi associated to each node i. In this way, we obtain C1 = 1,

Figure 1.5.: Computation of the clustering coefficient for a small network.

C2 = 1, C3 = 1/3 and C4 = 0/0.

Latora and Marchiori (2002), Crucitti et al. (2002) have showed that C suffers several

limitations: C is ill-defined in several cases. For instance, in a railway network Ci = 0/0

in terminal stations of only one line. Another drawback is that it works only in the

topological context, where the only required information is about the existence or absence

of links, and nothing on the link length.

Latora and Marchiori (2001, 2002) have proposed an alternative way applicable on

weighted and non-connected networks. The clustering coefficient can be substituted by

the local efficiency indicator :

Eloc(G) =
1

n

∑

i∈N

Eglob(Gi), (1.11)
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where

Eglob(Gi) =
1

|Ni|(|Ni| − 1)

∑

j,k∈Ni

1

djk
,

and Gi denotes the subgraph neighbor associated to i.

Note that 0 ≤ Eloc(G) ≤ 1. In the transportation context, this measure gives informa-

tion on how efficiently passengers can move in the network from a local point of view.

We think that several special cases must be specified. For instance, terminal stations

of only one line in a rapid transit system yields to neighbor subgraphs formed by only

one node and this measure has not sense. So, it is reasonable to think that at this case,

Eglob(Gi) may be 0 or 1, depending on the context that is being applied. For instance, it

is appropriated to consider Eglob(Gi) = 0 when the connectivity of G is being analyzed

and Eglob(Gi) = 1 when G represents the primal graph associated to a hypergraph (see

Section 1.5).

1.2.6. Vulnerability indicator

Latora and Massimo (2005) defined the vulnerability of networks G under a class of

damages Λ. This kind of damages should be understood as a set of possible damages,

such as failures in nodes or links on the infrastructure G. So, the vulnerability of G under

a class of damages Λ is defined as

V[G,Λ] =
P[G]− Pwc[G,Λ]

P[G]
, (1.12)

where P[G] is the usual performance of G and Pwc[G,Λ] is the worst performance of G

under the class of damages Λ. In this work, the goal is finding the critical components of

the network respect to the drop in the network’s performance caused by its deactivation.

As a practical application, the authors considered communication networks as well as

infrastructure transportation networks and they identified the performance of G with the

global efficiency indicator.

In a previous work, Latora and Marchiori (2004) defined a measure of the centrality of

a node i called the importance as the drop in the efficiency of G caused by the deactivation

of such node i, this is,

Vloc(i) ≡ ∆Eglob = Eglob(G)− Eglob(G− i),

where Eglob(G) denotes the global efficiency defined in (1.9) and G − i represents the
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resulting network after eliminating the node i and all edges incident to i. The most

important nodes i reaches the highest Vloc(i).

Criado et al. (2005) define the global efficiency as an arithmetic mean of the local

vulnerabilities

Ẽaver
glob (G) =

1

n

∑

i∈N

|Vloc(i)|

and as a maximum

Ẽwc
glob(G) = max

i∈N
‖Vloc(i)‖.

In Criado et al. (2006, 2007) several efficiency functions are defined. Let G be the set

of all networks with a finite number of nodes. The efficiency function E is a function

E : G → [0, 1] such that

• E(G∅) = E(V, ∅) = 0.

• E(Kn) = 1, where Kn is the completely connected network with n nodes.

• E(G) ≤ E(G′) if G′ is obtained from G by adding edges.

• E(·) is invariant under isomorphism of G, i.e., E(·) does not vary if we transform

G ∈ G into an other network H ∈ G without breaking or adding any edges, so that

H and G are identical ignoring the labels on the nodes.

• E(G) is computable in polynomial time with respect to the number of nodes of G.

From this perspective, several alternative efficiency functions have been defined in the

literature. For instance, the arithmetic efficiency defined in Latora and Marchiori (2001,

2004):

E
+(G) =

1

n(n− 1)

∑

i,j∈N

1

dij

and the geometric efficiency proposed by Criado et al. (2006)

E
•(G) =

(
∏

i,j∈N

1

dij

) 1
n(n−1)

.

The vulnerability function defined by Criado et al. (2005, 2007) is based on the net-

work’s performance caused by failures in nodes and edges. The vulnerability function V

is a function V : G → [0, 1] holding the following properties.

• V invariant under isomorphisms.
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• V(G′) ≥ V(G) if G is obtained from G′ by adding edges.

• V(G) is computable in polynomial time respect to the number of nodes of G.

In Criado et al. (2005) two vulnerability functions are defined as follows

V1(G) = exp{
M+ −M−

n
+ n−m− 2 +

2

n
} (1.13)

and

V2(G) = exp{
σ

n
+ n−m− 2 +

2

n
}, (1.14)

where M+ = max{gr(i); i ∈ V } and M− = min{gr(i); i ∈ V } are the maximum and min-

imum degree of nodes, respectively, and, σ = ( 1
n

∑n
i=1(gr(i)− 2m/n)2)1/2 is the standard

deviation of the degree distribution.

1.3. Measures in the metric network

In this section, we consider a metric l(e) in the infrastructure network G(N,E) associ-

ated to each edge e, representing; length, running time or generalized cost for traversing

it. So, the distance between a pair of nodes is the sum, l(e), of edges that the shortest

path between such nodes contains.

1.3.1. Diameter

The diameter of a network D̃(G) is the longest shortest path between any pair of nodes

of G, that is,

D̃(G) = max
i,j∈N

dij . (1.15)

We observe two basic properties for comparing networks: it belongs to a predefined range,

and it is monotone decreasing.

Proposition 1.3 Let G be a infrastructure network with a metric. We have that:

1. maxe∈E(Kn) l(e) ≤ D̃(G) ≤ d1n, where d1n denotes the distance between first-node 1,

and last-node n, in a chain graph formed by n-nodes.

2. It is monotone decreasing in the sense that, if G′ is network obtained when adding

a new edge to G connecting two nodes, we have that D̃(G′) ≤ D̃(G).
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Proof 1.4 1. It is easy to note that the minimum value of D̃(G) is reached for a com-

pletely connected network Kn. At this case, D̃(N,Kn) = maxe∈E(Kn) l(e). Similarly,

the maximum value is obtained for a chain graph with n-nodes. So, the maximum

distance is reached for the shortest path between first and last node.

2. Adding a new edge in G provides a new couple of connected nodes, which does not

increase D̃(G).

It is interesting to analyze networks when edges or nodes fail. It can be observed that

if G − e is a connected network, its corresponding diameter increase is a non-negative

number, i.e., ∆ED̃(G) = D̃(G− e)− D̃(G) ≥ 0. In contrast, if G− e is a non-connected

network, the diameter of G− e is infinity. Last case, we propose two alternative ways to

obtain information on the connectivity of networks, as follows:

1. To analyze the connected components as in (1.5).

2. To introduce a penalty k ∈ N. If an edge or node failure is expected to be long

enough, it is frequent that the transit company offers an alternative transportation

mode, usually a bus, between the affected stations (see Figure 1.6). So, if G− e is

a non-connected network, we modify the distance associated to e, l(e) by l(e) times

k. This aspect can be extended to interruptions in nodes considering a penalty on

all edges incident to such node.

In order to illustrate this situation we consider what happened in the Barcelona metro

in August 2008 (Figure 1.6). Due to the construction of the high-speed train tunnel

Figure 1.6.: The affected line of Barcelona metro network.

across Barcelona, the service in stations Diagonal and Verdaguer was interrupted during
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a determined number of days. So, the blue line was fragmented into two parts and the

stretch Hospital Clinic-Sagrada Familia was disabled. The operator provides two choices

to the affected passengers:

1. an alternative route: transferring from the blue1 line L5 to the red line L1 at

station Plaça de Sants and transferring back to L5 at station Sagrera (or the other

way around),

2. a bus between stations Hospital Clinic and Sagrada Familia (labelled as B Especial

in the figure).

1.3.2. Average shortest distance

The average shortest distance between any pair of nodes has been suggested for mea-

suring robustness (see Ng and Efstathiou (2006)). This measure is defined as

ASd(G) =
1

n(n− 1)

∑

i∈N

∑

j∈N

dij. (1.16)

Similar to the characteristic path length, this measure may be ∞ if the network is non-

connected.

1.3.3. Global and local Efficiency indicators

Latora and Marchiori (2001, 2008) have defined the global and local efficiency for

weighted networks. However, in this case, the efficiency belongs to a predefined range

[0,∞). In order to compare different networks, this measure must be normalized. Let Kn

be the completely connected graph . So, the global efficiency for a weighted network G is

defined as

Ẽglob(G) =
Eglob(G)

Eglob(Kn)
, (1.17)

where Eglob(G) represents the global efficiency defined in Section (1.2), according to the

length of each edge.

Note that 0 ≤ Ẽglob(G) ≤ 1, and that it measures how efficiently can passengers move

in a global scale.

Now, we will introduce the local efficiency indicator on this layer. For the purpose, let

Gi = (Ni, Ei) be the neighbor subgraph of G with ki-nodes formed by all first neighbors
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of node i. The local efficiency is defined as:

Ẽloc(G) =
1

n

∑

i∈N

Eglob(Gi)

Eglob(Gideal
i )

, (1.18)

where Eglob(G
ideal
i ) is the global efficiency of the ideal network Gi

ideal which has ki nodes

and all possible edges. The local properties of G can be characterized by evaluating for

each node i, the efficiency of its neighbor subgraph Gi = (Ni, Ei).

1.4. Measures for networks with demand patterns in

operation

In this section we will summarize the paper Evaluating passenger robustness in a rail

transit network. Transportation Research Part C: Emerging Technologies, 20(1):34–46,

2012 by A. De Los Santos, G. Laporte, J.A. Mesa and F. Perea. First, we will describe

the corresponding measures for networks with demand patterns.

1.4.1. Measures for networks with demand patterns

In this section we propose a measure for the robustness of a network by calculating the

overall travel time in the entire system when some link fails. Let t(e) denote the time

required to traverse edge e. For the sake of simplicity it is assumed that only one type

of train runs on the network. Let H = (hij) be the origin-destination matrix (denoted by

OD) in the interval time that we are studying, where hij denotes the number of passengers

going from i to j.

It must be noted that our model assumes that this matrix is not affected by failures, that

is, all passengers will keep travelling to their normal destination regardless of disruptions

in the normal functioning of the network. Otherwise, the number of passengers missed

could be a primary index or passenger loss of robustness.

We will suppose that passengers choose their fastest alternative and that for each pair

i, j there is only one shortest path on the network joining i and j (note that this is what

happens in practice when dealing with real data). Therefore the flow of each edge is

fe =
∑

i,j∈N

f (i,j)
e , (1.19)

18



1.4. Measures for networks with demand patterns in operation

where f
(i,j)
e = hij if the shortest path from i to j contains edge e and zero otherwise. The

maximum direct effect of an edge failure (without considering secondary delays) in the

network service is observed on the edge having the maximum flow. Measures of robustness

are the maximum and the average number of passengers affected by the disruption of the

service in an edge:

fEmax = max
e∈E

fe, fE =
1

m

∑

e∈E

fe.

If the disruption happens in station i, the number of passengers affected fi is the sum

of those arriving to and departing from the station. Other cases (e.g. only passengers

departing from the station) could also be considered. Since the interruption time affecting

the passengers can be diverse, an indicator in terms of time loss for using alternative routes

or even a different mode of transportation is a measure of the overall inconvenience to the

passengers. The total travel time of the network G(N,E) is

T (N,E) =
∑

e∈E

fet(e). (1.20)

If there is a disruption in edge e, then the flow through edge e can be larger because

of the addition of passengers for which second shortest time route contains e. This flow

will be denoted by fe(e). Then the total travel time is: TT (e) =
∑

e 6=e t(e)fe(e) and the

difference: TTL(e) = TT (e)−TT , is the total time loss. Measures of robustness in terms

of ridership time are

TTL = max
e∈E

TTL(e), TTL =
1

m

∑

e∈E

TTL(e).

In a similar way the robustness of the network for disruptions in nodes can be measured.

A related measure has recently been suggested for highway planning in Scott et al. (2006).

In De-Los-Santos et al. (2012) we have performed a more complex analysis and we have

considered secondary delays and different types of interruptions in the system. In order

to evaluate the robustness of the network, we have computed its total travel time when

one link fails, taking into account the possible changes in passenger routes and the delays

induced by such changes. In order to measure robustness, measures relative to the overall

time of a network when links fail are introduced for two different cases: without-bridging

interruptions and with-bridging interruptions. In the first case, passengers either have to

wait for the failure to be repaired or find an alternative route in the network, whereas in

the second case, a bus service is provided between the affected stations and only the edge
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Chapter 1. Rapid transit networks: robustness and related measure assessment

failing link is disrupted.

When an edge fails, other edges of the network may also be affected by having their

flow increased or decreased. If ē fails, let fe(ē) be the new flow through edge e, and let

fALT
ē be the number of passengers who decide to take the alternative mode provided by

the operator to traverse edge ē, when this alternative mode is actually provided. Let t̃(ē)

be the sum of the travel time through edge ē plus the waiting time until the disruption is

repaired.

The effect of a without-bridging interruption of edge ē on network G(N,E) is defined

as the ratio between the total travel time of the ideal completely network and the total

travel time of network G(N,E) in case edge ē suffers a disruption without bridging :

R((N,E), ē) =
T (Kn)

DT ((N,E), ē)
, (1.21)

where

DT ((N,E), ē) = fē(ē)t̃(ē) +
∑

e 6=ē

fe(ē)tē(e),

tē(e) is the time needed to traverse edge e when edge ē is interrupted. In the implementa-

tion of this index three models have been considered to calculate te(e). For more details

we refers the reader to De-Los-Santos et al. (2012).

Let t′(ē) be the time needed to traverse edge ē by the alternative mode. The effect of a

with-bridging interruption of edge ē on network G(N,E) is defined as the ratio between

the total travel time of the ideal completely network and the total travel time of network

G(N,E) if edge ē suffers a disruption with bridging (see De-Los-Santos et al. (2012) ):

BR((N,E), ē) =
T (Kn)

BDT ((N,E), ē)
, (1.22)

where

BDT ((N,E), ē) = fALT
ē t′(ē) +

∑

e 6=ē

fe(ē)t(e).

The next proposition shows that both measures R and BR satisfy three desirable prop-

erties. The first one is the scale-invariance, which ensures that the value of the index is

not affected by the scale on which the number of passengers or the time are measured.

The second one states that if the network becomes more dense the measure increase. The

third property ensures that both measures are positive and cannot exceed 1.

Proposition 1.5 Let G(N,E) be a network and let ē ∈ E. Then, the following properties
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hold.

1) Scale-Invariance: Both R((N,E), ē) and BR((N,E), ē) are invariant with respect

to scale changes in the OD matrix and in travel times.

2) Monotonicity: Let E+ = E ∪ {e+}. Then BR((N,E+), ē) ≥ BR((N,E), ē) and

R((N,E+), ē) ≥ R((N,E), ē).

3) Membership in (0,1]: 0 < R((N,E), ē) ≤ 1 and 0 < BR((N,E), ē) ≤ 1.

The detailed proofs are in De-Los-Santos et al. (2012).

The measures: definition and properties

Measures R and BR, see (1.21) and (1.22), enable us to measure the effect of a disrup-

tion on a particular edge. In order to give a passenger robustness measure for a network,

the following measures are introduced:

• Measures of passenger robustness against without-bridging disruptions:

δR(N,E) =
T (Kn)

maxē∈E DT ((N,E), ē)
,

µR(N,E) =
T (Kn)∑

ē∈E DT ((N,E), ē)/|E|
.

(1.23)

In (1.23), δR(N,E) is the ratio between the total travel time of the ideal com-

pletely network and the travel time of the constructed network when the edge

whose failure most increases this total travel time fails, whereas µR(N,E) includes

in the denominator the average total travel time in case of failures. Note also that

maxē∈E DT ((N,E), ē) yields the edge that most affects the functioning of network

(N,E), called critical edge, in the event of a without-bridging disruption.

• Measures of passenger robustness against with-bridging disruptions:

δBR(N,E) =
T (Kn)

maxē∈E BDT ((N,E), ē)
,

µBR(N,E) =
T (Kn)∑

ē∈E BDT ((N,E), ē)/|E|
.

(1.24)
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The interpretations of δBR and µBR are similar to those of δR and µR. Again,

maxē∈E BDT ((N,E), ē) yields the critical edge of network (N,E) in the event of a

with-bridging disruption.

From now on, both δR and δBR may be called maximum measures, whereas µR and

µBR are mean measures . Following the traditional terminology in the robustness liter-

ature (Réka and Barabási (2002) ) the mean or µ measures refer to robustness against

random failures and the maximum or δ measures to robustness against intentional attacks.

Random failures and intentional attacks have been dealt with in Laporte et al. (2010) the

latter being treated as a non-cooperative game theory application.

The following theorem is a direct consequence of proposition 1.5 and of the definition

of our passenger robustness measures in (1.23) and (1.24). It states that these are scale-

invariant, monotone and their values lie in (0, 1].

Theorem 1.1 δR, µR, δBR and µBR satisfy the following properties: 1) scale-invariance,

2) monotonicity, and 3) membership in (0, 1].

These properties allow us to use our measures to compare the passenger robustness of

different networks.

Definition 1.6 Let (N,E) and (N ′, E ′) be two transportation networks. Network (N,E)

is more robust than network (N ′, E ′) against a without-bridging (respectively with-bridging)

interruption if δR(N,E) ≥ δR(N ′, E ′) (respectively δBR(N,E) ≥ δBR(N ′, E ′)). Alter-

natively the mean measures can be also used to compare networks.

1.4.2. Measures in operations

In De-Los-Santos et al. (2012), the previous model is extended introducing lines in

the infrastructure network, assuming their origins, itineraries, stops, destinations and

frequencies are fixed in periodic timetables.

The network representing the lines is non-connected, but adding pedestrian edges cor-

responding to transfers in the stations makes it connected. A route going from an origin

station to a destination station in the network can use edges of several lines as well as the

edges of the transfers.

The overall travel time is defined when a without-bridging (with-bridging) failure occurs

on edge ē ∈ E as the sum of DT ((N,E), ē) (BDT ((N,E), ē)), plus the new transfer times

at stations, which results in Transfer Disruption Time and Transfer Bridging Disruption

Time, respectively:
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TrDT ((∪N i, E ′), ē) = DT ((N,E), ē)

+
∑

i∈V

∑

j,k:i(lj),i(lk)∈N i

t(ei(lj , lk))(ē)fei(lj ,lk)(ē),

T rBDT ((∪N i, E ′), ē) = BDT ((N,E), ē)

+
∑

i∈N

∑

j,k:i(lj),i(lk)∈N i

t(ei(lj , lk))(ē)fei(lj ,lk)(ē).

(1.25)

where t(ei(lj, lk)) is the sum of the time needed to change platforms at (possibly) different

levels (from the stop of line lj to the stop of line lk), plus the average waiting time for

line lk and fei(lj ,lk)(ē) is the flow through edge ei(lj , lk) (which represents the platform

changes), if ē ∈ E fails. The detailed description appears in De-Los-Santos et al. (2012).

From these overall travel times in case of disruptions, the measures of the passenger

robustness of a network considering transfer times is defined, considering two types of

interruptions.

• Measures of passenger robustness against without-bridging interruptions:

δTrR(∪N i, E ′) =
T (Kn)

maxē∈E TrDT ((∪N i, E ′), ē)
,

µTrR(∪N i, E ′) =
T (Kn)∑

ē∈E TrDT ((∪N
i, E ′), ē)/|E|

.

(1.26)

• Measures of passenger robustness against with-bridging disruptions:

δTrBR(∪N i, E ′) =
T (Kn)

maxē∈E TrBDT ((∪N i, E ′), ē)
,

µTrBR(∪N i, E ′) =
T (Kn)∑

ē∈E TrBDT ((∪N
i, E ′), ē)/|E|

.

(1.27)

1.5. Transferability measures

First, we will summarize the paper Analyzing connectivity in collective transportation

line networks by means of hypergraphs. The European Physical Journal Special Topics,

215(1):93–108, 2013. by E. Barrena, A. De Los Santos, J.A. Mesa, F. Perea. as follows.

In Barrena et al. (2013) we have analyzed the performance of a Collective Transporta-

tion Line Network (CTLN) with respect to the number of transfers. For this purpose, we
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have represented the line network associated to a CTLN by means of hypergraphs and

their associated graphs.

Hypergraphs are the natural extension of graphs allowing edges (called hyperegdes)

with more than two elements. This fact enables to describe a CTLN in a simplified way,

representing each line as one hyperedge. Associated to a hypergraph, there exists two

well-known graph: the primal and the linear graph. In this work, we consider three dif-

ferent ways to describe a CTLN: using the hypergraph, the linear graph and the linear

multigraph (for more details, see Barrena et al. (2013)). On each structure, we have in-

troduced topological connectivity indicators, which give a measure of how easy or hard it

is to transfer from one line to another. Concretely, we have concentrated on the character-

istic path length, the clustering coefficient, the local efficiency and the global efficiency.

In order to define the clustering coefficient and the local and global efficiency on the

hypergraph, we have used the primal graph associated to a hypergraph.

In the next section the graphs and and the hypergraph associated to one CTLNs are

introduced.

1.5.1. Representations of CTLNs by means of graph and hypergraphs

Now, we present the formal description of all structures previously mentioned.

We assume the existence of a set of stations, N = {1, . . . , n} and a set of lines L =

{ℓ1, . . . , ℓ|L|} in the CTLN. Each line ℓ ∈ L is characterized by its set of nodes and

itinerary. In this way, a CTLN G, can be defined as G = (N,L). Associate to this CTLN,

we can define the following structures.

• Transit hypergraph

We call transit hypergraph to the hypergraph associated to G, which is defined as

H = (N(H), E(H)), where N(H) = {1, . . . , n} is the node set of G and the hyperedge

set E(H) = {ℓ1, . . . , ℓ|L|}, contains subsets of N(H), each of them representing the

set of stations that itinerary of each line contains.

• The linear graph and linear multigraph

The linear graph L(H) = (N(L(H)), E(L(H))) associated to hypergraph H is a graph

in which each hyperedge in H is a node in L(H) and, the edge set E(L(H)) is the

set of transfer edges connecting lines with intersections between them. This graph

is assumed to be simple and, therefore, two nodes may be connected at most by an

edge.
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To define the linear multigraph LM(H) , we take into account the number of inter-

section stations between two lines in H, and represent each intersection in LM(H) by

an edge. So, the linear multigraph is a graph described as L(H) in which multiples

edges are allowed.

1.5.2. Connectivity measures in L(H) and LM(H)

Over this level of abstraction, we will introduce the characteristic path length, the

clustering coefficient, the global and local efficiency that evaluate the connectivity of a

CTLN.

Characteristic path length

As mentioned in Section 1.2.5, this measure yields us the average distance between

nodes, which is computed taking into account the length of the shortest path over all

pairs of nodes. Therefore, according to the definition of L(H) or LM(H), this measure will

give information on the average number of transfers between lines of a CTLN G.

For the purpose, we consider the topological distance between each pair of nodes in the

linear graph. Recall that a node in L(H) is a line ℓ of G. Indeed, the topological distance

d
L(H)
pq between two lines ℓp and ℓq, is the number of edges contained in the shortest path

that connects such lines.

In order to clarify, the characteristic path length described in Section 1.2.5 on L(H) is

Definition 1.7 The characteristic path length of the linear graph L(H) with |N(L(H))| >

1 is defined as the average distance in L(H), i.e.,

L(L(H)) =
1

|N(L(H))|(|N(L(H))| − 1)

∑

p 6=q

dL(H)
pq .

Next proposition shows that L(L(H)) satisfies three desirable properties: scale-invariance

(trivially), belonging to a predefined range of variation and monotonicity.

Proposition 1.8 Consider a CTLN G, and let L(H) be its associated linear graph. Let

L(L(H)) be the characteristic path length of the linear graph. We have that:

1. 1 ≤ L(L(H)) ≤ |L| − 1. The nearer to 1, the more interconnected the lines are.

L(L(H)) = 1 means that for all pairs of lines of G there is a transfer station that

directly connects them. L(L(H)) = |L| − 1 can only be achieved when the G consists

of two lines that are connected (note that in this case |L| − 1 = 1).
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2. L(L(H)) is monotone decreasing in the sense that, if G ′ is obtained when adding a

new link to G connecting two lines, we have that L(L(H)′) ≤ L(L(H)), where L(H)′

is the linear graph of G ′. Moreover, L(L(H)′) < L(L(H)) if and only if the new link

connects two lines that were not directly connected in G.

Proof 1.9 See Barrena et al. (2012)

It can be observed that the characteristic path length on the linear multigraph LM(H)

holds the same properties than L(H).

Thank to these properties, the characteristic path length provides a valuable informa-

tion on CTLNs.

Clustering coefficient

The clustering coefficient defined in Section 1.2.5, can be extrapolated to CTLNs. In-

deed, the clustering coefficient C on L(H) provides information from a macroscopic point

of view on the number of transfers needed to travel between neighbors of a node when this

is deleted. Note that, at this level of abstraction, the stations of each line is not taken into

account. The number of possibilities to transfer is considered in the linear multigraph as

follows

Definition 1.10 Let LM
p (H) be the neighbor multigraph associated to p ∈ N(LM (H))

and let Umax be a threshold that represents the maximum number of transfer nodes that

can exist between two lines. If node p has kp neighbors, then LM
p (H) will have at most

Umax kp(kp−1)
2

multiedges. Cp(LM
p (H)) is the fraction of these edges that actually exist

and the clustering coefficient C(LM(H)) on the linear multigraph LM(H) is the average

of Cp(L
M
p (H)), calculated over all nodes:

C(LM(H)) =
1

|N(LM(H))|

∑

p∈N(LM(H))

Cp(L
M
p (H)),

where

Cp(L
M
p (H)) =

number of edges in LM
p (H)

Umaxkp(kp − 1)/2
.

Local and global efficiency

The global and local efficiency can be defined on the linear graph by means of Equa-

tions (1.9) and (1.11), respectively. These measures give information on how efficiently
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passengers can move from one line to another from a global and a local point of view,

respectively.

These measures satisfy several desirable properties that allow us to compare different

CTLNs. The following proposition collects such properties.

Proposition 1.11 Consider a CTLN G, and let L(H) be its associated linear graph.

We have that:

1
|L|−1

≤ Eglob(L(H)) ≤ 1. The nearer to 1, the more interconnected the lines are.

Eglob(L(H)) = 1 means that for all pairs of lines of G there is a transfer station that

directly connects them. Eglob(L(H)) = 1
|L|−1

if and only if |L| = 2.

1.2. Eglob(L(H)) is monotone non-decreasing in the sense that, if G ′ is obtained when

adding a new link that connects two lines in G, we have that Eglob(L(H)′) ≥ Eglob(L(H)),

where L(H)′ is the linear graph of G ′. Moreover, Eglob(L(H)′) > Eglob(L(H)) if and

only if the new link connects two lines that were not directly connected in G.

Proof 1.12 See Barrena et al. (2012)

It can be seen that the same properties for the global efficiency indicator hold for the

local efficiency indicator.

1.5.3. Connectivity measures in H

Now, we will describe the connectivity measures on the transit hypergraph H. On this

structure, the distance dHij on the elements of N(H) is the length of the shortest ordinary

(i, j)-chain. So, dHij is the minimum number of different lines one needs in order to travel

from station i to station j. According to this distance, the characteristic path length can

be analogously defined as in Section 1.2.5.

Characteristic path length

Over this level of abstraction, the characteristic path length of a CTLN provides an

average measure of how easy/hard it is to transfer between stations.

Similarly to the characteristic path length on the linear graph, this measure satisfies on

the transit hypergraph the following properties:

Proposition 1.13 Consider a CTLN G, and let H be its associated transit hypergraph.

We have that the characteristic path length on H satisfies the following two properties:
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1. 1 ≤ L(H) ≤ 1
3
(|L|+ 2).

2. Let G ′ be a CTLN obtained when adding one new link joining two lines of G, and

let H′ be the associated hypergraph. Then L(H) ≥ L(H′).

Proof 1.14 See Barrena et al. (2012)

Clustering coefficient

The clustering coefficient over this level of abstraction, evaluates the level of connectivity

between stations. The local clustering coefficient for hypergraphs can be expressed as

the natural extension of C in graphs, considering hyperedges instead of edges. A major

drawback of this definition is that the connectivity is analyzed according to the number of

hyperedges but not regarding to the number of stations. Due to this fact, we will study the

clustering coefficient on the associated primal graph but using hypergraph terminology in

order to simplify the calculations.

The primal graph associated to a hypergraph is defined as follows

Definition 1.15 For a hypergraph H and a set X ⊆ N(H), the subhypergraph induced

by X is the hypergraph H [X ] = (X, {e ∩X : e ∈ E(H)}).

The primal graph, also called the Gaifman and dual graph (see Dechter and Pearl

(1989)) of a hypergraph is the graph with the same nodes as the hypergraph, and edges

between all pairs of nodes contained in the same hyperedge.

To obtain the clustering coefficient in the primal graph requires a high computational

effort, mainly due to the high number of edges in this graph. Barrena et al. (2013)

propose a different methodology to calculate the clustering coefficient based on hypergraph

properties.

Local and global efficiency

We now introduce the efficiency indicators for the transit hypergraph H. The global

efficiency and the local efficiency will give information on how efficiently passengers can

move between stations. In this case, the definition of local and global efficiency is described

using the distance dHij . These measures satisfy desirable properties that allow to evaluate

and to compare different networks (see Barrena et al. (2013)).
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1.5.4. Passenger-oriented transferability measures

Now, we summarize the work titled Transferability of collective transportation line net-

works from a topological and passenger demand perspective. E. Barrena, A. De Los San-

tos, G. Laporte, J.A. Mesa recently submitted.

We have concentrated on the passenger system level and data related to travel patterns

are needed. We are interested in analyzing the performance of a CTLN with respect to

the number of transfers carried out by all passengers traveling in the network.

We assume the following hypotheses:

• Passengers use their shortest paths.

• There is no capacity on stations (stops), nor on lines or edges.

• There is no other means of transportation competing with that of the CTLN, there-

fore demand is fixed.

• The number of passengers wishing to use of the CLTN is greater than one for each

pair of different nodes.

• All transfers are considered similar.

For the purpose, we consider the passenger demand between stations, as well as between

the lines of the network by means of origin-destination matrices. We assume the number

of passengers traveling in the CTLN is known. Concretely, let gij be the expected number

of passengers travelling from station i ∈ N to station j ∈ N and ḡpq be the number of

passengers traveling from line ℓp to ℓq. It can be observed that ḡpq can be computed

by means of the number of trips between stations. We assume that gij ≥ 1, for all

i 6= j, i, j ∈ N , and, therefore, ḡpq ≥ 1. Let g be the total demand expressed as the sum of

all demands gij, i, j ∈ N and let gL be defined as the sum of all demands ḡpq, p 6= q. Note

that the total demand g can also be defined by means of linear graphs, i.e., g = gL+
∑

p ḡpp,

where ḡpp represents the number of passengers travelling within ℓp.

In the following section we will show the passenger-oriented transferability measures on

hypergraph, linear graph and linear multigraph.

1.5.5. Passenger-oriented measures in L(H) and LM(H)

Over this level of abstraction, we will introduce the characteristic path length, the

clustering coefficient, the local efficiency and the global efficiency that evaluate the trans-

ferability of a CTLN considering passenger demand.
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Characteristic path length

In this section we define the characteristic path length incorporating passenger demand.

Over this level, this measure gives information on how the number of transfers affects the

passengers. The following definition is the natural extension of the L(L(H)).

Definition 1.16 We define the characteristic path passenger-oriented length of the linear

graph L(H) with |N(L(H))| > 1 as the average passenger-oriented distance in L(H), i.e.,

LPO(L(H)) =
∑

p 6=q

d
L(H)
pq ḡpq
gL

,

where ḡpq/g
L is the proportion of passengers transferring from line ℓp to line ℓq over all

passengers who transfer.

The next lemma proves that the characteristic path flow-weighted length above defined,

is a natural extension of L(L(H)) defined in Barrena et al. (2013).

Lemma 1.17 LPO(L(H)) is an extension of L(L(H)), which obtains proportional results

if the number of passengers between each pair of lines ℓp, ℓq, p 6= q, is the same, that is,

all the elements ḡpq, p 6= q are the same.

This definition satisfy three interesting properties: invariance to scale changes, staying

within a predefined range of variation and monotonicity. Similar definitions and properties

hold for the linear multigraph LM(H).

Clustering passenger-oriented coefficient

The clustering coefficient in L(H) measures the number of transfers needed to travel

between neighbors of a line when this is deleted, taking into account the number of pas-

sengers travelling between lines. Next definition is an extension of the classical clustering

coefficient for graphs.

Definition 1.18 Let G be a CTLN and let L(H) be its associated linear graph. We

consider the passenger-oriented clustering coefficient CPO on the linear graph L(H) as an

extension considering demand of the clustering coefficient presented in Watts and Strogatz

(1998). Therefore, for each node p ∈ N(L(H)), the subgraph Lp(H) formed by all first

neighbors of p is considered. In this subgraph, node p and all edges incidents to p are

eliminated. If node p has kp neighbors, then Lp(H) will have kp nodes and at most kp(kp−
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1)/2 edges. CPO(Lp(H)) is the fraction of these edges that actually exist and CPO(L(H))

is the average of CPO(Lp(H)), calculated over all nodes:

CPO(L(H)) =
1∑

p∈N(L(H)) gp

∑

p∈N(L(H))

CPO(Lp(H)),

where

CPO(Lp(H)) =
number of edges in Lp(H)

kp(kp − 1)/2
gp,

where gp the total number of passengers traversing line Lp. Note that CPO(L(H)) ∈ [0, 1].

We consider that if |Lp(H)| = 1, then CPO(Lp(H)) = 0.

The clustering coefficient on the linear multigraph, in which the number of intersection

nodes, that is, the number of possibilities to transfer between lines is taken into account,

is defined as follows.

Definition 1.19 Let LM
p (H) be the neighbor multigraph associated to p ∈ N(LM(H))

and Umax a threshold that represents the maximum number of transfer nodes that can

exist between two lines. If node p has kp neighbors, then LM
p (H) will have at most

Umax(kp(kp − 1))/2 multiedges. C
M

PO(L
M
p (H)) is the fraction of these edges that actually

exist and the passenger-oriented clustering coefficient CM
PO(L

M(H)) on the linear multi-

graph LM(H) is the average of C
M

PO(L
M
p (H)), calculated over all nodes:

CM
PO(L

M(H)) =
1∑

p∈N(LM(H)) gp

∑

p∈N(LM(H))

C
M

PO(L
M
p (H)),

where

C
M

PO(L
M
p (H)) =

number of edges in LM
p (H)

Umaxkp(kp − 1)/2
gp.

Note that CM
PO(L

M(H)) ∈ [0, 1].

Passenger-oriented local and global efficiency

Now, we will introduce the demand pattern on the global and local efficiency. These

measures will give information on how efficiently passengers can move between stations.

All measures here defined, satisfy three interesting properties: invariance to scale changes,

staying within a predefined range of variation and monotonicity. We will define the global

and local efficiency on L(H), but these concepts are also applicable on LM(H).
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Definition 1.20 We define the passenger oriented global efficiency indicator of the linear

graph L(H) as the average of the inverse of the passenger-oriented distances in L(H), that

is,

EPO
glob(L(H)) =

∑

p 6=q

ḡpq

gLd
L(H)
pq

,

where ḡpq/g
L is the proportion of passengers transferring from line ℓp to line ℓq over all

passengers who transfer.

Definition 1.21 We define the passenger-oriented local efficiency indicator of the linear

graph L(H) as the average passenger oriented global efficiency of the subgraph Lp(H) =

(Np, Ep), formed by all first neighbors of ℓp in L(H), where Np = N(Lp(H)) and Ep =

E(Lp(H)). Mathematically,

EPO
loc (L(H)) =

1∑
p∈N gp

∑

p∈N

EPO
glob(Lp(H))gp,

where gp is the number of passengers traveling within line ℓp.

1.5.6. Passenger-oriented measures in H

In this section we will introduce the characteristic path length, the clustering coefficient,

the local efficiency and the global efficiency that evaluate the transferability of a CTLN

considering passenger demand. Over this level we will have into account the passengers

traveling between stations and not between lines.

Characteristic path passenger-oriented length

The characteristic path length on the hypergraph gives information on the average

number of transfers of all passengers in a CTLN.

Definition 1.22 We define the characteristic path passenger-oriented length of the transit

hypergraph H, with |N(H)| > 1, as the average passenger-oriented distance in H, i.e.,

LPO(H) =
∑

i 6=j

dHij
gij
g
.

It can be seen that two different line configuration associated to a same CTLN, will have

different LPO(H). Note that now the importance of an edge is also given by the number of

passengers crossing such edge. This measure is also an interesting objective in the design
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of lines of a CTLN. So, if we consider the problem of designing a line network minimizing

the characteristic path length, its solutions will tend to have better connections between

lines with more passengers traveling between them. As in LPO(H), the characteristic path

passenger-oriented length on H is a natural extension of L(H) defined in Barrena et al.

(2013) and it satisfies analogous properties.

Clustering passenger-oriented coefficient

As in Barrena et al. (2013), we will refer to the primal graph of a hypergraph to de-

fine the clustering coefficient on hypergraphs and all calculations will be based on the

terminology of hypergraphs.

Definition 1.23 Let GH be primal graph associated to H and and GHi
be the subgraph

formed by all first neighbors of i. The passenger-oriented clustering coefficient of GH is

defined as follows:

CPO(GH) =
1∑

i∈N(GH)
g̃i

∑

i∈N(GH)

CPO(GHi
),

where

CPO(GHi
) =

number of edges in GHi

ki(ki − 1)/2
g̃i,

ki being the number of nodes of GHi
and g̃i the number of passengers traversing station i.

Note that CPO(GH) ∈ [0, 1].

The passenger-oriented clustering coefficient on the primal graphGH is a natural extension

of C(GH) defined in Barrena et al. (2013).

Passenger-oriented local and global efficiency

The passenger-oriented local and global efficiency on the hypergraph H measure how the

passenger are communicated between the first neighbors of a station when it is eliminated.

Definition 1.24 Let GH be primal graph associated to H and and GHi
be the subgraph

formed by all first neighbors of i. We define the passenger-oriented global efficiency indi-

cator of GH as the average of the inverse of the passenger-oriented distances in H, that

is,

EPO
glob(GH) =

∑

i 6=j

gij
g dHij

,
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where gij/g is the proportion of passengers travelling from line i to line j over all pas-

sengers who travel.

Definition 1.25 Let GH be primal graph associated to H and GHi
be the subgraph formed

by all first neighbors of i. We define the passenger-oriented local efficiency indicator of H

as the average passenger-oriented global efficiency of the subgraph GHi
, as

EPO
loc (GH) =

1∑
i∈N(H) g̃i

∑

i∈N(H)

EPO
glob(H) g̃i,

g̃i the number of passengers traversing station i.

1.6. Conclusions

In this chapter we have reviewed the existing literature on the rapid transit network

design measures. We have represented a transportation network by means of Graph and

Hypergraph theory. We have described measures found on transportation network in

the topological context, measures in operations and with demand patterns as well as

transferability measures. On these measures, we have analyzed properties and we have

included some extensions.
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Chapter 2

Modelling the rapid transit network design

problem

2.1. Introduction

In recent years, much effort has been devoted to the construction, improvement or

extension of rapid transit networks. This phenomenon is motivated by the increase in

travel demand, traffic congestion, the growing length of trips and by the necessity of

reducing energy consumption and pollution (Gendreau et al. (1995)). It is important to

pay special attention to the investment needed in the building process of new networks

or new lines due to their very high cost and because these infrastructures cannot easily

be modified within a short time horizon.

Due to its complexity, the railway planning process has traditionally been decomposed

into a succession of stages, namely, network design, line design, timetabling, rolling stock,

and personnel planning (Guihaire and Hao (2008)). In this chapter we will focus on

rapid transit network design, line planning and rolling stock. The main novelty of this

chapter is the consideration of a general model that contains as particular cases, all

models treated in the literature related with this problem. Another important aspect

is the integration of the strategic and tactical phases into an optimization model that

determines the location of stations and their connections, a set of lines, each one formed

by two different terminal stations and a sequence of intermediate stations (an itinerary),

the frequency of each line and the capacity of vehicles. Moreover, several aspects related
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to rolling stock and personnel planning as well as a long term public economic support

for a network profitable operation are also considered as key factors in the network design

problem. From now on, we will call to the network that is being designed the rapid transit

system (RTS). In order to model the problem realistically, it is appropriate to assume

that there exists a different mode of transportation competing with the RTS (e.g. private

car, bus, bicycle) which we will call the alternative mode (ALT). Note that, although we

have only considered one mode of transport, this aspect can be easily extended to the

case of several competing transportation modes. We assume the trains used to operate a

determined line are identical, that is, all trains employed for a line carry the same number

of vehicles. Without loss of generality, we suppose a train is formed by a locomotive and

several passenger carriages. The number of trains needed for each line is determined by

their frequency and cycle time (for more details, see Section 2.3.3).

The main input data that we are considering are the underlying network, that is, the

potential location for the stations and their connections, the distance matrix between

pairs of stations of the underlying network, the travel patterns and the building, capacity

and operational related costs.

The remainder of this chapter is structured as follows. In order to properly describe

the main characteristics of the models in the literature, we need some notation valid for

all models (see Appendix A). In Section 5.2.2 we introduce the variables needed in order

to formulate the problem and discuss the different considered objectives. Section 2.3

presents a general model for the rapid transit network design problem. In Section 2.4 we

review the literature related to rapid transit network design. Finally, this chapter ends

with a summary table containing the main characteristics of each paper analyzed earlier,

and with some conclusions.

2.2. Objectives

In this section we discuss different objective functions that can be found in the litera-

ture related to the rapid transit network design problem and line planning problem. The

general objective in any transport system is to improve the population mobility by pro-

viding shorter travel times (Gendreau et al. (1995)). However, different perspectives are

taken into account in the transportation network design and line planning. Vuchic (2005),

Ceder (2007), Van Nes (2002) and Van Nes and Bovy (2000) state that the objectives for

the transportation network design and line planning can be classified into three categories

depending on the point of view that is considered. From the passenger’s perspective the
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main characteristics that any transportation network must have in order to be attractive

are the service offered, spending as little time as possible to reach the destination, direct

connections, and the price of the service. Moreover, the operator wants to minimize costs

and maximize revenues and, at the same time, provide a good service level to attract pas-

sengers. The community is the third point of view. It wants to find a service of quality

for the traveler in order to improve the population’s mobility. Moreover, an equilibrium

between the preferences of the passengers and those of the operators is implicity contem-

plated. Therefore, the objectives for the transport network design are classified into three

perspectives: community, passengers and operator, which we describe below.

The following criteria can be classified into the preferences of the community:

• Area coverage

The area coverage (Vuchic (2005)) is defined by computing population of the served

area as a percentage of the total urban area population. In Guihaire and Hao (2008),

the area coverage is defined as the percentage of the estimated demand that can be

served by the rapid transit.

• Trip coverage

The number of passengers using the transportation system being build is a common

objective in the network design and line planning. This number is usually estimated

according to OD matrices and travel patterns.

• Social welfare

The concept of social welfare is defined as the sum of consumer surplus and producer

surplus (see Van Nes (2002)) . In Jansson (1996) consumer surplus are the benefits

of all travellers who use the public transport since that the travel time is lower

than their maximum acceptable travel time. The producer surplus is equivalent to

profit. Note that the component expressing the preferences of the passengers is the

consumer surplus and the preferences of the operator is the producer surplus. The

consumer surplus incorporates the sensitivity of the demand to changes in the given

network. So, the level of demand will depend on the quality of the services offered:

travel times, comfort, transfers, etc.

• Service quality/passenger attraction

A common characteristic between service requirements of passengers and operator

is to provide a service of high quality in order to attract as many passengers as
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possible, representing enough mobility capacity and reducing the traffic congestion

(see Gendreau et al. (1995)).

• System cost

The total cost of the system is defined by means of the investments, building and

operating costs (Gendreau et al. (1995), Van Nes (2002), Gallo et al. (2011)).

In order to guarantee a good service quality, passengers prefer the following character-

istics:

• Short travel time

The travel time can be broken down into the access time from the origin to the

station and into the station, waiting time to take first train in the origin station,

riding time, transfer time between platforms and the time to get the destination

since alighting the train. This factor is very important to attract passengers since

time has a direct influence on modal split.

• Low number of transfers/direct trips

The number of transfers is also a criterion for the passengers. Users do not like

transfers in order to get to the destination station. In general, a passenger uses

rapid transit system if no more than two transfers are required (see Guan et al.

(2006)). Travelers prefer direct connections in order to complete their trip.

• Good service frequency

High frequency is a very important aspect for passengers; a slow service frequency

implies long waiting times (see Gendreau et al. (1995)).

• Reasonable fares

Travel costs represent a composite measure of different factors such as travel time,

monetary cost and comfort. Transit passengers accept fares depending on the offered

service.

From the operator’s point of view the system designed must operate efficiently, both at

the economical and technical levels. Thereby, the operator considers several factors, some

of which are contrary to the preferences of the passengers. The following characteristics

can be stated as the operator’s point of view:
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• Investment costs

Investment costs are the costs of building the physical network. It depends on the

total length as well as the characteristics of the network (see Van Nes (2002), Vuchic

(2005)).

• Operating costs

Operating costs are usually expressed defining two type of costs: fixed and variable

costs (see Van Nes (2002), Vuchic (2005)). The fixed operating cost includes costs

such as maintenance cost and overheads. The variable cost includes rolling stock

operation and personnel costs.

• Fleet acquisition cost

It represents the investment cost of the rolling stock.

• Revenues

The revenue for a rapid transit system is determined by the fares paid by the travel-

ers. It can be observed that if the fare is the same for all passengers independently

of the length of their trips, this objective is proportional to the passenger attraction.

By contrast, if the fare depends on the distance, the revenue is oriented towards the

operator.

• Profit

The net profit of the rapid transit network is expressed as the difference between

revenue and total cost in terms of monetary units (see Li et al. (2011b)). From

the point of view of operators, the total revenue is the income derived from the

passengers who use the rapid transit system.

Note that the classification here presented is not strict. In fact, some objectives can

be included into several perspectives at the same time and, therefore, depending on the

author’s point of view the classification can be different.

2.3. A mathematical programming model

We present a mathematical model that generalizes all models already considered in

the literature. In the review we have focused on papers that deal with the rapid transit

network design general problem.
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As mentioned, the main innovative point of our model with respect to current litera-

ture is the simultaneous treatment of network design, line planning and fleet acquisition

problems. Moreover, line frequency and capacity are also considered, as well as several

aspects related to rolling stock and personnel planning.

Our general network design model also includes passenger transfers between the lines,

flow conservation, an upper bound on costs, as well as location and allocation constraints,

and a competing mode. As stated in the introduction, it is assumed that the mobility

patterns are known but the demand captured by the RTS may vary according to the

offered service (Kepaptsoglou and Karlaftis (2009), Ranjbari et al. (2011)). The main

input data are the underlying network, that is, the potential location for the stations and

their connections, the distance matrix between pairs of stations of the underlying network,

the travel patterns as well as train capacities, building costs and operational related costs.

We describe the infrastructure network by means of graphs, where stations are nodes

and the links between stations are edges. The model uses the notation introduced in

Section 5.2.1 and the variables defined in Section 5.2.2. The objective function considered

in the model is a general function that combines all perspectives defined above.

2.3.1. Data and notation

We assume the existence of a set N = {1, . . . , n} of nodes representing potential sites

for locating stations and a set A ⊆ N × N of potential arcs. Each arc between two

potential stations i and j will be represented by a = (i, j). Let E = {{i, j} : i, j ∈

N, i < j, (i, j) or (j, i) ∈ A} be a set of edges linking the elements of N (potential rail

stretches or sections). Let GE = G(N,E) be the graph which represents the underlying

network (from which sections and stations of lines are to be selected). For each node

i, N(i) = {j ∈ N : {i, j} ∈ E} denotes the set of adjacent nodes to i. Let dij = dji

be the length of edge {i, j} ∈ E. The parameter dij can also represent the time as well

as the generalized cost needed to traverse edge {i, j}. Times can be transformed into

distances by using the parameter λ, which represents the average distance traveled by a

train in a hour (commercial speed). The undirected graph GE′ = G(N,E ′), represents

the competing (private car, bus, etc.) mode network. The nodes are assumed to coincide

with those of the rapid transit mode: they could represent origin or destination of the

aggregated demands; however, edges are possibly different. Let d′ij be the traversing time

of edge {i, j} ∈ E ′ by the competing mode. Therefore, the whole network is a graph

G = G(N,A′), where A′ = E ∪E ′. In this work we assume all travels are concentrated at

stations of the system, that is, the centroid of each transportation area is assumed to be
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a station. So, the travel time between census tracts and stations is not considered at the

estimation of total travel time of each trip. This aspect can be easily considered by nodes

representing transportation areas and defining new edges connecting these nodes among

them and with those in N , with the corresponding lengths (times to traverse, generalized

cost). Let W = {w1, . . . , w|W |} ⊆ N × N be the set of ordered origin-destination (OD)

pairs, w = (ws, wt). For each OD pair w ∈ W , let gw be the expected number of passengers

per hour for an average day and uALT
w be the travel time of OD pair using the alternative

mode.

The stations are connected by lines ℓ, each of them is characterized by two different

terminal stations (initial and final stations), the intermediate stops, the frequency and

the capacity of each train (number of carriages). In graph terminology, a line is defined as

an elementary and simple path, that is, it is a path (a sequence of edges which connects

a sequence of vertices) in which all edges and all nodes are different (except if the line is

a circular line, at whose case the initial and final station are equals). The set of lines is

denoted by L. Note that L is not defined a priori, i.e., we do not use a line pool as input

for our model, but assume that the number of lines is limited. A lower and upper bound,

ℓmin and ℓmax on the length of each line, are considered. Moreover, a maximum number

γ of lines can traverse the same edge. Let ψmin and ψmax be the minimum and maximum

frequency of a line (number of services per hour). The cost structure is as follows.

• Building costs

In order to describe this cost, we introduce two parameters cij and ci, representing

the cost of constructing and edge {i, j} ∈ E and a node i, respectively. As is usual

in the network design, there exists an upper bound Cmax on the total construction

of the RTS. All these parameters are expressed on the same time period.

• Operating cost

This term is defined by means of two different costs: the fixed and variable costs.

The fixed costs includes maintenance and overheads of rails and stations. Let OSCi

be the operating station cost for each station i and ORCij be the operating rail cost

for each edge {i, j}. These two parameters are expressed in terms of of monetary

unit per year.

Concerning variable cost, we introduce rolling stock operation and personnel costs.

We assume a train is composed by one or several locomotives and a determined

number of carriages. Therefore, the rolling stock operation cost is defined by the

cost for operating one locomotive per unit of length cloc and the cost representing
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operating cost of one carriage ccarr per length unit. Both parameters take into

account running costs such as fuel or energy consumption. With respect to the

personnel costs, a cost ccrew per train and year is given.

• Rolling stock acquisition

As mentioned, we assume a train is composed by a locomotive and several carriages.

So, the rolling stock acquisition is determined by the acquisition of locomotives and

carriages. Denote Iloc be the purchase price of the necessary locomotives per train

and Icarr be the purchase price of one carriage.

We introduce two conversion factors which play the role of homogenizing the different

terms that appear in the total cost. Concretely, let ρ be the total number of hours that

a train is operating per year and ρ̂ be the horizon of years to recover the total building

cost and the rolling stock acquisition cost.

According to capacity, let Θ be the capacity of a carriage measured in number of

passengers. Let δmin and δmax be two parameters representing the minimum and maximum

number of carriages that can be included in a train, respectively. The capacity associated

to a train can be defined by the capacity of a carriage (Θ) and the number of carriages

forming the train. In other words, this term represents the maximum number of passengers

that it can transport at any given time.

2.3.2. Variables

We require the following variables to formulate the problem:

• yℓi =

{
1, if node i is selected to be a station of line ℓ ∈ L

0, otherwise.

• yi =

{
1, if node i is selected to be a station in the RTS

0, otherwise.

• xℓij =

{
1, if edge {i, j} ∈ E belongs to line ℓ ∈ L

0, otherwise.

• xij=

{
1, if edge {i, j} ∈ E is included in the RTS

0, otherwise.

• hℓ=

{
1, if line ℓ ∈ L is included

0, otherwise.
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• fwℓ
ij ∈ [0, 1] is the proportion of demand of w that traverses arc (i, j) ∈ A using line

ℓ.

• fwℓℓ′

i ∈ [0, 1] denotes the proportion of demand of w that transfers in station i from

line ℓ to line ℓ′.

• f̄RTS
w ∈ [0, 1] represents the proportion of demand of w using the RTS.

• fRTS
w ∈ [0, 1] denotes the maximum proportion of demand of w that uses the RTS.

• fALT
w ∈ [0, 1] denotes the proportion of demand of w that uses the alternative mode.

• The integer variable δℓ ∈ {δmin, . . . , δmax} represents the number of carriages used

by trains of line ℓ. Without loss of generality we assume all services of a line use

the same composition.

• The integer variable ψℓ ∈ {ψmin, . . . , ψmax} denotes the frequency of line ℓ.

• uw > 0 is the travel time of pair w using the RTS.

• bℓw is the number of passengers that directly travel from ws to wt at line ℓ.

2.3.3. Objective functions

In this section we formulate different objective functions that can be taken into ac-

count when designing a network. As already mentioned, depending on the considered

perspective, objective as well as constraints can be different. Most models consider two

different perspectives: those of the passenger and the operator. Concretely, if the model

is geared towards passengers, that is, the objective function is based on preferences of

the users, cost constraints appear in the mathematical formulation of the problem. In

contrast, if the model is geared towards the operator (the objective function describes

the perspectives of operator), the corresponding constraints ensure a minimum level of

service quality.

As mentioned in Section 2.1, we consider the existence of public economic support for

the building and operation of the RTS during certain planning horizon. This assumption is

very common in the development of railway networks around the world. Usually, govern-

ments provide subsidies on the basis of the number of passengers or passenger-kilometer

in order to guarantee certain positive margin to companies exploiting the transportation

system. In this work we will consider a parameter τ defining the economic support per

passenger.
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We start by describing different objectives using the notation defined in Section 5.2.1

and then we formulate a general objective function combining all perspectives. First of all,

the perspective of the community can be represented by means of the following objectives:

• Trip coverage

Trip coverage is defined as the number of passengers who uses the RTS, and it is

mathematically expressed as

zTrC =
∑

w∈W

gwf̄
RTS
w . (2.1)

• System travel time

The traveling time is a decisive factor to predict whether a passenger will take the

RTS or the alternative transport. The traveling time of a passenger in the RTS is

composed of the in-vehicle time (time of a passenger by train between his origin

and his destination), the average waiting time to take the train in the origin station

and an estimation time for each transfer. As in Garćıa-Ródenas et al. (2006), the

transfer time is the sum of two terms: the time spent between platforms uci, and

the average waiting time for taking the next train of the line to transfer. Last term

can be calculated as one, divided by twice the frequency of the line to transfer. The

average travel time of OD pair w using the RTS can be explicitly defined as follows:

uw = {(60/λ)
∑

ℓ∈L

∑

{i,j}∈E

fwℓ
ij dij +

∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

i∈ℓ∩ℓ′

fwℓℓ′

i (uci +
60

2ψℓ′
)

+
∑

ℓ∈L

∑

j∈N(ws)

60fwℓ
wsj

2ψℓ
}/f̄RTS

w , w = (ws, wt) ∈ W.
(2.2)

The first term in (2.2) is the in-vehicle time. The second one represents the time

spent in transfers, which is defined as half the time between services in the line

to transfer, plus the average time uci between platforms at each station i. Last

term denotes the waiting time at the origin station, which is defined as half of time

between services of this line.

With these considerations, the average travel time for the passengers who use the

RTS system can be defined as

zRTT =
∑

w∈W

gwuwf̄
RTS
w . (2.3)
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The travel time for all passengers who use the alternative transport is expressed as

zATT =
∑

w∈W

d′wgw(1− f̄RTS
w ). (2.4)

Therefore, the total travel time zSTT in the system is computed as the sum of (2.3)

and (2.4).

• System cost

The total cost zSC can be defined by means of the building cost zBC , the operating

cost zOC and the fleet acquisition cost zFAC (Figure 2.3.3). The construction cost

zBC represents costs related to the infrastructure costs and is expressed in monetary

units

zBC =
∑

{i,j}∈E

cijxij +
∑

i∈N

ciyi. (2.5)

Figure 2.1.: Cost structure.

The operating cost zOC of a RTS is the sum of a fixed cost zFOC and a variable

cost zV OC . In accordance to (Claessens et al. (1998), Goossens et al. (2006)) fixed

operating cost includes maintenance costs and overheads. More precisely, the fixed
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operating cost zFOC over the planning horizon is the sum of the operating station

cost OSCi for each station i and operating rail cost ORCij for each edge {i, j}. It

can be expressed as

zFOC = ρ̂
∑

{i,j}∈E

ORCij · xij + ρ̂
∑

i∈N

OSCi · yi. (2.6)

The variable operating cost zV OC over the planning horizon is the sum of the crew

operating cost zCrOC and of the rolling stock cost zRSOC . The crew operating cost

zCrOC is the personnel costs due to the operation of all trains in the time horizon

ρ̂. Thus, this cost is affected by the required fleet size. At this point, the length of

each line ℓ, length(ℓ), is unknown and can be expressed as a function of the length

of segments that will finally be included to define ℓ, taking into account variables

xℓij . We denote by νℓ the cycle time of line ℓ, that is, the time necessary for a

train to go from the initial station to the final station of line ℓ and returning back

(Goossens et al. (2004)). Denoting by length(ℓ) =
∑

{i,j}∈ℓ dijx
ℓ
ij the length of line

ℓ, νℓ = 2 · length(ℓ)/λ. Without of generality, we do not consider additional reserve

trains and, therefore, the required fleet for each line ℓ is the product of its frequency

times its cycle time νℓ as

Bℓ = ⌈ψℓνℓ⌉ = ⌈ψℓ · 2|ℓ|/λ⌉.

The crew operating cost in the stated time horizon is

zCrOC = ρ̂ · ccrew
∑

ℓ∈L

Bℓ. (2.7)

The rolling stock operating cost of a train in one hour is a linear function of the

number of carriages (Garćıa and Mart́ın (2012)). Thus, the rolling stock operating

cost zRSOC in the whole planning horizon is

zRSOC = ρρ̂
∑

ℓ∈L

Bℓ · λ(cloc + δℓ · ccarr). (2.8)

Finally, the variable operating cost is

zOC = zFOC + zV OC = zFOC + zCrOC + zRSOC .

The fleet acquisition cost for each train is the cost of purchasing the locomotives

46



2.3. A mathematical programming model

and carriages as follows:

zFAC =
∑

ℓ∈L

Bℓ(Iloc + Icarr · δℓ). (2.9)

We can formulate the perspective’s community (zPC) by combining the objectives above:

zPC = ξc1 · zTrC + ξc2 · zSTT + ξc3 · zSC , (2.10)

where ξc1, ξ
c
2, ξ

c
3 ∈ IR, which allows to the objective function to be homogenized. Con-

cretely, these parameters allow us express all terms of (2.10) at same unit. For instance,

Gallo et al. (2011) introduced several parameters representing the perceived value of time

in order to transform the objective function into monetary terms.

Secondly, we will consider the point of view of passengers by considering the following

terms:

• The total travel time

(see zSTT )

• Direct trip

The number of direct trips is measured by the following expression:

zDT =
∑

ℓ∈L

∑

w∈W

bℓw, (2.11)

where bℓw is a variable explicitly defined as

bℓw =
∑

ws∈ℓ

∑

wt∈ℓ,ws 6=wt

f̄RTS
w gw.

A drawback of this objective is that it may yield a network with few transfers but

with long travel times when it is used alone.

If we can compute other aspects zothers such as security, comfort, fares, etc, the objective

function that generalizes the preferences of the users is the following:

zPP = ξp1zSTT + ξp2zDT + ξp3zothers, (2.12)

where ξp1 , ξ
p
2, ξ

p
3 ∈ IR, which allows to the objective function to be homogenized.
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Finally, we consider the perspectives’s operator. The main objective for the operator is

the net profit of the public network (Li et al. (2011b)). This profit is expressed as the dif-

ference between revenue and total cost in terms of monetary units over a planning horizon.

From the point of view of operators, the total revenue for the ρ̂ years is computed as the

number of passengers who use the PTN during the planning horizon, times the passenger

fare η, plus the passenger subsidy, which is the same for all passengers independently of

the length of their trips. So, the revenue is mathematically expressed as

zREV = (η + τ)ρρ̂
∑

w∈W

gwf̄
RTS
w . (2.13)

Specifically, the net profit is computed as the difference between the revenue and the

system cost.

zNET = zREV − zSC . (2.14)

We are now able to describe a general objective function which generalize all perspectives.

Table 2.2 shows the different terms which appears at each perspective definition and

Table 2.1 presents some of possible combination of terms that can appear at each per-

spective.

objective perspective zTrC zBC zOC zFAC zRTT zATT zDT zothers zREV

z1

Community X

Passenger X

Operator X X X X

z2

Community X

Passenger X

Operator X X X X

z3

Community X X X

Passenger X

Operator X

z4

Community X

Passenger X

Operator X X X

z5

Community X X

Passenger X

Operator X X X

Table 2.1.: Possible combinations of terms to define objective functions.
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zTrC zBC zOC zFAC zSTT zDT zothers zREV

Community X X X X X

Passenger X X X

Operator X X X X

Table 2.2.: Terms at each perspective.

2.3.4. Constraints

We will group the constraints according to their aims as follows.

• Budget constraints

∑

{i,j}∈E

cijxij +
∑

i∈N

ciyi ≤ Cmax. (2.15)

• Design constraints

xℓij ≤ yℓi , {i, j} ∈ E, i < j, ℓ ∈ L (2.16)

xℓij ≤ yℓj, {i, j} ∈ E, i < j, ℓ ∈ L (2.17)

xℓij = xℓji, {i, j} ∈ E, i < j, ℓ ∈ L (2.18)

yi ≤
∑

ℓ∈L

yℓi , i ∈ N (2.19)

yℓi ≤ yi, i ∈ N, ℓ ∈ L (2.20)

xij ≤
∑

ℓ∈L

xℓij , {i, j} ∈ E, i < j (2.21)

∑

ℓ∈L

xℓij ≤ γxij , {i, j} ∈ E, i < j (2.22)

∑

j∈N(i)

xℓij ≤ 2, i ∈ N, ℓ ∈ L (2.23)

hℓ +
∑

{i,j}∈E

xℓij =
∑

i∈N

yℓi , ℓ ∈ L (2.24)

∑

i∈B

∑

j∈B

xℓij ≤ |B| − 1, B ⊆ N, |B| ≥ 2, ℓ ∈ L (2.25)

ℓminhℓ ≤ length(ℓ) ≤ ℓmaxhℓ, ℓ ∈ L. (2.26)
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• Demand conservation constraints

∑

ℓ∈L

∑

j∈N(ws)

fwℓ
wsj = f̄RTS

w , w = (ws, wt) ∈ W (2.27)

∑

ℓ∈L

∑

i∈N(wt)

fwℓ
iwt

= f̄RTS
w , w = (ws, wt) ∈ W (2.28)

∑

i∈N(k)

fwℓ
ik −

∑

ℓ′∈L\{ℓ}

fwℓℓ′

k +
∑

ℓ′∈L\{ℓ}

fwℓ′ℓ
k −

∑

j∈N(k)

fwℓ
kj = 0, (2.29)

ℓ ∈ L, w = (ws, wt) ∈ W, k 6= {ws, wt}, k ∈ N.

• Location-allocation constraints

fwℓ
ij ≤ xℓij , w ∈ W, ℓ ∈ L, {i, j} ∈ E, i < j (2.30)

fwℓℓ′

i ≤ yℓi , w ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ N (2.31)

fwℓℓ′

i ≤ yℓ
′

i , w ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ N. (2.32)

• Splitting demand constraints

Many approaches assign passengers to the different modes according to binary vari-

ables (see Laporte et al. (2010, 2012)). Concretely, the demand is split into the rail-

way system and the alternative mode according to the generalized costs of each mode

and binary variables. Another approach, more realistic but computationally less ef-

ficient, is the assignment by logit type functions (Ortúzar and Willumsem (1990)).

Some works such as Maŕın and Garćıa-Ródenas (2009) and Perea et al. (2014) use

logit model to simulate the modal split. This approach estimates the proportion of

users assigned to each mode for each origin-destination pair in a continuous way. So,

the number of passengers who use a transport system varies depending on the service

offered. For this function, two positive real parameters α and β for each transport

mode are needed. The parameter α simulates the market share for each mode and

β weights the importance of each mode (Maŕın and Garćıa-Ródenas (2009)). We

consider, αRAIL for the railway mode and αALT in the alternative mode. If we want

to give the same importance to both modes, we fix the parameter β independent

of the modes as in Garćıa-Ródenas et al. (2006). Let us denote α = αALT − αRAIL.

Therefore, the proportion of OD pair w using the railway mode is
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fRTS
w =

1

1 + e(α−β(uALT
w −uRTS

w ))
, w ∈ W (2.33)

f̄RTS
w ≤ fRTS

w , w ∈ W. (2.34)

• Capacity constraints

∑

w∈W

fwℓ
ij gw ≤ ψℓ · δℓ ·Θ, ℓ ∈ L, {i, j} ∈ E. (2.35)

• Binary constraints

xij , yi, x
ℓ
ij, y

ℓ
i , hℓ, b

ℓ
w ∈ {0, 1}, i ∈ N, {i, j} ∈ E, ℓ ∈ L, w ∈ W.

• Integrality constraints

δℓ ∈ {δmin, . . . , δmax}, ℓ ∈ L

ψℓ ∈ {ψmin, . . . , ψmax}, ℓ ∈ L.

• Bounding constraints

fwℓ
ij , f

wℓ
i , fwℓℓ′

i , f̄RTS
w , fRTS

w , fALT
w ∈ [0, 1],

i ∈ N, {i, j} ∈ E, ℓ, ℓ′ ∈ L, w ∈ W.

An upper bound on the total cost of the overall network is imposed in Constraint (2.15).

Constraints (2.16) and (2.17) guarantee that an edge is selected to be built in the RTS only

if its incident nodes are also selected. In order to allow edges to be used in both directions

Constraint (2.18) must be considered. Constraints (2.19) and (2.20) force that a station

i is built if and only if it is already included in the itinerary of a line. Constraints (2.21)

impose that if an edge is built, then there exists a line that uses it. Constraints (2.22)

define an upper bound on the number of lines that can traverse an edge. Constraints

(2.23) force each node to have at most two associated edges of each line. Constraints

(2.24) and (2.25) guarantee that lines are connected and do not contain cyclic subgraphs.

Constraint (2.26) imposes that each line has at least ℓmin length units and at most ℓmax

length units. Constraints (2.27)–(2.29) is flow conservation for each OD pair including

transfers between lines. In order to allow the flow corresponding of each OD pair to
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use an edge of a line ℓ only if this edge belongs to ℓ, we impose constraints (2.30). In

order to ensure that a transfer between two lines is made at node i only if i is built

for both lines, we include Constraints (2.31) and (2.32). The modal split is described

by means of Constraints (2.33) and (2.34). Constraints (2.35) impose a limits on the

maximum number of passengers that each line can transport per hour. The character of

the variables as imposed in the remaining constraints.

2.4. Special cases

We describe the main papers that deal with problems related to rapid transit network

design problem and line planning as well as differences between the general model defined

in Section 2.3 and each paper. Our survey is structured as follows. We classify papers

into two categories: network design and network design with robustness aspect. In the

network design category, we start with the first paper that describes the transit network

design as an optimization problem (Laporte et al. (2007)), followed by an extension of

the previous paper taking into account transfers between lines (see Garćıa-Ródenas et al.

(2006)). Later, Guan et al. (2006) described a model combining the line planning prob-

lem and the passenger line assignment. In Section 2.4.4 a model which includes the

incorporation of a variable number of lines is introduced. The main contributions of

Maŕın and Garćıa-Ródenas (2009) are the inclusion of location constraints based on min-

imizing the number of routing intersections and the consideration of a logit model, which

improves the simulation of the demand behavior. Maŕın and Jaramillo (2008) presented

a model for the multi-period capacity expansion problem. The next model considered

is that by Escudero and Muñoz (2009) which introduces a modification in the Maŕın

(2007) model in order to allow circular lines. However, the model does not guarantee

that lines are connected paths. Maŕın and Jaramillo (2009) proposes a Benders decom-

position algorithm in order to improve the computational time of the model proposed

for the rapid transit network design problem. In Section 2.4.9 a model based on transit

routes is described by Kermanshahi et al. (2010). A bi-objective model which simultane-

ously minimizes the network design cost and maximizes origin-destination traffic capture

is presented in Gutiérrez-Jarpa et al. (2013). In order to model with robustness aspects,

Laporte et al. (2010) presented a model using game theory. Later, Laporte et al. (2012)

proposed a model for the design of a robust rapid transit network regarding to by introduc-

ing redundant capacity into the system. In Garćıa-Archilla et al. (2013) an integer linear

programming model for the design of railway network infrastructure as well as their cor-
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responding robust and probabilistic version are introduced. Finally, Cadarso and Maŕın

(2012) introduce recoverable robustness in the model proposed in Maŕın and Jaramillo

(2009).

The rest of this section is dedicated to the preparation of a summary table which

contains the main characteristics of the network design models above mentioned.

2.4.1. An integrated methodology for the rapid transit network

design problem

The main aim of Laporte et al. (2007) is to integrate the steps of network design and line

planning into an optimization process. The authors introduce these steps by considering

three stages. The first stage consists of selecting key nodes, i.e., main sites are considered

as potential stations in rapid transit network which is being designed. The second stage

is to design the core network, where the selected stations in the first stage are connected

with a small number of alignments maximizing the trip coverage and the third named

locating secondary stations, consists of determining the location of the rest of stations.

So, an integer programming model is formulated according to the mode and route user

decisions. Roth et al. (2012) have later studied the temporal evolution of the structure

of the world’s subway networks. They showed that this structure converges to the same

shape as that proposed in the work of Laporte et al. (2007): a core with branches radiating

from it.

We will now show the objective function used in this model and will comment differences

with respect to the general model introduced in Section 2.3.

Objective function and constraints

The objective is the trip coverage.

As in the general model, constraints are classified by groups taking into accounts their

aims.

• Budget constraints

In this model, budget constraints impose a lower and upper bound on the cost of

each line and on the overall network.

• Design forcing

The terminal stations for each line are selected from a set of potential stations. So,

constraints (2.16)–(2.25) are modified by constrains where origins and destinations
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are fixed.

• Routing demand conservation constraints

In the model, the flow variables are binaries. The authors do not take into account

transfers between trains of different lines and the flow is expressed without consid-

ering lines (that is, variables such as fwℓℓ′

i and fwℓ
ij do not appear in the model).

• Location-allocation constraints

Due to the fact that flow variables are binary variables, constraints (2.30)–(2.32)

are modified. In order to assign demand on an edge if it is previously built, flow

and construction variables appear in constraints.

• Splitting demand constraints

These constraints guarantee that all demand of an OD pair is assigned to RTS mode

if the RTS cost is less than the corresponding to the alternative mode.

2.4.2. Analysis of the parameters of transfers in rapid transit

network design

Although the paper Garćıa-Ródenas et al. (2006) was published on-line before than

Laporte et al. (2007), the chronological order must be the contrary since Garćıa-Ródenas et al.

(2006) is a continuation of Laporte et al. (2007).

Garćıa-Ródenas et al. (2006) propose a new design model which includes transfers be-

tween lines. The objective function considered is the trip coverage taking into account a

different transport mode competing with the public mode. The potential location for the

stations, the distance matrix between pairs of nodes and the travel patterns are known.

In the model, users choose the most convenient route (and mode) in order to carry out

their trips. The problem they are concerned with is to choose a number of lines covering

as much as possible the travel demand between potential stations, subject to different

constraints. The authors have studied different values of the parameters such as transfer

costs and line frequency. The proposed model has been tested on a network with six

nodes.

We now outline the differences between the proposed model in this paper and the

general model.
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Objective function and constraints

The objective function is the trip coverage and differences with respect to general model

are the followings

• Budget constraints

The construction cost associated to stations is not considered. A lower and upper

bound on the line cost as well as on the overall network are imposed.

• Design forcing

The terminal stations for each line are selected in a set of potential stations. So,

the constraints (2.16)–(2.25) are modified by constrains where a set of origins and

destinations are fixed.

• Routing demand conservation constraints

The considered flow variables are binary. The authors do not take into account

transfers between trains of different lines and the flow is expressed without consid-

ering lines (that is, variables such as fwℓℓ′

i and fwℓ
ij do not appear in the model).

• Location-allocation constraints

Due to the fact that the variables are binary, constraints (2.30)–(2.32) are modified

at the same manner as Laporte et al. (2007).

• Splitting demand constraints

These constraints guarantee that all demand of an OD pair is assigned to RTS mode

if its corresponding cost is less than the corresponding to the alternative mode.

• Transfer constraints

The authors consider specific constraints to include transfers between trains of differ-

ent lines. However, in the general model, these constraints are introduced according

to the flow conservation constraints. To be more precise, variables in regard to

transfer appear when balances between flows are done.

2.4.3. Simultaneous optimization of transit line configuration and

passenger line assignment

Guan et al. (2006) presented a model in which the line planning problem and the pas-

senger line assignment are simultaneously considered. The model was formulated as a
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linear binary integer program. The authors first described both problems separately and

then they formulated a model combining both problems. The line planning problem de-

fined consists of finding a set of lines (of a given line pool) that connects all stations of a

given infrastructure network, minimizing the total length of all lines. The passenger line

assignment was described by means of paths (sequences of edges and nodes that connects

origin-destination pairs). A set of feasible paths for each origin-destination pair is prede-

fined and determined by the k -shortest path method according to in-vehicle travel time.

Later, a penalty based on the expected time to transfer is added, for each transfer, to the

in-vehicle time previously computed. To integrate both problems, the objective function

is defined as a convex combination of the proposed at each problem: the total length of all

transit length (for the line planning problem) and total passenger in-vehicle travel time

and total number of passenger transfers (for the passenger line assignment).

Constraints

The constraints are as follows:

• Budget constraints

This group of constraints are not considered since that costs are included on the

objective function.

• Design forcing

Due to the fact that the infrastructure network is already given, constraints such as

(2.16)–(2.26) are not presented.

• Routing demand conservation constraints

This group of constraints is not defined.

• Capacity constraints

The authors assume the capacity on each arc as well as the frequency of each line

are given.

• Splitting demand constraints

In this case, passengers are assigned on paths according to travel times.
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2.4.4. An extension to rapid transit network design problem

The originality of Maŕın (2007) lies on the incorporation of a variable number of lines

as well as the consideration of lines without fixing origins and destinations, in the model

proposed by Laporte et al. (2007). Thus, this paper may be considered an extension of

the Laporte et al. (2007), where lines have a certain degree of freedom. In the following,

we will analyze the objective function and constraints used in this model.

Objective function and constraints

The author considers a linear combination of two objectives: trip coverage and routing

cost upper bound. The differences with respect to the general model are as follows.

• Budget constraints

They are analogous to those defined in Section 2.4.1.

• Design forcing

These constraints are similar to those the general model. However, they accept lines

with an only edge and they allow a certain degree of freedom on the number of lines

that can traverse an edge at the same time.

• Routing demand conservation constraints

In this group, the origin and destination of each line are not fixed and binary

variables are used in the model. The transfer variables are not taken into account.

• Location-allocation constraints

Similarly to previous papers, variables are binaries and constraints (2.30)–(2.32) are

modified at the same manner as Laporte et al. (2007).

• Splitting demand constraints

The demand is not elastic and this group of constraints is the same as the model

described in Section 2.4.2.

2.4.5. Location of infrastructure in urban railway networks

In the paper of Maŕın and Garćıa-Ródenas (2009), different models for the railway net-

work design problem are proposed. Two aspects are taken into account: demand model

and transit supply model. The main contributions of this paper are the inclusion of
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location constraints (in order to minimize the number of routing intersections) and the

consideration of the logit model. This model expresses the proportion of users which are

assigned to each mode for each OD pair. The authors assume that each transportation

mode depends exclusively on the associated transportation costs. A strategy to approxi-

mate the non-linear logit function by a polygonal curve is developed.

As before, we will compare this model with the model proposed in Section 2.3.

Objective function and constraints

The objective function includes two criteria: trip coverage and private congestion.

• Budget constraints

In this case, the authors consider the same constraint as in Section (2.3).

• Design forcing

The authors distinguish between two classes of variables: related to infrastructure

and those related to line design. According to infrastructure, relationships between

flow variables and infrastructure variables are stated. In regard to lines, they in-

troduce two different concepts: covering by lines and crossing constraints. In the

covering by lines, similar constraints to previous models are described. The crossing

concept is introduced by means of variables that indicate if a station is a terminal

station (the start or end) or if such station belongs to several lines at the same time.

An upper bound on the number of intersection station is imposed.

• Splitting demand constraints

As previously commented, the proportion of users in each mode of transportation is

obtained according to the logit model. A strategy to approximate the logit function

by a polygonal curve is developed.

• Routing demand conservation constraints

The proposed constraints in this model are similar to previous model but taking

into account the logit function.

2.4.6. Urban rapid transit network capacity expansion

Maŕın and Jaramillo (2008) presented a model for the multi-period capacity expan-

sion problem. This model is an extension of Laporte et al. (2007) and Maŕın (2007).
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Concretely, a set of key stations, connections between these stations, pattern demands,

construction costs related to stations and edges as well as an alternative mode are given.

The problem deals with the determination of the infrastructure network and the set of

lines maximizing the trip coverage taking into account costs related to routing and lo-

cation. The problem consists of solving the rapid transit network design over different

interval times. Due to the large scale of the problem a heuristic algorithm is proposed.

At each time interval, the model is solved taking into account the constructed network on

the previous time period and that the estimation of costs is based on the time evolution

of demand, prices, congestion and available resources.

Objective function

The objective function considered in this work is the trip coverage.

Constraints

The constraints are as follows:

• Budget constraints

At each time period, this group of constraints are similar to (2.15).

• Design forcing

At each time period, this group of constraints are similar to those defined at the

general model.

• Routing demand conservation constraints

This group of constraints is similar to that in Maŕın (2007) but considering different

time periods.

• Transfer constraints

The authors do not consider transfer between lines.

• Splitting demand constraints

At each period the demand distribution is defined by means of generalized costs of

each transportation system and binary variables.
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2.4.7. An approach for solving a modification of the extended rapid

transit network design problem

In order to allow circular lines, a modification of the extended rapid transit network

design problem (see Maŕın (2007)) is introduced. Thus, a two-stage approach for solving

this problem is presented. In the first stage, an integer model is solved in order to select

stations and links between them, without exceeding the available budget and maximizing

the number of users. The resulting model may yield an undesirable line set formed by

non-connected lines consisting of one non-circular sub-line and one or various circular

sub-lines. To avoid such lines, the authors propose to define each sub-line as a line. This

model also allows the possibility of more than one line linking two locations. In the second

stage, the authors present a procedure for solving the above problem by assigning each

selected link to exactly one line in order to minimize the number of lines.

As pointed before, we will describe the objective function and constraints as follows.

Objective function and constraints

The objective function is the trip coverage.

As in the general model, constraints are classified into groups taking into account their

main characteristics.

• Budget constraints

The same constraint than the general model is proposed.

• Design forcing

Constraint (2.24) is changed by other constraint in order to allow circular lines. Also

constraints (2.26)–(2.25) are eliminated. The rest of the constraints are similar to

the general model but using binary variables.

• Routing demand conservation constraints

Constraints (2.27)–(2.29) are replaced by constraints with binary variables.

• Location-allocation constraints

In order to guarantee that a demand is routed on an edge only if this edge belongs

to the rapid transit network, the authors consider similar constraints to previous

models.
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• Splitting demand constraints

Constraints in the general model are modified by constraints which force the demand

to be assigned to the RTS mode if the associated RTS cost does not exceed to

corresponding cost of the alternative mode.

2.4.8. Urban rapid transit network design: accelerated Benders

decomposition

Maŕın and Jaramillo (2009) proposed a model for the rapid transit network design prob-

lem. The node set is formed by key stations and centroids (representing transportation

areas) and the edge set by fictitious arcs between stations and centroid as well as edges

representing alignments in the rapid transit network. Demand patterns, infrastructure

building costs as well as generalized costs associated to the alternative and rapid transit

mode are given. In order to improve the computational time an extension of Bender

decomposition is applied.

Objective function and constraints

The objective function is defined as a combination of several dimensionless terms re-

lated to covered demand, routing cost and location cost. The introduced constraints are

classified into different constraint groups.

• Budget constraints

A lower and upper bound on the total line cost is considered.

• Design forcing

This group of constraints is similar to the general model. However, they accept lines

with an only edge and they allow a certain degree of freedom on the number of lines

that can traverse an edge at the same time.

• Routing demand conservation constraints

Constrains (2.27) and (2.29) are modified by using binary variables. They do not

consider transfers between lines.

• Location-allocation constraints

The model assigns flow on each built edge in a binary manner. So, constraints

(2.30)–(2.32) are modified.
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• Splitting demand constraints

The demand is assigned on each transportation mode according to generalized costs

in a binary way.

2.4.9. Rapid transit network design using simulated annealing

In Kermanshahi et al. (2010) a meta-heuristic algorithm is adapted for the rapid transit

network design problem. The proposed model is based on transit route network design

model. The authors assume that the start and the end of all routes are predetermined.

The main input data of this model is a graph whose set of nodes represents the main

transit stations and a set of arcs denoting the potential links. So, the routes are formed

by sequences of links, and all together constitute a rapid transit network. To tackle the

problem the authors select a set of feasible routes and extract on the optimal combination

from them. In the model, the construction costs associated to links and stations, an origin-

destination matrix as well as the travel time on the alternative and public transport are

known.

Next, we will comment on the objective function and on the constraints of the model.

Objective function and constraints

The objective is the trip coverage. The constraints are as follows:

• Budget constraints

Since the considered problem is based on transit route network design model, this

group of constraints is defined by means of variables related to lines such as hℓ.

• Design forcing

Due to the fact that the authors select a set of feasible routes, in this group only

appears variables related to flows and routes.

• Routing demand conservation constraints

This group of constraints is similar to previous models.

• Transfer constraints

The authors assume that transfer variables are binaries in accordance with a OD

pair transfers or not at each node.
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• Splitting demand constraints

By means of binary variables, passengers are assigned to each transport mode ac-

cording to travel times and transfers.

2.4.10. Rapid transit network design for optimal cost and origin

destination demand capture

Gutiérrez-Jarpa et al. (2013) present a model for the rapid transit network design ac-

cording to two objectives: travel cost and captured traffic. Specifically, the authors

describes a bi-objective model which simultaneously minimizes the network design cost

taking into account distances between census tracts and stations, and maximizes origin-

destination traffic capture. To this end, the authors propose a methodology for designing

a metro network considering a predefined shape. So, the model locates optimally stops on

the topology selected, captures maximum origin-destination traffic and minimizes costs.

Constraints of this model can be found in Appendix B.

2.4.11. A game theoretic framework for the Robust Railway Network

Design problem

In Laporte et al. (2010) a game theoretic framework is used in order to solve the problem

of designing a railway transit network in presence of failures. First the authors describe

a deterministic model for the problem of designing a railway transit network and then

it is extended as follows. They consider only two agents acting in the problem: the

planner and the demon. The planner wants to minimize trip coverage or total travel

time whereas the demon makes the system works as bad as possible. In the paper two

versions of this problem are formulated: Probabilistic Railway Network Design (PRND)

and the Stochastic Railway Network Design (SRND) problem. These models are based

on a integer lineal model. Later model, consists of deciding a set of potential stations and

their connections as well as a line plan covering as many trips as possible in presence of

an alternative mode.

Objective function and constraints

We will focus on the deterministic model introduced in this paper. The objective

function is the trip coverage. The constraints that appear in this model are the following:

• Budget constraints
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In this case, the constraints are similar to (2.15).

• Design forcing

This group of constraints is the same as that introduced in Section 2.4.4.

• Routing demand conservation constraints

Constraints (2.27)–(2.29) are replaced with constraints with binary variables.

• Location-allocation constraints

This group of constraints are expressed by means of binary variables.

2.4.12. Designing robust rapid transit networks with alternative

routes

The aim of Laporte et al. (2012) is to propose a model for the design of a robust rapid

transit network. The authors consider that a network is robust when in the event of

arc failures, the total trip coverage does not decrease too. Firstly, they deal with the

deterministic model for the rapid transit network design problem. The mobility patterns

in a metropolitan area as well as a different transportation mode competing with the

RTS are known. The demand assignment is based on generalized costs. Secondly, they

introduce robustness constraints in the model by means of new variables which provides

alternative routes if one arc fails and permits avoid congestion on a restricted set of arcs.

Finally, computational experiments are presented.

Objective function and constraints

We will focus on the deterministic model introduced in this paper. The objective

function is the trip coverage.

The constraints that appear in this model are the following:

• Budget constraints

In this case, the considered constraints are similar to (2.15).

• Design forcing

This group of constraints is the same that introduced in Section 2.4.4.

• Routing demand conservation constraints

Constraints (2.27)–(2.29) are replaced by constraints with binary variables.
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• Location-allocation constraints

This group of constraints are expressed by means of binary variables.

• Splitting demand constraints

These constraints force to demand to be assigned to the RTS mode if the generalized

cost associated to public mode is not more than the corresponding cost of alternative

mode.

2.4.13. GRASP algorithms for the robust railway network design

In Garćıa-Archilla et al. (2013), an integer linear programming model for the design of

railway network infrastructure (stations and links between stations) as well as their cor-

responding robust version are introduced. The paper is structured in two phases: firstly,

the deterministic problem for the rapid transit network is considered and secondly, the

robustness property of the rapid transit network is addressed. The authors describe a

railway network design problem in presence of a competing mode. So, the demand uses

the faster mode to go from its origin to its destination. The mobility patterns, the po-

tential stations and construction costs are known. The authors propose to design lines in

the line planning phase in order to avoid too complex models such as the ones described

Laporte et al. (2010, 2012) (which consider lines in the design phase). The results ob-

tained in a computational experience indicate the Greedy Randomized Adaptive Search

Procedure (GRASP) algorithm is an excellent tool for the resolution of this problem.

In a second phase, the probabilistic version for the railway network design is considered.

This problem was originally introduced in Laporte et al. (2012), in which any link can fail

but no more than one link can fail at the same time. In the event of link interruption, an

alternative transportation mode is provided to passengers, which generates extra costs.

Finally, a computational experiments illustrate the validity of GRASP algorithm. As

mentioned at the beginning, we will check the differences with the general model.

Objective function and constraints

The objective function is the trip coverage. The introduced constraints are classified

into different constraint groups.

• Budget constraints

These constraints are the same as in the general model.
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• Design forcing

In this paper, the authors only consider the infrastructure network, and, therefore

constraint (2.16) to (2.25) are changed according to xij and yi.

• Routing demand conservation constraints

Constrains (2.27) and (2.29) are also modified by using binary variables. They do

not consider transfers between lines.

• Location-allocation constraints

The authors do not consider elastic demand and this group of constraints are mod-

ified.

• Splitting demand constraints

It is expressed in the same terms as previous models.

2.4.14. Recoverable robustness in rapid transit network design

Cadarso and Maŕın (2012) present an extension of the model in Maŕın and Jaramillo

(2009) by introducing robustness in the model. Concretely, the authors consider recover-

able robustness in the rapid transit network design problem. They suppose interruption

on edges and define a recovery algorithm: the demand is distributed on the network

without the affected edge. The problem can be formulated as a two stage optimization

problem. At each scenario an edge is eliminated. In the first stage the network is built

and the second stage, recovery actions are carried out as a consequence of the considered

scenario.

2.4.15. Summary table

In this section we present a summary table which shows the main characteristics of

all models that appear in the above sections. It will be useful in order to understand

the differences in the revised models in the Sections (2.4.1)–(2.4.14). First of all, we

will provide in Table (2.3) a number associated with each model in order to facilitate

readability.

We have compared these models in Table (2.4) under ten entries. The main charac-

teristics are the objective functions, the set of feasible lines considered in the numerical

examples, the constraints and the considered algorithms to obtain a solution. In Ta-

ble (2.4) “BC” stands for “Budget Constraint”, “DFC” for “Design Forcing Constraint”,
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Literature Review

Item Authors Paper

1 Laporte et al. (2007) An integrated Methodology for the Rapid Transit Network Design Problem
2 Garćıa-Ródenas et al. (2006) Analysis of the Parameters of Transfers in Rapid Transit Network Design
3 Guan et al. (2006) Simultaneous Optimization of Transit Line Configuration and Passenger Line Assignment
4 Maŕın (2007) An extension to Rapid Transit Network Design Problem
5 Maŕın and Garćıa-Ródenas (2009) Location of Infrastructure in Urban Railway Networks
6 Maŕın and Jaramillo (2008) Urban Rapid Transit Network Capacity Expansion
7 Escudero and Muñoz (2009) An Approach for Solving a Modification of the Extended Rapid Transit Network Design Problem
8 Maŕın and Jaramillo (2009) Urban Rapid Transit Network Design: Accelerated Benders Decomposition
9 Kermanshahi et al. (2010) Rapid Transit Network Design Using Simulated Annealing
10 Gutiérrez-Jarpa et al. (2013) Rapid Transit Network Design for Optimal Cost and Origin Destination Demand Capture
11 Laporte et al. (2010) A Game Theoretic Framework for the Robust Railway Network Design Problem
12 Laporte et al. (2012) Designing Robust Rapid Transit Networks with Alternatives Routes
13 Garćıa-Archilla et al. (2013) GRASP Algorithms for the Robust Railway Network Design
14 Cadarso and Maŕın (2012) Recoverable Robustness in Rapid Transit Network Design

Table 2.3.: Classification of main papers on network design

“FCC” for “Flow Conservation Constraint”, “LAC” for “Location Allocation Constraint”,

“SDC” for “Splitting Demand Constraint”, “TC” for ”Transfer Constraint” and “CC” for

“Capacity Constraint”.

Summary table

Constraints

Model Year Objective functions lines BC DFC FCC LAC SDC TC CC Models/Algorithms

1 2004 Trip coverage 2 X X X X X ILP

2 2005 Trip coverage 3 X X X X X X ILP

3 2006 Costs and travel time 4 X X X ILP

4 2007 Trip coverage 3 X X X X X ILP

routing cost Branch and bound

5 2008 Trip coverage, cost in the 2 X X X X X ILP

alternative mode

6 2008 Covered demand and costs 4 X X X X X ILP/Branch and bound

7 2008 Trip coverage 3 X X X X X ILP/Branch and bound

8 2008 Covered demand and costs 4 X X X X X ILP/Branch and bound

Benders decomposition

9 2010 Trip coverage – X X X X X (SA) algorithm

10 2013 Traffic demand and costs – X ILP

11 2009 Trip coverage 3 X X X X X ILP

12 2010 Trip coverage 4 X X X X X ILP/Branch and bound

13 2011 Trip coverage – X X X X X GRASP algorithm

14 2012 Covered demand and costs 3 X X X X X ILP

Table 2.4.: Characteristics of main papers addressing the network design problem

2.5. Conclusions

In this chapter we have reviewed the existing literature on the rapid transit network

design problem. We have proposed a general model which contains all characteristics of
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the different models considered in the domain of transit network design. We have dealt

with the problem of determining the infrastructure network, the set of lines, the frequency

of each line as well as the capacity of services for a rapid transit network. A key factor

in our problem is the inclusion of a long-term public economic support for the operating

and acquisition rolling stock. So, a mixed integer non-linear program model integrating

network design, line planning and fleet investment has been proposed. Considering both

problems is beneficial to achieve meaningful results. The trip assignment can be done

more efficiently when frequencies are known. An analysis on the different perspective in

the objectives when a network is designed has been done. Specifically, each objective is

mathematically defined and different general objective is expressed. Moreover, long-term

public economic support for a network profitable operation is considered as a key factor

in the network design problem.

In order to compare the different models, we have introduced a notation valid to all

papers considered in Appendix A. Also we have provided a summary table which contains

the main characteristics of all models.

In Annals of Operations Research: D. Canca, A. De Los Santos, G. Laporte, J.A.

Mesa. A General Rapid Network Design, Line Planning and Fleet Investment Integrated

Model, conditionally accepted, that discount rate is incorporated to our problem adding

new parameters. In this work we have done several experiments with our general model

and the net profit on small networks. The model was solved using a branch-and-bound

and a relaxed nonlinear programming problem (NLP).
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Appendix A

Data, notation and variables

A.1. Data and notation

In this appendix we state notations and variables needed to describe all models con-

sidered as special case of the general model. So, taking into account this appendix and

the data, notation and variables described in Chapter 2, we can describe all the reviewed

models. We introduce the following input data:

• A set Nc of nodes representing centroid points.

• A set Ef representing fictitious links between nodes of Nc and N .

• For each node i, N̄(i) = {j ∈ N : {i, j} ∈ E ′} denotes the set of adjacent nodes to

i on the graph related to the alternative mode.

• Nodes oℓ and dℓ denoting the origin and destination station in the itinerary of line

ℓ, respectively.

• An lower and upper bound, cℓmin and cℓmax on the construction cost of each line.

• There exists a lower bound Cmin on the total construction cost of the RTS.

• cRTS
ij is the generalized cost to traverse the edge {i, j} by the RTS mode.

• A penalty TP on the rapid transit travel time for each transfer.
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• ucℓi is the user cost for transferring line ℓ at station i.

• A sufficiently large real number M and a small tolerance ε > 0.

• Λ is a congestion factor.

• ck is the cost construction of path k.

• |k| number of elements of path k.

• Γwk
ij = 1 is the path-link incident matrix whose value is 1 if path k for OD pair w,

uses arc (i, j), 0 otherwise.

• Let Γw be the pre-identified feasible paths from OD pair w.

• M̄ is the maximum number of transfers allowed at each trip.

• frℓ is the frequency of line ℓ.

• Θij is the capacity of arc (i, j) ∈ A.

• M1 ≥ 1 + maxw∈W ∧uALT
w is a sufficiently large real number.

• M2 ≥ |E|/2 is a sufficiently large real number.

• Γ is the maximum number of paths.

• Let S be the set of corridors.

• Ns is the set of candidate nodes to be stations of the corridor s ∈ S.

• |S| number of elements of S.

• Nt is the terminal node set that are candidates to be end nodes.

• lmin is the minimum length between two adjacent nodes.

A.2. Variables

The problems we are dealing with require the following variables:

• f̃w
ij = 1 if demand of the OD pair w traverses arc (i, j) ∈ A, 0 otherwise.
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• ϕw
ij ∈ [0, 1] denotes the proportion of demand of w that uses arc (i, j) ∈ E ′ on the

alternative mode.

• ϕ̃w
ij = 1 if demand of w traverses arc (i, j) ∈ E ′ on the alternative mode, 0 otherwise.

• f̃wℓ
ij = 1 if demand of w going through arc (i, j) ∈ A uses line ℓ, 0 otherwise.

• f̃wℓ
i = 1 if demand of w transfers in station i to line ℓ, 0 otherwise.

• pw = 1 if demand of w is allocated to the RTS, 0 otherwise.

• x̃ℓij = 1 if line ℓ traverse arc (i, j) ∈ A.

• x̃sij = 1 if the arc (i, j) belongs to the corridor s ∈ S.

• ỹi = 1 if and only if the node i is selected to be a end node.

• ỹsi = 1 if and only if the node i belongs to the corridor s ∈ S.

• ĥkw = 1 if the path k is selected for OD pair w.

• f̃wℓ = 1 if demand of the OD w pair uses line ℓ.

• f̃wk
ij = 1 if demand of w going through arc (i, j) ∈ A uses path k, 0 otherwise.

• f̃w
i = 1 if demand of w transfers at node i.
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Appendix B

Tables

In this subsection we propose several tables which show constraints that appear in

each model in order to helpful understanding. Moreover, we will analyze the number of

constraints and variables for each model. We denote by m = |E|, n = |V |, q = |L| and

r = |W |.
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Budget constraints Design Flow conservation Location-allocation Splitting demand ♯Constraints ♯Variables
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ℓ
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j∈N(ws)
f̃w
wsj

= 1 f̃w
ij + pw − 1 ≤

∑
ℓ∈L x

ℓ
ij

∑
{i,j}∈E c

RTS
ij f̃w
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ℓ
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Model 3
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Model 12
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Chapter 3

Simultaneous frequency and capacity

problem

3.1. Introduction

In this chapter, we will focus on the line planning process. In the strategic planning

process of a rapid transit network, decisions about a line plan, the size of trains and the

number of crews are necessary. We assume the infrastructure (tracks and stations) as well

as its associated lines are already given.

In railway terminology, a line is characterized by several aspects: two different terminal

stations, a sequence of intermediate stops, its frequency, and the vehicle capacity. The

traditional line planning problem consists of finding a set of lines (a line plan) and their

frequencies providing a good service according to a certain objective, which is usually

oriented towards the passengers or the operator. A review of different objective functions

is presented in Schöbel (2011). As in the rapid transit network design problems, the

models can be classified into several categories depending on the point of view that is

considered. A classification of these models is presented in Schöbel (2011). The author

distinguishes between models oriented to passenger and models oriented to costs.

Usually, the goal of models oriented to costs is to minimize the train operating costs.

The problem presented in Claessens et al. (1998) consists of determining a set of lines

from a line pool, the frequency and type of train for each line as well as the number of

carriages for each train, minimizing costs related to train operation. The cost structure
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is defined according to fixed costs per carriage and hour, variable costs per carriages and

kilometer and variable costs per train and kilometer. By means of a modal split procedure,

the passengers are assigned a priori in the system. In order to simplify the problem, the

authors define binary variables representing if a line ℓ is served by trains of type t with c

carriages. However, the model is a nonlinear programming program and some techniques

to make the problem manageable are considered. In Goossens et al. (2004) a branch-and-

cut approach based on the models of Claessens et al. (1998) is described. More recently,

Goossens et al. (2006) extend this model to the multi-type case in which not all trains need

to stop at all stations. First they describe the same problem than Claessens et al. (1998)

and then extend the model by considering different types of trains (regional, intercity

and interregional). The passengers are assigned a priori to the different train types. This

problem is described as a multi-commodity flow problem.

With respect to passenger oriented, one of most common objectives in the literature is

to maximize the number of direct trips, see Bussieck (1998) and Bussieck et al. (1997). A

major drawback of this objective is that it does not take travel times into account, and

therefore it may yield a network with few transfers but with long travel times. Another

paper such as Schöbel and Scholl (2006) considered as objective function the total travel

time of all passengers. In order to compute the travel time in the system, a penalty for each

transfer representing the inconvenience for the passengers is introduced. In order to model

the line planning problem, the authors define a graph structure named Change&Go. The

aim is to find a set of lines, a path for each origin-destination pair, respecting a budget

on the operating costs.

The problem we are treating with consists of determining the frequency and the train

size of each line, maximizing the net profit of line plan. Furthermore, we have assumed

that all passengers willing to travel in the RTS can be transported. The passengers choose

their routes and their transport mode according to traveling times, which are defined by

means of the considered frequencies. Concretely, in this chapter we simultaneously select

the frequency and the number of carriages for each line of the RTS maximizing the net

profit.

The following example shows how both the frequency and the number of carriages are

decisive factors to be considered when planning rapid transit lines.

Example 3.1.1 Consider a simple case in which S = {1, 2, 3},L = {ℓ1 = {1, 2}, ℓ2 =

{2, 3}}. A trip from 1 to 3 includes a waiting time at the origin station and a transfer time

at station 2. Note that therefore the expected travel time of this OD pair depends on the

frequencies of the lines, and thus passengers choose the RTS mode or the competing mode
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depending on this. Note as well that if the number of potential passengers is large enough,

then we also need to consider including more carriages in the trains, as the maximum

allowed frequency might not be enough to transport them all.

1 2 3

ℓ1 ℓ2

Figure 3.1.: Example with two lines.

The main differences between our model and those defined in Claessens et al. (1998) and

Goossens et al. (2006) are the following: they do not take into account an alternative mode

competing with the rapid transit transport, they consider different train types and we

present a model integrating the traffic assignment procedure in the optimization process.

Furthermore, we present a different objective function which includes income derived from

the passengers as well as costs related to the rolling stocks acquisition and personnel costs

due to operation of trains. Thanks to the incorporation of a logit function, the level of

demand will depend on the quality of the services offered. Moreover, we consider two

different situations: the problem with an unlimited number of carriages and the problem

with a maximum number of carriages. The first problem assumes the maximum number

of possible carriages is a sufficiently large number in order to transport all people traveling

on each line in the RTS. In other words, the RTS is a non-crowding network. In contrast,

the capacitated problem has a limitation on the number of carriages and the RTS can

become a congested network. For the last case, a congestion function measuring the level

of in-vehicle crowding is introduced in the model.

The remainder of the chapter is structured as follows. In Section 3.2 we describe the

problem, the needed data and notations as well as the objective function. In Section 3.3

we formally define the problem for the case without capacity limitation, which is modeled

in Section 3.3.1 as a mathematical programming program. A heuristic algorithm as well

as efficient approaches are presented in Section 3.3.2. The problem with a limited number

of carriages is introduced in Section 3.4. Computational experiments are carried out on

Appendix C. Computational comments are presented in Section 3.5.2. The chapter ends

with some conclusions.
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3.2. The problem

As commented, the problem we are dealing with consists of maximizing the net profit

of a line plan by selecting the frequency and the train size of each line, assuming that all

passengers willing to travel in the RTS can be transported. We distinguish two different

versions of this problem. At the first problem an unlimited number of possible carriages is

considered. This yields solutions where the number of carriages per train is the minimum

number of carriages so that all passengers can be transported. However, this is not true in

the second version of this problem. In this problem a limited number of carriages is taken

into account and the network can be a congested network. We introduce the crowding

effect by means of a congestion function which is depending on the load on each arc. This

function assigns a time penalty on each congested arc, therefore modifying, the problem

instance. The crowding effect is assumed to be the in-vehicle crowding. In other words,

we only assume congestion inside train and not at the platforms. We also want to remark

that solutions in which platform crowding appears, are not taken into account.

In both problems presented, we define a parameter σ in order to allow solutions that

exceed the capacity in a small number of passengers. Apart from the number of car-

riages, an important difference between the uncapacitated and capacitated problem is

the congestion effect which influences on the passenger’s behavior and, therefore, on the

profit.

3.2.1. Data and notation

We now formally describe the Rapid Transit System Simultaneous Frequency and Ca-

pacity Problem (RTSSFCP), which takes the following input data. We assume the ex-

istence of a set of stations, N = {i1, . . . , in} and a set of lines L = {ℓ1, . . . , ℓ|L|} in the

RTS. For the sake of readability we will identify a station with its subindex whenever this

creates no confusion. Let denote lenℓ and nℓ be the length and the number of stations

of line ℓ, respectively. Each line ℓ ∈ L is defined as ℓ = {(i1, i2), (i2, i3), . . . , (inℓ−1, inℓ
)},

where arcs form two paths; {i1, i2, i3, . . . , inℓ
} and {inℓ

, inℓ−1, . . . , i1}. Each couple of arcs

(ij1 , ij2) and (ij2 , ij1) represents an edge {ij1 , ij2}.

In order to compute traffic flows we need the set of (directed) arcs associated with E.

We therefore define A as the set of (directed) arcs of the network. Note that E = {{i, j} :

(i, j) ∈ A, i < j}. Let ((N,E),L) be a RTS line network describing the RTS system. Let

dij = dji be the length of edge {i, j} ∈ E. The parameter dij can also represent the time

needed to traverse edge {i, j}, transforming distances in times by means of the parameter
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λ, which represents the average distance traveled by a train in a hour (commercial speed).

We consider the same value of λ for all trains. Let νℓ be the cycle time of line ℓ, that is,

the time necessary for a train of line ℓ to go from the initial station to the final station

and returning back. Note that νℓ = 2 · lenℓ/λ. The competing mode (private car, bus,

etc) is represented by an undirected graph GE′ = G(N,E ′). The nodes are assumed

to be coincident with those of the rapid transit mode: they could represent origin or

destination of the aggregated demands; however, edges are possibly different. For each

edge {i, j} ∈ E ′, let d′ij be the traversing time of such link by the competing mode.

Let W = {w1, . . . , w|W |} ⊆ N × N be a set of ordered origin-destination (OD) pairs,

w = (ws, wt). For each OD pair w ∈ W , gw is the expected number of passengers per

hour for an average day and uALT
w is the travel time using the alternative mode of OD

pair w, respectively.

With respect to costs, we distinguish three types: related to the operation, the per-

sonnel and the investment. Concerning rolling stock, we define a cost for operating one

locomotive per unit of length cloc as well as a cost representing operating cost of one

carriage ccarr per length unit. Both parameters include running costs such as fuel or en-

ergy consumption. These terms can be easily adapted to another type of rolling stock.

Related to the personnel costs, a cost ccrew per train and year is given. For the rolling

stock acquisition, we consider two costs: the purchase price of the necessary locomotives

Iloc per train and the purchase price of one carriage Icarr. Concerning capacity, let Θ

be the carriage capacity measured in number of passengers seating and standing. We

consider a minimum number δmin of carriages and a sufficiently large number ∆ of car-

riages that can be included in a train. We define the capacity associated to a train as the

maximum number of passengers that it can transport at any given time. More precisely,

we define the capacity of a train of a line ℓ by means of two factors: the capacity of a

carriage (Θ) and the number of carriages forming the train (δℓ). We consider a fixed finite

set of possible frequencies F for lines of the RTS. We assume the frequency of each line

takes values between a minimum and maximum frequency in order to guarantee a cer-

tain level of service in the network. To be more precise, not all feasible frequency values

between this minimum and maximum can be considered. Note that in real systems the

frequencies have to produce a regular timetable. To take this requirement into account,

we describe the set of ordered possible frequencies as F = {φ1, φ2, . . . , φ|F|}, where each

φq ∈ N, 1 ≤ q ≤ |F| and |F| ≥ 2. Let ρ be the total number of hours that a train is

operating per year and η be the fare per trip which is the same for all trips regardless

of their length/duration. A parameter needed to compute the transfer time is uci, which
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represents the time spent in changing platforms at station i.

3.3. Uncapacitated problem

We now describe the Uncapacitated Rapid Transit System Simultaneous Frequency

and Capacity Setting Problem (URTSSFCP) in more detail. Section 3.3.1 presents the

mathematical programming program. In Section 3.3.2 several techniques for improving

the efficiency of the mathematical programming model are presented.

3.3.1. A mathematical programming program

We first introduce a mathematical programming program to solve the URTSSFCP,

which uses the following sets of variables:

• ψℓ ∈ F is the frequency of line ℓ (number of services per hour).

• δℓ ∈ {δmin, . . . ,∆} is the number of carriages used by trains of line ℓ.

• uRTS
w > 0 represents the travel time of pair w using the RTS network.

• fRTS
w ∈ [0, 1] is the proportion of OD pair w using the RTS network.

• f̃wℓ
ij =

{
1, if the OD pair w traverses arc (i, j) ∈ A using line ℓ

0, otherwise.

• f̃wℓℓ′

i =

{
1, if demand of pair w transfers in station i from line ℓ to line ℓ′

0, otherwise.

The average travel time associated to OD pair w = (ws, wt) ∈ W using the RTS network

can be explicitly defined as follows:

uRTS
w =

∑

ℓ∈L

∑

j:{ws,j}∈ℓ

60f̃wℓ
wsj

2ψℓ
+ (60/λ)

∑

ℓ∈L

(
∑

{i,j}∈ℓ

f̃wℓ
ij dij)

+
∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

i∈ℓ∩ℓ′

f̃wℓℓ′

i (
60

2ψℓ′
+ uci), w = (ws, wt) ∈ W.

(3.1)

The first term in (3.1) is the average waiting time at the origin station. Since we

are dealing with high frequencies systems, we assume passengers go to stations without

knowing the exact departures time of trains and, therefore, it is reasonable assuming that

the average waiting time is half the headway (time between consecutive services). The
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second term in (3.1) is the in-vehicle time. The third one is the time spent in transfers.

For the reason previously commented, the average waiting time is assumed to be half the

headway. In this case, we have to add the required time to change platforms.

Another variable that can be explicitly defined is the assignment fRTS
w of demand to

the RTS system. We assume the number of passengers who use a transport system varies

depending on the provided service. More specifically, the proportion of an OD pair using

each mode may be different depending on the characteristics of the RTS to be designed

and on the competing transport mode. Therefore, the demand is split between the RTS

and the alternative mode according to the generalized cost of each mode. The modal split

is modeled by using logit type functions (Ortúzar and Willumsem (1990)) as opposed to

binary variables which are used in very complex problems. Two real positive parameters

are usually required: α, representing the market share of each mode, and β, representing

the importance of each transportation mode (Maŕın and Garćıa-Ródenas (2009)). Let

αRTS and αALT be the market share of RTS and alternative mode, respectively. Let

us denote α = αALT − αRTS. As in Garćıa-Ródenas et al. (2006), β is supposed to be

independent of the modes. Therefore, the proportion of OD pair w using the RTS mode

is

fRTS
w =

1

1 + e(α−β(uALT
w −uRTS

w ))
, w ∈ W. (3.2)

The logit model estimates the proportion of users assigned to each mode for each origin-

destination pair in a continuous way. Note that this proportion depends on the travel

time in each transport mode.

In Schmidt and Schöbel (2010) the route decisions are integrated in the line planning

problem. To this end, the authors consider a change and go graph. On this graph, a

modified Dijkstra algorithm is applied and adapted to obtain the shortest path of an

origin-destination pair.

Objective function

As mentioned, we consider the existence of public economic support for the operation

of the RTS during certain planning horizon. This assumption is very common in the

development of rapid transit networks around the world. Usually, governments provide

subsidies on the basis of the number of passengers or passenger-kilometer in order to

guarantee certain positive margin to companies exploiting the transportation system. For

instance (see newspaper http://www.20minutos.es/noticia/2028399/0/madrid/empresas-

privadas/metro-ligero/).
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The objective function considered is the net profit zNET of the rapid transit network

(Li et al. (2011b), Feifei and Haicheng (2012), Feifei (2014)). This profit is expressed as

the difference between revenue and total operation cost in terms of monetary units over

a planning horizon. In this chapter, we will not consider costs related to the construction

of the RTS since the infrastructure network is already built. For the sake of readability,

we will repeat some terms presented in Chapter 2.

The total revenue for the ρ̂ years is computed as the number of passengers who use the

RTS during the planning horizon, times the passenger fare µ plus the passenger subsidy,

η, which is the same for all passengers independently of the length of their trips. So, the

revenue is mathematically expressed as

zREV = (η + µ)ρρ̂
∑

w∈W

gwf
RTS
w . (3.3)

The operation cost of a network is expressed by means of a fixed cost zFOC and a

variable cost zV OC. The fixed operating cost includes maintenance costs and overheads.

The fixed operating cost depends on the infrastructure. This term does not affect the

objective function and is not considered, see Feifei and Haicheng (2012), Feifei (2014).

The variable operating cost zV OC over the planning horizon is defined as the sum of the

crew operating cost zCrOC and the rolling stock cost zRSOC .

The crew operating cost zCrOC includes the crew cost induced by the operation of all

trains in the time horizon ρ̂. This cost is affected by the required fleet size Bℓ. The

required fleet for each line ℓ can be defined by means of the product of its frequency and

its cycle time νℓ as follows:

Bℓ = ⌈ψℓνℓ⌉ = ⌈2ψℓ · lenℓ/λ⌉.

Thus, the crew operating cost in the planning horizon is

zCrOC = ρ̂ · ccrew
∑

ℓ∈L

Bℓ. (3.4)

The rolling stock operation cost of a train in one hour is defined as the distance λ trav-

eled by the train, times the cost of moving the train with δℓ carriages and is approximated

by cloc + ccarrδℓ (Garćıa and Mart́ın (2012)). Therefore, the rolling stock operation cost

86



3.3. Uncapacitated problem

in the whole planning horizon zRSOC is

zRSOC = ρ̂ρ
∑

ℓ∈L

Bℓλ(cloc + ccarrδℓ), (3.5)

and the variable operating cost in the planning horizon is zV OC = zRSOC + zCrOC.

The fleet investment cost for each train is the cost of purchasing the locomotives and

the carriages. Therefore, the fleet acquisition cost of all trains zFAC is computed as

zFAC =
∑

ℓ∈L

Bℓ(Iloc + Icarr · δℓ). (3.6)

So, we define the net profit zNET associated to the rapid transit network as

zNET = zREV − (zV OC + zFAC). (3.7)

Constraints

The constraints of the problem are formulated as follows.

• Flow conservation constraints

∑

ℓ∈L

∑

j:(ws,j)∈ℓ

f̃wℓ
wsj = 1, w = (ws, wt) ∈ W (3.8)

∑

ℓ∈L

∑

i:(i,wt)∈ℓ

f̃wℓ
iwt

= 1, w = (ws, wt) ∈ W (3.9)

∑

ℓ∈L

∑

j:(j,ws)∈ℓ

f̃wℓ
jws

= 0, w = (ws, wt) ∈ W (3.10)

∑

ℓ∈L

∑

j:(wt,j)∈ℓ

f̃wℓ
wtj = 0, w = (ws, wt) ∈ W (3.11)

∑

ℓ∈L

∑

i:(i,k)∈ℓ

f̃wℓ
ik −

∑

ℓ∈L

∑

j:(k,j)∈ℓ

f̃wℓ
kj = 0, w = (ws, wt) ∈ W, k ∈ N \ {ws, wt}. (3.12)
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• Transfers

2f̃wℓℓ′

i ≥
∑

k:(k,i)∈ℓ

f̃wℓ
ki +

∑

k:(i,k)∈ℓ′

f̃wℓ′

ik − 1 (3.13)

2f̃wℓℓ′

i ≤
∑

k:(k,i)∈ℓ

f̃wℓ
ki +

∑

k:(i,k)∈ℓ′

f̃wℓ′

ik , (3.14)

ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ ℓ ∩ ℓ′, i 6= ws, i 6= wt, w = (ws, wt) ∈ W.

• Capacity constraints

∑

w∈W

gwf
RTS
w f̃wℓ

ij ≤ Θδℓψℓ, ℓ ∈ L, {i, j} ∈ ℓ. (3.15)

• Binary constraints

f̃wℓ
ij , f̃

wℓℓ′

k ∈ {0, 1}, k ∈ N, (i, j) ∈ A, ℓ ∈ L, w ∈ W.

• Integer constraints

δℓ ∈ {δmin, . . . ,∆}, ℓ ∈ L

ψℓ ∈ F , ℓ ∈ L.

• Other constraints

fRTS
w =

1

1 + e(α−β(uALT
w −uRTS

w ))
∈ [0, 1], w ∈ W.

Recall that the model includes constraints related to the proportion of passengers using

the RTS (Equation (3.2)) as well as the travel time for each OD pair (Equation (3.1)).

Constraints (3.8) to (3.12) are flow conservation constraints for the f variables. Con-

straints (3.13) and (3.14) ensure that if an OD pair w enters station k ∈ N using one line

and exits this station using another line, then a transfer is done.

Constraints (3.15) indicates the total capacity per hour of such line is a sufficiently

large number in order to transport all passengers preferring to travel in the RTS. The

URTSSFCP consists of maximizing zNET subject to constraints (3.1), (3.2) and (3.8)–

(3.15).

88



3.3. Uncapacitated problem

Note that this model has some nonlinearities: the definition of fRTS
w and uRTS

w , as well

as constraints (3.15). Some of them can be easily removed, some others cannot. Therefore

our mathematical programming program is non-linear, which makes it difficult for realistic

instances.

3.3.2. Efficient approaches

In this section we show different techniques for improving the efficiency of the model

presented in the previous section.

Constraint linearization

The terms in (3.15) expressed as a product of a binary variable and a real variable,

that is, f̃wℓ
ij and fRTS

w , are transformed into linear constraints by means of a new variable

ξwℓ
ij = fRTS

w f̃wℓ
ij ≥ 0. Constraints (3.15) are substituted by

∑

w∈W

gwξ
wℓ
ij ≤ Θ δℓ ψℓ, ℓ ∈ L, {i, j} ∈ ℓ (3.16)

ξwℓ
ij ≤ f̃wℓ

ij , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W (3.17)

fRTS
w − (1− f̃wℓ

ij ) ≤ ξwℓ
ij , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W (3.18)

ξwℓ
ij ≤ fRTS

w , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W. (3.19)

A naive algorithm

In this section a naive algorithm to solve our model is presented. We construct all

possible combinations of frequencies. So, for each element of this set, the frequency of

each line ψℓ ∈ F is fixed. For each combination, we solve a mathematical model. We

select the solution with maximum profit zNET . Note that constraint (3.16) is now a linear.

To fix ideas, let υ ∈ N|L| be a vector representing a possible frequency combination. Each

component υq ∈ F is the assigned frequency to line ℓq. We define the restricted problem

taking into account these parameters and we denote it by URTSSFCP(υ). The solution

procedure is shown in Algorithm 1.

Note that, thanks to the linearization defined in Section 3.3.2 and this naive algorithm, all

constraints but the assignment demand constraint (3.2), which could also be linearizated,
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Data: All possible frequencies combinations
for each combination υ do

solve URTSSFCP (υ);
end

Result: arg max
υ

URTSSFCP (υ).

Algorithm 1: Pseudocode for the naive algorithm.

are linear constraints. Observe that we have to solve (|F|)|L| times model URTSSFCP(υ)

(once for each possible combination of frequencies).

An exact algorithm

In this section we introduce an algorithm that solves our problem to optimality, that

is, it provides a configuration of frequencies and capacities (number of carriages per train

of each line) that maximizes the net profit of the network. The idea is to iteratively check

all possible combinations of frequencies. Once the frequencies have been set, the shortest

path that takes into account transfer and waiting times on the rapid transit network for

each OD pair can easily be calculated. From these shortest paths we compute the number

of passengers traveling on each line and arc. For each line, the arc that has the highest

number of passengers is the one defining the minimum capacity that such line should

have. Once these minimum required number of carriages have been calculated for each

line, we can easily compute the profit of the network. Note that this value is the maximum

profit for a fixed configuration of frequencies. Algorithm 2 shows a pseudocode of this

algorithm.

We would like to emphasize that, once the frequencies are known, the problem reduces

to finding the minimum number of carriages per train and line so that all passengers can

be transported. It is trivial to prove that such a combination of number of carriages yields

the solution that transports all passengers at minimum cost.

A heuristic algorithm

Due to the complexity of the mathematical program that models the URTSSFCP, a

heuristic technique is proposed to obtain good solutions in a reasonable amount of time. A

heuristic algorithm is a procedure which obtains “good” solutions in a reasonable amount

of time, although there is no guarantee that such solutions are optimal. For solving the
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Data: A line network ((N,E),L), a set of possible frequencies F and a minimum
capacity δmin

for each possible combination of frequencies do

z = {};
for each line ℓ do

Find the arc eℓ of ℓ with maximum load;
Find the minimum number of carriages needed to transport all passengers
traversing eℓ;
Compute the profit zNET ;
z = z ∪ {zNET};

end

end

return max{z};
Result: The frequencies and capacities configuration with the maximum profit.

Algorithm 2: The exact algorithm for the rapid transit network frequency and capacity
setting problem.

problem we propose a new method inspired on the Heuristic Local Search Algorithm

(HLSA) defined in Gallo et al. (2011).

We begin by describing certain local moves we will apply in order to obtain a variety of

solutions. Local search is a successful general approach for finding high quality solutions

to hard combinatorial optimization problems in a reasonable amount of time (see Stützle

(1999)). In general, a local search algorithm considers an initial solution and iteratively

modifies it in order to obtain a better solution. The modifications are done by means of

an appropriated neighborhood structure for each solution. In other words, a local change

(defined by a neighborhood structure) is applied to a solution in each iteration in order

to improve it.

Definition 3.1 Moves on the current solution

For each line ℓp, ψℓp takes a value in F which we will denote by φqp, 1 ≤ qp ≤ |F|. For

this frequency φqp we define two possible moves.

• Move+: The selected frequency value is changed by the following value in F if this

is possible. That is,

Move+ : N+ → N+

φqp 7→ Move+(φqp) = φqp+1(mod |F|).

• Move−: The selected frequency value is changed by the previous value in F if this
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is possible.

Move− : N
+ → N

+

φqp 7→Move−(φqp) = φqp−1(mod |F|).

Note that if qp = |F|, φqp+1 = φ1 and if qp = 1, φqp−1 = φ|F|. In our problem, we define

the neighborhood structure by means of these movements as follows.

Definition 3.2 Neighborhood structure

Given a frequency configuration CF = (φq1, . . . , φq|L|), where each φqp ∈ F is the as-

signed frequency to line ℓp, another frequency configuration is a neighbor if the latter can

be obtained by applying eitherMove+ orMove− to only one of the frequencies φqp. For the

neighborhood structure, we assume that if qp = 1 for a line ℓp, we can only apply Move+

on φqp and if qp = |F|, we can only apply Move− on φqp. We denote this neighborhood

as N (CF).

Our method consists of four phases.

• Phase 1 (Initial solution)

In a first phase, we find the optimal configuration of line frequencies (the one that

maximizes the net profit) in which all lines have the same frequency, and we keep

such solution.

• Phase 2 (Neighborhood search)

In the second phase, the neighborhood of the solution obtained in the first one

is explored. We find the neighbor with maximum profit. We compare this profit

with the obtained for the initial solution. We keep the best solution as the current

solution.

• Phase 3 (Movement search)

In the third phase we consider a local search different from the one in phase 2. For

each line of current solution, we increase its frequency using the operation defined as

Move+, while we improve the solution (no need to analyze frequency configurations

in which all frequencies are the same, as these were computed in phase 1). In case of

not improving the solution after applying the firstMove+, we decrease its frequency

using the operation defined as Move−, while we improve the solution. Finally, this

solution is stored and it is not used at following iterations. We repeat the same

process for all lines starting with the solution obtained in phase 2, and we keep the

best solution.
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• Phase 4

The fourth phase is defined as follows. From the stored solution in phase 3, we first

try to improve the objective function by applying the movements described in the

third phase (Move+ or Move−) only to the first line. We keep the best solution

and, over such a solution, apply the same to the second line. And so on. We keep

the best solution found and the algorithm stops.

We remark that third and fourth phases are different in the following sense. In the third

phase, we compute the best solution at each iteration applying Move+ or Move−. Then

this solution is stored and it is not used at the following iterations. However, in the fourth

phase, we applyMove+ orMove− at each iteration, starting with the best stored solution

from previous iterations in this phase. The following algorithms show the pseudocode for

the heuristic.

Data: A line network ((N,E),L).

Phase 1: Initial solution construction.

z = {}.

for each possible value of frequency φq ∈ F do

Set all frequencies to φq;

Compute zNET according to Loop I;

z = z ∪ {zNET}

end

return argmax z, the optimal frequency configuration C ini
F = (φq∗ , φq∗, . . . , φq∗)

and carriages (δ∗ℓ1 , . . . , δ
∗
ℓ|L|

).

Phase 2: The neighborhood N (C ini
F ) of C ini

F = (φq∗, φq∗ , . . . , φq∗) is generated. For

each neighbor, Loop I is applied and the number of carriages for each line and

zNET is computed. The profit of all neighbors and the initial solution are

compared. Let Cneig
F be the frequency configuration with maximum zNET .

Phase 3: From Cneig
F , a local search by means of movements is considered (see

Algorithm 6).

Phase 4: From solution phase 3, a different local search procedure by means of

movements is considered (see Algorithm 7).

Result: The frequency configuration (ψ∗
ℓ1
, ψ∗

ℓ2
, . . . , ψ∗

ℓ|L|
) and capacity

configuration (δ∗ℓ1 , δ
∗
ℓ2
, . . . , δ∗ℓ|L|

) with maximum profit.

Algorithm 3: HLSA heuristic.
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Data: The frequency φqp ∈ F assigned to line ℓp on which we will apply the

movements and, the current frequency configuration in the way:

Ccur = (φq1, . . . , φq|L|).

Loop II;

z = zNET (φ
q1, . . . , φq|L|);

φ̂qp =Move+(φqp);

ẑ = zNET (φ
q1, . . . , φ̂qp, . . . , φq|L|);

if z < ẑ then

while z ≤ ẑ do

z = ẑ;

φ̂qp =Move+(φ̂qp);

ẑ = zNET (φ
q1, . . . , φ̂qp, . . . , φq|L|);

end

else

φ̂qp =Move−(φqp);

ẑ = zNET (φ
q1, . . . , φ̂qp, . . . , φq|L|);

while z ≤ ẑ do

z = ẑ;

φ̂qp =Move−(φ̂qp);

ẑ = zNET (φ
q1, . . . , φ̂qp, . . . , φq|L|);

end

end

zp = ẑ;

return the best profit zp and the best frequency for ℓp denoted by φ̂qp.

Result: The frequency for line ℓp with maximum profit as well as the

configuration of carriages and such profit. Note that, now the

configuration is Cφ = (φq1, . . . , φ̂qp, . . . , φq|L|)

Algorithm 4: Pseudocode for Loop II which is used in phase 3 and 4.
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Data: A frequency configuration in the way Cφq

F = (φq, φq, . . . , φq).

Loop I;

for each line ℓ do

Find the arc eℓ of ℓ with maximum load;

Find the minimum number of carriages δℓ needed to transport all passengers

traversing arc eℓ;

Keep δℓ.

end

Compute the profit zNET .

Result: zNET associated to the frequency configuration Cφq

F = (φq, φq, . . . , φq) and

carriages (δℓ1 , . . . , δℓ|L|
)

Algorithm 5: Pseudocode for Loop I which is used in phase 1 and 2.

Data: A configuration of frequencies (φq1, . . . , φq|L|).
Set z = {};
for each line ℓp do

Obtain the best profit zp applying Move+ or Move− on the frequency φqp

associated to ℓp and according to (φq1, . . . , φq|L|), by means of Loop II;
z = z ∪ {zp}.

end

return argmax z.
Result: The frequency and carriages configuration of maximum profit.

Algorithm 6: Pseudocode for the phase 3.

Data: A configuration of frequencies Ccur
F = (φq1, . . . , φq|L|).

Set z = 0;
for each line ℓp do

Obtain the best profit zp applying Move+ or Move− on the frequency φqp

associated to ℓp and according to Ccur
F , by means of Loop II.

Do φqp = φ̂qp and Ccur
F = (φq1, . . . , φ̂qp, . . . , φq|L|);

z = zp.
end

return z.
Result: The frequency and carriages configuration of maximum profit.

Algorithm 7: Pseudocode for the phase 4.
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Example 3.3.1 Consider two lines ℓ1, ℓ2 and five possible frequencies for each line, namely,

F = {1, 2, 3, 4, 5}.

• Phase 1: calculate the net profit of the following frequencies: [1,1], [2,2], [3,3], [4,4],

[5,5]. Assume that the best profit is given by configuration [3,3].

1 2 3 4 5

1

2

3

4

5

[3, 3]

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

How phase 1 works

The best profit is assumed to be
C ini

F = [3, 3].

Figure 3.2.: Phase 1. Initialization.

• Phase 2: in this phase, the neighborhood of [3,3] is N (C ini
F ) = {[4, 3], [2, 3], [3, 4], [3, 2]}.

Assume that configuration [3,4] yields the highest profit, so we keep this solution.

2 3 4

2

3

4

[3, 3]

Best profit [3, 4]

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

How phase 2 works

The best profit is assumed to be
Cneig

F = [3, 4].

Figure 3.3.: Phase 2. Neighborhood.

• Phase 3: from solution [3,4], we start by increasing the frequency of the first line

(note that [4,4] is not here analyzed). So we compute the next, [5,4], which let us
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assume yields a better profit. We then analyze [1,4] (as frequency 6 is not feasible),

then [2,4],.. until we stop improving the profit. If at the first iteration of Move+

([5,4]), a better profit is not obtained, we decrease the frequency of the first line in

the same way as Move+. We do the same for the second line. Assume that the best

solution in this phase is [3,1].

1 2 3 4 5

4

[3, 4] 1st

2nd

3rd

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

Step 1: Move+ on first line

1 2 3 4 5

4

[3, 4]1st

2nd

3rd

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

Step 1: Move− on first line

3

1

2

3

4

5

3rd

2nd; STOP

[3, 4]

1st

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

Step 2: Move+ on line 2

3

1

2

3

4

5

1st

2nd; STOP

[3, 4]

3rd

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

Step 2: Move− on line 2

Figure 3.4.: Phase 3. A local search by movements.

• Phase 4: We now apply Move+ or Move− on the frequency of each line in solution

[3,1] as phase 3. Assume that the best solution found for first line is [4,1]. We now

apply Move+ or Move− to the second line in solution [4,1] while we improve the

profit. The solution obtained after these steps is the final solution of the algorithm.

3.4. Capacitated problem

As mentioned, in this section we will define the Capacitated Rapid Transit System

Simultaneous Frequency and Capacity Setting Problem (CRTSSFCP) under assumption
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2 3 4 5
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Step 1: Move+ on line 1
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Step 1: Move− on line 1
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Step 2: Move+ on line 1

4

1

2

3

4

5

3rd

[4, 1]

2nd

1st; STOP

Frequency ℓ1

F
re
q
u
en
cy

ℓ 2

Step 2: Move− on line 2

Figure 3.5.: Phase 4: a local search by movements.

of a limited number of carriages. An interesting aspect to take into account in this problem

are the crowding levels as a consequence of taking a limited capacity. In overcrowding

situations, many passengers choose an alternative path or a different transportation mode.

So, congestion not only causes an increase in the traveler’s disutility, but also a benefit

loss to operators. For the sake of clarify, we introduce the following terms. Let κℓij be

the number of passengers traversing arc (i, j) of ℓ by hour. The train capacity of a line

ℓ is the carriage capacity Θ times the number of carriages associated to one train of

ℓ. The carriage capacity have been defined as the nominal capacity or crush capacity

(Oldfield and Bly (1988), Jara-Dı́az and Gschwender (2003)) which includes both seating

and standing. The maximum number of passenger Nbℓ who can travel on line ℓ by hour

can be computed as its frequency times its train capacity. By means of these terms,

the load factor ̺ℓij is defined as the ratio κℓij/Nbℓ. Observe that if ̺ℓij ≤ 1, the arc

(i, j) ∈ ℓ is not affected by congestion. Therefore, if the train capacity of a line ℓ is

not enough to transport all passengers traveling inside ℓ, the rapid transit network can
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become a congested network. In recent research, the load factor is introduced to stipulate

the crowding levels. There exists four crowding types: in-vehicle crowding, platform

crowding, excessive waiting time and increased dwell time. We will analyze the in-vehicle

crowding effects, which can be defined by means of crowding penalties. There are three

possible ways to describe this term: time multiplier, the monetary value per time unit

and the monetary value per trip. We will consider the time multiplier in our problem.

Due to each transport mode is different, it is not possible to define a general crowding

function valid for all transport modes, as stated Feifei and Haicheng (2012), Feifei (2014).

De Palma et al. (2010) propose an exponential function for the crowding penalty in the

context of railway system using a load factor. This crowding function is expressed as

CF (̺ℓij) = 1 +
ς1

1 + exp(ς2(1− ̺ℓij))
+ ς3 exp(ς4(̺

ℓ
ij − ς5)), (3.20)

in which the parameters are positive and ς1 and ς3 should be carefully calibrated (see

Feifei and Haicheng (2012)). The parameter ς5 > 1 represents the threshold from which

the passengers starts to perceive overcrowding. It can be observed that this function

reflects the inconvenience associated with in-vehicle crowding. The important point to

note here is the form of this function. If the load factor ̺ℓij ≤ 1, CF (̺ℓij) becomes

approximately one, the second term in the Equation (3.20) is close to zero for a proper

value of parameter ς2 and the last term ς3 exp(ς4(̺
ℓ
ij − ς5)) is approximately zero (recall

̺ℓij < ς5). Analogously, when the load factor 1 ≤ ̺ℓij ≤ ς5, in-vehicle crowding starts to

working on the traveling time of arc (i,j). The penalty impact will be very depending on

the ς2 parameter.

Our next goal is to introduce congestion in the model presented in Section 3.3 by means

of the crowding function defined previously. To this end, we introduce the following

variables and parameters. Let ̺ℓij be the load factor on the arc (i, j) ∈ ℓ defined above.

Due to the fact that we are only including in-vehicle crowding effects, solutions whose load

factor is greater than the value of the parameter σ are not allowed. Observe that if ̺ℓij > σ,

penalties according to the excess waiting time, platform crowding and increased dwell time

have to be included in the model. In order to introduce the in-vehicle congestion effects

on the model, we include constraint ̺ℓij ≤ σ in the mathematical programming program

defined in Section 3.3.1.

The main difference between this model and that defined in Section 3.3 lies in the intro-

duction of an upper bound δmax on the number of possible carriages. As a consequence,

lines in specific sections of the RTS can be congested. We consider d̄ℓij = CF (̺ℓij) · dij as
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the perceived time to traverse arc (i, j) of ℓ using the rapid transit system. As commented,

if the arc (i, j) ∈ ℓ is not congested, d̄ℓij ≃ dij. So, variable u
RTS
w representing the average

travel time must be redefined. The average travel time associated to OD pair w using the

rapid transit network under crowding can be explicitly defined as follows:

uRTS
w =

∑

ℓ∈L

∑

j:{ws,j}∈ℓ

60f̃wℓ
wsj

2ψℓ
+ (60/λ)

∑

ℓ∈L

(
∑

{i,j}∈ℓ

f̃wℓ
ij d̄

ℓ
ij)

+
∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

i∈ℓ∩ℓ′

f̃wℓℓ′

i (
60

2ψℓ′
+ uci), w = (ws, wt) ∈ W.

(3.21)

The first term in (3.21) is the waiting time at the origin station, which is also assumed to

be half of time between services of this line. The second term is the in-vehicle time which

can be affected by congestion. Finally, the last one constitutes the required time by the

transfers. The rest of variables, parameters, constraints as well as objective function are

equals to those defined in Section 3.3.

This model has several limitations. The first one, is the time needed to find good

solutions. The second and most important, is the problem complexity. Note that if

the congestion function is activated, data related to distance change. So, the instance

become to be different when the penalty is applied on the distances. Concretely, the

congestion effect influences on the travel time of each path, and, therefore, on the number

of passengers in the RTS. The passengers’ behavior is different in congestion presence

and, as a consequence, it is different for each instance modification. It can be observed

that the penalization process stops when the network is not congested or a fixed point is

searched. In other words, passengers take a different path or mode and an equilibrium is

searched (all passengers can be transported). The solution reflects not only the number

of carriages and frequencies, but also a medium-term analysis of the passenger’s behavior

under congestion.

The excess waiting time effects can be incorporated on our problem as follows. The

passengers affected by this aspect are who waiting for next train to the fact that the first

train was full and they were left behind, increasing waiting time and discomfort to travel.

In the context of bus transport, Oldfield and Bly (1988) presented a formal definition

of this type of crowding. They expressed the waiting time according to headway and

crowding level. However, the inclusion of excess waiting time effects in our model is

not trivial. For the purpose, the travel time of all passengers waiting for next train is

increased according to an additional time which depends on the frequency of the congested

line. The rerouting passengers process is very difficult. This is due to the fact that the
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passengers affected by the excessive waiting time have different travel time from the rest of

passengers and, as a consequence, a different instance associated. So, the initial instance

is split into two different instances: one associated to excessive waiting time and the other

one, related to in-vehicle crowding. Analogously, the origin-destination matrix is divided

into two matrixes: one containing the passenger associated to the in-vehicle crowding and

other one, according to the excessive waiting time. The crowding phenomenon is also

defined as the congestion effect at train stations; the access/egress to/from the station,

on platforms (see Douglas and Karpouzis (2005)) and on the increased dwell times as

Lin and Wilson (1992).

The following section is devoted to introduce two algorithms to solve our problem.

3.4.1. Two algorithms for our problem

In this section we introduce two different algorithms that solve our problem: one with

the nominal capacity and other one with number of seats. These algorithms check each

possible frequency and each number of carriages per train of each line. The idea is to

iteratively test all possible combinations of frequencies and carriages. Once the frequencies

and carriages have been set, the shortest path on the rapid transit network for each

OD pair can easily be computed by a modified Dijkstra algorithm. From these shortest

paths the number of passengers traveling on each line and arc is calculated and the

capacity constraint is tested on the arc with maximum load. If there is a congested

arc, the penalization process is activated. Depending on the considered definition of

carriage capacity, the congestion is perceived before or later. The perceived travel time

to traverse each congested arc is defined as the travel time to traverse each arc times its

corresponding penalty. When the penalization process is finished, the rerouting passenger

process is activated. For the purpose, the shortest path taking into account transfer and

waiting times on the RTS for each OD pair is recalculated and the capacity constraint is

rechecked and so on. Due to the fact that travel time increase, the number of passengers

on congested arc is smaller than in the previous iteration. Some passengers will take

an alternative path or an alternative transport mode. This procedure breaks when the

congestion ends or when a fixed point is reached. Algorithm 10 shows the pseudocode to

solve the CRTSSCFP with nominal capacity and Algorithm 13 is the pseudocode to solve

the CRTSSCFP with the number of seats at each carriage. For the congestion with the

seat capacity, the in-vehicle crowding is activated when the load factor reaches 140% or

standing density is over four passengers per square meter (see Feifei and Haicheng (2012),

Feifei (2014)).
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Data: A combination of frequencies and carriages
Let niter = 0 be the number of iterations;
Loop III(a): Check the capacity constraint

for each line ℓ do
Find the arc (i, j) ∈ ℓ with maximum load ̺ℓij ;

if 1 < ̺ℓij ≤ σ then

penalize the traverse time of each arc by means of CF -function;
niter = niter + 1;
go Loop IV(a);

end

end

Result: A rapid transit system.

Algorithm 8: Checking the capacity constraint with nominal capacity.

Data: A line network (S,L)
Loop IV(a): Check fixed point

if niter is equal to one then

We define (Spre,Lpre) as (S,L);
go Loop III(a);

else

if the network (S,L) is the same than (Spre,Lpre) then
break;

else

We define (Spre,Lpre) as (S,L);
go Loop III(a);

end

end

Result: A rapid transit system.

Algorithm 9: Testing the fixed point with nominal capacity.
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Data: A line network (S,L), a set of possible frequencies and a minimum and
maximum capacity

Set z = {};
for each possible combination of frequencies and carriages do

go Loop III(a);
Compute the profit zNET ;
z = z ∪ {zNET}

end

return argmax{z};
Result: The frequency and capacity configuration with the maximum profit.

Algorithm 10: The algorithm for the rapid transit system frequency and capacity
setting problem under congestion with nominal capacity.

Data: A combination of frequencies and carriages
Let niter = 0 be the number of iterations;
Loop III(b): Check the capacity constraint

for each line ℓ do
Find the arc (i, j) ∈ ℓ with maximum load ̺ℓij ;

Let ˆ̺ℓij be the load with the nominal capacity;

if ̺ℓij > 1.4 and ˆ̺ℓij ≤ σ then

penalize the traverse time of each arc by means of CF -function;
niter = niter + 1;
go Loop IV(b);

end

end

Result: A rapid transit system.

Algorithm 11: Checking the capacity constraint with seat capacity.
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Data: A line network (S,L)
Loop IV(b): Check fixed point

if niter is equal to one then

We define (Spre,Lpre) as (S,L);
go Loop III(b);

else

if the network (S,L) is the same than (Spre,Lpre) then
break;

else

We define (Spre,Lpre) as (S,L);
go Loop III(b);

end

end

Result: A rapid transit system.

Algorithm 12: Testing the fixed point with seat capacity.

Data: A line network (S,L), a set of possible frequencies and a minimum and

maximum capacity

Set z = {};

for each possible combination of frequencies and carriages do

go Loop III(b);

Compute the profit zNET ;

z = z ∪ {zNET}

end

return argmax{z};

Result: The frequency and capacity configuration with the maximum profit.

Algorithm 13: An algorithm for the rapid transit system frequency and capacity

setting problem under congestion with seat capacity.

3.5. Computational experiments

All the calculations in this section were performed with a Java code in a computer with

8 Gb of RAM memory and 2.8 Ghz CPU. For purpose of evaluating the performance of

our algorithms, we have used several instances of networks (see 3.5.1). Specifically, we

have selected instances with 2,3,5 and 6 lines.

There are no previously reported solutions for the proposed problem as far as we are
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aware. We have compared our HLSA heuristic algorithm against the optimal solution

obtained with the exact algorithm described in Section 3.4. The comparison of these

results are presented in Tables C.2, C.4, C.6, C.8 and C.10. In Tables C.1, C.3, C.5, C.7

and C.9 we have reported the optimal solutions obtained by the algorithm, the solution

values obtained by the heuristic procedure as well as some relevant characteristic at each

case.

Out of the 170 instances tested in the uncapacitated case, our algorithm was able to

provide optimal solutions for most instances: it found the optimal solution in 155 instances

(91.17%). From this analysis, it can be seen that our heuristic was so able to provide good

results in a very small CPU time. For instance, for networks with 5 lines our heuristic

algorithm took on average 5.57 seconds compared to 5077.36 of the exact algorithm.

Finally, we also wanted to analyze the capacitated problem defined in section 3.4. We

have performed tests to asses the impact of the congestion on the networks 6×2, 7×3 and

8×3. To this end, we have gradually increased the number of carriages and we have solved

the problem with our algorithm (see Algorithm 10). The results of these experiments are

presented in Tables C.11, C.12, C.15 and C.16. It can be seen that when the maximum

number of carriages is small, the solution has high frequencies in order to transport all

passengers. This is due to the problem definition: we have imposed that all passengers

willing to travel in the RTS have to be transported.

A key factor to solve this problem was the introduction of the congested function defined

in Section 3.4, which is based on in-vehicle crowding. A total of 200 experiments were

carried out in our analysis.

The description of our computational experiments is as follows. First, we introduce all

parameters needed to carry out the experiments as well as the considered networks. Sec-

ondly, we will comment conclusions in Section 3.5.2 from the computational experiments

performed in Appendix C.

3.5.1. Parameter setting

In Table 4.4 we report the parameters that govern our algorithms. The data reported

in this table are based on the specific train model Civia, usually used for regional railway

passengers transportation in Spain by the National Spanish Railways Service Operator

(RENFE). One important characteristic of Civia trains is that the number of carriages

can be adapted to the demand. Each Civia train constains two electric automotives (one

at each end) and a variable number of passenger carriages. Each automotive or carriage

has a maximum capacity of 200 passengers. In our experimentation, we will assume that
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the train is composed by only one electric locomotive (for traction purposes and null ca-

pacity) and several passengers carriages (which cannot move without a locomotive) as in

Cordeau et al. (2000) and Alfieri et al. (2006). The purchase price of rolling stock used

in this experimentation is also based on the real data of Civia trains. The price of ticket

and subvention considered in our experimentation, have been taken from the newspaper

(http://www.20minutos.es/noticia/2028399/0/madrid/empresas-privadas/metro-ligero/).

Parameters

Name Description Value

ρ̂ years to recover the purchase 20

ρ number of operative hours per year 6935

cloc costs for operating one locomotive per kilometer [e/km] 34

ccarr operating cost of a carriage per kilometer [e/km] 2

ccrew per crew and year for each train [e/ year] 75 · 103

Iloc purchase cost of one locomotive in e 2.5 · 106

Icarr purchase cost of one carriage in e 0.9 · 106

Θ capacity of each carriage (number of passengers) 2 · 102

λ average commercial speed in [km /h] 30

γ maximum number of lines traversing an edge 4

ψmin minimum frequency of each line 3

ψmax maximum frequency of each line 20

ψℓ possible values {3,4,5,6,10,12,15,20}

Table 3.1.: Model parameters for RNFCSP.

In the experiments we have considered five networks. The first one is defined by six

nodes, five edges and two lines as follows

1 3 5 6

2

4

The lines are defined as:

red line ℓ1 = {1, 3, 5, 6} and

blue line ℓ2 = {2, 3, 4}.

Figure 3.6.: Representation of 6× 2-configuration.
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The second one is a star network with six nodes and three lines.

1 4 7

2

5

6

3

The lines are defined as:

blue line ℓ1 = {2, 4, 5}, red line

ℓ2 = {1, 4, 7} and green line

ℓ3 = {3, 4, 6}.

Figure 3.7.: Representation of 7× 3-configuration.

The following network is defined by eight nodes, seven edges and three lines.

1 3

4 6 82

5 7

The lines are defined as:

red line ℓ1 = {1, 3, 4, 6, 8},

blue line ℓ2 = {2, 4, 5, 7} and

green line ℓ3 = {4, 6, 8}.

Figure 3.8.: Representation of 8× 3-configuration.

The following network is a grid configuration formed by fifteen nodes, seventeen edges

and fives lines.

1 3 5 7

4 6 8

10

13

11

2

9 12

14 15

The lines are defined as:

red line ℓ1 = {1, 3, 5, 7},

blue line ℓ2 = {1, 4, 11, 15},

green line ℓ3 = {13, 10, 4, 6, 8},

gray line ℓ4 = {2, 9, 10, 11, 12}

and brown line

ℓ5 = {5, 6, 11, 14}.

Figure 3.9.: Representation of 15× 5-configuration.

Next configuration is defined by twenty nodes, twenty three edges and six lines.
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12 13 14 15 16

8 9

5 6 7

4

2

3

1

10

18

11

17

2019

The lines are defined as:

red line ℓ1 = {2, 4, 6, 5, 9, 13},

brown ℓ2 = {1, 3, 6, 7, 10, 15},

blue line ℓ3 = {12, 13, 14, 15, 16},

purple line ℓ4 = {13, 17, 19, 20},

gray line ℓ5 = {8, 13, 18, 16, 11}

and green line

ℓ6 = {8, 9, 14, 15, 16}.

Figure 3.10.: Representation of 20× 6-configuration.

For each configuration, we have randomly generated 10 different instances for the OD-

matrix and length data. To this end, the number of passengers of each OD pair w, was

obtained according to the product of two parameters. The first one was randomly set

in the interval [5,15] by using a uniform distribution, whereas the other one was set in a

different interval for each configuration. Concretely, for the 6 × 2-network, the interval

considered was set as [65,77], generating around 20.000 passengers at each instance of such

configuration. For 7×3 and 8×3-networks, the number of passengers was approximately

30.000 passengers at each case and the parameters were defined in the intervals [68, 80]

and [51, 59], respectively. The parameter for the 20×6-configuration was set to 16 for all

instances and [23, 25] for the 15 × 5-configuration. The following Table 3.2 reportes the

number of passengers considered for each instance.
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Instance

Configuration seed1 seed2 seed3 seed4 seed5 seed6 seed7 seed8 seed9 seed10

example6 × 2 20236 20523 21862 20898 20073 20554 21275 20224 20898 20802

example7 × 3 30294 30505 30071 30843 30886 28095 30356 30927 30000 30366

example8 × 3 30360 30041 30555 30779 30151 30497 30298 30465 30995 30260

example15 × 5 47922 50454 51121 51400 50021 51157 50112 50370 50450 50973

example20 × 6 61359 60384 62124 61319 60188 60956 60457 61561 61233 61680

Table 3.2.: Number of possible trips at each instance.

To define each arc length, the coordinates of each station were set randomly by means

of an uniform distribution. So, the arc length at each instance is different since each arc

connects to different stations.

For the experiments, the travel times ualtw by the alternative mode, were obtained by

means of the Euclidean distance and a speed of 20 km/h, whereas, the travel times in the

RTS were obtained according to in-vehicle travel time, waiting and transfer times. The

waiting time was supposed to be half of the corresponding time between services of lines

at the origin station, whereas, the transfer time was assumed to be half time between

two consecutive services at the line to transfer. We assume two possible values for the σ

parameter: 1.1 and 1.2. So, for σ = 1.1, if the number of passenger traveling inside each

line is higher than capacity of line over 10%, the solution is taken into account.

3.5.2. Computational comments

To conclude this section, we will show some conclusions on the results in the computa-

tional experiments reported in Appendix C. First, we have performed experiments for the

uncapacitated problem and secondly for the capacitated version. In the uncapacitated

problem we have compared the heuristic algorithm defined in Section 3.3.2 against the

exact algorithm. In Table 3.3 we report the gaps, the optimality ratio and the ratio time

between exact and heuristic time.
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gap % ratio opt ratio time

6× 2 0.00179079 97.5 3.30321746

7× 3 0.93977468 80 20.8142911

8× 3 0.04214467 95 20.8872632

15× 5 0.08713446 90 913.972632

20× 6 0 100 6712.15308

Table 3.3.: Results for the uncapacitated problem.

For 6× 2-configuration the average of all CPU times at the heuristic was 0.063375 sec-

onds while if we consider the exact, its average was 0.19335 seconds. The data reported

in Table C.2 showed that at the 97.5% the heuristic found the optimal solution and the

average improve of the CPU time was 65.6%. At the 7×3-configuration the average CPU

time for the heuristic was 0.16995 and for the exact was 3.48045 seconds. In Table C.4

it can be seen that at the 80% the heuristic found the optimal solution and the average

improve of the CPU time was 95.11%. From the obtained results for this configuration, it

can be observed that the optimal solution for each instance was reached for small frequen-

cies and high capacities. The average CPU time in the heuristic for 8 × 3-configuration

was 0.2836 and the exact was 5.89 seconds, which represents an improvement of 95.18%

in the time. For the 15 × 5-configuration it can be seen that the heuristic improved the

average CPU time in 99.9%. Due to the spent time in the exact algorithm, we have only

solved ten instances for the 20 × 6-configuration. At these cases our heuristic was able

to find the optimal solution for all instances (100%) and the average improve of the CPU

time was 99, 98%.

In a second stream of experiments, we have studied the impact of congestion on the

6 × 2, 7 × 3 and 8 × 3-configurations. To this end, we have gradually increased the

maximum number of carriages and we have fixed σ to 1.1 in our experimentation. Detailed

information on these solutions are shown in Tables C.11, C.12, C.15 and C.16. From

these results it can be seen that the number of trains decreases according as the maximum

number of carriages increases. It can be observed that for the most instances the solutions

do not correspond to congested networks. This fact indicates that in-vehicle crowding has

a significant effect on the solutions. The solutions obtained at the uncapacitated case

can be analyzed with the congestion effect. It is important to note that the passengers’

behavior changes when the congestion is introduced in the problem and that it is more

economically interesting to add carriages than to lose passengers.
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3.6. Conclusions

We have described a problem in the line planning context, which consists of selecting,

for each line, the number of services per hour and the number of train carriages in presence

of a competing transportation mode. In this problem, all passengers preferring to use the

RTS have a service and a certain net benefit is maximized. This problem requires to

incorporate a long term public economic support for the operating and acquisition rolling

stock. We have classified our problem into two categories: uncapacitated and capacitated

problem. The first problem assumes the maximum number of possible carriages is a suf-

ficiently natural number in order to allow all people preferring to travel in the RTS can

be transported. The second one can lead to congested networks since the number of pos-

sible carriages is a limited value. We have proposed two different algorithms to solve the

first problem: an exact and heuristic algorithm. The heuristic technique is a procedure

based on a Local Search Algorithm. The modifications are done by means of an appro-

priated neighborhood structure and movements. The input data in the computational

experiments has been based on real data in order to calibrate all parameters that appear

in our problem. Moreover, we have randomly generated instances for different types of

networks. Comparative tests on a large set of instances have shown that our heuristic

in the uncapacitated problem can provide high quality solutions within reasonable com-

puting times. Out of the 170 instances tested in the uncapacitated case, our algorithm

was able to provide optimal solutions for most instances: it found the optimal solution

in 155 instances (91.17%). On the other hand, the algorithm defined in Section 3.4 have

been tested on small networks showing the effect of the congestion on the solutions. The

congestion impact have been studied by means of a congestion function which measures

the level of in-vehicle crowding. A total of 200 experiments were carried out in our anal-

ysis. From the obtained results, it can be observed that the profit is more economically

interesting when the network is not a congested network. In other words, the demand is

sensitive to congestion and it is more profitable to add carriages or trains than to lose

passengers.

This problem can easily be extended to the case of a set of possible lines (a line pool)

analyzing iteratively all combinations of lines. For each possible set of lines, the problem

is reduced to our problem.
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Computational results

In the next section, we will report the results for each network, considering a sufficiently

large number of carriages. Section C.0.2 is devoted to the congested case.

C.0.1. Computational experiments for the uncapacitated problem

We assume two possible values for the σ parameter: 1.1 and 1.2. So, for σ = 1.1, if the

number of passenger traveling inside each line is higher than capacity of line over 10%, the

solution is taken into account. The δmax parameter was adjusted in the way all passengers

willing to travel in the RTS can be transported. In fact, we consider δmax = 8 for the

6× 2, 7× 3, 8× 3 and 15× 5 configurations and δmax = 10 for the 20× 6-configuration.

A total of 170 experiments were carried out, as showed in Tables C.1, C.3, C.5, C.7 and

C.9. In the most cases, the heuristic and the exact procedure lead to the same results. In

the following, we will analyze each network separately.

6 × 2-configuration

It can be observed that the average of all CPU times at the heuristic is 0.063375 seconds

while if we consider the exact, its average is 0.19335 seconds. So, the heuristic improves

the average CPU time in 67.22% respect to the exact. This indicates that the heuristic

procedure is promising and that for instances of large size the heuristic is expected to

be much faster than the exact procedure. Note that the maximum net profit is obtained

for the Seed1-instance at all scenarios. However, the revenue at this instance is not the
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highest in the first, second and fourth scenario. This is due to the high costs for the

operation and investment trains. The profit and revenue are graphically represented in

Figure C.1 and C.2 for the first and fourth scenario from Table C.1.

1 2 3 4 5 6 7 8 9 10
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Figure C.1.: Revenue and profit for first scenario of 6× 2-configuration.
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Figure C.2.: Revenue and profit for fourth scenario of 6× 2-configuration.
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Configuration instance fare σ zNET zREV ψℓ δℓ CPU time nb trips nb Trains zNET zREV ψℓ δℓ CPU time nb trips nb Trains

example6 × 2 seed1 6 1.1 9.06E+09 1.3E+10 [3, 3] [8,5] 0.094 15675 6 9.06E+09 1.3E+10 [3, 3] [8,5] 0.109 15675 6

example6 × 2 seed2 6 1.1 8.22E+09 1.23E+10 [3, 3] [7,5] 0.031 14799 6 8.22E+09 1.23E+10 [3, 3] [7,5] 0.125 14799 6

example6 × 2 seed3 6 1.1 8.03E+09 1.19E+10 [3, 3] [5,5] 0.031 14259 6 8.03E+09 1.19E+10 [3, 3] [5,5] 0.125 14259 6

example6 × 2 seed4 6 1.1 7.21E+09 1.1E+10 [3, 3] [5,3] 0.031 13226 6 7.21E+09 1.1E+10 [3, 3] [5,3] 0.125 13226 6

example6 × 2 seed5 6 1.1 7.49E+09 1.18E+10 [4, 4] [5,4] 0.047 14221 8 7.49E+09 1.18E+10 [4, 4] [5,4] 0.109 14221 8

example6 × 2 seed6 6 1.1 8.16E+09 1.35E+10 [4, 5] [5,3] 0.047 16268 9 8.16E+09 1.35E+10 [4, 5] [5,3] 0.109 16268 9

example6 × 2 seed7 6 1.1 6.84E+09 1.22E+10 [4, 5] [4,3] 0.031 14701 9 6.84E+09 1.22E+10 [4, 5] [4,3] 0.125 14701 9

example6 × 2 seed8 6 1.1 6.03E+09 9.83E+09 [3, 3] [5,3] 0.047 11811 6 6.03E+09 9.83E+09 [3, 3] [5,3] 0.125 11811 6

example6 × 2 seed9 6 1.1 6.6E+09 1.02E+10 [3, 3] [5,3] 0.031 12204 6 6.6E+09 1.02E+10 [3, 3] [5,3] 0.125 12204 6

example6 × 2 seed10 6 1.1 7.41E+09 1.15E+10 [3, 3] [5,4] 0.031 13831 6 7.41E+09 1.15E+10 [3, 3] [5,4] 0.125 13831 6

example6 × 2 seed1 6 1.2 9.24E+09 1.3E+10 [3, 3] [7,4] 0.422 15675 6 9.24E+09 1.3E+10 [3, 3] [7,4] 0.5 15675 6

example6 × 2 seed2 6 1.2 8.41E+09 1.23E+10 [3, 3] [6,4] 0.11 14799 6 8.41E+09 1.23E+10 [3, 3] [6,4] 0.39 14799 6

example6 × 2 seed3 6 1.2 8.11E+09 1.19E+10 [3, 3] [5,4] 0.109 14259 6 8.11E+09 1.19E+10 [3, 3] [5,4] 0.391 14259 6

example6 × 2 seed4 6 1.2 7.21E+09 1.1E+10 [3, 3] [5,3] 0.125 13226 6 7.21E+09 1.1E+10 [3, 3] [5,3] 0.407 13226 6

example6 × 2 seed5 6 1.2 7.57E+09 1.18E+10 [4, 4] [5,3] 0.125 14221 8 7.57E+09 1.18E+10 [4, 4] [5,3] 0.391 14221 8

example6 × 2 seed6 6 1.2 8.16E+09 1.35E+10 [4, 5] [5,3] 0.187 16268 9 8.16E+09 1.35E+10 [4, 5] [5,3] 0.406 16268 9

example6 × 2 seed7 6 1.2 6.84E+09 1.22E+10 [4, 5] [4,3] 0.156 14701 9 6.84E+09 1.22E+10 [4, 5] [4,3] 0.422 14701 9

example6 × 2 seed8 6 1.2 6.03E+09 9.83E+09 [3, 3] [5,3] 0.125 11811 6 6.03E+09 9.83E+09 [3, 3] [5,3] 0.39 11811 6

example6 × 2 seed9 6 1.2 6.6E+09 1.02E+10 [3, 3] [5,3] 0.11 12204 6 6.6E+09 1.02E+10 [3, 3] [5,3] 0.407 12204 6

example6 × 2 seed10 6 1.2 7.52E+09 1.21E+10 [3, 4] [5,3] 0.125 14487 7 7.52E+09 1.21E+10 [3, 4] [5,3] 0.406 14487 7

example6 × 2 seed1 8 1.1 1.37E+10 1.87E+10 [4, 4] [7,4] 0.094 16880 8 1.37E+10 1.87E+10 [4, 4] [7,4] 0.125 16880 8

example6 × 2 seed2 8 1.1 1.23E+10 1.64E+10 [3, 3] [7,5] 0.031 14799 6 1.23E+10 1.64E+10 [3, 3] [7,5] 0.125 14799 6

example6 × 2 seed3 8 1.1 1.22E+10 1.86E+10 [5, 6] [4,3] 0.032 16795 11 1.22E+10 1.86E+10 [5, 6] [4,3] 0.125 16795 11

example6 × 2 seed4 8 1.1 1.09E+10 1.47E+10 [3, 3] [5,3] 0.032 13226 6 1.09E+10 1.47E+10 [3, 3] [5,3] 0.125 13226 6

example6 × 2 seed5 8 1.1 1.14E+10 1.61E+10 [4, 5] [5,3] 0.046 14493 9 1.14E+10 1.61E+10 [4, 5] [5,3] 0.125 14493 9

example6 × 2 seed6 8 1.1 1.27E+10 1.81E+10 [4, 5] [5,3] 0.047 16268 9 1.27E+10 1.81E+10 [4, 5] [5,3] 0.125 16268 9

example6 × 2 seed7 8 1.1 1.09E+10 1.63E+10 [4, 5] [4,3] 0.047 14701 9 1.09E+10 1.63E+10 [4, 5] [4,3] 0.125 14701 9

example6 × 2 seed8 8 1.1 9.47E+09 1.65E+10 [6, 6] [3,2] 0.047 14852 12 9.47E+09 1.65E+10 [6. 6] [3,2] 0.125 14852 12

example6 × 2 seed9 8 1.1 1.01E+10 1.68E+10 [6, 6] [3,3] 0.031 15151 12 1.01E+10 1.68E+10 [6, 6] [3,3] 0.125 15151 12

example6 × 2 seed10 8 1.1 1.14E+10 1.79E+10 [5, 5] [4,3] 0.031 16155 10 1.14E+10 1.61E+10 [3, 4] [6,3] 0.125 14487 7

example6 × 2 seed1 8 1.2 1.38E+10 1.85E+10 [3, 5] [8,3] 0.094 16677 8 1.38E+10 1.85E+10 [3, 5] [8,3] 0.125 16677 8

example6 × 2 seed2 8 1.2 1.25E+10 1.64E+10 [3, 3] [6,4] 0.031 14799 6 1.25E+10 1.64E+10 [3, 3] [6,4] 0.141 14799 6

example6 × 2 seed3 8 1.2 1.22E+10 1.86E+10 [6, 5] [3,3] 0.047 16795 11 1.22E+10 1.86E+10 [6, 5] [3,3] 0.109 16795 11

example6 × 2 seed4 8 1.2 1.09E+10 1.47E+10 [3, 3] [5,3] 0.031 13226 6 1.09E+10 1.47E+10 [3, 3] [5,3] 0.125 13226 6

example6 × 2 seed5 8 1.2 1.15E+10 1.58E+10 [4, 4] [5,3] 0.047 14221 8 1.15E+10 1.58E+10 [4, 4] [5,3] 0.125 14221 8

example6 × 2 seed6 8 1.2 1.27E+10 1.84E+10 [4, 6] [5,2] 0.031 16558 10 1.27E+10 1.84E+10 [4, 6] [5,2] 0.11 16558 10

example6 × 2 seed7 8 1.2 1.1E+10 1.67E+10 [4, 6] [4,2] 0.032 15089 10 1.1E+10 1.67E+10 [4, 6] [4,2] 0.125 15089 10

example6 × 2 seed8 8 1.2 9.55E+09 1.59E+10 [5, 6] [3,2] 0.047 14314 11 9.55E+09 1.59E+10 [5, 6] [3,2] 0.14 14314 11

example6 × 2 seed9 8 1.2 1.03E+10 1.62E+10 [5, 6] [3,2] 0.047 14560 11 1.03E+10 1.62E+10 [5, 6] [3,2] 0.125 14560 11

example6 × 2 seed10 8 1.2 1.17E+10 1.77E+10 [4, 6] [4,2] 0.047 15974 10 1.17E+10 1.77E+10 [4, 6] [4, 2] 0.125 15974 10
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Chapter C. Computational results

Comparison heuristic and exact

Configuration instance fare σ Dif zNET Dif zNET % Dif time Dif time %

example6 × 2 seed1 6 1.1 0 0 0.015 13.76147

example6 × 2 seed2 6 1.1 0 0 0.094 75.2

example6 × 2 seed3 6 1.1 0 0 0.094 75.2

example6 × 2 seed4 6 1.1 0 0 0.094 75.2

example6 × 2 seed5 6 1.1 0 0 0.062 56.88073

example6 × 2 seed6 6 1.1 0 0 0.062 56.88073

example6 × 2 seed7 6 1.1 0 0 0.094 75.2

example6 × 2 seed8 6 1.1 0 0 0.078 62.4

example6 × 2 seed9 6 1.1 0 0 0.094 75.2

example6 × 2 seed10 6 1.1 0 0 0.094 75.2

example6 × 2 seed1 6 1.2 0 0 0.078 18.4834

example6 × 2 seed2 6 1.2 0 0 0.28 71.79487

example6 × 2 seed3 6 1.2 0 0 0.282 72.12276

example6 × 2 seed4 6 1.2 0 0 0.282 69.28747

example6 × 2 seed5 6 1.2 0 0 0.266 68.03069

example6 × 2 seed6 6 1.2 0 0 0.219 53.94089

example6 × 2 seed7 6 1.2 0 0 0.266 63.03318

example6 × 2 seed8 6 1.2 0 0 0.265 67.94872

example6 × 2 seed9 6 1.2 0 0 0.297 72.97297

example6 × 2 seed10 6 1.2 0 0 0.281 69.21182

example6 × 2 seed1 8 1.1 0 0 0.031 24.8

example6 × 2 seed2 8 1.1 0 0 0.094 75.2

example6 × 2 seed3 8 1.1 0 0 0.093 74.4

example6 × 2 seed4 8 1.1 0 0 0.093 74.4

example6 × 2 seed5 8 1.1 0 0 0.079 63.2

example6 × 2 seed6 8 1.1 0 0 0.078 62.4

example6 × 2 seed7 8 1.1 0 0 0.078 62.4

example6 × 2 seed8 8 1.1 0 0 0.078 62.4

example6 × 2 seed9 8 1.1 0 0 0.094 75.2

example6 × 2 seed10 8 1.1 8183830 0.071632 0.094 75.2

example6 × 2 seed1 8 1.2 0 0 0.031 24.8

example6 × 2 seed2 8 1.2 0 0 0.11 78.01418

example6 × 2 seed3 8 1.2 0 0 0.062 56.88073

example6 × 2 seed4 8 1.2 0 0 0.094 75.2

example6 × 2 seed5 8 1.2 0 0 0.078 62.4

example6 × 2 seed6 8 1.2 0 0 0.079 71.81818

example6 × 2 seed7 8 1.2 0 0 0.093 74.4

example6 × 2 seed8 8 1.2 0 0 0.093 66.42857

example6 × 2 seed9 8 1.2 0 0 0.078 62.4

example6 × 2 seed10 8 1.2 0 0 0.078 62.4

Table C.2.: Comparison exact and heuristic for 6×2-configuration at uncapacitated case.

7 × 3-configuration

At this configuration the average CPU time for the heuristic is 0.16995 and for the

exact is 3.48045 seconds. That is, the heuristic improves the average CPU time in 95.12%

respect to the exact. Detailed information on these solutions are shown in Table C.3.

Note that due to the way in which we estimate the demand attraction (logit function) the

higher the frequencies are, the higher the number of trips are. However, the maximum

net profit and revenue is obtained for the Seed6-instance with minimum frequencies at

all scenarios. The interpretation of this result is the following. As demand captured

with minimum frequencies is high ( 81.57%), the number of carriages must be high since

the number of trains is only 9 (see Table C.3). In this case, it does not compensate

to attract more passengers since this fact would imply more trains and, therefore, more
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Heuristic Exact

Configuration instance fare σ zNET zREV ψℓ δℓ CPU time nb trips nb Trains zNET zREV ψℓ δℓ CPU time nb trips nb Trains

example7 × 3 seed1 6 1.1 7.89E+09 1.54E+10 [3, 3, 3] [6,5,4] 0.219 18537 9 8.62E+09 1.8E+10 [3, 5, 4] [6,3,4] 3.562 21664 12

example7 × 3 seed2 6 1.1 9.99E+09 1.77E+10 [3, 3, 3] [6,6,5] 0.172 21302 9 9.99E+09 1.77E+10 [3, 3, 3] [6,6,5] 3.516 21302 9

example7 × 3 seed3 6 1.1 8.76E+09 1.57E+10 [3, 3, 3] [6,4,4] 0.172 18898 9 8.76E+09 1.57E+10 [3, 3, 3] [6,4,4] 3.484 18898 9

example7 × 3 seed4 6 1.1 8.35E+09 1.54E+10 [3, 3, 3] [6,5,4] 0.156 18547 9 8.57E+09 1.75E+10 [3, 4, 5] [6,5,3] 3.484 21011 12

example7 × 3 seed5 6 1.1 8.7E+09 1.61E+10 [3, 3, 3] [5,5,5] 0.156 19287 9 8.7E+09 1.61E+10 [3, 3, 3] [5,5,5] 3.485 19287 9

example7 × 3 seed6 6 1.1 1.11E+10 1.91E+10 [3, 3, 3] [6,6,6] 0.157 22918 9 1.11E+10 1.91E+10 [3, 3, 3] [6,6,6] 3.484 22918 9

example7 × 3 seed7 6 1.1 8.05E+09 1.54E+10 [3, 3, 3] [5,5,4] 0.172 18537 9 8.05E+09 1.54E+10 [3, 3, 3] [5,5,4] 3.484 18537 9

example7 × 3 seed8 6 1.1 8.91E+09 1.62E+10 [3, 3, 3] [5,4,5] 0.156 19520 9 8.91E+09 1.62E+10 [3, 3, 3] [5,4,5] 3.485 19520 9

example7 × 3 seed9 6 1.1 8.36E+09 1.58E+10 [3, 3, 3] [5,5,5] 0.157 18972 9 8.36E+09 1.58E+10 [3, 3, 3] [5,5,5] 3.515 18972 9

example7 × 3 seed10 6 1.1 9.4E+09 1.72E+10 [3, 3, 3] [6,4,5] 0.156 20686 9 9.4E+09 1.72E+10 [3, 3, 3] [6,4,5] 3.516 20686 9

example7 × 3 seed1 6 1.2 8.14E+09 1.54E+10 [3, 3, 3] [5,4,4] 0.203 18537 9 8.85E+09 1.88E+10 [3, 5, 5] [5,3,4] 3.5 22606 13

example7 × 3 seed2 6 1.2 1.01E+10 1.77E+10 [3, 3, 3] [6,5,5] 0.172 21302 9 1.01E+10 1.77E+10 [3, 3, 3] [6,5,5] 3.438 21302 9

example7 × 3 seed3 6 1.2 8.89E+09 1.57E+10 [3, 3, 3] [5,4,4] 0.157 18898 9 8.89E+09 1.57E+10 [3, 3, 3] [5,4,4] 3.453 18898 9

example7 × 3 seed4 6 1.2 8.49E+09 1.54E+10 [3, 3, 3] [5,5,4] 0.157 18547 9 8.71E+09 1.75E+10 [3, 4, 5] [5,5,3] 3.484 21011 12

example7 × 3 seed5 6 1.2 8.7E+09 1.61E+10 [3, 3, 3] [5,5,5] 0.156 19287 9 8.7E+09 1.61E+10 [3, 3, 3] [5,5,5] 3.484 19287 9

example7 × 3 seed6 6 1.2 1.12E+10 1.91E+10 [3, 3, 3] [6,5,6] 0.172 22918 9 1.12E+10 1.91E+10 [3, 3, 3] [6,5,6] 3.469 22918 9

example7 × 3 seed7 6 1.2 8.15E+09 1.54E+10 [3, 3, 3] [5,4,4] 0.156 18537 9 8.15E+09 1.54E+10 [3, 3, 3] [5,4,4] 3.469 18537 9

example7 × 3 seed8 6 1.2 8.91E+09 1.62E+10 [3, 3, 3] [5,4,5] 0.172 19520 9 8.91E+09 1.62E+10 [3, 3, 3] [5,4,5] 3.484 19520 9

example7 × 3 seed9 6 1.2 8.36E+09 1.58E+10 [3, 3, 3] [5,5,5] 0.156 18972 9 8.36E+09 1.58E+10 [3, 3, 3] [5,5,5] 3.485 18972 9

example7 × 3 seed10 6 1.2 9.4E+09 1.72E+10 [3, 3, 3] [6,4,5] 0.172 20686 9 9.4E+09 1.72E+10 [3, 3, 3] [6,4,5] 3.468 20686 9

example7 × 3 seed1 8 1.1 1.48E+10 2.51E+10 [3, 5, 5] [6,4,4] 0.281 22606 13 1.48E+10 2.51E+10 [3, 5, 5] [6,4,4] 3.5 22606 13

example7 × 3 seed2 8 1.1 1.59E+10 2.36E+10 [3, 3, 3] [6,6,5] 0.156 21302 9 1.59E+10 2.36E+10 [3, 3, 3] [6,6,5] 3.453 21302 9

example7 × 3 seed3 8 1.1 1.4E+10 2.1E+10 [3, 3, 3] [6,4,4] 0.172 18898 9 1.4E+10 2.1E+10 [3, 3, 3] [6,4,4] 3.469 18898 9

example7 × 3 seed4 8 1.1 1.35E+10 2.06E+10 [3, 3, 3] [6,5,4] 0.156 18547 9 1.44E+10 2.33E+10 [3, 4, 5] [6,5,3] 3.469 21011 12

example7 × 3 seed5 8 1.1 1.4E+10 2.14E+10 [3, 3, 3] [5,5,5] 0.157 19287 9 1.4E+10 2.14E+10 [3, 3, 3] [5,5,5] 3.484 19287 9

example7 × 3 seed6 8 1.1 1.75E+10 2.54E+10 [3, 3, 3] [6,6,6] 0.156 22918 9 1.75E+10 2.54E+10 [3, 3, 3] [6,6,6] 3.469 22918 9

example7 × 3 seed7 8 1.1 1.32E+10 2.06E+10 [3, 3, 3] [5,5,4] 0.156 18537 9 1.32E+10 2.06E+10 [3, 3, 3] [5,5,4] 3.485 18537 9

example7 × 3 seed8 8 1.1 1.43E+10 2.17E+10 [3, 3, 3] [5,4,5] 0.156 19520 9 1.45E+10 2.43E+10 [3, 5, 5] [5,3,4] 3.484 21923 13

example7 × 3 seed9 8 1.1 1.37E+10 2.18E+10 [3, 3, 4] [5,6,4] 0.172 19685 10 1.37E+10 2.18E+10 [3, 3, 4] [5,6,4] 3.469 19685 10

example7 × 3 seed10 8 1.1 1.53E+10 2.37E+10 [3, 4, 3] [6,3,5] 0.172 21329 10 1.53E+10 2.37E+10 [3. 4. 3] [6,3,5] 3,515 21329 10

example7 × 3 seed1 8 1.2 1.51E+10 2.51E+10 [3, 5, 5] [5,3,4] 0.25 22606 13 1.51E+10 2.51E+10 [3, 5, 5] [5,3,4] 3.468 22606 13

example7 × 3 seed2 8 1.2 1.6E+10 2.36E+10 [3, 3, 3] [6,5,5] 0.156 21302 9 1.6E+10 2.36E+10 [3, 3, 3] [6,5,5] 3.438 21302 9

example7 × 3 seed3 8 1.2 1.41E+10 2.1E+10 [3, 3, 3] [5,4,4] 0.157 18898 9 1.41E+10 2.1E+10 [3, 3, 3] [5,4,4] 3.484 18898 9

example7 × 3 seed4 8 1.2 1.36E+10 2.06E+10 [3, 3, 3] [5,5,4] 0.156 18547 9 1.45E+10 2.33E+10 [3, 4, 5] [5,5,3] 3.5 21011 12

example7 × 3 seed5 8 1.2 1.4E+10 2.14E+10 [3, 3, 3] [5,5,5] 0.172 19287 9 1.4E+10 2.14E+10 [3, 3, 3] [5,5,5] 3.469 19287 9

example7 × 3 seed6 8 1.2 1.76E+10 2.54E+10 [3, 3, 3] [6,5,6] 0.156 22918 9 1.76E+10 2.54E+10 [3, 3, 3] [6,5,6] 3.453 22918 9

example7 × 3 seed7 8 1.2 1.33E+10 2.06E+10 [3, 3, 3] [5,4,4] 0.172 18537 9 1.33E+10 2.06E+10 [3, 3, 3] [5,4,4] 3.438 18537 9

example7 × 3 seed8 8 1.2 1.43E+10 2.17E+10 [3, 3, 3] [5,4,5] 0.156 19520 9 1,47E+10 2.43E+10 [3, 5, 5] [5,3,3] 3.469 21923 13

example7 × 3 seed9 8 1.2 1.38E+10 2.18E+10 [3, 3, 4] [5,5,4] 0.171 19685 10 1.38E+10 2.18E+10 [3, 3, 4] [5,5,4] 3,469 19685 10

example7 × 3 seed10 8 1.2 1.53E+10 2.37E+10 [3, 4, 3] [6,3,5] 0.172 21329 10 1.53E+10 2.37E+10 [3, 4, 3] [6,3,5] 3.484 21329 10
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Chapter C. Computational results

cases is 4.7%.

Comparison heuristic and exact

Configuration instance fare σ Dif zNET Dif zNET % Dif time Dif time %

example7 × 3 seed1 6 1.1 7.25E+08 8.414799 3.343 93.85177

example7 × 3 seed2 6 1.1 0 0 3.344 95.10808

example7 × 3 seed3 6 1.1 0 0 3.312 95.06315

example7 × 3 seed4 6 1.1 2.22E+08 2.594155 3.328 95.52239

example7 × 3 seed5 6 1.1 0 0 3.329 95.52367

example7 × 3 seed6 6 1.1 0 0 3.327 95.49369

example7 × 3 seed7 6 1.1 0 0 3.312 95.06315

example7 × 3 seed8 6 1.1 0 0 3.329 95.52367

example7 × 3 seed9 6 1.1 0 0 3.358 95.53343

example7 × 3 seed10 6 1.1 0 0 3.36 95.56314

example7 × 3 seed1 6 1.2 7.02E+08 7.935962 3.297 94.2

example7 × 3 seed2 6 1.2 0 0 3.266 94.99709

example7 × 3 seed3 6 1.2 0 0 3.296 95.45323

example7 × 3 seed4 6 1.2 2.22E+08 2.552337 3.327 95.49369

example7 × 3 seed5 6 1.2 0 0 3.328 95.52239

example7 × 3 seed6 6 1.2 0 0 3.297 95.0418

example7 × 3 seed7 6 1.2 0 0 3.313 95.50303

example7 × 3 seed8 6 1.2 0 0 3.312 95.06315

example7 × 3 seed9 6 1.2 0 0 3.329 95.52367

example7 × 3 seed10 6 1.2 0 0 3.296 95.04037

example7 × 3 seed1 8 1.1 0 0 3.219 91.97143

example7 × 3 seed2 8 1.1 0 0 3.297 95.48219

example7 × 3 seed3 8 1.1 0 0 3.297 95.0418

example7 × 3 seed4 8 1.1 9.06E+08 6.291492 3.313 95.50303

example7 × 3 seed5 8 1.1 0 0 3.327 95.49369

example7 × 3 seed6 8 1.1 0 0 3.313 95.50303

example7 × 3 seed7 8 1.1 0 0 3.329 95.52367

example7 × 3 seed8 8 1.1 1.74E+08 1.199384 3.328 95.52239

example7 × 3 seed9 8 1.1 0 0 3.297 95.0418

example7 × 3 seed10 8 1.1 0 0 3.343 95.10669

example7 × 3 seed1 8 1.2 0 0 3.218 92.79123

example7 × 3 seed2 8 1.2 0 0 3.282 95.46248

example7 × 3 seed3 8 1.2 0 0 3.327 95.49369

example7 × 3 seed4 8 1.2 9.06E+08 6.230734 3.344 95.54286

example7 × 3 seed5 8 1.2 0 0 3.297 95.0418

example7 × 3 seed6 8 1.2 0 0 3.297 95.48219

example7 × 3 seed7 8 1.2 0 0 3.266 94.99709

example7 × 3 seed8 8 1.2 3.48E+08 2.372124 3.313 95.50303

example7 × 3 seed9 8 1.2 0 0 3.298 95.07063

example7 × 3 seed10 8 1.2 0 0 3.312 95.06315

Table C.4.: Comparison exact and heuristic for 7×3-configuration at uncapacitated case.

8 × 3-configuration

The data related to this configuration are shown in the Table C.5. The maximum net

profit and revenue are obtained for the Seed9-instance in the third first scenarios. The

captured demand represents at these cases the 61.67% on the total trips number. In the

last scenario, the maximum revenue is searched for Seed3-instance (63.85% demand) and

the maximum net profit for the Seed9-instance. The average CPU time in the heuristic is

0.2836 and the exact is 5.89 seconds, which represents an improvement of 95.18% in the

time.
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Heuristic Exact

Configuration instance fare σ zNET zREV ψℓ δℓ CPU time nb trips nb Trains zNET zREV ψℓ δℓ CPU time nb trips nb Trains

example8 × 3 seed1 6 1.1 5.09E+09 1.14E+10 [3, 3, 3] [2,4,3] 0.359 13724 9 5.09E+09 1.14E+10 [3, 3, 3] [2,4,3] 5.75 13724 9

example8 × 3 seed2 6 1.1 4.78E+09 1.16E+10 [3, 3, 3] [3,5,3] 0.266 13922 9 4.78E+09 1.16E+10 [3, 3, 3] [3,5,3] 5.906 13922 9

example8 × 3 seed3 6 1.1 7.99E+09 1.46E+10 [4, 3, 3] [3,5,5] 0.281 17521 10 7.99E+09 1.46E+10 [4, 3, 3] [3,5,5] 5.828 17521 10

example8 × 3 seed4 6 1.1 8.26E+09 1.48E+10 [4, 3, 3] [3,5,5] 0.282 17756 10 8.26E+09 1.48E+10 [4, 3, 3] [3,5,5] 5.984 17756 10

example8 × 3 seed5 6 1.1 6.96E+09 1.27E+10 [3, 3, 3] [3,4,3] 0.281 15229 9 6.96E+09 1.27E+10 [3, 3, 3] [3,4,3] 6.015 15229 9

example8 × 3 seed6 6 1.1 7.34E+09 1.39E+10 [3, 3, 3] [3,6,3] 0.266 16749 9 7.34E+09 1.39E+10 [3, 3, 3] [3,6,3] 5.781 16749 9

example8 × 3 seed7 6 1.1 6.14E+09 1.27E+10 [3, 3, 3] [2,5,3] 0.265 15257 9 6.14E+09 1.27E+10 [3, 3, 3] [2,5,3] 5.782 15257 9

example8 × 3 seed8 6 1.1 5.85E+09 1.31E+10 [4, 3, 3] [3,5,4] 0.266 15742 10 5.85E+09 1.31E+10 [4, 3, 3] [3,5,4] 5.781 15742 10

example8 × 3 seed9 6 1.1 9.95E+09 1.59E+10 [3, 3, 3] [5,5,4] 0.266 19115 9 9.95E+09 1.59E+10 [3, 3, 3] [5,5,4] 5.859 19115 9

example8 × 3 seed10 6 1.1 7.58E+09 1.45E+10 [3, 3, 3] [5,6,4] 0.281 17388 9 7.58E+09 1.45E+10 [3, 3, 3] [5,6,4] 6.078 17388 9

example8 × 3 seed1 6 1.2 5.09E+09 1.14E+10 [3, 3, 3] [2,4,3] 0.328 13724 9 5.09E+09 1.14E+10 [3, 3, 3] [2,4,3] 5.859 13724 9

example8 × 3 seed2 6 1.2 4.91E+09 1.16E+10 [3, 3, 3] [2,5,3] 0.266 13922 9 4.91E+09 1.16E+10 [3, 3, 3] [2,5,3] 5.922 13922 9

example8 × 3 seed3 6 1.2 8.07E+09 1.46E+10 [4, 3, 3] [3,5,4] 0.281 17521 10 8.07E+09 1.46E+10 [4, 3, 3] [3,5,4] 5.828 17521 10

example8 × 3 seed4 6 1.2 8.38E+09 1.42E+10 [3, 3, 3] [3,5,4] 0.266 17103 9 8.38E+09 1.42E+10 [3, 3, 3] [3,5,4] 5.922 17103 9

example8 × 3 seed5 6 1.2 7.02E+09 1.27E+10 [3, 3, 3] [3,4,2] 0.281 15229 9 7.02E+09 1.27E+10 [3, 3, 3] [3,4,2] 6.141 15229 9

example8 × 3 seed6 6 1.2 7.34E+09 1.39E+10 [3, 3, 3] [3,6,3] 0.265 16749 9 7.34E+09 1.39E+10 [3, 3, 3] [3,6,3] 5.719 16749 9

example8 × 3 seed7 6 1.2 6.14E+09 1.27E+10 [3, 3, 3] [2,5,3] 0.265 15257 9 6.14E+09 1.27E+10 [3, 3, 3] [2,5,3] 5.766 15257 9

example8 × 3 seed8 6 1.2 5.99E+09 1.31E+10 [4, 3, 3] [3,4,4] 0.266 15742 10 6E+09 1.42E+10 [5, 3, 4] [3,4,3] 5.781 17105 12

example8 × 3 seed9 6 1.2 1E+10 1.59E+10 [3, 3, 3] [4,5,4] 0.265 19115 9 1E+10 1.59E+10 [3, 3, 3] [4,5,4] 5.813 19115 9

example8 × 3 seed10 6 1.2 7.83E+09 1.45E+10 [3, 3, 3] [4,5,4] 0.281 17388 9 7.83E+09 1.45E+10 [3, 3, 3] [4,5,4] 6.063 17388 9

example8 × 3 seed1 8 1.1 8.89E+09 1.52E+10 [3, 3, 3] [2,4,3] 0.312 13724 9 8.89E+09 1.52E+10 [3, 3, 3] [2,4,3] 5.719 13724 9

example8 × 3 seed2 8 1.1 8.65E+09 1.54E+10 [3, 3, 3] [3,5,3] 0.265 13922 9 8.65E+09 1.54E+10 [3, 3, 3] [3,5,3] 5.875 13922 9

example8 × 3 seed3 8 1.1 1.29E+10 2.01E+10 [5, 3, 3] [3,5,5] 0.281 18153 11 1.29E+10 2.01E+10 [5, 3, 3] [3,5,5] 5.781 18153 11

example8 × 3 seed4 8 1.1 1.35E+10 2.1E+10 [5, 3, 4] [3,5,4] 0.297 18944 12 1.37E+10 2.18E+10 [6, 3, 4] [3,5,4] 5.875 19651 13

example8 × 3 seed5 8 1.1 1.12E+10 1.69E+10 [3, 3, 3] [3,4,3] 0.266 15229 9 1.12E+10 1.69E+10 [3, 3, 3] [3,4,3] 6.047 15229 9

example8 × 3 seed6 8 1.1 1.2E+10 1.86E+10 [3, 3, 3] [3,6,3] 0.266 16749 9 1.2E+10 1.86E+10 [3, 3, 3] [3,6,3] 5.703 16749 9

example8 × 3 seed7 8 1.1 1.04E+10 1.69E+10 [3, 3, 3] [2,5,3] 0.265 15257 9 1.04E+10 1.69E+10 [3, 3, 3] [2,5,3] 5.828 15257 9

example8 × 3 seed8 8 1.1 1.05E+10 1.9E+10 [5, 3, 4] [3,5,4] 0.313 17105 12 1.05E+10 1.9E+10 [5, 3, 4] [3,5,4] 5.734 17105 12

example8 × 3 seed9 8 1.1 1.53E+10 2.12E+10 [3, 3, 3] [5,5,4] 0.266 19115 9 1.53E+10 2.12E+10 [3, 3, 3] [5,5,4] 5.859 19115 9

example8 × 3 seed10 8 1.1 1.24E+10 1.93E+10 [3, 3, 3] [5,6,4] 0.266 17388 9 1.24E+10 1.93E+10 [3, 3, 3] [5,6,4] 6.125 17388 9

example8 × 3 seed1 8 1.2 8.89E+09 1.52E+10 [3, 3, 3] [2, 4, 3] 0.328 13724 9 8.89E+09 1.52E+10 [3, 3, 3] [2,4,3] 5.813 13724 9

example8 × 3 seed2 8 1.2 8.77E+09 1.54E+10 [3, 3, 3] [2,5,3] 0.266 13922 9 8.77E+09 1.54E+10 [3, 3, 3] [2,5,3] 5.875 13922 9

example8 × 3 seed3 8 1.2 1.3E+10 2.01E+10 [5, 3, 3] [3,5,4] 0.329 18153 11 1.3E+10 2.01E+10 [5, 3, 3] [3,5,4] 5.89 18153 11

example8 × 3 seed4 8 1.2 1.37E+10 2.18E+10 [6, 3, 4] [3,5,4] 0.328 19651 13 1.37E+10 2.18E+10 [6, 3, 4] [3,5,4] 5.938 19651 13

example8 × 3 seed5 8 1.2 1.13E+10 1.76E+10 [4, 3, 3] [2,5,2] 0.281 15846 10 1.13E+10 1.76E+10 [4, 3, 3] [2,5,2] 6.172 15846 10

example8 × 3 seed6 8 1.2 1.2E+10 1.86E+10 [3, 3, 3] [3,6,3] 0.266 16749 9 1.2E+10 1.86E+10 [3, 3, 3] [3,6,3] 5.843 16749 9

example8 × 3 seed7 8 1.2 1.04E+10 1.69E+10 [3, 3, 3] [2,5,3] 0.297 15257 9 1.04E+10 1.69E+10 [3, 3, 3] [2,5,3] 5.984 15257 9

example8 × 3 seed8 8 1.2 1.07E+10 1.9E+10 [5, 3, 4] [3,4,3] 0.313 17105 12 1.07E+10 1.9E+10 [5, 3, 4] [3,4,3] 5.812 17105 12

example8 × 3 seed9 8 1.2 1.53E+10 2.12E+10 [3, 3, 3] [4,5,4] 0.281 19115 9 1.53E+10 2.12E+10 [3, 3, 3] [4,5,4] 5.844 19115 9

example8 × 3 seed10 8 1.2 1.27E+10 1.93E+10 [3, 3, 3] [4,5,4] 0.281 17388 9 1.27E+10 1.93E+10 [3, 3, 3] [4,5,4] 6.11 17388 9
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Chapter C. Computational results

Comparison heuristic and exact

Configuration instance fare σ Dif zNET Dif zNET % Dif time Dif time %

example8 × 3 seed1 6 1.1 0 0 5.391 93.75652

example8 × 3 seed2 6 1.1 0 0 5.64 95.49611

example8 × 3 seed3 6 1.1 0 0 5.547 95.17845

example8 × 3 seed4 6 1.1 0 0 5.702 95.28743

example8 × 3 seed5 6 1.1 0 0 5.734 95.32835

example8 × 3 seed6 6 1.1 0 0 5.515 95.39872

example8 × 3 seed7 6 1.1 0 0 5.517 95.41681

example8 × 3 seed8 6 1.1 0 0 5.515 95.39872

example8 × 3 seed9 6 1.1 0 0 5.593 95.45998

example8 × 3 seed10 6 1.1 0 0 5.797 95.37677

example8 × 3 seed1 6 1.2 0 0 5.531 94.40178

example8 × 3 seed2 6 1.2 0 0 5.656 95.50827

example8 × 3 seed3 6 1.2 0 0 5.547 95.17845

example8 × 3 seed4 6 1.2 0 0 5.656 95.50827

example8 × 3 seed5 6 1.2 0 0 5.86 95.4242

example8 × 3 seed6 6 1.2 0 0 5.454 95.36632

example8 × 3 seed7 6 1.2 0 0 5.501 95.40409

example8 × 3 seed8 6 1.2 16537852 0.275527 5.515 95.39872

example8 × 3 seed9 6 1.2 0 0 5.548 95.44125

example8 × 3 seed10 6 1.2 0 0 5.782 95.36533

example8 × 3 seed1 8 1.1 0 0 5.407 94.5445

example8 × 3 seed2 8 1.1 0 0 5.61 95.48936

example8 × 3 seed3 8 1.1 0 0 5.5 95.13925

example8 × 3 seed4 8 1.1 1.93E+08 1.41026 5.578 94.94468

example8 × 3 seed5 8 1.1 0 0 5.781 95.60112

example8 × 3 seed6 8 1.1 0 0 5.437 95.33579

example8 × 3 seed7 8 1.1 0 0 5.563 95.45299

example8 × 3 seed8 8 1.1 0 0 5.421 94.54133

example8 × 3 seed9 8 1.1 0 0 5.593 95.45998

example8 × 3 seed10 8 1.1 0 0 5.859 95.65714

example8 × 3 seed1 8 1.2 0 0 5.485 94.35747

example8 × 3 seed2 8 1.2 0 0 5.609 95.47234

example8 × 3 seed3 8 1.2 0 0 5.561 94.41426

example8 × 3 seed4 8 1.2 0 0 5.61 94.47625

example8 × 3 seed5 8 1.2 0 0 5.891 95.44718

example8 × 3 seed6 8 1.2 0 0 5.577 95.44754

example8 × 3 seed7 8 1.2 0 0 5.687 95.03676

example8 × 3 seed8 8 1.2 0 0 5.499 94.61459

example8 × 3 seed9 8 1.2 0 0 5.563 95.19165

example8 × 3 seed10 8 1.2 0 0 5.829 95.40098

Table C.6.: Comparison exact and heuristic for 8×3-configuration at uncapacitated case.

15 × 5-configuration

In this section, we have tested our algorithms on networks with 15 nodes and 5 lines.

The results of these experiments are shown in Table C.7. It can be observed that our

heuristic was able to find the optimal solution for most of instances (90%). The maximum

profit is searched for the Seed-4 instance at all scenarios. However, the maximum revenue

is obtained for Seed2-instance in the first, second and third scenario and Seed8-instance for

the last scenario. In Figure C.3 and C.4 the revenue and profit are graphically represented

for the first and fourth scenario, respectively.
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Figure C.3.: Revenue and profit of each instance for first scenario of 15× 5-configuration.
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Figure C.4.: Revenue and profit of each instance for fourth scenario of 15×5-configuration.
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Configuration instance fare σ zNET zREV ψℓ δℓ CPU time nb trips nb Trains zNET zREV ψℓ δℓ CPU time nb trips nb Trains

example15 × 5 seed1 6 1.1 1.10E+10 2.49E+10 [3, 3, 3, 3, 4] [4,4,3,5,5] 5.757 29890 16 1.095E+10 2.49E+10 [3, 3, 3, 3, 4] [4,4,3,5,5] 5347.519 29890 16

example15 × 5 seed2 6 1.1 1.12E+10 2.66E+10 [3, 3, 4, 3, 4] [3,4,5,5,4] 5.571 31974 17 1.123E+10 2.66E+10 [3, 3, 4, 3, 4] [3,4,5,5,4] 5082.537 31974 17

example15 × 5 seed3 6 1.1 9.79E+09 2.31E+10 [3, 3, 3, 3, 3] [4,4,5,3,5] 5.151 27768 15 9.794E+09 2.31E+10 [3, 3, 3, 3, 3] [4,4,5,3,5] 5169.428 27768 15

example15 × 5 seed4 6 1.1 1.16E+10 2.6E+10 [3, 3, 3, 3, 3] [3,4,7,5,7] 5.199 31212 15 1.158E+10 2.6E+10 [3, 3, 3, 3, 3] [3,4,7,5,7] 5201.598 31212 15

example15 × 5 seed5 6 1.1 9.73E+09 2.39E+10 [3, 3, 3, 3, 4] [3,4,4,6,4] 5.524 28761 16 9.733E+09 2.39E+10 [3, 3, 3, 3, 4] [3,4,4,6,4] 5372.934 28761 16

example15 × 5 seed6 6 1.1 8.02E+09 2.28E+10 [3, 3, 3, 3, 4] [4,4,3,5,5] 5.308 27377 16 8.024E+09 2.28E+10 [3, 3, 3, 3, 4] [4,4,3,5,5] 5122.384 27377 16

example15 × 5 seed7 6 1.1 6.56E+09 2.09E+10 [3, 3, 3, 3, 3] [2,4,3,6,4] 5.306 25106 15 6.56E+09 2.09E+10 [3, 3, 3, 3, 3] [2,4,3,6,4] 5297.319 25106 15

example15 × 5 seed8 6 1.1 9.76E+09 2.51E+10 [3, 3, 3, 4, 4] [4,4,4,4,4] 5.728 30166 17 9.765E+09 2.51E+10 [3, 3, 3, 4, 4] [4,4,4,4,4] 5232.515 30166 17

example15 × 5 seed9 6 1.1 8.15E+09 2.34E+10 [3, 3, 3, 5, 3] [3,4,3,3,6] 5.573 28100 17 8.15E+09 2.34E+10 [3, 3, 3, 5, 3] [3,4,3,3,6] 5253.981 28100 17

example15 × 5 seed10 6 1.1 1.06E+10 2.52E+10 [3, 3, 3, 3, 3] [3,4,6,6,5] 5.181 30320 15 1.057E+10 2.52E+10 [3, 3, 3, 3, 3] [3,4,6,6,5] 5191.442 30320 15

example15 × 5 seed1 6 1.2 1.11E+10 2.41E+10 [3, 3, 3, 3, 3] [3,4,3,4,5] 5.649 28977 15 1.114E+10 2.41E+10 [3, 3, 3, 3, 3] [3,4,3,4,5] 5367.26 28977 15

example15 × 5 seed2 6 1.2 1.16E+10 2.66E+10 [3, 3, 4, 3, 4] [3,3,4,5,4] 5.587 31974 17 1.157E+10 2.66E+10 [3, 3, 4, 3, 4] [3,3,4,5,4] 5107.919 31974 17

example15 × 5 seed3 6 1.2 1.00E+10 2.31E+10 [3, 3, 3, 3, 3] [3,3,5,3,5] 5.18 27768 15 1.005E+10 2.31E+10 [3, 3, 3, 3, 3] [3,3,5,3,5] 5192.534 27768 15

example15 × 5 seed4 6 1.2 1.18E+10 2.6E+10 [3, 3, 3, 3, 3] [3,4,7,4,6] 5.211 31212 15 1.183E+10 2.6E+10 [3, 3, 3, 3, 3] [3,4,7,4,6] 5206.448 31212 15

example15 × 5 seed5 6 1.2 9.84E+09 2.39E+10 [3, 3, 3, 3, 4] [2,4,4,6,4] 5.555 28761 16 9.842E+09 2.39E+10 [3, 3, 3, 3, 4] [2,4,4,6,4] 5392.681 28761 16

example15 × 5 seed6 6 1.2 8.33E+09 2.28E+10 [3, 3, 3, 3, 4] [4,4,3,4,4] 5.323 27377 16 8.325E+09 2.28E+10 [3, 3, 3, 3, 4] [4,4,3,4,4] 5134.968 27377 16

example15 × 5 seed7 6 1.2 6.73E+09 2.18E+10 [3, 3, 3, 3, 4] [2,4,3,6,3] 5,493 26140 16 6.728E+09 2.18E+10 [3, 3, 3, 3, 4] [2,4,3,6,3] 5323.229 26140 16

example15 × 5 seed8 6 1.2 9.89E+09 2.43E+10 [3, 3, 3, 3, 4] [4,4,4,4,4] 5.42 29153 16 9.89E+09 2.43E+10 [3, 3, 3, 3, 4] [4,4,4,4,4] 5246.836 29153 16

example15 × 5 seed9 6 1.2 8.23E+09 2.24E+10 [3, 3, 3, 4, 3] [3,4,3,3,5] 5.414 26865 16 8.234E+09 2.24E+10 [3, 3, 3, 4, 3] [3,4,3,3,5] 5268.521 26865 16

example15 × 5 seed10 6 1.2 1.07E+10 2.52E+10 [3, 3, 3, 3, 3] [3,4,6,5,5] 5.196 30320 15 1.072E+10 2.52E+10 [3, 3, 3, 3, 3] [3,4,6,5,5] 5229.379 30320 15

example15 × 5 seed1 8 1.1 1.94E+10 3.38E+10 [3, 3, 3, 3, 5] [4,4,3,5,4] 5.944 30492 17 1.937E+10 3.38E+10 [3, 3, 3, 3, 5] [4,4,3,5,4] 5393.586 30492 17

example15 × 5 seed2 8 1.1 2.01E+10 3.62E+10 [3, 3, 5, 3, 4] [3,4,4,5,4] 5.633 32643 18 2.011E+10 3.62E+10 [3, 3, 5, 3, 4] [3,4,4,5,4] 5134.516 32643 18

example15 × 5 seed3 8 1.1 1.76E+10 3.16E+10 [3, 3, 3, 3, 4] [4,4,5,3,4] 5.384 28453 16 1.778E+10 3.37E+10 [3, 3, 4, 3, 6] [4,4,4,3,3] 5190.443 30389 19

example15 × 5 seed4 8 1.1 2.03E+10 3.53E+10 [3, 3, 3, 3, 4] [4,4,7,5,5] 5.368 31832 16 2.029E+10 3.53E+10 [3, 3, 3, 3, 4] [4,4,7,5,5] 5204.513 31832 16

example15 × 5 seed5 8 1.1 1.77E+10 3.19E+10 [3, 3, 3, 3, 4] [3,4,4,6,4] 5.572 28761 16 1.771E+10 3.19E+10 [3, 3, 3, 3, 4] [3,4,4,6,4] 5383.466 28761 16

example15 × 5 seed6 8 1.1 1.58E+10 3.14E+10 [3, 3, 3, 4, 4] [4,4,3,4,5] 5.774 28329 17 1.582E+10 3.14E+10 [3, 3, 3, 4, 4] [4,4,3,4,5] 5122.021 28329 17

example15 × 5 seed7 8 1.1 1.38E+10 2.9E+10 [3, 3, 3, 3, 4] [2,4,3,6,4] 5.477 26140 16 1.381E+10 2.9E+10 [3, 3, 3, 3, 4] [2,4,3,6,4] 5300.952 26140 16

example15 × 5 seed8 8 1.1 1.85E+10 3.56E+10 [4, 3, 4, 4, 4] [3,4,4,4,5] 6.691 32061 19 1.845E+10 3.56E+10 [4, 3, 4, 4, 4] [3,4,4,4,5] 5235.464 32061 19

example15 × 5 seed9 8 1.1 1.61E+10 3.23E+10 [3, 3, 4, 5, 3] [3,4,3,3,6] 6.024 29113 18 1.615E+10 3.23E+10 [3, 3, 4, 5, 3] [3,4,3,3,6] 5247.679 29113 18

example15 × 5 seed10 8 1.1 1.92E+10 3.46E+10 [3, 3, 3, 3, 4] [3,4,7,6,4] 5.353 31207 16 1.925E+10 3.62E+10 [3, 3, 4, 3, 5] [3,4,5,6,4] 5196.776 32625 18

example15 × 5 seed1 8 1.2 1.94E+10 3.38E+10 [3, 3, 3, 3, 5] [4,4,3,5,4] 5.929 30492 17 1.937E+10 3.38E+10 [3, 3, 3, 3, 5] [4,4,3,5,4] 5430.932 30492 17

example15 × 5 seed2 8 1.2 2.04E+10 3.55E+10 [3, 3, 4, 3, 4] [3,3,4,5,4] 5.679 31974 17 2.044E+10 3.55E+10 [3, 3, 4, 3, 4] [3,3,4,5,4] 5157.745 31974 17

example15 × 5 seed3 8 1.2 1.79E+10 3.23E+10 [3, 3, 3, 3, 5] [4,3,5,3,3] 5.554 29080 17 1.797E+10 3.35E+10 [4, 3, 3, 3, 6] [3,3,5,3,3] 5199.319 30226 19

example15 × 5 seed4 8 1.2 2.05E+10 3.53E+10 [3, 3, 3, 3, 4] [3,4,7,4,5] 5.415 31832 16 2.055E+10 3.53E+10 [3, 3, 3, 3, 4] [3,4,7,4,5] 5228.194 31832 16

example15 × 5 seed5 8 1.2 1.78E+10 3.19E+10 [3, 3, 3, 3, 4] [2,4,4,6,4] 5.602 28761 16 1.782E+10 3.19E+10 [3, 3, 3, 3, 4] [2,4,4,6,4] 5410.262 28761 16

example15 × 5 seed6 8 1.2 1.59E+10 3.04E+10 [3, 3, 3, 3, 4] [4,4,3,4,4] 5.353 27377 16 1.592E+10 3.04E+10 [3, 3, 3, 3, 4] [4,4,3,4,4] 5155.644 27377 16

example15 × 5 seed7 8 1.2 1.40E+10 2.9E+10 [3, 3, 3, 3, 4] [2,4,3,6,3] 5.523 26140 16 1.398E+10 2.9E+10 [3, 3, 3, 3, 4] [2,4,3,6,3] 5329.518 26140 16

example15 × 5 seed8 8 1.2 1.87E+10 3.63E+10 [4, 3, 4, 4, 5] [4,4,3,4,4] 6.709 32750 20 1.873E+10 3.63E+10 [4, 3, 4, 4, 5] [4,4,3,4,4] 5106.545 32750 20

example15 × 5 seed9 8 1.2 1.59E+10 3.23E+10 [3, 3, 5, 4, 4] [3,4,2,3,4] 6.537 29105 19 1.625E+10 3.22E+10 [3, 3, 3, 6, 3] [3,4,3,2,6] 5119.634 28990 18

example15 × 5 seed10 8 1.2 1.93E+10 3.46E+10 [3, 3, 3, 3, 4] [3,4,6,6,4] 5.243 31207 16 1.931E+10 3.46E+10 [3, 3, 3, 3, 4] [3,4,6,6,4] 5065.33 31207 16
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reported show that at the 90% the heuristic finds the optimal solution and the average

improve of the CPU time is 99.9%. This indicates that the heuristic procedure is promising

in the sense that in real instances the heuristic is expected to be much faster than the

exact algorithm as well as to find the optimal solution for the most cases.

Comparison heuristic and exact

Configuration instance fare σ Dif zNET Dif zNET % Dif time Dif time %

example15 × 5 seed1 6 1.1 0 0 5341.762 99.8923426

example15 × 5 seed2 6 1.1 0 0 5076.966 99.89038939

example15 × 5 seed3 6 1.1 0 0 5164.277 99.90035648

example15 × 5 seed4 6 1.1 0 0 5196.399 99.90004995

example15 × 5 seed5 6 1.1 0 0 5367.41 99.89718839

example15 × 5 seed6 6 1.1 0 0 5117.076 99.89637637

example15 × 5 seed7 6 1.1 0 0 5292.013 99.89983612

example15 × 5 seed8 6 1.1 0 0 5226.787 99.89053065

example15 × 5 seed9 6 1.1 0 0 5248.408 99.89392805

example15 × 5 seed10 6 1.1 0 0 5186.261 99.90020114

example15 × 5 seed1 6 1.2 0 0 5361.611 99.89475077

example15 × 5 seed2 6 1.2 0 0 5102.332 99.89062082

example15 × 5 seed3 6 1.2 0 0 5187.354 99.90024139

example15 × 5 seed4 6 1.2 0 0 5201.237 99.89991257

example15 × 5 seed5 6 1.2 0 0 5387.126 99.89699001

example15 × 5 seed6 6 1.2 0 0 5129.645 99.89633821

example15 × 5 seed7 6 1.2 0 0 5317.736 99.89681075

example15 × 5 seed8 6 1.2 0 0 5241.416 99.89669965

example15 × 5 seed9 6 1.2 0 0 5263.107 99.89723871

example15 × 5 seed10 6 1.2 0 0 5224.183 99.9006383

example15 × 5 seed1 8 1.1 0 0 5387.642 99.88979503

example15 × 5 seed2 8 1.1 0 0 5128.883 99.89029151

example15 × 5 seed3 8 1.1 141392624 0.795379 5185.059 99.8962709

example15 × 5 seed4 8 1.1 0 0 5199.145 99.89685875

example15 × 5 seed5 8 1.1 0 0 5377.894 99.89649791

example15 × 5 seed6 8 1.1 0 0 5116.247 99.88727106

example15 × 5 seed7 8 1.1 0 0 5295.475 99.89667894

example15 × 5 seed8 8 1.1 0 0 5228.773 99.87219853

example15 × 5 seed9 8 1.1 0 0 5241.655 99.88520639

example15 × 5 seed10 8 1.1 81521042 0.423464 5191.423 99.89699383

example15 × 5 seed1 8 1.2 0 0 5425.003 99.89082905

example15 × 5 seed2 8 1.2 0 0 5152.066 99.88989374

example15 × 5 seed3 8 1.2 37340298 0.207763 5193.765 99.89317832

example15 × 5 seed4 8 1.2 0 0 5222.779 99.89642695

example15 × 5 seed5 8 1.2 0 0 5404.66 99.89645603

example15 × 5 seed6 8 1.2 0 0 5150.291 99.89617204

example15 × 5 seed7 8 1.2 0 0 5323.995 99.89636962

example15 × 5 seed8 8 1.2 0 0 5099.836 99.86861959

example15 × 5 seed9 8 1.2 334532946 2.058772 5113.097 99.87231509

example15 × 5 seed10 8 1.2 0 0 5060.087 99.89649243

Table C.8.: Comparison exact and heuristic for 15 × 5-configuration at uncapacitated

case

20 × 6-configuration

In this section, we have tested our algorithms on networks with 20 nodes and 6 lines.

The results of these experiments are shown in Table C.9. Due to the spent time in

the exact algorithm, we have only solved ten instances for this configuration. It can be

observed that our heuristic was able to find the optimal solution for all instances (100%)
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Heuristic Exact

Configuration instance fare σ zNET zREV ψℓ δℓ CPU time nb trips nb Trains zNET zREV ψℓ δℓ CPU time nb trips nb Trains

example20 × 6 seed1 6 1.1 1.37E+10 3.58E+10 [3, 3, 3, 3, 3, 3] [8,4,3,6,2,3] 23.572 32241 18 1.37E+10 3.58E+10 [3, 3, 3, 3, 3, 3] [8,4,3,6,2,3] 155319.5 32241 18

example20 × 6 seed2 6 1.1 1.65E+10 3.93E+10 [3, 4, 4, 3, 3, 3] [8,3,3,7,2,2] 23.683 35456 20 1.65E+10 3.93E+10 [3, 4, 4, 3, 3, 3] [8,3,3,7,2,2] 152070 35456 20

example20 × 6 seed3 6 1.1 1.62E+10 3.74E+10 [3, 3, 3, 3, 3, 3] [7,5,3,6,2,2] 22.061 33742 18 1.62E+10 3.74E+10 [3, 3, 3, 3, 3, 3] [7,5,3,6,2,2] 152330.7 33742 18

example20 × 6 seed4 6 1.1 1.67E+10 3.85E+10 [3, 3, 3, 3, 3, 3] [9,5,4,6,2,3] 22.185 34662 18 1.67E+10 3.85E+10 [3, 3, 3, 3, 3, 3] [9,5,4,6,2,3] 141784 34662 18

example20 × 6 seed5 6 1.1 1.24E+10 3.42E+10 [3, 3, 3, 3, 3, 3] [7,4,4,6,2,3] 22.247 30843 18 1.24E+10 3.42E+10 [3, 3, 3, 3, 3, 3] [7,4,4,6,2,3] 154176.8 30843 18

example20 × 6 seed6 6 1.1 1.5E+10 3.87E+10 [3, 4, 5, 3, 3, 3] [7,4,2,5,2,3] 24.65 34868 21 1.5E+10 3.87E+10 [3, 4, 5, 3, 3, 3] [7,4,2,5,2,3] 154160.7 34868 21

example20 × 6 seed7 6 1.1 1.5E+10 3.68E+10 [3, 3, 3, 3, 3, 3] [8,4,3,6,2,2] 21.966 33186 18 1.5E+10 3.68E+10 [3, 3, 3, 3, 3, 3] [8,4,3,6,2,2] 152161 33186 18

example20 × 6 seed8 6 1.1 1.35E+10 3.39E+10 [3, 3, 3, 3, 3, 3] [6,3,3,5,2,3] 22.482 30540 18 1.35E+10 3.39E+10 [3, 3, 3, 3, 3, 3] [6,3,3,5,2,3] 156696.6 30540 18

example20 × 6 seed9 6 1.1 8.39E+09 3.06E+10 [3, 3, 4, 3, 3, 3] [5,2,2,4,2,3] 23.168 27536 19 8.39E+09 3.06E+10 [3, 3, 4, 3, 3, 3] [5,2,2,4,2,3] 157478.7 27536 19

example20 × 6 seed10 6 1.1 1.58E+10 3.75E+10 [3, 3, 3, 3, 3, 3] [8,4,4,6,2,2] 22.232 33811 18 1.58E+10 3.75E+10 [3, 3, 3, 3, 3, 3] [8,4,4,6,2,2] 154221.4 33811 18
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Comparison heuristic and exact

Configuration instance fare σ Dif zNET Dif time Dif time %

example20 × 6 seed1 6 1,1 0,00E+00 155295,9 99,98482

example20 × 6 seed2 6 1,1 0,00E+00 152046,3 99,98443

example20 × 6 seed3 6 1,1 0,00E+00 152308,6 99,98552

example20 × 6 seed4 6 1,1 0,00E+00 141761,8 99,98435

example20 × 6 seed5 6 1,1 0,00E+00 154154,5 99,98557

example20 × 6 seed6 6 1,1 0,00E+00 154136 99,98401

example20 × 6 seed7 6 1,1 0,00E+00 152139,1 99,98556

example20 × 6 seed8 6 1,1 0,00E+00 156674,1 99,98565

example20 × 6 seed9 6 1,1 0,00E+00 157455,6 99,98529

example20 × 6 seed10 6 1,1 0,00E+00 154199,2 99,98558

Table C.10.: Comparison exact and heuristic for 20 × 6-configuration at uncapacitated

case.

C.0.2. Computational experiments for the capacitated problem

In this section we will analyze the capacitated version of our problem. To evaluate the

performance of our algorithm, we have adapted the crowding function defined in Section

3.4 to our problem. Concretely, the crowding penalty was mathematically defined for the

nominal capacity as

CF (x) = 1 +
0.8

1 + exp(2 ∗ (1− x))
+ 0.01 exp(3 ∗ (x− 1.3)). (C.1)

The following figures show a representation of the crowding functions above defined.
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Figure C.5.: In-vehicle crowding function.
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Chapter C. Computational results

In order to evaluate the impact of in-vehicle crowding on the solution of our problem,

we have gradually increased the maximum number of carriages in our experimentation.

Detailed information on these solutions are shown in Table C.11, C.12, C.15 and C.16.

The data here reported corresponds to the optimal solution for each value of δmax in

which the problem is feasible. Moreover, we have analyzed the solutions obtained at the

uncapacitated case when the in-vehicle crowding is introduced. At this way, we have

measured the in-vehicle crowding effects on these solutions. The parameter σ considered

here was fixed to 1.1, which implies that if the number of passengers of each line is higher

than capacity line over 10%, the solution is taken into account. The seventh column in

Table C.11, C.12, C.15 and C.16 represents the number of iterations in the Loop III. A

total of 200 experiments of the 6× 2, 7× 3 and 8× 3-configuration were tested. For 6× 2

configuration our algorithm was able to obtain the optimal solution in a very small CPU

time. However, on instances with 15 nodes and 5 lines the algorithm took too time. It

is difficult if not imposible to make experiments with real instances, which indicates the

necessity of using heuristic algorithm to solve the problem.

6 × 2-configuration

The data reported in Table C.11 represent the solutions obtained in the capacitated

case. We have analyzed the solutions when the parameter δmax is less than or equal to

8. It can be seen that for δmax ≤ 4, the problem is always infeasible. For δmax > 4,

the most cases are feasible and the optimal solutions are not affected by congestion (see

the seventh column). This fact indicates the maximum number of carriages is a sufficient

number in order to transport all passengers willing to use the RTS. It can be observed

that the average of all CPU time is 6.15 seconds when δmax = 8.

7 × 3-configuration

In Table C.12 it can be seen that for δmax ≤ 2, the optimal solutions have high frequen-

cies in order to transport all passengers. From these results it can be observed that the

number of trains decreases when the maximum number of carriages increases. The profit

starts to be economically interesting when the number of carriages is greater than two for

seed1, seed3, seed4, seed6 and seed9-instances and it is greater than three for rest of in-

stances. The most cases, the optimal solution corresponds to a non-congested network. It

is interesting to observe that for δmax = 6 only two solutions (seed-8 and seed9-instance)

are the same than unlimited capacity. This fact indicates the in-vehicle crowding directly

affects to the solutions. Indeed, the optimal solutions for uncapacitated case are affected
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Configuration 6× 2, σ = 1.1, fare=6
instance δmax profit revenue ψℓ δℓ no iterations CPU time nb trips % demand nb trains
seed1 8 9.06E+09 1.3E+10 [3, 3] [8, 5] 0 5.344 15675 77.46 6
seed2 7 8.22E+09 1.23E+10 [3, 3] [7, 5] 0 4.156 14799 72.11 6
seed2 8 8.22E+09 1.23E+10 [3, 3] [7, 5] 0 5.593 14799 72.11 6
seed3 5 8.03E+09 1.19E+10 [3, 3] [5, 5] 0 2.078 14259 65.22 6
seed3 6 8.03E+09 1.19E+10 [3, 3] [5, 5] 0 3.25 14259 65.22 6
seed3 7 8.03E+09 1.19E+10 [3, 3] [5, 5] 0 4.625 14259 65.22 6
seed3 8 8.03E+09 1.19E+10 [3, 3] [5, 5] 0 6.157 14259 65.22 6
seed4 5 7.21E+09 1.1E+10 [3, 3] [5, 3] 0 2.187 13226 63.29 6
seed4 6 7.21E+09 1.1E+10 [3, 3] [5, 3] 0 3.469 13226 63.29 6
seed4 7 7.21E+09 1.1E+10 [3, 3] [5, 3] 0 4.86 13226 63.29 6
seed4 8 7.21E+09 1.1E+10 [3, 3] [5, 3] 0 6.625 13226 63.29 6
seed5 6 7.49E+09 1.18E+10 [4, 4] [5, 4] 0 3.125 14221 70.85 8
seed5 7 7.49E+09 1.18E+10 [4, 4] [5, 4] 0 4.468 14221 70.85 8
seed5 8 7.49E+09 1.18E+10 [4, 4] [5, 4] 0 6.093 14221 70.85 8
seed6 6 8.16E+09 1.35E+10 [4, 5] [5, 3] 0 3.172 16268 79.15 9
seed6 7 8.16E+09 1.35E+10 [4, 5] [5, 3] 0 4.5 16268 79.15 9
seed6 8 8.16E+09 1.35E+10 [4, 5] [5, 3] 0 6.157 16268 79.15 9
seed7 5 6.84E+09 1.22E+10 [4, 5] [4, 3] 0 2.14 14701 69.1 9
seed7 6 6.84E+09 1.22E+10 [4, 5] [4, 3] 0 3.328 14701 69.1 9
seed7 7 6.84E+09 1.22E+10 [4, 5] [4, 3] 0 4.735 14701 69.1 9
seed7 8 6.84E+09 1.22E+10 [4, 5] [4, 3] 0 6.328 14701 69.1 9
seed8 5 6.03E+09 9.83E+09 [3, 3] [5, 3] 0 2.172 11811 58.4 6
seed8 6 6.03E+09 9.83E+09 [3, 3] [5, 3] 0 3.375 11811 58.4 6
seed8 7 6.03E+09 9.83E+09 [3, 3] [5, 3] 0 4.765 11811 58.4 6
seed8 8 6.03E+09 9.83E+09 [3, 3] [5, 3] 0 6.406 11811 58.4 6
seed9 5 6.6E+09 1.02E+10 [3, 3] [5, 3] 0 2.14 12204 58.4 6
seed9 6 6.6E+09 1.02E+10 [3, 3] [5, 3] 0 3.297 12204 58.4 6
seed9 7 6.6E+09 1.02E+10 [3, 3] [5, 3] 0 4.703 12204 58.4 6
seed9 8 6.6E+09 1.02E+10 [3, 3] [5, 3] 0 6.391 12204 58.4 6
seed10 5 7.41E+09 1.15E+10 [3, 3] [5, 4] 0 2.11 13831 66.5 6
seed10 6 7.41E+09 1.15E+10 [3, 3] [5, 4] 0 3.281 13831 66.5 6
seed10 7 7.41E+09 1.15E+10 [3, 3] [5, 4] 0 4.688 13831 66.5 6
seed10 8 7.41E+09 1.15E+10 [3, 3] [5, 4] 0 6.453 13831 66.5 6

Table C.11.: Results for 6× 2-configuration at capacitated case.
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Chapter C. Computational results

by the in-vehicle crowding when the congestion is introduced in our problem as show

Tables C.13 and C.14. For instance, it can be observed that the optimal solution for

seed1-configuration at the capacitated case has one more carriage than the uncapacitated

case. In other words, when the congestion is taken into account, the passenger’s behavior

changes, and it is more economically interesting to add a carriage than to lose passengers.
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Figure C.6.: Profit for 7 × 3-configuration. Optimal solution for uncapacitated problem,

capacitated problem and the uncongestion optimal solution with the conges-

tion effect.

deltaMax=5

profit revenue passengers nb iterations

seed5 7.23E+09 1.46E+10 17525 1

seed7 3.50E+09 1.09E+10 13075 2

Table C.13.: Results for uncapacitated optimal solutions of 7×3-configuration with crowd-

ing and δmax = 5.
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Configuration 7× 3, sigma 1.1, fare=6
instance δmax profit revenue ψℓ δℓ no iterations CPU time nb trips nb trains
seed1 2 -2.11E+09 1.93E+10 [10, 10, 10] [2, 2, 2] 0 10.688 23221 30
seed1 3 3.44E+09 1.93E+10 [6, 6, 10] [3, 3, 2] 0 41.562 23208 22
seed1 4 7.86E+09 1.88E+10 [4, 5, 5] [4, 4, 4] 0 124.797 22606 14
seed1 5 7.86E+09 1.88E+10 [4, 5, 5] [4, 4, 4] 0 242.328 22606 14
seed1 6 8.52E+09 1.88E+10 [3, 5, 5] [6, 4, 4] 0 289.381 22606
seed2 1 -2.05E+10 1.69E+10 [20, 20, 15] [1, 1, 1] 2 1.047 20348 55
seed2 2 -3.68E+09 1.77E+10 [10, 10, 10] [2, 2, 2] 0 10.906 21304 30
seed2 3 4.18E+09 1.77E+10 [6, 6, 6] [3, 3, 3] 0 43.265 21302 18
seed2 4 6.55E+09 1.77E+10 [5, 4, 5] [4, 4, 4] 0 123.516 21302 14
seed2 5 7.89E+09 1.77E+10 [4, 4, 4] [5, 4, 5] 0 259.11 21302 12
seed2 6 9.89E+09 1.77E+10 [3, 3, 3] [6, 6, 6] 0 300.52 21302
seed3 2 -2.43E+09 1.77E+10 [10, 10, 10] [2, 2, 2] 0 10.984 21258 30
seed3 3 4.90E+09 1.64E+10 [6, 5, 5] [3, 3, 3] 0 43.25 19656 16
seed3 4 7.37E+09 1.63E+10 [4, 4, 4] [4, 4, 4] 0 125.781 19590 12
seed3 5 8.03E+09 1.57E+10 [4, 3, 3] [4, 4, 5] 0 263.515 18898 10
seed3 6 8.66E+09 1.57E+10 [3, 3, 3] [6, 4, 5] 0 299.444 18898
seed4 2 -3.14E+09 1.81E+10 [10, 12, 10] [2, 2, 2] 0 10.36 21803 32
seed4 3 2.83E+09 1.80E+10 [6, 10, 6] [3, 3, 3] 0 40.359 21622 22
seed4 4 7.90E+09 1.75E+10 [4, 5, 4] [4, 4, 4] 0 111.406 21011 14
seed4 5 7.90E+09 1.75E+10 [4, 5, 4] [4, 4, 4] 0 239.375 21011 14
seed4 6 8.56E+09 1.75E+10 [3, 5, 4] [6, 4, 4] 0 271.957 21011
seed5 1 -1.75E+10 1.81E+10 [15, 20, 20] [1, 1, 1] 1 1.187 21697 55
seed5 2 -2.91E+09 1.81E+10 [10, 10, 10] [2, 2, 2] 0 11.734 21767 30
seed5 3 4.61E+09 1.64E+10 [5, 5, 6] [3, 3, 3] 0 47.063 19719 16
seed5 4 6.72E+09 1.61E+10 [4, 4, 4] [4, 4, 4] 0 127.765 19299 12
seed5 5 8.07E+09 1.61E+10 [3, 3, 4] [5, 5, 4] 0 284.297 19291 10
seed5 6 8.59E+09 1.61E+10 [3, 3, 3] [5, 5, 6] 0 313.92 19287
seed6 2 -2.50E+09 1.92E+10 [10, 10, 10] [2, 2, 2] 0 10.547 23056 30
seed6 3 3.07E+09 1.92E+10 [6, 6, 10] [3, 3, 2] 0 40.922 23056 22
seed6 4 7.92E+09 1.92E+10 [5, 4, 5] [4, 4, 4] 0 110.953 23056 14
seed6 5 9.23E+09 1.92E+10 [4, 4, 4] [5, 4, 5] 0 237.844 23056 12
seed6 6 1.06E+10 1.92E+10 [3, 3, 4] [6, 6, 5] 0 270.085 23046
seed7 1 -1.96E+10 1.69E+10 [15, 20, 20] [1, 1, 1] 1 1.172 20255 55
seed7 2 -4.11E+09 1.73E+10 [10, 10, 10] [2, 2, 2] 0 11.578 20786 30
seed7 3 4.47E+09 1.71E+10 [5, 6, 6] [3, 3, 3] 0 44.907 20582 17
seed7 4 6.52E+09 1.60E+10 [4, 4, 4] [4, 4, 4] 0 123.547 19267 12
seed7 5 7.94E+09 1.54E+10 [3, 3, 3] [5, 5, 5] 0 275.75 18537 9
seed7 6 7.94E+09 1.54E+10 [3, 3, 3] [5, 5, 5] 0 299.318 18537
seed8 1 -1.46E+10 1.85E+10 [15, 15, 20] [1, 1, 1] 0 1.203 22286 50
seed8 2 -2.77E+09 1.85E+10 [10, 10, 10] [2, 2, 2] 0 11.625 22241 30
seed8 3 5.27E+09 1.78E+10 [5, 6, 6] [3, 3, 3] 1 46.296 21399 17
seed8 4 7.58E+09 1.82E+10 [4, 5, 5] [4, 3, 4] 0 126.765 21923 14
seed8 5 8.91E+09 1.62E+10 [3, 3, 3] [5, 4, 5] 0 281.672 19520 9
seed8 6 8.91E+09 1.62E+10 [3, 3, 3] [5, 4, 5] 0 307.259 19520
seed9 2 -4.64E+09 1.79E+10 [10, 12, 10] [2, 2, 2] 0 11.172 21563 32
seed9 3 2.50E+09 1.79E+10 [5, 10, 6] [3, 3, 3] 0 42.766 21532 21
seed9 4 6.73E+09 1.76E+10 [4, 5, 5] [4, 4, 4] 0 116.094 21170 14
seed9 5 8.36E+09 1.58E+10 [3, 3, 3] [5, 5, 5] 0 260.547 18972 9
seed9 6 8.36E+09 1.58E+10 [3, 3, 3] [5, 5, 5] 0 282.689 18972
seed10 1 -2.08E+10 1.81E+10 [20, 15, 20] [1, 1, 1] 1 1.078 21741 55
seed10 2 -3.96E+09 1.82E+10 [10, 10, 10] [2, 2, 2] 1 11.218 21927 30
seed10 3 4.27E+09 1.77E+10 [6, 5, 6] [3, 3, 3] 1 43.266 21210 17
seed10 4 7.53E+09 1.77E+10 [5, 3, 4] [4, 4, 4] 0 118.922 21329 12
seed10 5 8.39E+09 1.77E+10 [4, 3, 4] [5, 4, 4] 0 264.172 21329 11
seed10 6 9.36E+09 1.77E+10 [3, 3, 4] [6, 4, 4] 0 297.072 21329

Table C.12.: Results for 7× 3-configuration at capacitated case.

129



Chapter C. Computational results

deltaMax=6

profit revenue passengers nb iterations

seed1 6.33E+09 1.57E+10 18918 1

seed2 5.75E+09 1.35E+10 16205 2

seed3 7.05E+09 1.42E+10 17086 2

seed4 7.54E+09 1.65E+10 19769 1

seed5 7.23E+09 1.46E+10 17525 1

seed6 8.15E+09 1.61E+10 19339 1

seed7 3.50E+09 1.09E+10 13075 2

seed10 8.50E+09 1.63E+10 19605 1

Table C.14.: Results for uncapacitated optimal solutions of 7 × 3-configuration with

crowding and δmax = 6.

8 × 3-configuration

Detailed information on the results for 8 × 3-configuration is reported in Tables C.15

and C.16. The results provided in this table reveal, for most cases, the system becomes

productive from three carriages. As observed in 7 × 3-configuration, the frequencies are

highs when the capacities are small, in order to transport all passenger willing to travel

on the RTS. The average CPU time for δmax = 1 is 1.36 seconds whereas for δmax = 6 is

823. The optimal solutions for uncapacitated case are affected by the in-vehicle crowding

at the capacitated case as show Tables C.17 and C.18.

130



Configuration 8× 3, sigma 1.1, fare 6

instance δmax profit revenue ψℓ δℓ no iterations CPU time nb trips nb Trains

seed1 1 -8.74E+09 1.40E+10 [10, 15, 10] [1, 1, 1] 0 1.69 16788 25

seed1 2 1.64E+09 1.14E+10 [3, 6, 6] [2, 2, 2] 0 16.38 13735 15

seed1 3 3.89E+09 1.14E+10 [3, 4, 4] [2, 3, 3] 0 63.96 13734 11

seed1 4 5.01E+09 1.14E+10 [3, 3, 3] [2, 4, 4] 0 171.90 13724 9

seed1 5 5.01E+09 1.14E+10 [3, 3, 3] [2, 4, 4] 0 564.78 13724 9

seed1 6 5.01E+09 1.14E+10 [3, 3, 3] [2, 4, 4] 0 1011.83 13724 9

seed2 1 -7.65E+09 1.16E+10 [3, 15, 12] [1, 1, 1] 0 1.90 13936 30

seed2 2 -1.72E+09 1.16E+10 [3, 10, 6] [1, 2, 2] 0 17.82 13927 19

seed2 3 3.29E+09 1.16E+10 [3, 5, 3] [3, 3, 3] 0 66.50 13922 11

seed2 4 3.99E+09 1.16E+10 [3, 4, 3] [3, 4, 3] 0 173.29 13922 10

seed2 5 4.78E+09 1.16E+10 [3, 3, 3] [3, 5, 3] 0 570.36 13922 9

seed2 6 4.78E+09 1.16E+10 [3, 3, 3] [3, 5, 3] 0 1018.70 13922 9

seed3 1 -1.06E+10 1.64E+10 [15, 15, 20] [1, 1, 1] 0 1.25 19661 50

seed3 2 -1.91E+09 1.56E+10 [10, 10, 10] [2, 2, 2] 0 11.41 18758 30

seed3 3 6.04E+09 1.46E+10 [4, 5, 5] [3, 3, 3] 1 48.61 17553 14

seed3 4 6.96E+09 1.46E+10 [4, 4, 4] [3, 4, 4] 0 137.19 17552 12

seed3 5 7.99E+09 1.46E+10 [4, 3, 3] [3, 5, 5] 0 468.77 17521 10

seed3 6 7.99E+09 1.46E+10 [4, 3, 3] [3, 5, 5] 0 863.56 17521 10

seed4 1 -1.17E+10 1.79E+10 [20, 15, 20] [1, 1, 1] 0 1.08 21458 55

seed4 2 1.26E+09 1.36E+10 [5, 10, 4] [2, 2, 2] 0 12.97 16312 119

seed4 3 6.37E+09 1.67E+10 [6, 5, 6] [3, 3, 3] 0 42.84 20037 17

seed4 4 7.53E+09 1.58E+10 [5, 4, 4] [3, 4, 4] 0 125.29 18944 14

seed4 5 8.26E+09 1.48E+10 [4, 3, 3] [3, 5, 5] 0 439.73 17756 10

seed4 6 8.26E+09 1.48E+10 [4, 3, 3] [3, 5, 5] 0 820.11 17756 10

seed5 1 -8.35E+09 1.56E+10 [15, 15, 12] [1, 1, 1] 0 1.31 18688 42

seed5 2 -2.10E+08 1.73E+10 [10, 10, 10] [2, 2, 2] 0 10.77 20751 30

seed5 3 5.90E+09 1.31E+10 [3, 5, 3] [3, 3, 3] 0 54.10 15778 11

seed5 4 6.96E+09 1.27E+10 [3, 3, 3] [3, 4, 3] 0 151.52 15229 9

seed5 5 6.96E+09 1.27E+10 [3, 3, 3] [3, 4, 3] 0 513.94 15229 9

seed5 6 6.96E+09 1.27E+10 [3, 3, 3] [3, 4, 3] 0 946.48 15229 9

Table C.15.: Results for 8 × 3-configuration at capacitated case for seed1 to seed5-

instances.
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Configuration 8× 3, sigma 1.1, fare 6

instance δmax profit revenue ψℓ δℓ no iterations CPU time nb trips nb Trains

seed6 1 -1.57E+10 1.56E+10 [15, 20, 15] [1, 1, 1] 0 1.171 18785 50

seed6 2 -2.80E+09 1.49E+10 [10, 10, 6] [2, 2, 2] 1 11.374 17850 26

seed6 3 4.66E+09 1.45E+10 [4, 6, 4] [3, 3, 3] 0 47.051 17459 14

seed6 4 5.91E+09 1.40E+10 [3, 5, 3] [3, 4, 4] 0 130.277 16798 11

seed6 5 6.56E+09 1.40E+10 [3, 4, 3] [3, 5, 4] 0 449.984 16795 10

seed6 6 7.25E+09 1.39E+10 [3, 3, 3] [3, 6, 4] 0 841.11 16749 9

seed7 1 -8.16E+09 1.28E+10 [4, 15, 15] [1, 1, 1] 0 1.919 15361 34

seed7 2 -1.29E+09 1.28E+10 [5, 10, 5] [2, 2, 2] 0 17.8 15333 20

seed7 3 4.01E+09 1.21E+10 [3, 5, 3] [3, 3, 3] 1 66.675 14514 11

seed7 4 5.32E+09 1.27E+10 [3, 4, 3] [2, 4, 4] 0 172.147 15258 10

seed7 5 6.05E+09 1.27E+10 [3, 3, 3] [2, 5, 4] 0 573.578 15257 9

seed7 6 6.05E+09 1.27E+10 [3, 3, 3] [2, 5, 4] 0 1045.719 15257 9

seed8 1 -1.34E+10 1.49E+10 [12, 15, 20] [1, 1, 1] 0 1.125 17940 47

seed8 2 -2.32E+09 1.48E+10 [6, 10, 10] [2, 2, 2] 0 11.311 17725 26

seed8 3 4.09E+09 1.44E+10 [5, 5, 5] [3, 3, 3] 0 47.457 17362 15

seed8 4 4.97E+09 1.42E+10 [5, 4, 4] [3, 4, 4] 0 133.303 17105 13

seed8 5 5.77E+09 1.31E+10 [4, 3, 3] [3, 5, 5] 0 466.813 15742 10

seed8 6 5.77E+09 1.31E+10 [4, 3, 3] [3, 5, 5] 0 862.828 15742 10

seed9 1 -1.29E+10 1.77E+10 [20, 20, 15] [1, 1, 1] 0 1.077 21248 55

seed9 2 -1.60E+08 1.71E+10 [10, 10, 10] [2, 2, 2] 0 10.75 20498 30

seed9 3 7.73E+09 1.68E+10 [5, 5, 5] [3, 3, 3] 0 42.355 20202 15

seed9 4 8.80E+09 1.60E+10 [4, 4, 3] [4, 4, 4] 0 120.277 19229 11

seed9 5 9.95E+09 1.59E+10 [3, 3, 3] [5, 5, 4] 0 430.297 19115 9

seed9 6 9.95E+09 1.59E+10 [3, 3, 3] [5, 5, 4] 0 815 19115 9

seed10 1 -1.77E+10 1.72E+10 [20, 20, 15] [1, 1, 1] 0 1.109 20612 55

seed10 2 -2.43E+09 1.71E+10 [10, 10, 10] [2, 2, 2] 0 10.921 20566 30

seed10 3 5.16E+09 1.58E+10 [5, 6, 4] [3, 3, 3] 0 43.197 19033 15

seed10 4 6.61E+09 1.48E+10 [4, 4, 3] [4, 4, 4] 0 124.801 17776 11

seed10 5 6.97E+09 1.45E+10 [3, 4, 3] [5, 4, 4] 0 438.688 17396 10

seed10 6 7.58E+09 1.45E+10 [3, 3, 3] [5, 6, 4] 0 866.312 17388 9

Table C.16.: Results for 8 × 3-configuration at capacitated case for seed6 to seed10-

instances.

deltaMax=5

profit revenue passengers nb iterations

seed1(delta=4 also) 4.06E+09 1.04E+10 12497 1

seed8 5.17E+09 1.24E+10 14921 1

Table C.17.: Results for 8× 3-configuration at capacitated case.
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deltaMax=6

profit revenue passengers nb iterations

seed1 4.06E+09 1.04E+10 12497 1

seed6 5.31E+09 1.19E+10 14317 1

seed8 5.17E+09 1.24E+10 14921 1

Table C.18.: Results for 8× 3-configuration at capacitated case.
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Chapter 4

An adaptive neighborhood search heuristic

for metro network design

4.1. Introduction

In this chapter we will focus on the network design and line planning taking into ac-

count aspects related to rolling stock and personnel costs. Concretely, we will analyze a

particular case from the general model proposed in Chapter 2, which integrates the stages

in the railway process above commented. The problem consists of maximizing the net

profit of a RTS by selecting the location of stations and their connections, a set of lines,

each characterized by two different terminal stations, a sequence of intermediate stations

(an itinerary), frequencies of each line and the size of trains, assuming that all passengers

willing to travel in the RTS can be transported. We assume the existence of an alternative

transportation system (e.g. private car, bus, bicycle) competing with the RTS as well as

passengers choose their routes and their transport mode according to traveling times. As

mentioned in Chapter 2, the travel time is composed of several terms: waiting time, in

vehicle time and transfer time. Each term is depending of the system’s characteristics

such as the topology, the line configuration as well as the considered frequencies. The

demand is supposed to be elastic and changes accordingly to the characteristics. This as-

pect is included in the model by means of a logit function. Moreover, we will concentrate

on the effective resolution of this problem for small and medium instances. Due to the

complexity of the problem that we are proposing, a heuristic procedure is needed to solve
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the problem for instances of large size. Specifically, we propose a new method based on

the Adaptive Large Neighborhood Search Heuristic (ALNS) which provides a powerful

algorithmic framework capable of simultaneously handling the network design, line plan-

ning, rolling stock and personnel planning. This algorithm is an iterative procedure that

combines the network design problem and the line planning problem described in Chapter

3. Concretely, at each iteration it defines a possible infrastructure and line configuration,

that is, a Rapid Transit Line (RTL), and the HLSA heuristic is applied on this network

in order to evaluate the RTS built. Figure 4.1 shows a flow chart for this procedure.

The main contributions of this chapter are the introduction of a mathematical pro-

gramming programm to solve small instances of our problem as well as the development

of a powerful ALNS heuristic to solve real instances.

Input data ALNS RTL
HLSA

(Chapter 3)

Net profit

Figure 4.1.: Flow chart for the ALNS and the HLSA algorithms.

The remainder of this chapter is organized as follows. In next section we will review the

different techniques used for solving the rapid transit network design problem. In Section

4.2 we propose a mathematical programming program for the problem that integrates

the rapid transit network design problem and line planing problem. Some techniques for

improving the efficiency of our model are presented in Section 4.2.4. Our ALNS algorithm

is presented in Section 4.3. Computational experiments are carried out on Section 4.4.

The chapter ends with some conclusions.

4.1.1. Literature review on algorithms for RTND

Last decades, mixed-integer models for the rapid transit network design (RTND) have

been proposed. First studies are concentrated on the problem of designing a single rapid

transit alignment. Gendreau et al. (1995) described the main criteria used to design rapid

transit alignments, Dufourd et al. (1996) proposed a tabu search algorithm for solving this
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problem, Bruno et al. (2002) presented a heuristic for solving the problem of designing a

rapid transit line maximizing the population coverage and Laporte et al. (2005) presented

several heuristics to solve the same problem according to the trip coverage.

In recent years, most of the papers have been devoted to the inclusion of heuristic

techniques for solving the transit network design problem. This fact is motivated by

the complexity of this problem. Moreover, the exact algorithms can only deal with small

networks as well as simplified demand data and there are not exists a technology available

to solve real instances in an exact manner, as stated Garćıa-Archilla et al. (2013). A

review of different mathematical models and heuristics for the rapid transit network is

presented in Laporte et al. (2011).

Obviously, when several alignments are considered at the same time (i.e. a network),

enormous difficulty is added to the previous problem. This is the reason for organizing the

literature review on algorithms into two parts. First, we discuss the problem associated

with a single alignment whereas the second part is concentrated on network design problem

for rapid transit. Finally, this section ends with a summary table containing the main

characteristics of each analyzed paper.

1. Locating of a single rapid transit alignment

Gendreau et al. (1995) described the main criteria used to design rapid transit align-

ments. The authors considered the problem of locating a single line maximizing the

population coverage. To solve the problem, they applied several techniques such as

a greedy criterion and a tabu search algorithm. The results show that these tools

can help the design process. Dufourd et al. (1996) proposed a tabu search algorithm

for solving the problem of locating a metro or a rapid transit line maximizing the

total population covered. The authors represent a city as a grid where each node

is a potential station with an associated demand. An alignment is a sequence of

stations or equivalently a sequence of positions in the plane. The problem consists

of selecting a set of stations from this grid (an alignment) respecting an inter-station

spacing, and maximizing the population coverage. Tabu search starts with an ini-

tial solution and iteratively modifies it in order to analyze its neighborhood. The

initial solution is obtained by locating stations over one of two main diagonals of

a square grid. The modifications are done by means of movements on the current

solution. The movements are applied on the coordinates of each station. So, given

an alignment, another alignment is its neighbor if the latter can be obtained by

applying one movement to only one station. For the sake of clarify, let si = (x, y)

be the cartesian coordinates of a station. The possible movement of this solution is
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formed by (x− 1, y), (x+ 1, y), (x, y − 1) and (x, y + 1).

Bruno et al. (1998) proposed a bicriterion model for the location of a rapid transit

line. The objectives considered are construction cost and passenger travel time. In

order to describe the model in a realistic way, the authors consider several trans-

portation systems: pedestrian, public, private and bi-modal pedestrian-public sys-

tem, which are described as follows. In fact, they assume each trip starts and ends

with centroid nodes. The public system describes links between potential stations.

They assume associated a public node, there exists an only pedestrian node. The

private network contains links between nodes which can be accessed by the private

mode. They introduce boarding arcs that connect centroid of transportation ar-

eas with stations and alighting arcs which connects transit stops to centroid nodes.

From these systems, they define an alignment as a path connecting two public nodes

on the public network and a bi-modal path associated to a demand as a passenger

route on the bi-modal system between two nodes. They assume the demand pat-

terns are known and there exist a private transportation competing with the hybrid

pedestrian-public transportation system. The passengers select the option with least

travel time between their origin and destination stations. The authors formulated a

bicriterion integer linear model. In order to estimate the set of non-inferior solutions,

they developed an algorithm inspired on the defined by Current et al. (1985). The

procedure is divided into several steps. First k shortest paths are defined regarding

cost criterion. From each path obtained, a bimodal network is built adding on the

pedestrian system the arcs and nodes that this path contains as well as the corre-

sponding boarding and alighting arcs. Once time the shortest path on the bi-modal

system is defined and the associated travel time is computed, this is compared to

its corresponding path on the private transportation. Finally, the dominated paths

are deleted. They tested the example introduced by Current et al. (1985). This

network is formed by 21 nodes and 39 arcs. A total of 250 paths were considered.

Bruno et al. (2002) developed a two-phase heuristic for the problem of constructing

an alignment in an urban context maximizing the population coverage. To this end,

a discretized grid network was defined. Each integer coordinate has an associated

population. Moreover, each station captures the closest population to the considered

station. A minimum and maximum space between each consecutive stations were

imposed. So, the problem consists of locating a given number of stations n taking

into account the inter-station spacing and maximizing the population coverage. The

heuristic proposed is described into two phases: initial solution construction and an
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improvement phase. The procedure developed in the first phase is as follows. At each

iteration, a partial alignment (initially formed by two stations) is gradually extended

by adding a new station, maximizing the coverage captured. To this end, a subset of

stations linking the partial alignment and the new station is selected. If the inter-

station spacing is satisfied, the new alignment is considered. So, this algorithm

extends iteratively the partial alignment until an alignment with n-stations. In

the second phase, an algorithm is applied in order to generate and analyze the

neighborhood of the current solution. The neighborhood is constructed by selecting

from the current solution, a set of consecutive stations with a determined size, and

then it is extended as in the initial phase. The procedure stops when all possible

sets of consecutive stations are analyzed. This heuristic was tested on instances

randomly generated as well as on real data from the city of Milan.

Laporte et al. (2005) presented several heuristics for the construction of a rapid

transit alignment maximizing trip coverage. Based on the model of Laporte et al.

(2002) for the station catchment area, the authors were able to define the trip

coverage for each origin-destination pair. The problem here dealt with consists of

determining a subset of stations from an underlying network, maximizing the trip

coverage and respecting a maximum length. For the purpose, a mathematical model

as well as two different heuristics are presented. Concretely, the first heuristic starts

with an edge and it is iteratively extended by adding a new edge. This edge is

inserted at the beginning or at the end in the alignment, whenever the maximum

length is not exceeded. This procedure stops when the current alignment cannot

be extended. The second heuristic starts with a feasible initial solution and then a

node is added in the current solution according to several criterion. Finally, a post-

optimization procedure is applied on this solution. Computational experiments are

carried out on the city of Seville as well as data randomly generated.

In Laporte et al. (2009) a Voronoi diagram for solving the problem of locating a

metro line maintaining a minimum distance between the alignment which is being

designed and historical buildings is proposed. The methodology developed is com-

posed by several steps. First, a set of nodes representing historical buildings as well

as two fixed nodes describing the origin and destination for the metro line in a pla-

nar region are defined. The Voronoi diagram induced by these nodes is constructed.

Secondly, from this Voronoi diagram a graph is extracted by considering a safe cir-

cle around each node and eliminating all edges inside of each circle. In the third

step, the shortest path between the fixed nodes is obtained. Finally, a procedure to
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improve this shortest path is considered. This methodology was applied to a line in

the city of Seville.

Recently, Li et al. (2011b) presented analytical models for the problem of designing

a linear transit line maximizing the associated profit. The authors described two

different pricing structures for computing the revenue: a same fare for all passengers

independently of the length of their trips and a distance-dependent fare. The cost

structure includes the train operating cost and costs related to line and stations. The

problem consists of deciding the spacing between stations from a fixed main station,

the headway and fare. The passenger demand for each station is obtained by means

of a function which depends on the distance to the fixed station. The problem is

solved by deriving partially the objective function. A heuristic algorithm was used

to solve this problem. The algorithm is divided into several steps. In the first step,

an initial solution is conveniently chosen and the corresponding passenger demand

for each station is obtained. The following steps are concentrated on modifying

sequentially the decision variables. Finally, a stop criterion is checked. An analysis

on the effect of population density and the rail capital cost on the profit as well as

the effect of the population distribution and the corridor length are carried out.

2. Rapid transit network design

Depending on the characteristic, features, constraints and objectives considered,

there exists numerous variants of the rapid transit network design. We will dis-

tinguish between the design of infrastructure, design of line network on a given

infrastructure network as well as network design taking into account aspects related

to robustness.

a) Infrastructure design

In Blanco et al. (2011) a model for the expansion of transportation networks is

proposed. Specifically, given an infrastructure network, the problem consists of

deciding what stations and edges to construct at each time period minimizing

the total construction and the operating cost over the planning horizon. The

construction cost includes costs related to build stations and links between

stations whereas the operating cost is the operating cost due to the operation

of passengers. The purpose of this work is connecting a set of countries given

with the current railway network. A mathematical programming model as

well as a heuristic procedure were described. The algorithm is composed by a

construction and an improvement phase. In the construction phase, a feasible
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partial solution for each period is generated. The idea is to construct new

stations (and links) in the network until reaching the available budget for the

considered period. To this end, at each iteration the station with the highest

flow is built and it is linked to the closest built station. In the improvement

phase, a scatter search heuristic on the previous solution is applied. In this

phase two classes of movements are defined. In the first movement an edge is

randomly selected whereas in the second movement a 2-edge path (a path with

two edges) is selected. Concretely, the first movement consists of changing one

end node of an edge by other station and the second one, replaces a path by

an edge or by a new path, linking the same origin and final node than in the

initial path. The authors defined four type of movements by combining the

movements above. A case study on the Spanish PEIT (Strategic Planning of

Infrastructure and Transport) is considered.

The goal of Garćıa-Archilla et al. (2013) is to design the infrastructure net-

work maximizing the trip coverage in presence of a competing mode. They

presented a mathematical model for this problem as well as for the robust ver-

sion of this problem. The authors used a Greedy Randomized Adaptive Search

Procedure (GRASP) heuristic to solve the infrastructure railway network de-

sign problem. The GRASP algorithm consists of two phases: a construction

and an improvement phase. In the construction phase a feasible solution is

generated as follows. This phase starts with a set E formed by an edge ran-

domly selected. At each iteration, an edge is added to E. To this end, k ≥ 2

edges maximizing the trip coverage and satisfying the budget constraint when

they are individually added to E, are selected. From this k-edges, an edge

randomly selected is added to E. The construction phase ends when the bud-

get constraint is not satisfied. In the improvement phase an edge is randomly

removed of E and it is replaced by a new edge (or several if it is possible).

These two phases are repeated a given number times. The authors tested 70

instances randomly generated with at most 18 nodes, and a real size instance

with 49 nodes, obtaining good and fasters solutions.

b) Line and infrastructure design

Bruno and Laporte (2002) described a visual interactive decision system which

solves the rapid transit network design problem by means of heuristics. The

authors focus on extending the algorithm developed in Bruno et al. (2002) for a

multi-alignment. In the application, the users select the shape of the network,
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the inter-station spacing as well as the number of lines and stations for each

line. The localization of each line is iteratively determined using the algorithm

defined in Bruno et al. (2002). Moreover, several effectiveness measures are

presented in the application. Experiments for the city of Milan are considered.

Laporte et al. (2007) presented a model for the rapid transit network design

problem which integrates network design and line planning problems. This

model is formulated as a linear binary integer program according to key nodes.

A small network with 6 nodes and 9 edges is tested and it is implemented in

GAMS 2.0.27.7 and CPLEX 9.0. Different congestion coefficients contributing

to the private costs are taken into account. In the experimentation, they solve

first the problem by considering length constraints and then they add a cost

constraint in the model. The optimal solution obtained is defined by one or

two lines depending on the imposed requirement. A similar model taking into

account transfers between lines is proposed in Garćıa-Ródenas et al. (2006).

This aspect is defined as the half of time between two consecutive services at

the line to transfer plus time spent between platforms. In the experimentation,

the network defined in Laporte et al. (2007) is tested by using CPLEX 8.0. The

authors studied different values of the parameters such as transfer costs and

line frequency and analyzed the effect of these parameters on the solution.

Maŕın (2007) used a branch-and-bound algorithm in order to solve the rapid

transit network design. This work may be considered an extension of Laporte et al.

(2007), where lines have a certain degree of freedom. Specifically, the author

assumes a variable number of lines as well as lines have not fixed terminal

stations. The objective function is a linear combination of the trip coverage

and the routing cost. The computational experiments are concentrated on two

small networks: the network presented in Laporte et al. (2007) and a network

with 9 nodes and 16 edges. The model was implemented in GAMS 21.6 by

using CPLEX 9.0. The author considers a maximum number of lines and

different congestion factors.

The same algorithm is used in Guan et al. (2006). The authors simultaneously

determine the transit line configuration and the passenger line assignment. The

line planning problem defined consists on finding a set of lines (of a given line

pool) that connects all stations of a given infrastructure network, minimizing

the total length of all lines. The passenger line assignment was described by

means of paths (sequences of edges and nodes that connects origin-destination
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pairs). To integrate both problems, the objective function is defined as a convex

combination of those proposed at each problem: the total length of all transit

length (for the line planning problem) and total passenger in-vehicle travel time

and total number of passenger transfers (for the passenger line assignment).

The authors analyzed several types of networks: two spanning tree networks

with 6 and 9 nodes and a simplified real network. For the purpose, the effect of

demand between origin-destination pairs, minimum and maximum line length

as well as maximum link capacity and maximum number of transfers, on the

spanning tree networks is analyzed. A numerical case of study on the Hong

Kong mass transit railway (MTR) network is carried out. The MTR network is

formed by 6 transit lines and 49 stations. Due to the complexity of the problem,

a simplified version of this network is presented. Concretely, this network is

reduced to 9 stations and 10 edges as follows. The node set is defined by

the terminal stations of each line and nodes representing intersection of lines.

The number of possible lines in the line pool is also reduced. An analysis of

sensibility of the factors that appear in the convex combination of the objective

function is presented.

In order to allow circular lines, a modification of the extended rapid transit net-

work design problem (see Maŕın (2007)) is introduced by Escudero and Muñoz

(2009). Thus, a two-stage approach for solving this problem is presented. In

the first stage, an integer model is solved in order to select stations and links

between them, without exceeding the available budget and maximizing the

number of users. The resulting model may yield an undesirable line set formed

by non-connected lines consisting of one non-circular sub-line and various cir-

cular sub-lines. To avoid such lines, the authors propose to define each sub-line

as a line. This model also allows the possibility of more than one line linking

two locations. In the second stage, the authors present a procedure for solving

the above problem by assigning each selected link to exactly one line in order

to minimize the number of lines. The same networks that proposed in Maŕın

(2007) were examined. In the experimentation, the available budget as well as

the congestion factor were tested. The models were implemented in Microsoft

Visual C++ 2005 and CPLEX 11.0. In the branching process, the priorities

for the variables were changed in order to improve the CPU time.

The main contributions of Maŕın and Garćıa-Ródenas (2009) are the inclusion

of location constraints (in order to minimize the number of routing intersec-

143



Chapter 4. An adaptive neighborhood search heuristic for metro network design

tions) and the consideration of the logit model (instead of the previous all

or nothing models). This model expresses the proportion of users which are

assigned to each mode for each OD pair. The authors assume that each trans-

portation mode depends exclusively on the associated transportation costs. A

strategy to approximate the non-linear logit function by a polygonal curve is

developed. In the experiments, a small and a median size network have been

used. Concretely, the small network is the defined in Laporte et al. (2007)

and the median network represents a simplification of the Seville’s metro used

in Laporte et al. (2007). Comparative tests on the different described models

have been considered and implemented in GAMS with CPLEX 10.0. The small

network is defined by 6 nodes and 9 edges whereas the network representing

the Seville’s metro has 24 nodes and 276 edges. In the analysis a total of 30

demands and subsets of 552 demands for the small and Seville’s network are

considered, respectively.

The difficulty for solving the rapid transit network design problem for medium-

size networks, was one of the reasons to motivate the search of new techniques

and to develop faster methods. For instance, Maŕın and Jaramillo (2009) use

algorithms based on Benders decomposition to find optimal solutions for the

RTND problem. The authors present a general objective taking into account

the trip coverage, the routing and location cost. The problem is divided into

a Master Model (MM), which defines a feasible network, and a Sub Model

(SM), which assigns demand to this network. The Benders decomposition si-

multaneously considers (MM) and (SM). At each iteration, the dual variables

of the (SM) define Benders Cuts, which are added to the constraints of the

master problem. In order to improve the computational time, several exten-

sions of Benders decomposition are proposed. In their experimentation three

network are tested: two small networks (the defined in Maŕın (2007)) as well

as a network representing the city of Seville (see Laporte et al. (2007)). The

computational experience is done with GAMS 21.7 and CPLEX 9.0. A com-

parison between Branch and Bound and the proposed extensions of Benders

decomposition is developed. The results indicate that these extensions reduce

the computational time to obtain solutions.

Based on the Simulated Annealing heuristic (SA), Kermanshahi et al. (2010)

solved the RTND problem by maximizing the trip coverage. The problem is

defined according to transit routes. The authors assume the start and the
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end of all routes are predetermined. The feasible routes are generated taking

into account two criterion: an acceptable length and not entailing tours. The

heuristic starts with an initial solution obtained from this set of routes. Con-

cretely, the initial solution is formed by a subset of routes randomly extracted

on the feasible routes set. The current solution is iteratively modified by means

of movements. In this work only a type of movement is defined. Specifically,

it consists of changing a route randomly selected from the current solution, by

a generated new route according to two criterion. So, the difference between

two neighbors is only a route. The probability of choosing each criterion is

controlled by an input parameter. The first criterion proposes a new route

connecting stations before non-connected. The second one selects the route

with the highest demand. Therefore, at each iteration, a candidate solution is

selected and an acceptance criterion based on Simulated Annealing is applied.

If the candidate solution is better than the current solution, the solution is

accepted. Otherwise, the acceptance depends on a temperature parameter and

a cool factor. The computational experiments on the network defined in Maŕın

(2007) shows that this algorithm gives good results in a reasonable amount of

time.

c) Robustness

Using a branch-and-cut algorithm in GAMS 22.2 and CPLEX 10.0, Laporte et al.

(2012) have solved the problem of designing a robust rapid transit network. To

this end, the authors first deal with the deterministic version of the problem

and then with the effects of possible failures in the network. The objective

function is a convex combination of trip coverage with possible failures and

total routing maximal. Three ways of introducing robustness in the determin-

istic model by capacity constraints is developed. In order to to illustrate the

feasibility of integrating robustness considerations in a planning model, a small

network with 9 nodes is tested.

In Laporte et al. (2010) a game theoretic framework is used in order to solve

the problem of designing a railway transit network in the presence of failures.

The authors consider only two agents acting in the problem: the planner and

the demon. The planner wants to minimize trip coverage or total travel time

whereas the demon makes the system works as bad as possible. In the paper two

versions of this problem are formulated: Probabilistic Railway Network Design

(PRND) and the Stochastic Railway Network Design (SRND) problem. The
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same network as in Laporte et al. (2007) is considered in the experimentation.

First, they focus on the trip coverage and then on the total travel time. The

PRND is based on the assumption of each arc failures with the same probability

whereas in the SRND the failure probability of each arc is unknown. For both

version of the problem, the objective function is a linear combination of trip

coverage or total travel time with and without failures.

An attempt to integrate robust network design and line planning is carried out

in Maŕın et al. (2009). The authors first described the rapid network design

(RND) and the line planning (LP) problem separately and then they integrated

both problems. They presented a model for solving the RND where the only

decision variables are nodes, arcs and flows. Once the RND is solved, the in-

frastructure network defines an input data in the line planning problem. Two

different definitions of robustness are presented: one from the user’s point of

view and the other from the operator’s point of view. The robustness concept

for the user is defined by means of a measure which gives information on the

travel time in failures presence. For the operator, the robustness is introduced

by an index expressing the effect of failures on the fleet of vehicles. The main

contribution of this paper is the introduction of an iterative procedure that

combines the robust rapid network design and the robust line planning prob-

lem. For the user robustness concept the algorithm is defined as follows. First,

the RND problem is solved considering the total travel time as utility function.

From the topological network obtained, the line planning problem is solved.

This solution defines the initial solution in the iterative process. In the follow-

ing iterations, this network is extended covering the same OD pairs but in a

more robust way than the initial. Similarly this algorithm is adapted to the

operator’s preferences. In order to show the applicability of this algorithm, a

network representing the capitals of provinces in Andalućıa’s regions is tested.

This network is formed by 10 nodes and 16 edges.

In a related field, Mauttone and Urquhart (2009b) used the Route Generation Algo-

rithm inspired in the structure of Baaj and Mahmassani (1995) to determine a set of

bus routes for a public transportation system. They inserted pairs of vertices with

high values of demand on existing routes. The shortest path between these vertices

defines a new route in the system. Some of meta-heuristic algorithms used in this

field are Genetic Algorithm (Tom and Mohan (2003), Ngamchai and Lovell (2003)), Tabu

Search (Fan and Machemehl (2004)), Simulated Annealing (Fan and Machemehl (2006)),
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GRASP (Mauttone and Urquhart (2009a)) and Scatter Search (Gendreau and Potvin

(2010)). In Guihaire and Hao (2008) a non-exhaustive classification of the strategic and

tactical steps of transit planning is presented. They concentrated the literature review on

the design and scheduling of networks in the context of urban buses and railways. More

concretely, a classification of 69 approaches related to the design, frequencies setting,

timetabling of transit lines in the field of railways and urban buses are proposed.
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Maŕın and Garćıa-Ródenas (2009) railway network design trip coverage and private cost exact small and median networks
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4.2. The mathematical programming program

As mentioned, the main innovative point of our model with respect to current literature

is the simultaneous treatment of network design and line planning problems. Moreover,

line frequency and capacity are also considered, as well as several aspects related to rolling

stock and personnel planning. Our network design model also includes passenger transfers

between the lines, flow conservation, as well as location and allocation constraints, and a

competing mode. The main input data are the underlying network, that is, the potential

location for the stations and their connections, the distance matrix between pairs of

stations of the underlying network, the travel patterns as well as train capacities, building

costs and operational costs. We assume that passengers choose theirs routes and transport

according to travel time which is affected by the frequency. The objective function is the

net profit (see Chapter 2). In our approach, we also consider the existence of public

economic support for network deployment as a key factor in the network design analysis.

The main differences between the model here presented and the general model in Chap-

ter 2 are the followings. The flow variables fwℓ
ij as well as variables representing transfers

fwℓℓ′

i between lines are binaries. This fact yields to introduce new variables and con-

straints. In the following, we formally describe our problem.

4.2.1. Data and notation

We assume the same input data as in Chapter 2. However, in order to simplify several

constraints in our model, we will assume that the number of services of a line is given by

means of its headway. Note that the frequency and headway are inversely proportional

(frequency is 60/headway). So, we consider a fixed finite set of possible headway F̂ for

lines of the RTS. We assume the headway of each line takes values between a minimum

and maximum headway in order to guarantee a certain level of service in the network.

We describe the set of ordered possible headway as F̂ = {ζ1, ζ2, . . . , ζ |F̂|}, where each

ζq ∈ N, 1 ≤ q ≤ |F̂| and |F̂ | ≥ 2.

4.2.2. Variable

The set of variables in our model is the same as in Chapter 2, with the exception of

frequency that now is headway; flow variables that now are binaries, and others new

variables introduced in this section.

149



Chapter 4. An adaptive neighborhood search heuristic for metro network design

For the sake of readability, we will repeat some variables and constraints already pre-

sented in Chapter 2.

• yℓi = 1 if node i is selected to be a station of line ℓ ∈ L, 0 otherwise.

• yi = 1 if node i is selected to be a station in the RTS, 0 otherwise.

• xℓij = 1 if edge {i, j} ∈ E belongs to line ℓ ∈ L, 0 otherwise.

• xij = 1 if edge {i, j} ∈ E is included in the RTS, 0 otherwise.

• hℓ = 1 if line ℓ ∈ L is included, 0 otherwise.

• ζℓ ∈ F̂ describing the headway of line ℓ (time between services expressed in minutes).

• δℓ ∈ {δmin, . . . ,∆} representing the number of carriages used by trains of line ℓ.

• uRTS
w > 0 is the travel time of pair w using the RTS network.

• fRTS
w ∈ [0, 1] is the proportion of OD pair w using the RTS network.

• f̃wℓ
ij = 1 if the OD pair w traverses arc (i, j) ∈ A using line ℓ, 0 otherwise.

• f̃wℓℓ′

i = 1 if demand of pair w transfers in station i from line ℓ to line ℓ′, 0 otherwise.

• pw = 1 if demand of pair w is allocated to the railway network, 0 otherwise.

The average travel time associated to OD pair w = (ws, wt) ∈ W using the RTS network

can be explicitly defined as follows:

uRTS
w =

∑

ℓ∈L

∑

j:{ws,j}∈E

ζℓf̃
wℓ
wsj

2
+ (60/λ)

∑

ℓ∈L

(
∑

{i,j}∈E

f̃wℓ
ij dij)

+
∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

i∈N

f̃wℓℓ′

i (
ζℓ′

2
+ uci), w = (ws, wt) ∈ W.

(4.1)

The first term in (4.1) is the waiting time at the origin station, which is also assumed

to be half of time between services of this line. The second term in (4.1) is the in-vehicle

time. The third one is the time spent in transfers, which is assumed to be half the time

between two consecutive services in the line to transfer, plus the necessary time to walk

from the platform of one line to the platform of the other.

As in Chapter 2, we define the proportion of OD pair w using the RTS mode as

fRTS
w =

1

1 + e(α−β(uALT
w −uRTS

w ))
, w ∈ W. (4.2)
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4.2.3. Constraints

In this section we will comment the difference between this model and the general

model, and we will describe some new constraints. In this model, we do not consider the

budget constraints group, but this aspect could be incorporated to our model. Due to the

fact that flow variables are binary variables, we have defined a new group of constraints

for describing transfers. The constraints of the problem are formulated as follows.

• Design forcing

These constraints are the same to those defined in the general model in Chapter 2,

with the exception of Constraints (2.26), which are modified by (4.4). Moreover, we

have included the following constraints.

xℓij ≤ xij , {i, j} ∈ E, i < j (4.3)

Nminhℓ ≤
∑

i∈N

yℓi ≤ Nmaxhℓ, ℓ ∈ L (4.4)

hℓ ≤
∑

{i,j}∈E

xℓij , ℓ ∈ L. (4.5)

• Routing demand constraints

Due to the fact that flow variables are binary variables, all constraints presented in

the general model are modified.

∑

ℓ∈L

∑

j:(ws,j)∈A

f̃wℓ
wsj = pw, w = (ws, wt) ∈ W (4.6)

∑

ℓ∈L

∑

i:(i,wt)∈A

f̃wℓ
iwt

=
∑

ℓ∈L

∑

j:(ws,j)∈A

f̃wℓ
wsj, w = (ws, wt) ∈ W (4.7)

∑

ℓ∈L

∑

i:(i,k)∈A

f̃wℓ
ik −

∑

ℓ∈L

∑

j:(k,j)∈A

f̃wℓ
kj = 0, w = (ws, wt) ∈ W, k 6= {ws, wt}. (4.8)
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• Location-allocation constraints

fRTS
w ≤ pw, w ∈ W (4.9)

pw ≤ 100fRTS
w , w ∈ W (4.10)

f̃wℓ
ij ≤ pw, w ∈ W, {i, j} ∈ E, ℓ ∈ L (4.11)

f̃wℓ
ij + f̃wℓ

ji ≤ xℓij , w ∈ Wℓ ∈ L, {i, j} ∈ E, i < j (4.12)

f̃wℓℓ′

i ≤ yℓi , w ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ N (4.13)

f̃wℓℓ′

i ≤ yℓ
′

i , w ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ N (4.14)

f̃wℓℓ′

i ≤ 0.5 · (hℓ + h′ℓ), w ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′, i ∈ N. (4.15)

• Transfers

f̃wℓℓ′

i ≥
∑

k:(k,i)∈A

f̃wℓ
ki +

∑

k:(i,k)∈A

f̃wℓ′

ik − 1, w ∈ W, i ∈ N, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′ (4.16)

2f̃wℓℓ′

i ≤
∑

k:(k,i)∈A

f̃wℓ
ki +

∑

k:(i,k)∈A

f̃wℓ′

ik , w ∈ W, i ∈ N, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′ (4.17)

f̃wℓℓ′

ws
= 0, w = (ws, wt) ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′ (4.18)

f̃wℓℓ′

wt
= 0, w = (ws, wt) ∈ W, ℓ, ℓ′ ∈ L, ℓ 6= ℓ′. (4.19)

• Capacity constraints

ζℓ
∑

w∈W

gwf
RTS
w f̃wℓ

ij ≤ 60 ·Θ · δℓ, ℓ ∈ L, {i, j} ∈ E. (4.20)

• Binary constraints

xij , yi, x
ℓ
ij, y

ℓ
i , hℓ, f̃

wℓ
ij , f̃

wℓℓ′

k ∈ {0, 1}, k ∈ N, {i, j} ∈ E, i ∈ N, ℓ ∈ L, w ∈ W.

• Integer constraints

δℓ ∈ {δmin, . . . ,∆}, ℓ ∈ L

ζℓ ∈ F̂ , ℓ ∈ L.
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• Other constraints

fRTS
w ∈ [0, 1], w ∈ W.

Recall that the model includes constraints related to the proportion of passengers using the

RTS (Equation 4.2) as well as the travel time for each OD pair (Equation 4.1). Constraints

(4.3) impose that an edge is built for a specific line only if the edge is included in the

RTS. Constraint (4.4) forces that each line must have at least Nmin nodes and at most

Nmax nodes. Constraints (4.5) guarantee a line is not built if it has not constructed arcs.

Constraints (4.6)–(4.8) define flow conservation for each OD pair. Constraints (4.9) and

(4.10) force demand pairs to be assigned to the RTS if the associated travel time using the

RTS (taking the fastest route) does not exceed the corresponding time of the alternative

mode. We impose constraints (4.11) in order to ensure that there not exists a route for

an OD pair by the RTS mode if the demand is not assigned to the RTS. We impose

constraints (4.12) in order to allow the flow corresponding to each OD pair to use an edge

of a line ℓ only if this edge belongs to ℓ. For the sake of clarify, we repeat Constraints

(4.13) and (4.14) of the general model which guarantee that if a transfer between two

lines is made at node i, station i is built for both lines. Constraints (4.15) ensure that

if a transfer between two lines is made, both lines are already built. Constraints (4.16)

and (4.17) ensure that if an OD pair w enters station k ∈ N using one line and exits

this station using another line, then a transfer is done. Constraints (4.18) and (4.19)

impose that it is not possible to make a transfer at the origin or destination station of

the considered OD pair. Constraints (4.20) indicates the total capacity per hour of such

line is a sufficiently large number in order to transport all passengers preferring to travel

in the RTS.

4.2.4. Efficient approaches

In this section we show different techniques for improving the efficiency of the model

presented in the previous section.

Capacity constraints

The terms in (4.20) expressed as a product of a binary variable and a real variable,

that is, f̃wℓ
ij and fRTS

w , are transformed into linear constraints by means of a new variable
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ξwℓ
ij = fRTS

w f̃wℓ
ij ≥ 0. Constraints (4.20) are substituted by

ζℓ
∑

w∈W

gwξ
wℓ
ij ≤ 60 ·Θ · δℓ, ℓ ∈ L, {i, j} ∈ E (4.21)

ξwℓ
ij ≤ f̃wℓ

ij , ℓ ∈ L, {i, j} ∈ E,w ∈ W (4.22)

fRTS
w − (1− f̃wℓ

ij ) ≤ ξwℓ
ij , ℓ ∈ L, {i, j} ∈ E,w ∈ W (4.23)

ξwℓ
ij ≤ fRTS

w , ℓ ∈ L, {i, j} ∈ E,w ∈ W. (4.24)

Logit

In this section we will develop a strategy in which the non-linear logit function fRTS
w

defined in Equation (4.2) is approximated by a polygonal curve (piecewise linear function).

This linear function is defined by considering three intervals on the abscissa axis. Note

that the number of intervals is not binding and this procedure can be extended. The logit

function fRTS
w can be rewritten as a function F (x) = 1/(1+ exp(α− β(uALT

w − x)), where

x represents the travel time uRTS
w on the RTS mode. First, we approximate the curve

at the point (uALT
w , 0.5) by a linear function with slope −β/4 obtained by evaluating the

derivative of F (x) at that point. Second, this function is projected on the horizontal line

F (x) = 1 obtaining a point of coordinates (uALT
w −2/β, 1) and then on the horizontal line

F (x) = 0 obtaining a point of coordinates (uALT
w + 2/β, 0).
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Figure 4.2.: Representation of a logit function and its corresponding polygonal curve for

uALT
w = 3, α = 0 and β = 0.5.
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Therefore, the piecewise linear function is defined as

P(x) :=





1, x < uALT
w − 2/β

−β/4x+ (2 + βuALT
w )/4, x ∈ [uALT

w − 2/β, uALT
w + 2/β]

0, x ≥ uALT
w + 2/β.

This function can be modelled by means of the positive variables uRTS
siw

and the binary

variables χsi
w , si = 1, . . . , 3 as follows:

uRTS
w =

∑

si

uRTS
siw

, w ∈ W

∑

si

χsi
w = 1, w ∈ W

− 1000 · χs1
w ≤ uRTS

s1w ≤ χs1
w · (β · uALT

w − 2)/β, w ∈ W

(β · uALT
w − 2)/β · χs2

w ≤ uRTS
s2w

≤ χs2
w · (β · uALT

w + 2)/β, w ∈ W

(β · uALT
w + 2)/β · χs3

w ≤ uRTS
s3w

≤ 1000 · χs3
w , w ∈ W

fRTS
w = 1− χs3

w + (−β/4 · uRTS
s2w + (2 + β · uALT

w )/4− 1) · χs2
w , w ∈ W.

Travel time

The terms in (4.1) expressed as a product of a binary variable and an integer variable,

that is, f̃wℓℓ′

i and ζℓ′, are transformed into linear constraints by means of a new variable

ξ̄wℓℓ′

i = f̃wℓℓ′

i ζℓ′ ≥ 0. Constraint (4.1) is substituted by

ξ̄wℓℓ′

i ≤ ζ |F̂|f̃wℓℓ′

i , ℓ 6= ℓ′ ∈ L, i ∈ N,w ∈ W (4.25)

ζℓ′ − ζ |F̂|(1− f̃wℓℓ′

i ) ≤ ξ̄wℓℓ′

i , ℓ 6= ℓ′ ∈ L, i ∈ N,w ∈ W (4.26)

ξ̄wℓℓ′

i ≤ ζℓ′, ℓ 6= ℓ′ ∈ L, i ∈ N,w ∈ W. (4.27)

Similarly, the product ξ̂wℓ
ij = f̃wℓ

ij ζℓ ≥ 0 can be expressed as follows:

ξ̂wℓ
ij ≤ ζ |F̂|f̃wℓ

ij , ℓ ∈ L, {i, j} ∈ E,w ∈ W (4.28)

ζℓ − ζ |F̂|(1− f̃wℓ
ij ) ≤ ξ̂wℓ

ij , ℓ ∈ L, {i, j} ∈ E,w ∈ W (4.29)

ξ̂wℓ
ij ≤ ζℓ, ℓ ∈ L, {i, j} ∈ E,w ∈ W. (4.30)
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4.3. The heuristic. Adaptive large neighborhood search

heuristic

Due to the NP-hard character of our problem, a powerful heuristic is required for

solving instances of realistic size. Local Search heuristics are often applied for solving

problems related to the rapid transit network design (see Section 4.1.1). This kind of

heuristic builds a neighborhood by means of movements based on small changes of the

current solution. A major drawback of these algorithms is the difficulty of exploring new

promising search spaces. As a consequence, the solution can became a local optimal. For

solving the problem described in previous section, we propose a new method based on the

Adaptive Large Neighborhood Search Heuristic (ALNS). This heuristic was introduced by

Ropke and Pisinger (2006). It is considered into the category of large scale neighborhood

search defined in Ahuja et al. (2002) but only examines a relatively low number of solu-

tions. The ALNS concept extends the large neighborhood search heuristic of Shaw (1997).

The main difference between Ropke and Pisinger (2006) and Shaw (1997) is regarding to

the probability of choosing each operator. Coelho et al. (2012) propose not to use the

traditional destroy and repair but only to apply one operator at each iteration. In our

ALNS, we define several destroy and repair operators which are independently applied

as in Coelho et al. (2012). From these operators, we describe operators composed of one

destroy and one repair method.

In this section we describe an Adaptive Large Neighborhood Search Heuristic (ALNS)

for the rapid transit network design problem defined in Section 4.2. To this end, we assume

a RTL is defined by a set of stations, a set of arcs linking these stations and a set of lines.

Each line is characterized by two different terminal stations (initial and final stations), the

intermediate stops, the frequency and the capacity of each train (number of carriages).

The key ideas of our ALNS algorithm are the following. Initially, the RTL is formed by

a set of lines randomly defined (see Section 4.3.1). At each iteration, a line is randomly

modified by means of an operator. An operator is a heuristic method that modifies a

candidate solution, in our case, modifies a line from a RTL. As mentioned, the operators

are classified into two classes: destructor and repair methods. In our algorithm, there are

two types of operators for each class and two types of destroy-repair operators combining

both classes. The repair methods consist of inserting new lines or extending existing

lines, whereas the destroy operators consist of removing partial or totally an existing line

in the current RTL. The destroy-repair operators are defined as a combination of destroy

and repair operators: one destroy-repair operator consists of eliminating an existing line
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and then, inserting a new line at the same iteration, whereas the other one, consists

of removing partially a line and then, extending a line randomly selected, at the same

iteration. The lines are randomly selected and the operators are chosen with a certain

probability. The probability of selecting a determined operator depends on its efficiency

in the past iterations. Thus, at each iteration, an operator is randomly selected with a

certain probability and the current solution is modified. The goodness of the solution is

evaluated by the HLSA heuristic defined in Chapter 3. Given a line network, this heuristic

solves the problem of maximizing the profit of a line plan by selecting the frequency and

the train size of each line, assuming that all passengers willing to travel in the RTS can

be transported. We consider the uncapacitated version of this problem. The reason for

assuming an unlimited number of possible carriages is to yield a non-congested network.

The following figure shows a flow chart for our ALNS algorithm.

Initial

solution

Apply an

operator

on a line

RTL

evaluation

HLSA

(Chapter 3)

Acceptance

Criterion

Figure 4.3.: Flow chart for our ALNS algorithm.

If the current solution is better than the previous solution, the search continues from

this new solution and the probability of applying this operator is increased. Otherwise,

this solution is accepted according to an acceptance criterion such as simulated annealing

(SA). In the following, we will describe the main components of our ALNS heuristic.
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1. Large neighborhood

At each iteration, the current network is modified by means of an operator previously

selected. If this operator is a repair method, data on the given underlying network

are required. Specifically, the repair operator randomly selects two nodes belonging

to the underlying network and computes the shortest path between these nodes.

This path defines a new line in the current RTS (or extends an existing line), if

several requirements are satisfied. If the selected operator is a destroy method, a

line of the current solution is randomly selected and it is partial or totally eliminated.

We define two possible destroy-repair method: one method removes randomly a line

and then it adds a new line in the RTL, whereas the other one, removes partially a

line and then it extend a line randomly selected.

Thus, two RTS, GRTS and GRTS′ are neighbor if they have at most two different

lines. It can be observed that the number of nodes and edges in the underlying

network determine the size of the neighborhood.

2. Adaptive search engine

The operators are selected according to a probability function. Each operator i has

associated a weight ω̂i which gives a measure of how well the operator has performed

recently. Concretely, if there exists h operators with weights ω̂j , j = 1, . . . , h, the

probability of selecting the operator m is ω̂m/

h∑

j=1

ω̂j.

3. Adaptive weight adjustment

In this section we describe how the weights ω̂j are adjusted at each iteration. Let

ϕ be the number of iterations considered in the implementation. For each block of

s iterations (s ≤ ϕ) the operator’s behavior is observed. More precisely, ϕ can be

defined as a multiple of s, that is, ϕ = s · k, k ∈ N. Therefore, the algorithm will

observe k times the performance of the operators. At the beginning, all weights are

fixed to one, that is, ω̂i = 1, i = 1, . . . , h. After carrying out the first s-iterations,

the weights are modified according to another parameters called scores. These last

parameters show the performance of the operators during the s-iterations. At the

beginning of each block of s-iterations, all scores are equal to zero. Once the RTL is

evaluated by the HLSA, the score associated with the operator applied is taken into

account. If the new network is improved or accepted by the considered acceptance

criterion, the score is increased by means of three parameters σ1, σ2 and σ3 as follows.
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If this solution is better than the best global solution, its score is increased by σ1; if

it is better than the incumbent solution, its score is increased by σ2, and if it is not

better than the incumbent solution but is accepted, its score is increased by σ3. The

better the solution is, the higher the score is, that is σ1 ≥ σ2 ≥ σ3. Another needed

parameter to describe the weight ω̂i is oi. This parameter controls the number of

times that operator i is used in the incumbent s-iterations. Let πi be the score of

the operator i and let νi ≥ 1 be a factor representing the computational effort that

it requires as in Coelho et al. (2012). So, the weights are updated as follows:

ω̂i :=

{
ω̂i if oi = 0

(1−̟)ω̂i +̟πi/νioi if oi 6= 0

where̟ ∈ [0, 1] is a parameter called the reaction factor, controlling how quickly the

weight adjustment algorithm reacts to changes in the effectiveness of the operator.

4. Objective function

The objective function zNET (GRTS) considered in our algorithm is the net profit de-

fined Chapter 2, which takes into account aspects related to construction, operation

and personnel costs.

5. Acceptance and stopping criteria

The acceptance criterion used in the ALNS is the same as in Simulated Annealing

(SA). Two parameters are needed: the current temperature τ > 0 and the cooling

rate 0 < φ̃ < 1. The temperature starts with τstart and at determined iterations,

it is cooled by the cooling rate φ̃ (τ = τstart · φ̃). The parameter τstart may be

set by inspecting the initial solution. In Ropke and Pisinger (2006) τstart is set in

the way that a solution 5% worse than the initial solution has 50% probability

of being accepted. Given the current solution GRTS , we accept a new neighbor

solution G′
RTS with probability exp{(zNET (G

′
RTS)− zNET (GRTS))/τ}. Obviously, if

zNET (G
′
RTS) > zNET (GRTS), the new solution is accepted. In our algorithm, if the

difference between zNET (G
′
RTS)− zNET (GRTS) is less than ς̄% of zNET (GRTS), the

acceptance probability is 0.5, i.e., exp{(zNET (G
′
RTS) − zNET (GRTS))/τstart} = 0.5

or, equivalently, τstart = (zNET (G
′
RTS)− zNET (GRTS))/ ln(0.5). This parameter ς̄ is

adjusted by controller.

At the traditional Simulated Annealing, the temperature is cooled with the cooling

rate at each iteration. At this case, next lemma shows how the maximum number
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of iterations can be adjusted.

Lemma 4.1 If the parameter τ is adjusted at each iteration, the maximum number

of iterations maxiter can be calculated as maxiter = log(τfinal/τstart)/ log(φ̃), where

τfinal is the final temperature.

Proof.-

It can be observed that if τ is multiplied by φ̃ at each iteration, τfinal = τstart · φ̃iter,

where iter represents the number of times that τ is cooled (which is the same

than the number of iterations) until that τfinal is reached. Therefore, maxiter =

log(τfinal/τstart)/ log(φ̃).

With respect to the stopping criteria, we stop when a certain number of iterations have

been performed, the final temperature τfinal is reached or when the running time exceeds

a user-controlled threshold.

4.3.1. Initial solution

We have defined a set of initial solutions formed by a set of lines each of them. By

means of the HLSA, the algorithm computes the profit and consequently, the number of

carriages, frequencies and costs. Our experiments have shown that the initial solution

does not influence on the solution of our problem.

4.3.2. Operators

In the following, we describe all operators used in our algorithm.

Insert-line operator

Independently of the number of iterations carried out by the algorithm, this operator is

defined as follows. First, two nodes are randomly selected from the underlying network.

These nodes will represent the terminal stations for the new line. Second, the shortest path

connecting these stations is defined according to the connection given by the underlying

network. This path defines the itinerary of the new line if it respects the lower and upper

bound on the number of nodes of a line. Otherwise, two different nodes are selected

and the procedure above defined is repeated. The itinerary also defines the costs related

to the infrastructure construction and the fixed operating costs. As commented, the
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construction cost of a line depends on its stations and its connections (edges). If an edge

(resp. a station) is already considered by another line, its cost does not compute in the

line cost. A line is not inserted if:

• There exists an edge in the itinerary that it does not satisfies Constraint (2.22).

• Its itinerary is contained in another existing line in the RTS.

• The itinerary of an existing line is contained in the new line.

• It is not connected with the existing lines.

• The construction cost is reached.

Extend-line operator

This method randomly selects a line ℓ to be extended. A line can be extended at the

beginning or at the end of its itinerary. The extend-line operator randomly selects the

place for extending the line. Once the line as well as the place have been selected, a node

(not belonging to the selected line) of the underlying network is chosen. The shortest

path between this node and the terminal station of line is computed. The itinerary of ℓ is

extended according to the obtained path. The upper bound on the new number of nodes

of ℓ is examined. The construction cost associated to ℓ is computed, if it is extended. A

line is not extended if:

• It reaches the maximum number of nodes permitted.

• There exists an edge in the itinerary that it does not satisfies Constraint (2.22).

Remove-line operator

The remove-line operator randomly selects a line in the current RTS in order to be

eliminated. Under determined conditions this operator is not applied. Concretely, if the

network becomes a disconnected network, this operator is not considered. If finally the

line is eliminated, aspects related to the infrastructure network and the costs have to be

updated.

Remove-part-line operator

Remove-part-line operator randomly chooses a line to be partially eliminated. Similar

to Extend-line operator, a line ℓ is partially removed at the beginning or at the end of its
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itinerary. To this end, a node of ℓ is randomly considered. The corresponding subpath

between this node and the terminal selected station is eliminated from the itinerary of ℓ.

The lower bound on the number of nodes of ℓ is checked. The construction cost associated

to ℓ is computed, if it is partially removed. A line is not partially removed if its itinerary

is contained in an existing line or the network becomes a disconnected network.

Remove-part-line and Extend-line operator

The idea of this operator is to apply remove-part-line and extend-part-line operators

at the same iteration. Note that extend-part-line has sense if remove-part-line can be

applied. Another observation is that both operators work in an independent way, that is,

the selected lines can be different for each operator. The motivation for this method is to

allow solutions that are discarded when these operators are independently applied.

Remove-line and Insert-line operator

First, this method removes a line by means of remove-line operator and then a new line

is added using the insert-line operator, if it is possible. Basically, this method changes a

line by another line.

Parameters setting and ALNS algorithm

In this section we show the pseudocode for the initial solution (see Algorithm 14) of

ALNS as well as the ALN heuristic (Algorithm 15).

4.4. Computational results

In this section we presente some computational experiments for the mathematical pro-

gramming model as well as experiments for our ALNS heuristic. We have considered some

techniques described in Section 4.2.4 for improving the efficiency of the model and, con-

sequently, the algorithm. Concretely, we have defined the logit function as the piecewise

linear function (see Section 4.2.4) and the capacity constraint linearization. However, our

problem has more non-linearities and a nonlinear programming problem (NLP) solver is

needed.

Our ALNS algorithm was coded in JAVA using a standard computer. To evaluate the

performance of the algorithm, we have tested several types of networks: small networks
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Data: A underlying network GE = G(N,E), data related to costs and distances,
the expected number of passenger for each OD pair, a set of possible
headway and a minimum number of carriages δmin.

Initialization phase

Given an initial network GRTS;
Compute the profit zNET (GRTS) with the HLSA heuristic;
zcurr = zNET (GRTS);
Gcurr := GRTS;
Gbest := Gcurr;
zbest = zNET (Gbest);
All weights ω̂i are set to 1 and all scores πi and oi to 0, i = 1, . . . , 6;
The parameter controlling the time, time = 0;
Let niter := 0 be the number of iterations;
Let adjusted := false be a parameter indicating that τstart is not adjusted.;
Result: The initial RTS, its corresponding profit and the needed parameters to

start the ALNS.

Algorithm 14: Pseudocode for the initial phase in the ALNS.

with 7 nodes and 12 edges and a medium sized network with 100 nodes and 275 edges. We

have compared our ALNS algorithm for the small networks against the optimal solutions

obtained in the mathematical model described in Section 4.2.

A set of possible initial solutions formed by one or two lines have been considered in

our ALNS. We have executed the algorithm three times for each initial solution. So, each

instance has been tested twelve times. The results show that the ALNS obtains good

solutions independently of the considered initial solution. We report the best solution for

each test as well as average statistics for these tests in Tables 4.8 and 4.9.

A total of 72 experiments were carried out with small networks. We have compared

our heuristic algorithm against the optimal solution obtained with the mathematical pro-

gramming described in Section 4.2. The comparison of these results are presented in Table

4.10. In this table, we show average and the best solution provided by the ALNS. It can

be observed that our algorithm was able to provide and to improve the optimal solutions

for most tests, in a very small CPU. Indeed, the best solution is better than the optimal

solution at all cases.

Finally, we also performed several experiments for a network of medium size. Our

ALNS provided high quality solutions within reasonable computing times. It is expected

that the ALNS can be powerful tool to be applied to real networks. Table 4.13 collected

data related to the best solutions obtained using the ALNS and Figure 4.9 represents the

best profit for each instance at each time instant.
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Following sections are devoted to describe the instance generation as well as experiments

on the small and medium networks.

4.4.1. Instance generation

Now, we describe the generation procedure for the instances. The small network was

randomly defined by selecting 7 nodes from a grid with 16 nodes whereas the medium size

network with 100 nodes was randomly selected from a grid with 225 nodes. Once the set

of nodes is set, we define the edge set taking into account the Voronoi diagram in order

to avoid crossings.

The following figure shows the underlying network with 7 nodes and 12 edges.

2 5

7

64

3 1

Figure 4.4.: Network with 7 nodes and 12 edges.

Figure 4.5 depicts the underlaying network with 100 nodes and 275 edges.

The distance associated to each arc is defined by means of the Euclidean distance. For

the experiments, the travel times ualtw by the alternative mode, were obtained by means

of the Euclidean distance and the speed of 20 km/h, whereas, the travel times into the

RTS were obtained according to in-vehicle travel time, waiting and transfer times. The

waiting time was supposed to be half of the corresponding time between services of lines

at the origin station, whereas, the transfer time was assumed to be half time between two

consecutive services at the line to transfer.

The passenger demand gw is generated as a naturel random number following a discrete

uniform distribution in an interval, which is different for each instance. So, for seed 1

with ten OD pairs, the interval is [450, 1350] whereas for seed 2 with ten OD pairs is

[600, 1800]. According to these intervals, a total of 9127 passengers was generated for

seed1, 9750 for seed2. These values are provided in Table 4.2.
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Figure 4.5.: Underlying network with 100 nodes and 275 edges.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

OD (1,3) (2,4) (3,5) (3,1) (2,1) (5,4) (2,7) (2,6) (5,6) (1,7)

seed1 gw 691 523 1326 553 1237 1050 1131 1321 629 666

ualtw 9.33 6.64 10.78 9.33 11.19 7.87 6.87 7.05 6.85 5.18

seed2 gw 1035 695 811 1107 1598 904 915 640 964 1081

ualtw 9.32 6.64 11.2 9.32 10.74 8.49 6.11 6.51 7.57 6.2

Table 4.2.: Demand and alternative travel time data for each OD pairs.

Similarly, the values of gw for network with 7 nodes and 42 OD pairs were obtained

according to the interval [150, 450] as shows the matrices (4.31) and (4.32), for seed1 and

seed2, respectively. A total of 12623 trips for the seed1 and 11442 for seed2 were generated.

The passenger demand for the network with 100 nodes was randomly generated according

to the interval [1, 85]. A total of 416498 trips were generated.

gw =




0 219 230 178 182 189 222

412 0 421 174 281 440 377

184 368 0 224 442 159 323

429 258 305 0 363 374 361

374 447 206 350 0 210 216

431 395 170 392 352 0 289

323 228 400 177 201 347 0




(4.31)
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gw =




0 364 259 182 321 237 270

399 0 245 174 211 160 229

277 153 0 427 203 360 168

296 319 323 0 187 197 358

295 327 214 226 0 241 311

204 228 265 243 379 0 419

237 448 437 296 179 174 0




(4.32)

4.4.2. Parameters setting

In this section, we show the specific parameters for the ALNS heuristic and the input

data for solving the problem.

As mentioned, there exists several parameters stated by the user: the cooling rate φ̃,

the final temperature τfinal, the block ϕ̃ of iterations for observing the performance of

operators, the reaction factor ̟ and the parameters σi for increasing the scores. In our

implementation, the parameters related to the temperature φ̃ and τfinal were set to 0.9994

and 0.01, respectively. In order to consider a heterogeneous set of possible solutions for

networks with 7 nodes, the parameter τstart was set such that a solution 40% worse than

the initial solution has 50% probability of being accepted. This assumption is motivated

by the small set of possible solutions to be explored in a small network. For the medium

network, this parameter was set to 33. With respect to weights, νi was assumed to be

1 and ̟ equal to 0.7. The parameter σ1, σ2, σ3 for increasing the scores, were set to 10,

5 and 2, respectively. All these parameters were fixed independently of the size of the

instance. We have tested different combinations for the parametersMaxtime,Maxiter and

ϕ̃. Depending on the size of instance, these parameters can be different. The following

Table reports the different considered values for Maxtime, Maxiter and ϕ̃.

# OD pairs Maxtime(seg.) Maxiter ϕ̃

10 500 10000 75

42 1000 20000 150

9900 28800 1000 20

Table 4.3.: Maxtime, Maxiter and ϕ̃ in the ALNS.

For the network with 100 nodes and 9900 OD pairs, we have analyzed the parameters

during a tuning phase. In this analysis, we have observed that the main parameter in the
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stop criterion is the time. This fact is due to the needed time for each iteration (there are

many possible combinations of variables to be tested). Recall that the rest of parameters

are adjusted in the algorithm.

The data reported in the Table 4.4 are based on the specific train model Civia, usu-

ally used for regional railway passengers transportation in Spain by the National Spanish

Railways Service Operator (RENFE). One important characteristic of Civia trains is that

the number of carriages can be adapted to the demand. Each Civia train constains two

electric automotives (one at each end) and a variable number of passenger carriages. Each

automotive or carriage has a maximum capacity of 200 passengers. In our experimen-

tation, we will assume that the train is composed by only one electric locomotive (for

traction purposes and null capacity) and several passengers carriages (which cannot move

without a locomotive) as in Cordeau et al. (2000) and Alfieri et al. (2006). The purchase

price of rolling stock used in this experimentation is also based on the real data of Civia

trains. The price of ticket and subvention considered in our experimentation, have been

taken from the newspaper (http://www.20minutos.es/noticia/2028399/0/madrid/empresas-

privadas/metro-ligero/).

4.4.3. Experiments on a small network

The RTS model proposed in Section 4.2 was solved using a local non-linear optimization

procedures. Concretely, we used the AlphaECP solver (see Westerlund and Lundqvist (2005))

which solves a sequence of mixed integer linear programming (MILP). This solver evaluates the

non-linear constraints at each MILP solution and it adds linearizations to the MILP problem if

a set of non-linear constraints do not hold. The performance of AlphaECP was compared with

the GAMS solvers, Baron, Dicopt and SBB (see Lastusilta et al. (2009)). The algorithm starts

from a given initial integer solution, which is depicted in Figure 4.6. Due to the non-linearities

presented in our model, this kind of procedures can yield near-optimal solutions. This fact is

reflected on the found optimal solutions (see Table 4.10). We provide in Table 4.5 the solutions

obtained using the mathematical model. In this table the first column shows the name of the

instance; the second presents the maximum number of lines; the third is the number of OD

pairs; the fourth is the fare plus the subsidy; the fifth column is the name of the solution; the

sixth is the CPU time and the last seventh columns show the profit and its corresponding costs.

In Table 4.6 the solutions obtained using the mathematical programming program is collected.

The first column is the name of the network; the second column represent the itinerary, followed

by number of nodes, number edges, headway and number of carriages.
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Figure 4.6.: Initial solution for the mathematical program.

Results (Mathematical programming program)

solution lines itinerary |N | |E| ζℓ δℓ

r1 ℓ1 [1, 3, 6, 5, 2, 4] 6 5 4 1

ℓ2 [1, 7, 5, 2] 4 3 4 1

r2 ℓ1 [1, 7, 5, 2, 4, 6] 6 5 4 1

ℓ2 [1, 3, 6, 5] 4 3 4 1

r3 ℓ1 [1, 7, 5, 2, 6, 4 ] 6 5 4 1

ℓ2 [1, 3, 6] 3 2 4 1

r4 ℓ1 [5, 7, 1, 6, 4] 5 4 3 1

ℓ2 [7, 6, 3, 4, 2, 5] 6 5 3 1

r5 ℓ1 [1, 7, 5, 2, 6, 4 ] 6 5 3 1

ℓ2 [1, 3, 6] 3 2 3 1

Table 4.6.: Line configuration solutions with the mathematical program.

Now, we show the solutions obtained using the ALNS algorithm. In our experimentations,

we have considered four different line configurations for the initial solution of our algorithm.

The initial solutions are collected in Table 4.7. We have tested three times the algorithm for

each initial solution and instance. So, each instance is tested twelve times. Average solutions

for small networks as well as the best solution for each test are shown in Tables 4.8 and 4.9.

Initial solutions for the ALNS

solution lines itinerary |N | |E|

sol1 ℓ1 [1, 7, 5, 2, 4] 6 5

ℓ2 [5, 6, 3] 4 3

sol2 ℓ1 [1, 7, 5, 2, 4] 6 5

ℓ2 [1, 3, 6, 5, 2] 5 4

sol3 ℓ1 [1, 3, 4, 2] 4 3

ℓ2 [6, 2, 5, 7] 4 3

sol4 ℓ1 [1, 7, 5, 2, 4] 5 4

Table 4.7.: Initial solutions for the ALNS.
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Results for network with 7 nodes and 10 OD pairs

instance seed 1 with 2 lines seed 1 with 3 lines seed 2 with 2 lines seed 2 with 3 lines

test CPU time (seg.) ♯ best zNET CPU time (seg.) ♯ best zNET CPU time (seg.) ♯ best zNET CPU time (seg.) zNET

test1 133,226 7,8163E+08 2,2077E+01 7,8163E+08 2,8462E+01 1,1322E+09 4,9654E+02 1,0853E+09

Initial solution 1 test2 38,35 7,8163E+08 2,7942E+01 7,8163E+08 5,4330E+00 9,9973E+08 4,3360E+00 9,9973E+08

test3 22,218 7,8163E+08 2,2218E+01 7,8163E+08 1,1140E+00 9,9973E+08 3,0882E+02 1,1322E+09

test4 43,472 7,8163E+08 4,3472E+01 7,8163E+08 5,7143E+01 1,1322E+09 3,8631E+01 9,9973E+08

Initial solution 2 test5 357,691 7,8163E+08 1,1462E+01 7,8163E+08 2,5349E+01 1,1322E+09 3,4124E+02 1,1219E+09

test6 32,105 7,8163E+08 1,4282E+01 7,8163E+08 6,4691E+01 1,1322E+09 7,1153E+01 1,1322E+09

test7 94,855 7,8163E+08 5,6969E+01 7,8163E+08 6,0629E+01 9,9973E+08 5,1324E+01 1,0853E+09

Initial Solution 3 test8 167,188 7,8163E+08 1,6719E+02 7,8163E+08 2,7180E+00 9,9973E+08 9,4430E+00 9,9973E+08

test9 66,713 7,8163E+08 2,9627E+01 7,8163E+08 1,6063E+01 9,9973E+08 2,1230E+00 1,1322E+09

test10 29,055 7,8163E+08 2,7621E+01 7,8163E+08 1,5010E+00 9,9973E+08 1,6860E+00 9,9973E+08

Initial Solution 4 test11 81,234 7,8163E+08 9,5964E+01 8,1924E+08 7,5670E+00 9,9973E+08 3,0788E+01 1,0853E+09

test12 79,371 7,8038E+08 7,9371E+01 7,8038E+08 3,8700E-01 9,9973E+08 1,5965E+01 9,9973E+08

average 95,4565 7,8153E+08 4,9849E+01 7,8466E+08 2,2588E+01 1,0439E+09 1,1434E+02 1,0644E+09

Table 4.8.: Testing the ALNS with different initial solutions for small network with 10

OD pairs.

Results for network with 7 nodes and 42 OD pairs

instance seed 1 with 2 lines seed 2 with 2 lines

test CPU time (seg.) ♯ best zNET CPU time (seg.) ♯ best zNET

test1 5,20 1,0437E+09 10,35 8,5329E+08

Initial solution 1 test2 71,07 1,0437E+09 2,91 7,7826E+08

test3 38,19 1,0437E+09 20,74 8,5329E+08

test4 0,99 8,7765E+08 73,50 8,4601E+08

Initial solution 2 test5 3,42 8,7765E+08 7,58 8,4601E+08

test6 154,92 1,0437E+09 1,94 7,7826E+08

test7 28,00 1,0437E+09 18,126 8,53E+08

Initial Solution 3 test8 1,26 1,0437E+09 19,583 8,53E+08

test9 12,33 1,0437E+09 70,438 8,53E+08

test10 64,70 1,0437E+09 134,20 8,5329E+08

Initial Solution 4 test11 61,94 1,0437E+09 1,12 8,4449E+08

test12 64,14 1,0437E+09 46,50 8,5329E+08

average 42,18 1,0160E+09 33,92 8,3884E+08

Table 4.9.: Testing the ALNS with different initial solutions for small network with 42

OD pairs.

Figure 4.7 represents the different solutions provided by the ALNS for each instance at each

time instant. Specifically, the horizontal axis represents the time instant whereas the vertical axis

expresses the profit for each case. The horizontal axis start from 0, denoting the corresponding

profit for the initial solution, to maximum time employed at each case. It can be observed that,

independently of the start point, the behavior of each curve is the same.
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(a) Seed 1, 2 lines and 10 pairs (b) Seed 1, 3 lines and 10 pairs

(c) Seed 2, 2 lines and 10 pairs (d) Seed 2, 3 lines and 10 pairs

(e) Seed 1, 2 lines and 42 pairs (f) Seed 2, 2 lines and 42 pairs

Figure 4.7.: Solutions ALNS for network with 7 nodes, 12 edges and 10 OD pairs.170



4.4. Computational results

We report in Table 4.10 a comparison between the optimal solutions as well as the best and

the average solutions according to the ALNS heuristic. In this table the first column shows

the name of the instance; the second presents the number of OD pairs; the third column is the

maximum number of lines; the fourth and fifth column reports the profit and the CPU time for

the optimal solution, respectively. The last six columns collect the profit, CPU time and gap

for the average and best solution provided by the ALNS, respectively. It can be observed that

our heuristic algorithm was able to improve the optimal solutions at all cases (see best solution

columns) in a very small CPU time. The average results shows that the results provided by the

ALNS are quite satisfactory. It can be note that the solution provided by ALNS were slightly

worse than the exact solutions at two cases with a percent relative gaps lower than 0.07%, and

ALNS took a very small time to obtain the solutions.

Detailed information on the best solution provided by the ALNS is reported in Tables 4.11

and 4.12.

Comparing ALNS and exact

Optimum ALNS (average) ALNS (best)

instance |W | Lmax zNET CPU time (seg.) zNET CPU time (seg.) gap (%) zNET CPU time (seg.) gap (%)

seed1 10 2 770099589.12 58.51 7,8153E+08 95.4565 -0.0186 7.8163E8 22,218 -0,0149

seed1 10 3 770099589,12 255.31 7.8467E+08 49.85 -0.0186 8,1924E+08 95,964 -0,0638

seed2 10 2 1,1204E+9 414.69 1,0439E+09 22.59 0.0683 1,1322E+09 25,349 -0,0105

seed2 10 3 1,1147E+9 1293.05 1,0644E+09 114.34 0.0451 1,1321E+09 2,123 -0,0156

seed1 42 2 921503794.43 48576.15 1,0160E+09 42,18 -0,1025 1,0437E+09 1,26 -0,1326

seed2 42 2 770150742.20 80004.69 8,3884E+08 33,92 -0,0891 8,5329E+08 10,35 -0,108

Table 4.10.: Comparing the ALNS and the optimal solution provided using the mathe-

matical model.

Best results of ALNS

timemax(seg.) |W | µ+ η Lmax instance solution zNET zREV zCC + zFOC zFAC zRSOC zCrOC

500 10 5 2 seed1 R1 7.8163E8 2.589E9 2.9058E8 3.2703E7 1.4408E9 4.3284E7

500 10 5 3 seed1 R2 8.1923E8 2.9546E9 3.5651E8 3.8354E7 1.6898E9 5.0763E7

500 10 5 2 seed2 R3 1.1321E9 3.3728E9 3.6009E8 4.0546E7 1.7863E9 5.3664E7

500 10 5 3 seed2 R3 1.1321E9 3.3728E9 3.6009E8 4.0546E7 1.7863E9 5.3664E7

1000 42 5 2 seed1 R4 1.0437E9 3.106E9 3.135E8 3.770E7 1.6611E9 4.9902E7

1000 42 5 2 seed2 R5 8.5329E8 2.8625E9 3.0722E8 3.6697E7 1.6168E9 4.857E7

Table 4.11.: Best solutions provided from the ALNS algorithm.
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Results ALNS

solution lines itinerary |N | |E| ζℓ δℓ

R1 ℓ1 [3, 6, 5, 2, 4] 5 4 5 1

ℓ2 [2, 5, 7, 1] 4 3 4 1

R2 ℓ1 [3, 6, 5, 2, 4] 5 4 5 1

ℓ2 [2, 5, 7, 1, 3] 4 3 5 1

R3 ℓ1 [1, 7, 5, 2, 4] 5 4 4 1

ℓ2 [1, 3, 6, 5] 4 3 5 1

R4 ℓ1 [3, 6, 2, 5, 7, 1] 6 5 4 1

ℓ2 [7, 6, 4] 3 2 4 1

R5 ℓ1 [4, 6, 2, 5, 7, 1] 6 5 4 1

ℓ2 [7, 6, 3] 3 2 4 1

Table 4.12.: Best solution ALNS.

4.4.4. Experiments on a medium network

Due to the size of the network with 100 nodes, 275 edges and 9900 OD pairs, we allow the

ALNS to iterate as times as needed in order to obtain good solutions. To this end, this network

need much more time than the small networks. So, the maximum time is set to 28800 seconds (8

hours). We have tested the ALNS starting with two different initial solutions showed in Figure

4.8.

(a) Initial solution 1 (b) Initial solution 2

Figure 4.8.: Initial solutions considered in the experiments.

From these initial solutions, the ALNS provided two different configurations of lines with

different profits. Detailed information on these solutions are collected in Table 4.13. In this

table, first fourth columns represent the maximum time set in the ALNS, the number of OD

pairs, the fare including subsidies and the maximum number of lines. The fifth columns denotes

the name of each solution; the sixth column is the net profit; the seventh is the revenue; the
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octave column describes the construction cost plus the fixed operating cost; the ninth is the

rolling stock operating cost and the last columns represent the crew operating cost.

Best results of ALNS

timemax(seg.) |W | µ+ η Lmax solution zNET zREV zCC + zFOC zFAC zRSOC zCrOC

12849,57 9900 5 2 N1 9,7155E+09 2.5827E10 1.9135E9 3.4166E8 1.3465E10 3.9182E8

13460,25 9900 5 2 N2 1,0597E+10 2.9798E10 2.6056E9 4.0789E8 1.5732E10 4.5475E8

Table 4.13.: Best solutions provided from the ALNS algorithm.

Figure 4.9 represents the different solutions obtained using the ALNS for each instance at

each time instant. Similar to Figure 4.7, the horizontal axis represents the time instant whereas

the vertical axis expresses the profit for each initial network. The horizontal axis start from 0,

denoting the corresponding profit for the initial solution, to maximum time employed at each

case.

Figure 4.9.: Solutions ALNS.

It can be observed that the ALNS produces high quality solutions within a reasonable com-

puting times for a network of medium size. Figure 4.10 depicts the solutions provided by our

ALNS for the initial solution 1 and 2, respectively.
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(a) Solution N1

The headway and number of

carriages of each line are:

red line ζℓ = 4 and δℓ = 2

yellow line ζℓ = 3 and δℓ = 2

pink line ζℓ = 4 and δℓ = 2

light blue line ζℓ = 4 and δℓ = 1

blue line ζℓ = 3 and δℓ = 1.

(b) Solution N2

The headway and number of

carriages of each line are:

red line ζℓ = 3 and δℓ = 2

green line ζℓ = 5 and δℓ = 2

yellow line ζℓ = 4 and δℓ = 1

pink line ζℓ = 4 and δℓ = 2

blue line ζℓ = 4 and δℓ = 1

orange line ζℓ = 4 and δℓ = 1.

Figure 4.10.: Solutions N1 and N2 provided by our ALNS.

4.5. Conclusions

In this chapter we have reviewed the existing literature on algorithms and resolutions method

for the rapid transit network design problem. The main contributions of this chapter are the

introduction of a mathematical programming program as well as the development of a powerful

ALNS heuristic to solve real instances which integrates the algorithm described in Chapter 3.

Concretely, we have also developed an algorithm composed of two heuristics. The first one is a

global search heuristic called ALNS which constructs line networks by means of several methods

which insert, remove, cut or extend lines of incumbent networks. The goodness of this solution

is provided by the second heuristic HLSA, defined in Chapter 3, which solves the frequency

and capacity setting problem. We have performed computational experiments on small and
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medium networks. Comparative tests on a large set of tests have shown that our heuristic can

provide high quality solutions within reasonable computing times. Our ALNS is expected to be

a powerful heuristic to solve real instances.
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Data: The initial solution, a underlying network GE = G(N,E), data related to costs and distances, the expected
number of passenger for each pair, a set of possible headway and a minimum number of carriages δmin.
Data related to the ALNS algorithm such as τfinal, time, Maxtime, ω̂h, σi, ζ̃ and Maxiter .

while τ > τfinal & time < Maxtime & niter < Maxiter do

niter := niter + 1;
G′

RTS := Gcurr;
Select an operator h according to ω̂h, h = 1, . . . , 6;
while the selected operator cannot be applied do

Select an operator h according to ω̂h, h = 1, . . . , 6;
Attempts to apply the operator h;

end

G′
RTS is the new RTS;

Compute z′ := zNET (G′
RTS ) by using HLSA;

Update the number of times the operator is used oh := oh + 1;
if adjusted = false & z′ < zcurr then

if zcurr − z′ is less than ζ̃% of zcurr then

τstart = (zNET (G′
RTS)− zNET (GRTS ))/ ln(0.5);

adjusted = true;

end

end

if z′ > zcurr then

Gcurr := G′
RTS ;

zcurr := z′;
if z′ > zbest then

Gbest := G′
RTS ;

zbest := z′;
Update the score: πh = πh + σ1;

else

Update the score: πh = πh + σ2;
end

else

if G′
RTS is accepted by the SA criterion then

Gcurr := G′
RTS ;

zcurr := z′;
Update the score: πh = πh + σ3;

end

end

if niter is multiple of s then

Update the weights of all operators and reset their scores;
end

if time > Maxtime/3 & niter < Maxiter/3 then

φ̃ := (τfinal/τ)
1/(2·niter );

end

if time > Maxtime/2 & niter < Maxiter/2 then

φ̃ := (τfinal/τ)
1/(niter/2);

end

if z′ < zcurr & adjusted = true then

τ := τ · φ̃;
end

end

Result: The infrastructure network, set of lines (itinerary, frequency, number of carriages) and profit.

Algorithm 15: Pseudocode for the ALNS heuristic.
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Parameters

Name Description Value

ρ̂ years to recover the purchase 20
ρ number of operative hours per year 6935

ORCij operating rail cost measured in e per year 6 · 104

OSCi operating station cost expressed in e per year 6 · 104

ci building cost of station at node i [e] 106

cij building cost of link (i,j) [e] 206 · dij
cloc costs for operating one locomotive per kilometer [e/km] 34
ccarr operating cost of a carriage per kilometer [e/km] 2
ccrew per crew and year for each train [e/ year] 75 · 103

Iloc purchase cost of one locomotive in e 2.5 · 106

Icarr purchase cost of one carriage in e 0.9 · 106

Θ capacity of each carriage (number of passengers) 2 · 102

λ average commercial speed in [km /h] 30
γ maximum number of lines traversing an edge 3

Nmin lower bound on the number of nodes of each line 3
Nmax upper bound on the number of nodes of each line 6
ζmin minimum headway of each line (time between services in minutes) 3
ζmax maximum headway of each line (time between services in minutes) 20
ζℓ possible values {3,4,5,6,10,12,15,20}

µ+ η fare plus subsidy 5
vALT speed in the alternative mode in [km /h] 20

Table 4.4.: Model parameters for RTNDP.

Results (Mathematical programming program)
Instance Lmax |W | µ+ η solution CPU time zNET zREV zCC zFOC zFAC zRSOC zCrOC

seed1 2 10 5 r1 58.51 770099589.12 3.3502961E+9 332374198.94 24142451.94 47943583.88 2.1122815E+9 63454743.37
seed1 3 10 5 r1 255.31 770099589.12 3.3502961E+9 332374198.94 24142451.94 47943583.88 2.1122815E+9 63454743.37
seed2 2 10 5 r2 414.69 1.1203818E+9 3.6951904E+9 349090487.88 25145429.27 47445382.94 2.0903319E+9 62795359.77
seed2 3 10 5 r3 1293.05 1.1147313E+9 3.2302753E+9 297746177.07 22064770.62 38716850.1 1.7057733E+9 51242889.84
seed1 2 42 5 r4 48576.15 921503794.43 4.3609082E+9 360416054.51 25824963.27 65827639.02 2.9002109E+9 87124816.35
seed2 2 42 5 r5 80004.69 770150742.20 3.3472504E+9 285906442.64 21354386.56 48938793.67 2.1561281E+9 64771932.79

Table 4.5.: Results for networks with 7 nodes and 12 edges.
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Chapter 5

Robust network design

5.1. Introduction

The design of a Rapid Transit System (RTS) is a primary objective in many cities. Due to

the high construction cost of a RTS, it is important to pay attention to the input data of the

problem, since that, unfortunately, when a RTS is built, it is very difficult to change it. Indeed,

in a realistic situation, several input data such as the origin-destination matrix, travel times by

the alternative mode, costs can be uncertain. There are many RTS in which the real total cost

is greater than the expected, as well as the demand estimations vary significantly after building

the network. So, the uncertainty in the input data must be taken into account when we treat

with real problems. This type of problem is addressed in the classic robustness problem. For

instance, Bertsimas and Sim (2003, 2004) present models of robust optimization and robustness

concepts that control the level of conservatism of the planner.

In this chapter we are interested in obtaining feasible solutions under uncertain circumstances.

Concretely, we will analyze several robustness concepts for the rapid transit network design

problem. For this purpose, we will focus on the infrastructure network design. The aim of this

problem is to select from an underlying network, a set of stations and arcs connecting them

such that the net profit would be maximized. In this case, since the operation of trains is not

included, the net profit is defined as the difference between the revenue and the construction

and fixed operating costs. Once this problem is raised, we will study the different approaches of

robustness that can be applied on such problem.

The remainder is organized as follows. In Section 5.2 we presente the problem as well as

the input data and variable needed to formulate the mathematical programming model. The
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Section 5.3 is devoted to introduce the uncertainty sets in our problem. Robustness respect to

several uncertainty set are presented in Sections 5.4 and 5.5. In Section 5.6 we treat with Light

robustness. We will end with some conclusions and further work.

5.2. A mathematical programming model

In this section we present our problem as well as a mathematical programming model. The

problem that we are dealing with consists of deciding where locating the stations and how connect

them, taking into account a competing mode and maximizing the net profit. The demand is

split according to travel times. We describe the infrastructure network by means of graphs,

where stations are nodes and links between stations are edges. The model uses the notation

introduced in Section 5.2.1 and the variables defined in Section 5.2.2.

5.2.1. Data and notation

The model uses the following data and notation.

• A set N = {1, . . . , n} of potential sites for locating stations.

• A set A ⊆ N ×N of potential arcs. Each arc between two potential stations i and j will

be represented by a = (i, j).

• Let E = {{i, j} : (i, j) ∈ A, i < j} be a set of feasible edges linking the elements of N

(potential rail stretches or sections).

• An undirected graph GE = G(N,E), which represents the underlying network (from which

sections and stations of lines are to be selected) and let m be the number of edges.

• For each node i, let N(i) = {j ∈ N : {i, j} ∈ E} denote the set of nodes adjacent to node

i.

• An undirected graph GE′ = G(N,E′), which represents the competing (private car, bus,

etc.) mode network (nodes are assumed to be coincident with those of the public mode:

they could represent origin or destination of the aggregated demands; however, edges are

possibly different).

• For each edge {i, j} ∈ E, dij = dji is the length of such link by the public system. This

parameter can be interpreted as travel time or generalized costs needed to traverse edge

{i, j}.

• A parameter uci representing the time spent between platforms at the station i.
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• Let W = {w1, . . . , w|W |} ⊆ N × N be a set of ordered origin-destination (OD) pairs,

w = (ws, wt) and r be the total number of OD pairs.

• Let (gw)w∈W be the origin-destination matrix in which gw be the expected number of trips

from ws to wt.

• ǫ > 0 is a small tolerance.

• M is a sufficiently large real number.

• A parameter η, expressing the fare paid by passenger to use the public transport, which

is the same for all passengers independently of the length of their trips is introduced.

• τ denoting the passenger subsidy.

• Let cij and ci denote the cost of building an edge {i, j} ∈ E and the cost of building a

node i, respectively.

• There exists an upper bound on the total construction of the RTS, denoted by Cmax.

• Let uALT
w is the travel time using the alternative transport of OD pair w.

• A parameter ρ representing the total number of hours that a train is operating per year

• ρ̂ denotes the horizon of years to recover the total building cost and the purchase cost of

rolling stock.

5.2.2. Variables

We introduce the following variables.

• pw = 1, if an OD pair w is allocated to the RTS, that is, if its fastest route in the public

transport takes less time than the alternative transport uALT
w , zero otherwise.

• yi = 1 if node i is selected to be a station in the RTS, zero otherwise.

• xij = 1 if edge {i, j} ∈ E is included in the RTS, zero otherwise.

• fwij = 1 if the OD pair w is assigned to the RTS and uses arc (i, j) ∈ A, zero otherwise.

5.2.3. Objective function

The objective function we consider is the net profit of the rapid transit network which is

defined in Chapter 2. As mentioned, this profit is expressed as the difference between revenue

and cost in terms of monetary units over a planning horizon. Recall that the total revenue is
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the monetary value of incomes obtained by means of the number of passengers who use the

RTS during the planning horizon, times the passenger fare plus the passenger subsidy, η + µ.

Concretely, the revenue is expressed as

zREV = (η + µ)ρρ̂
∑

w∈W

gwpw. (5.1)

In this chapter we will not consider costs related to the rolling stock operation, but only costs

associated to the infrastructure network which is being built. So, in cost terms, we will take

into account the operating zFOC and the construction zBC costs. Recall that in order to define

these costs, we need several parameters already defined: OSCi for each station i and ORCij for

each edge {i, j}. So, we define the net profit associated to the rapid transit network as

zNET = zREV − (zFOC + zBC),

or equivalently,

zNET = (η + µ)ρρ̂
∑

w∈W

gwpw −
∑

{i,j}∈E

ĉijxij +
∑

i∈N

ĉi · yi,

where, ĉij = cij + ρ̂ORCij and ĉi = ci + ρ̂OSCi.

5.2.4. Constraints

• Budget constraints

∑

{i,j}∈E

cijxij +
∑

i∈N

ciyi ≤ Cmax. (5.2)

• Design constraints

xij ≤ yi, i ∈ N, {i, j} ∈ E (5.3)

xij ≤ yj, i ∈ N, {i, j} ∈ E (5.4)

xij = xji, {i, j} ∈ E. (5.5)
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• Demand conservation constraints

∑

j∈N(ws)

fwwsj = pw, w = (ws, wt) ∈W (5.6)

∑

i∈N(wt)

fwiwt
= pw, w = (ws, wt) ∈W (5.7)

∑

i∈N(k)

fwik −
∑

j∈N(k)

fwkj = 0, w = (ws, wt) ∈W, k 6= {ws, wt}, k ∈ N. (5.8)

• Location-allocation constraints

fwij + pw − 1 ≤ xij , w ∈W, {i, j} ∈ E. (5.9)

• Splitting demand constraints

ǫ+
∑

{i,j}∈E

dijf
wℓ
ij − uALT

w −M(1− pw) ≤ 0, w ∈W. (5.10)

• Binary constraints

pw, yi, xij , f
w
ij ∈ {0, 1}, i ∈ N, {i, j} ∈ E,w ∈W. (5.11)

Constraint (5.2) imposes an upper bound on the total cost of the network. Constraints (5.3)

and (5.4) ensure that an edge is included in the RTS only if its incident nodes are also selected.

In order to allow edges in both directions, Constraints (5.5) are imposed. Flow conservation

for each OD pair is guaranteed by Constraints (5.6)–(5.8). In order to ensure that a demand

is assigned on an edge only if it is already built, we introduce Constraints (5.9). The modal

assignment is described by Constraints (5.10). The character of the variables are imposed in the

remaining constraints.

5.2.5. Problem reformulation

The mathematical model can be expressed as follows.

(P ) :

{
max zNET (x,D)

s.t. Υ(x,D)
(5.12)

• x ∈ R
n̄, n̄ = r + n+m+ rm is the decision vector describing all variables in our problem.

The first r−elements represent the variable pw, w ∈W , followed by n−entries describing

variables yi, i ∈ N , m−entries for the arcs xij, {i, j} ∈ E and (mr)− elements corre-
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sponding to flow variables fwij , {i, j} ∈ E, w ∈W . Therefore, we can describe the decision

vector as x = (pw, yi, xij , f
w
ij ) ∈ R

n̄, where w ∈W, i ∈ N, {i, j} ∈ E.

• D ∈ R
n̄ is the input data on the model which can be described as a vector where the

first r−elements describe gw(η+µ), followed by n−elements representing costs associated

to stations (construction and fixed operating costs), m−elements denoting the edge costs

and (rm)−entries equal to zero.

• zNET (x,D) is the objective function (the net profit). The objective function is defined

by means of two vectors: the decision vector x and a vector D defined from D. This last

vector is expressed as the vector D where the components related to costs have negative

signe. To fix ideas,

D
T = ((η + µ)gw1 , . . . , (η + µ)gwr ,−ĉ1, . . . ,−ĉn,−ĉe1 , . . . , ĉem , 0, . . . , 0) (5.13)

xT = (pw1 , . . . , pwr , y1, . . . , yn, xe1 , . . . , xem , f
w1
e1 , . . . , f

wr
e1 , . . . , f

w1
em , . . . , f

wr
em ),

where e1, . . . , em are the edges in E. So, the objective function can be expressed as

zNET (x,D) = DTx ∈ R.

• Υ(x,D) represents the set of feasible solutions for the problem (5.15), i.e., Υ(x,D) =

{x ∈ R
n̄ satifying constraints (5.2)–(5.11)}. It can be observed that Υ(x,D) describes

¯̄n = 1 + 2m(1 + n) + r(2 + n+ 2m) + n constraints.

This mathematical model can be reformulated in the way

(P ) :





max z

s.t. z ≤ zNET (x,D)

Υ(x,D).

(5.14)

5.3. Robustness in rapid transit network design

In this section we present the uncertainty model associated to our problem (5.15) as well

as the possible uncertainty sets that can be taken into account in our problem. We consider

the same type of optimization problems than Schöbel (2014). Concretely, this problem can be

formulated as follows

P (ξ) :





max zNET (x,D(ξ))

s.t. Υ(x,D(ξ))

x ∈ X

(5.15)
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where D(ξ) ∈ R
n̄ denotes the input parameters affected by uncertainty. We assume a given

uncertainty set U indicating the possible values that the uncertainty can take. So, the uncertain

problem corresponding to P (ξ) is

P (ξ), ξ ∈ U .

The underlying optimization problem is known robust counterpart associated to (5.15). The

formulation of the optimization problem is depending on the selection of the uncertainty set

U . Some works analyze the mathematical programming associated to several uncertainty sets.

The most common uncertainty sets in the literature (see Li et al. (2011a), Goerigk (2012), Ide

(2014)) are: Interval uncertainty set, Ellipsoidal uncertainty set, Finite uncertainty, Polyhedral

uncertainty set and uncertainty based on norms. We will concentrate on interval based uncer-

tainty. Therefore, the uncertainty set can be expressed as U = U1 × U2 × . . . × Un̄, where each

Ui is [ξ̃i − ξ̂i, ξ̃i + ξ̂i], ξ̃i is the nominal scenario and ξ̂i describes the maximum deviation from

the nominal scenario. Depending on the type of parameters that we do not know, the uncer-

tainty can affect to the objective function, constraints or both cases. Note that in real-world

applications, the uncertainty may appear, at the same time, in both constraint and objective

function.

Next section is devoted to discuss the different uncertainty sets that have sense in the rapid

transit network design. For each uncertain parameter we distinguish two possible situations: all

input are affected by the uncertainty or only some of them.

5.3.1. Possible uncertainty sets

The main input data in the network design are based on estimations or approximations, and

as a consequence, presents uncertainty. The most interesting types of uncertainty in our problem

are the demand, the alternative transport data and costs. In this chapter, we will concentrate

on the uncertain demand. Note that a network is built to satisfy the demand and the demand

estimation can be a bad approximation. We describe two types of uncertainty sets: one set

is defined considering that all entries are affected by uncertainty whereas in the other one the

uncertainty only affects a part of them.

First, we define the uncertainty set U1, in which the expected number of passengers gw for

each OD pair w is affected by uncertainty. Indeed, for each OD pair w, we assume that gw varies

in the interval [g̃w − ĝw, g̃w + ĝw] = [gmin
w , gmax

w ], where gmin
w , gmax

w ∈ N and ĝw is the deviation

from the nominal scenario g̃. The uncertainty set U1 is defined as

U1 = {g ∈ N
|W | : gmin ≤ g ≤ gmax},

where g is a vector whose components are the corresponding entries of gw, w ∈W . The second

set is defined under assumption of that only a subset of demand is affected by uncertainty. Let
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Γ ∈ {0, . . . , |W |} be a parameter denoting the number of entries affected by uncertainty and let

J be an index set that contains information about the variables subject to uncertainty (|J | ≤ Γ).

UΓ
1 = {g ∈ N

|W | : ∃J ⊆W, |J | ≤ Γ, where ∀s ∈ J, gmin
s ≤ gs ≤ gmax

s , gs = g̃s, s 6∈ J}.

It can be observed that both uncertainty sets U1 and UΓ
1 affect to the objective function but

not the constraints.

5.4. Robustness regarding uncertainty set U1

The robust counterpart of our problem (5.15) is

(RC) :





max inf
ξ∈U

zNET (x,D(ξ))

s.t. Υ(x,D(ξ)), ξ ∈ U
(5.16)

We now describe the robust counterpart associated to U1.

Using the formulation

(P ) :





max z

s.t. z ≤ zNET (x,D)

Υ(x,D)

the robust counterpart of our problem taking into account uncertain demand is

(RC1) :





max inf
g∈U1

z

(∗) s.t. z ≤ zNET (x,D(g))

Υ(x,D(g)), g ∈ U1

(5.17)

or equivalently

(RC(U1)) :





max inf
g∈U1

z

(∗) s.t. z ≤ zNET (x,D(g)), g ∈ U1

Υ(x,D)

(5.18)

since that the demand only appears in the constraint (∗).

Due to the fact that all entries of G are positives and pw ≥ 0, ∀w ∈W, the worst-case for the

inequality (∗) is obtained by considering the lower bound gmin of the uncertainty set U1.

Lemma 5.1 The strictly robust network design problem with uncertainty set U1 is equivalent to

the following problem:

(SR(U1)) :





max z

z − ηρρ̂
∑

w∈W

ηgmin
w · pw +

∑

i∈N

ciyi +
∑

{i,j}∈E

cijxij ≤ 0

(5.2)–(5.11)

186



5.4. Robustness regarding uncertainty set U1

Proof.- Let F be the set of feasible solutions for (RC(U1)), i.e.,

F = {(x, z) ∈ R
n̄+1 : z − ηρρ̂

∑

w∈W

ηgmin
w pw +

∑

i∈N

ciyi +
∑

{i,j}∈E

cijxij ≤ 0, (5.2)–(5.11)},

and let F ′ be the set of feasible solutions for (SR), i.e.,

F ′ = {(x, z) ∈ R
n̄+1 : z − ηρρ̂

∑

w∈W

gwpw +
∑

i∈N

ciyi +
∑

{i,j}∈E

cijxij ≤ 0, gw ∈ U1, (5.2)–(5.11)}.

⊆ Trivial.

⊇ Let (x, z) ∈ F ′ be, then, z +
∑

i∈N ciyi +
∑

{i,j}∈E cijxij ≤ ηρρ̂
∑

w∈W

gwpw, gw ∈ U1. On

the other hand, as gw ∈ U1, g
min
w ≤ gw ≤ gmax

w and pw ≥ 0, 0 ≤ ηρρ̂
∑

w∈W

gmin
w pw ≤

ηρρ̂
∑

w∈W

gwpw ≤ ηρρ̂
∑

w∈W

gmax
w pw.

Thus, 0 ≤ max{z +
∑

i∈N ciyi +
∑

{i,j}∈E cijxij, ηρρ̂
∑

w∈W

gmin
w pw} ≤ ηρρ̂

∑

w∈W

gwpw is a

finite value.

– If max{z +
∑

i∈N ciyi +
∑

{i,j}∈E cijxij , ηρρ̂
∑

w∈W

gmin
w pw} = ηρρ̂

∑

w∈W

gmin
w pw,

z +
∑

i∈N

ciyi +
∑

{i,j}∈E

cijxij − ηρρ̂
∑

w∈W

gmin
w pw ≤ 0, and, therefore (x, z) ∈ F .

– If max{z+
∑

i∈N ciyi+
∑

{i,j}∈E cijxij, ηρρ̂
∑

w∈W

gmin
w pw} = z+

∑

i∈N

ciyi+
∑

{i,j}∈E

cijxij ,

z +
∑

i∈N

ciyi +
∑

{i,j}∈E

cijxij − ηρρ̂
∑

w∈W

gmin
w pw > 0,which is a contradiction

with the constraint.
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5.5. Robustness regarding uncertainty set UΓ
1

Using the formulation (5.15) and taking into account that the data affected by perturbations

are the demands, the robust counterpart of our problem is

(RC(UΓ
1 )) :





max inf
g∈UΓ

1

zNET (x,D(g))

(∗) s.t. Υ(x,D)

g ∈ UΓ
1 .

The approach by Bertsimas and Sim Bertsimas and Sim (2004) can be reinterpreted as a Strict

robust in the sense of Ben-Tal and Nemirovski.

Due to the fact that the uncertainty affects to the objective function, we will consider two

different sets from UΓ
1 (see Bertsimas and Sim (2003)).

1. We define the set UΓ
1,1 where at most Γ entries gw takes values in [g̃w, g̃w+ ĝw] = [g̃s, g

max
s ],

that is, at most Γ entries gw can vary in some interval about their nominal value g̃w. So,

we define UΓ
1,1 = {g ∈ N

|W | : ∃S ⊆W, |S| ≤ Γ,∀s ∈ S, gs takes values in [g̃s, g̃s + ĝs], gs =

g̃s, s 6∈ S}. We are interested in finding an optimal solution valid for all scenarios, where

Γ coefficients of the demand data g can change. Since that we want to maximize the

objective function and each entries takes values in [g̃s, g̃s + ĝs], the worst case is obtained

on a subset of W (with at most Γ elements) which gives the worst possible deviation for

the objective function. So, the worst case possible is considering g̃, that is, all elements are

invariants. Similarly to Bertsimas and Sim (2003), the corresponding robust counterpart

with uncertainty set UΓ
1,1 can be formulated as follows:

(RC(UΓ
1,1))

max
x

min
{S/S⊆W,|S|≤Γ}

{ ηρρ̂
∑

w∈W

gwpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij} =

= max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij}

s.t.

(5.2)–(5.11).

2. We introduce the set ŨΓ
1,1 where at most Γ entries gw takes values in (g̃w, g̃w + ĝw] =

(g̃s, g
max
s ], that is, at most Γ entries gw vary in some interval about their nominal value g̃w.

So, we define ŨΓ
1,1 = {g ∈ N

|W | : ∃S ⊆ W, |S| ≤ Γ,∀s ∈ S, gs ∈ (g̃s, g̃s + ĝs], gs = g̃s, s 6∈

S}. In this case, Γ coefficients of the demand data g must change. It can be noted that the
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worst case is obtained on a subset of W (with at most Γ elements) which gives the worst

possible deviation for the objective function. At the same way than Bertsimas and Sim

(2003), the corresponding robust counterpart with uncertainty set ŨΓ
1,1 can be formulated

as follows:

(RC(ŨΓ
1,1))

max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij + ηρρ̂ min
{S/S⊆W,|S|≤Γ}

{
∑

w∈S

ĝwpw}}

s.t.

(5.2)–(5.11).

Theorem 5.1 For Γ ≥ 1, the robust network design problem with uncertainty set UΓ
1,1, is

equivalent to

(SR(UΓ
1,1))

max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij + θΓ +
∑

w∈W

πw}

s.t.

θ + πw ≥ −ηρρ̂ĝwpw, w ∈W

θ ≥ 0

πw ≥ 0, w ∈W

(5.2)–(5.11).

Proof.- We convert the objective function of (RC(UΓ
1,1)) to a linear one as follows. Given

a vector x ∈ R
n̄, we define:

β1,1(x,Γ) = min
{S/S⊆W,|S|≤Γ}

{ηρρ̂
∑

w∈S

ĝwpw} =

min{ηρρ̂
∑

w∈W

ĝwpwαw :
∑

w∈W

αw ≤ Γ, α ∈ {0, 1}|W |}, (5.19)

representing the worst possible deviation for the objective function.
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It can be observed that β1,1(x,Γ) is equal to:

β1,1(x,Γ) = min
{S/S⊆W,|S|≤Γ}

{
∑

w∈S

ĝwpw} = (5.20)

min{ηρρ̂
∑

w∈W

ĝwpwαw :
∑

w∈W

αw ≤ Γ, 0 ≤ αw ≤ 1}, (5.21)

relaxing the variable αw. So, the dual of (5.21) is:

β∗1,1(x,Γ) = max{θΓ +
∑

w∈W

πw : θ + πw ≥ −ηρρ̂ĝwpw; πw, θ ≥ 0, w ∈W}. (5.22)

By strong duality, since that (5.21) is feasible and bounded for all Γ, the dual (5.22) is

also feasible and bounded and the solution in each case coincide.

Substituting this result on the objective function of (RC(ŨΓ
1,1)) the proof can be concluded.

3. Now we define the set UΓ
1,2 where at most Γ entries gw can vary in some interval about

their nominal value g̃w, as follows:

{g ∈ N
|W | : ∃S ⊆W, |S| ≤ Γ,∀s ∈ S, gs ∈ [gmin

s , g̃s] = [g̃s − ĝs, g̃s], gs = g̃s, s 6∈ S}.

The worst case value in [g̃s − ĝs, g̃s] is obtained when we take g̃s − ĝs on elements of UΓ
1,2.

The corresponding robust counterpart can be expressed for UΓ
1,2 as follows:

(RC(UΓ
1,2))

max
x

min
{S/S⊆W,|S|≤Γ}

{
∑

w∈W

gwpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij} =

max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij}− (5.23)

− max
{S/S⊆W,|S|≤Γ}

{ηρρ̂
∑

w∈S

ĝwpw}

s.t.

(5.2)–(5.11).

4. Similarly, we define the set ŨΓ
1,2 = {g ∈ N

|W | : ∃S ⊆ W, |S| ≤ Γ,∀s ∈ S, gs ∈ (gmin
s , g̃s] =

(g̃s− ĝs, g̃s]}, , that is, at most Γ entries gw must vary in some interval about their nominal

value g̃w. At this case, the worst case in (g̃s − ĝs, g̃s] is obtained on a subset of W (with

at most Γ elements) which gives the worst possible deviation for the objective function.
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The corresponding robust counterpart can be formulated for ŨΓ
1,2 is defined as follows:

(RC(ŨΓ
1,2))

max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij} − max
{S/S⊆W,|S|≤Γ}

{ηρρ̂
∑

w∈S

ĝwpw}

s.t.

(5.2)–(5.11).

Theorem 5.2 For Γ ≥ 1, the robust network design problem with uncertainty set ŨΓ
1,2, is

equivalent to

(SR(ŨΓ
1,2))

max
x

{ ηρρ̂
∑

w∈W

g̃wpw −
∑

i∈N

ciyi −
∑

{i,j}∈E

cijxij − θΓ−
∑

w∈W

πw}

s.t.

θ + πw ≥ ηρρ̂ĝwpw, w ∈W

θ ≥ 0

πw ≥ 0, w ∈W

(5.2)–(5.11).

Proof.- To this end, we transform the objective function of (RC(ŨΓ
1,2)) to a linear one as

follows. Given a vector x ∈ R
n̄, we define:

β1,2(x,Γ) = min
{S/S⊆W,|S|≤Γ}

{−ηρρ̂
∑

w∈S

ĝwpw} =

= min{−ηρ̂ρ
∑

w∈W

ĝwpwαw :
∑

w∈W

αw ≤ Γ, α ∈ {0, 1}|W |}, (5.24)

representing the worst possible deviation for the objective function.

Obviously, β1,2(x,Γ) is equal to:

β1,2(x,Γ) = min
{S/S⊆W,|S|≤Γ}

{−ηρρ̂
∑

w∈S

ĝwpw} =

= min{−ηρρ̂
∑

w∈W

ĝwpwαw :
∑

w∈W

αw ≤ Γ, 0 ≤ αw ≤ 1}, (5.25)

relaxing the variable αw. So, the dual of (5.21) is:
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β∗1,2(x,Γ) = max{−θΓ−
∑

w∈W

πw : θ + πw ≥ ηρρ̂ĝwpw; πw, θ ≥ 0, w ∈W}.

By strong duality, since (5.21) is feasible and bounded for all Γ, the dual (5.22) is also

feasible and bounded and the solution in each case coincide.

Substituting this result on the objective function of (RC(UΓ
1,2)) the proof can be concluded.

5. We describe the set UΓ
1 where at most Γ entries gw can vary in some interval about their

nominal value g̃w. Concretely, this set is defined as

{g ∈ N
|W | : ∃S ⊆W, |S| ≤ Γ,∀s ∈ S, gs ∈ [gmin

s , gmax
s ] = [g̃s − ĝs, g̃s + ĝs]}.

In [g̃s− ĝs, g̃s+ ĝs], the worst case is obtained on a subset of W (with at most Γ elements)

which gives the worst possible deviation for the objective function. The corresponding

robust counterpart for UΓ
1 is the same as in UΓ

1,2.

6. Finally, we define the set ŨΓ
1 = {g ∈ N

|W | : ∃S ⊆ W, |S| ≤ Γ,∀s ∈ S, gs ∈ (gmin
s , gmax

s ) =

(g̃s − ĝs, g̃s + ĝs)}, that is, at most Γ entries gw must vary in some interval about their

nominal value g̃w. In (g̃s − ĝs, g̃s + ĝs), the worst case is obtained on a subset of W (with

at most Γ elements) which gives the worst possible deviation for the objective function.

The corresponding robust counterpart can be formulated as ŨΓ
1,2.

5.6. Light robustness

The Light Robustness (LR) was defined in Fischetti and Monaci (2009) and developed in

Schöbel (2014). Concretely, given an uncertain optimization problem P (ξ), ξ ∈ U and a

fixed nominal scenario ξ̄ ∈ U , the problem consists of finding a solution x which is feasi-

ble for the nominal scenario ξ̄ (i.e. x ∈ Υ(x,D(ξ̄))) with an aceptable objective value. Let

z∗ = max{zNET (x,D(ξ̄)) : Υ(x,D(ξ̄)) is satisfied} be the optimal objective value for the nomi-

nal problem and ρ be a parameter to balance the quality of the solution. So, we are interested in

finding a solution x verifying that zNET (x,D(ξ̄)) ≥ z∗−ρ and Υ(x, ξ̄). In order to formulate the

problem we need to introduce several slack variables and the reliability concept. Schöbel (2014)

introduces the reliability concept as an extension of reliability defined in Ben-Tal and Nemirovski

(2000). Specifically, the reliable of a solution x of P (ξ) with respect to constraint i, i = 1, . . . , ¯̄n

is defined as reli(x) = max{0, supξ∈U Fi(x, ξ)}. Thus, x is reliable with respect to a vector

Ξ ∈ R¯̄n
+ if and only if reli(x) ≤ Ξi, i = 1, . . . , ¯̄n. The reliability of a solution x is defined by

means of a weighted 1-norm, i.e., rel(x) =
∑

iwireli(x), where each weight wi represents the
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importance of constraint i.

The Light Robust Counterpart (LRC) associated to an uncertain problem P (ξ), ξ ∈ U is given

as (LRC) min{rel(x) : x ∈ T }, where T = {x ∈ R
n̄ : Υ(x, ξ̄) and zNET (x, ξ̄) ≥ z∗ − ρ}.

Depending on the uncertainty set considered (Strict robustness or Bertsimas and Sim robust-

ness), we have different light robustness counterpart.

5.6.1. On the uncertainty U1

Now we will show the light robust counterpart LR(U1) associated to (P) on U1.

Lemma 5.2 Let ḡ ∈ U1 be the fixed nominal scenario and z∗ be the optimal solution associated

to the nominal problem. Then, for a given ρ, the light robustness approach to the rapid transit

network design problem with uncertainty U1 corresponds the following program:

(LR(U1)) :





min z − ηρρ̂
∑

w∈W gmin
w pw +

∑
ij cijxij +

∑
i ciyi

s.t.

z ≥ (1− ρ)z∗

z − ηρρ̂
∑

w∈W gmin
w pw +

∑
ij cijxij +

∑
i ciyi ≥ 0

(5.2)–(5.11).

Proof.- From Lemma 5.1, we know the strictly robust network design problem for U1. Due to

that the uncertainty only affects to one constraint, only one slack variable Ξ is needed. This

yields to the following light robust counterpart:

(LR(U1)) :





min Ξ

s.t.

z − ηρρ̂
∑

w∈W gmin
w pw +

∑
i∈N ciyi +

∑
{i,j}∈E cijxij} ≤ Ξ

z ≥ (1− ρ)z∗

z,Ξ ≥ 0

(5.2)–(5.11).

or equivalently,

(LR(U1)) :





min z − ηρρ̂
∑

w∈W gmin
w pw +

∑
ij cijxij +

∑
i ciyi

s.t.

z ≥ (1− ρ)z∗

z − ηρρ̂
∑

w∈W gmin
w pw +

∑
ij cijxij +

∑
i ciyi ≥ 0

(5.2)–(5.11).
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5.6.2. On the uncertainty UΓ
1,2

Next lemma shows the light robust counterpart LR(UΓ
1,2) associated to (P) on UΓ

1,2.

Lemma 5.3 Let ḡ ∈ UΓ
1,2 be the fixed nominal scenario and z∗ be the optimal solution associated

to the nominal problem. Then, for a given ρ, the light robustness approach to the rapid transit

network design problem with uncertainty UΓ
1,2 corresponds the following program:

(LR(UΓ
1,2)) :





min z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi − β1,2(x,Γ)

s.t.

z ≥ (1− ρ)z∗

z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi − β1,2(x,Γ) ≥ 0

(5.2)–(5.11).

Proof.-

As mentioned, the robust counterpart associated to (P ) for UΓ
1,2:

(RC(UΓ
1,2)) :





max ηρρ̂
∑

w∈W g̃wpw −
∑

i∈N ciyi −
∑

{i,j}∈E cijxij + β1,2(x,Γ)

s.t.

β1,2(x,Γ) = − max
{S/S⊆W,|S|≤Γ}

{ηρρ̂
∑

w∈S

ĝwpw}

(5.2)–(5.11).

It can be observed that this problem is equivalents to the following problem:

(LRC(UΓ
1,2)) :





max z

s.t.

(∗) z − ηρρ̂
∑

w∈W g̃wpw +
∑

i∈N ciyi +
∑

{i,j}∈E cijxij − β1,2(x,Γ) ≤ 0

β1,2(x,Γ) = − max
{S/S⊆W,|S|≤Γ}

{ηρρ̂
∑

w∈S

ĝwpw}

(5.2)–(5.11).

Note that the only constraint affected by uncertainty is (∗), and, therefore, only one slack

variable Ξ is needed. Thus, following the program structure presented in Schöbel (2014) and

Goerigk (2012) for the light robustness counterpart, the light robust counterpart for the rapid

transit network design is defined as:
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(LRC(UΓ
1,2)) :





min Ξ

s.t.

z − ηρρ̂
∑

w∈W g̃wpw +
∑

i∈N ciyi +
∑

{i,j}∈E cijxij} − β(x,Γ) ≤ Ξ

z ≥ (1− ρ)z∗

Ξ ≥ 0

(5.2)–(5.11)

or equivalently,

(LRC(UΓ
1,2)) :





min z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi − β(x,Γ)

s.t.

z ≥ (1− ρ)z∗

z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi − β(x,Γ) ≥ 0

(5.2)–(5.11).

Theorem 5.3 For Γ ≥ 1, the light robustness design problem with UΓ
1,2, is equivalent to

(RTNDP−light) :





min z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi + θΓ + ηρρ̂
∑

w∈W πw

s.t.

z ≥ (1− ρ)z∗

z − ηρρ̂
∑

w∈W g̃wpw +
∑

ij cijxij +
∑

i ciyi + θΓ + ηρρ̂
∑

w∈W πw ≥ 0

θ + πw ≥ ĝwpw, w ∈W

θ ≥ 0

πw ≥ 0, w ∈W

(5.2)–(5.11).

Proof.- By applying the same procedure in Theorem 5.2 for β1,2(x,Γ) on the program presented

in Lemma 5.3, the formulation follows.

5.7. Conclusions and further work

In this chapter we have studied the problem of designing the infrastructure of a RTS taking

into account a competing mode with uncertainty in the demand. For the proposed, we have

described several possible uncertainty sets on this problem. We have analyzed robust approaches

according to Strict robustness, Bertsimas and Sim robustness and Light robustness. In a further
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work we would like to introduce other robustness measure such as adjustable robustness, recovery

robustness and regret on this problem, as well as, to extend the problem to the general problem

presented in Chapter 2. Another interesting aspect is to consider the alternative travel time and

cost as uncertain parameters and to analyze how the type of uncertainty set influence in the

rapid transit network design.
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In this thesis, we have concentrated on rapid transit network design and line planning phases.

First, in Chapter 1, we have described robustness measures and we have reviewed the existing

literature on the rapid transit network design measures. For this purpose, we have represented

a transportation network by means of Graph and Hypergraph theory. We have described and

analyzed measures in the transport context. Moreover, we have summarized works that have

recently derived into several papers, which are joint works with members of our group.

On the other hand, we have proposed several mathematical programming models. A general

model which integrates both rapid transit network design problems, determining the infrastruc-

ture network, set of lines, the frequency of each line as well as the capacity of services for a rapid

transit network.

Moreover, we have described a new mathematical programming model for solving this problem

considering different variables and constraints. Several techniques for improving the efficiency of

this model have been presented. An adaptive neighborhood search heuristic (ALNS) for metro

network design has been developed in Chapter 4. The results obtained in the tested networks

have been satisfactory. In our experimentation we have tested several small networks with 7

nodes and 12 edges. We have compared our ALNS heuristic algorithm against the optimal

solution obtained by the mathematical model, on a set of instances, obtaining good results in

a very small CPU time. Furthermore, we have tested our ALNS in a medium-network with

100 nodes, 275 edges and 9900 OD pairs, producing high quality solutions within reasonable

computing times.

A mathematical model for solving the problem of selecting simultaneously the frequency and

the number of carriages for each line is presented in Chapter 3. To this end, we have assumed

that the line network, infrastructure and itineraries of lines are given. We have described two

different versions of this problem: with an unlimited number of carriages (uncapacitated) and

the capacitated problem. In the first one we have described two algorithms for solving the

problem: an exact and a heuristic algorithm. The heuristic technique is a procedure based on a

Local Search Algorithm. The modifications are done by means of an appropriated neighborhood

structure and movements. We have carried out experiments on small and medium networks.
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The second one can lead to congested networks since the number of possible carriages is a limited

value. We have included in-vehicle crowding function in our model, adding new variables and

constraints on the first model. We have tested it on small networks showing the effect of the

congestion on the solutions. The congestion impact have been studied by means of a congestion

function which measures the level of in-vehicle crowding.

The input data related to costs and trains operation have been based on real data in order to

calibrate all parameters that appear in our computational experiments.

Finally, we have incorporated robustness concepts in the rapid transit network design. This

problem is motivated by the fact that, in realistic situations, the input data may be affected

by uncertainty. Indeed, the origin-destination matrix, travel times by the alternative mode and

costs can be uncertain. We have analyzed robust approaches according to Strict robustness,

Bertsimas and Sim robustness and Light robustness.
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