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I will present some results obtained in collaboration with Pascal
Lefèvre (Université d’Artois).

This is a work still in progress.
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Composition operators

Let D = {z ∈ C : |z| < 1} the open unit disk and φ : D→ D an
holomorphic function.

The composition operator with symbol φ is Cφ, defined on H(D)
by

Cφ : f 7→ f ◦ φ

If E is a Banach space of analytic functions over the disk one
tries to characterize the properties of the operator Cφ : E → E in
terms of the properties of the symbol φ.

In that way one can study when the operator is well defined
(boundedness), when it is compact, weakly compact,
q-summing, nuclear,. . .

In this talk we will be dealing with the study of the
q-summingness when E is a Hardy space Hp, 1 ≤ p < +∞.
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q-summing operators

Suppose 1 ≤ q < +∞ and let T : X → Y be bounded linear
operator between two Banch spaces.
We say T is a q-summing operator if there exists C > 0 such
that

n∑
j=1

‖Txj‖q ≤ C sup
x∗∈BX∗

n∑
j=1

|〈x∗, xj〉|q, (♣)

for every finite sequence x1, x2,. . . ,xn in X .

The q-summing norm of T is

πq(T ) = inf{C1/q : C > 0,C occurs in (♣)}.

1-summing operators are also called absolutely summing
operators.
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Hardy spaces

If 1 ≤ p < +∞, the Hardy space Hp = Hp(D) is formed by the
holomorphic functions f : D→ C such that

‖f‖Hp = sup
0≤r<1

(
1

2π

∫ 2π

0
|f (reit )|p dt

)1/p

< +∞ .

H∞(D) is the space of bounded analytic functions on D.

Let T = ∂D = {z ∈ C : |z| = 1}. On the torus T we consider the
normalized arc–length measure m. Every f ∈ Hp(D) has almost
everywhere radial limit f ∗

f ∗(eit ) = lim
r→1−

f (reit ) .

It is known that f ∗ ∈ Lp(T) = Lp(m) and ‖f‖Hp = ‖f ∗‖Lp .
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Boundedness and compactness

For every φ : D→ D and all p, the operator Cφ : Hp → Hp is
bounded (and well defined).
This is obvious for p =∞. For 1 ≤ p < +∞ it is a consequence
of Littlewood’s Subordination Principle.

Other properties of Cφ depends on the symbol φ.

This happens for instance to compactness, which was
characterized in two different ways in the middle of the eighties:

1) Using the Nevanlinna counting function (Shapiro).

2) Using vanishing Carleson measures (MacCluer).

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Boundedness and compactness

For every φ : D→ D and all p, the operator Cφ : Hp → Hp is
bounded (and well defined).
This is obvious for p =∞. For 1 ≤ p < +∞ it is a consequence
of Littlewood’s Subordination Principle.

Other properties of Cφ depends on the symbol φ.

This happens for instance to compactness, which was
characterized in two different ways in the middle of the eighties:

1) Using the Nevanlinna counting function (Shapiro).

2) Using vanishing Carleson measures (MacCluer).

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Boundedness and compactness

For every φ : D→ D and all p, the operator Cφ : Hp → Hp is
bounded (and well defined).
This is obvious for p =∞. For 1 ≤ p < +∞ it is a consequence
of Littlewood’s Subordination Principle.

Other properties of Cφ depends on the symbol φ.

This happens for instance to compactness, which was
characterized in two different ways in the middle of the eighties:

1) Using the Nevanlinna counting function (Shapiro).

2) Using vanishing Carleson measures (MacCluer).

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Boundedness and compactness

For every φ : D→ D and all p, the operator Cφ : Hp → Hp is
bounded (and well defined).
This is obvious for p =∞. For 1 ≤ p < +∞ it is a consequence
of Littlewood’s Subordination Principle.

Other properties of Cφ depends on the symbol φ.

This happens for instance to compactness, which was
characterized in two different ways in the middle of the eighties:

1) Using the Nevanlinna counting function (Shapiro).

2) Using vanishing Carleson measures (MacCluer).

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Boundedness and compactness

For every φ : D→ D and all p, the operator Cφ : Hp → Hp is
bounded (and well defined).
This is obvious for p =∞. For 1 ≤ p < +∞ it is a consequence
of Littlewood’s Subordination Principle.

Other properties of Cφ depends on the symbol φ.

This happens for instance to compactness, which was
characterized in two different ways in the middle of the eighties:

1) Using the Nevanlinna counting function (Shapiro).

2) Using vanishing Carleson measures (MacCluer).

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Pullback measure

For f ∈ Hp we have

‖Cφf‖pHp = ‖(f ◦ φ)∗‖pLp(T) =

∫
T
|f |p ◦ φ∗ dm .

Let us denote µφ to the image measure of m by the map φ∗;
that is, µφ(B) = m({φ∗ ∈ B}), for all Borel set B ⊂ D. We have

‖Cφf‖Hp = ‖f‖Lp(µφ) .

This allows to see that the properties of the operator Cφ are the
same that the properties of the inclusion operator

jµφ : Hp ↪→ Lp(µφ) .

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Pullback measure

For f ∈ Hp we have

‖Cφf‖pHp = ‖(f ◦ φ)∗‖pLp(T) =

∫
T
|f |p ◦ φ∗ dm .

Let us denote µφ to the image measure of m by the map φ∗;
that is, µφ(B) = m({φ∗ ∈ B}), for all Borel set B ⊂ D. We have

‖Cφf‖Hp = ‖f‖Lp(µφ) .

This allows to see that the properties of the operator Cφ are the
same that the properties of the inclusion operator

jµφ : Hp ↪→ Lp(µφ) .

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Pullback measure

For f ∈ Hp we have

‖Cφf‖pHp = ‖(f ◦ φ)∗‖pLp(T) =

∫
T
|f |p ◦ φ∗ dm .

Let us denote µφ to the image measure of m by the map φ∗;
that is, µφ(B) = m({φ∗ ∈ B}), for all Borel set B ⊂ D. We have

‖Cφf‖Hp = ‖f‖Lp(µφ) .

This allows to see that the properties of the operator Cφ are the
same that the properties of the inclusion operator

jµφ : Hp ↪→ Lp(µφ) .

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Pullback measure

For f ∈ Hp we have

‖Cφf‖pHp = ‖(f ◦ φ)∗‖pLp(T) =

∫
T
|f |p ◦ φ∗ dm .

Let us denote µφ to the image measure of m by the map φ∗;
that is, µφ(B) = m({φ∗ ∈ B}), for all Borel set B ⊂ D. We have

‖Cφf‖Hp = ‖f‖Lp(µφ) .

This allows to see that the properties of the operator Cφ are the
same that the properties of the inclusion operator

jµφ : Hp ↪→ Lp(µφ) .

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



Carleson windows

Let 0 < h < 1. We define the window of center ξ ∈ T and radius
h as W (ξ,h) = {z ∈ D : 1− h < |z|, |arg(ξz)| < h}.

W (ξ,h) = {z ∈ D : 1− h < |z|, |arg(ξz)| < h}.

Ξ

h

1
1�h
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Carleson’s Theorem

Theorem (Carleson, 1962)

Let µ be a finite measure on the Borel sets of D. For
1 ≤ p <∞, we have the inclusion Hp(D) ⊂ Lp(µ) if and only if
there exists C > 0 such that

µ
(
W (ξ,h)

)
≤ Ch , ∀ξ ∈ T, ∀h ∈ (0,1) . (♣)

A measure satisfying (♣) is called a Carleson measure.

Putting ρµ(h) = supξ∈T µ
(
W (ξ,h)

)
, we have that µ is a

Carleson measure if and only if

ρµ(h)

h
is bounded for 0 < h < 1.

Moreover we have∥∥ jµ : Hp ↪→ Lp(µ)
∥∥ ≈

(
sup

0<h<1

ρµ(h)

h

)1/p

.
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MacCluer’s Theorem

The measure µ is called to be a vanishing Carleson measure if

lim
h→0+

ρµ(h)

h
= 0.

MacCluer (1985)

The composition operator Cφ : Hp → Hp is compact if and only
if µφ is a vanishing Carleson measure.

Actually we have that, for any finite measure µ, the inclusion of
Hp(D) in Lp(µ) defines a compact operator if and only if µ is a
vanishing Carleson measure.
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Carleson embeddings

Assume from now on that µ is concentrated in the open disk D.

For µ a Carleson measure, our aim is to characterize when the
Carleson embedding

jµ : Hp(D) ↪→ Lp(µ)

is a q-summing operator.

Observe that the conditions in Carleson’s and MacCluer’s
theorems does not depend on p. So compactness and
boundedness of Carleson embeddings do not depend on p.

We will see that this is not the case for q-summingness.
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Known facts

If q1 ≤ q2, every q1-summing operator is q2-summing.

For 1 ≤ p ≤ 2, Hp and Lp have cotype 2. For p > 2 they only
have cotype p. So it is known that

jµ is q1-summing ⇐⇒ jµ is q2-summing

in the following cases:

For 1 ≤ p ≤ 2 and q1, q2 ≥ 1.
For p > 2, and 1 ≤ q1, q2 < p′, where p′ is the conjugate
exponent of p.
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Known facts

Theorem (Shapiro-Taylor, 1973)

Let p ≥ 2. The composition operator Cφ : Hp → Hp is
p-summing if and only if∫

T

1
1− |φ∗|

dm < +∞ .

In the Carleson embedding setting the condition is∫
D

1
1− |z|

dµ(z) < +∞ (♠)

It is known that (♠) also implies jµ : Hp → Lp(µ) is p-summing
for 1 ≤ p < 2. But the converse is not true.
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Luecking rectangles

Decompose the disk D into the family of annulus {Γn}n≥0 where

Γn = {z ∈ D : 1− 2−n ≤ |z| < 1− 2−n−1} n = 0,1,2, . . .

Then decompose each annulus into 2n equal pieces with the
shape of ”round” rectangles. We will call them Luecking
rectangles.

Rn,j = {z = reiθ : 1−2−n ≤ r < 1−2−n−1,2π(j−1)/2n ≤ θ < 2πj/2n}

with n = 0,1,2,3, . . . and 1 ≤ j ≤ 2n.
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Luecking rectangles

These sets Rn,j were used by D. Luecking to characterize the
membership of composition operators on H2 to the Schatten
classes.

R

R

R

n-1,1

n,1

n+1,2

1
1-2 -n
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First results

Let us fix a finite measure µ on D. We denote by µn the
restriction of µ to the annulus Γn, and by jn the inclusion of
Hp(D) into Lp(µn).

Now consider, for n ≥ 0, the 2n-dimensional subspace Xn of
Hp(D) generated by the monomials zk , with 2n ≤ k < 2n+1.
We have, the decomposition

Hp
0 (D) = {f ∈ Hp(D) : f (0) = 0} =

⊕
n≥0

Xn

which is an orthogonal decomposition in the case of H2.

Finally let αn be the restriction of jn to Xn.
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First result

Proposition
For 1 < p < +∞, the following quantities are equivalent:

1 πq
(
jn : Hp → Lp(µn)

)
,

2 πq
(
αn : Xn → Lp(µn)

)
, and

3 πq(Da), where Da : `2
n

p → `2
n

p is the diagonal operator

x = (xj)j 7→ Da(x) = (ajxj)j ,

with aj =
(
2nµ(Rn,j)

)1/p, j = 1,2, . . . ,2n.

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



First result

Proposition
For 1 < p < +∞, the following quantities are equivalent:

1 πq
(
jn : Hp → Lp(µn)

)
,

2 πq
(
αn : Xn → Lp(µn)

)
, and

3 πq(Da), where Da : `2
n

p → `2
n

p is the diagonal operator

x = (xj)j 7→ Da(x) = (ajxj)j ,

with aj =
(
2nµ(Rn,j)

)1/p, j = 1,2, . . . ,2n.

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



First result

Proposition
For 1 < p < +∞, the following quantities are equivalent:

1 πq
(
jn : Hp → Lp(µn)

)
,

2 πq
(
αn : Xn → Lp(µn)

)
, and

3 πq(Da), where Da : `2
n

p → `2
n

p is the diagonal operator

x = (xj)j 7→ Da(x) = (ajxj)j ,

with aj =
(
2nµ(Rn,j)

)1/p, j = 1,2, . . . ,2n.

Luis Rodrı́guez Piazza Absolutely summing Carleson embeddings.



First results

In consequence we have:

1 < p ≤ 2: πq(jn) ≈
( 2n∑

j=1

[
2nµ(Rn,j)

]2/p
)1/2

.

p > 2: πq(jn) ≈
( 2n∑

j=1

[
2nµ(Rn,j)

]p′/p
)1/p′

, if 1′ ≤ q ≤ p′.

πq(jn) ≈
( 2n∑

j=1

[
2nµ(Rn,j)

]q/p
)1/q

, if p′ ≤ q ≤ p.

πq(jn) ≈
( 2n∑

j=1

[
2nµ(Rn,j)

])1/p
, if p ≤ q.
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First results
Theorem
In the case p ≥ 2 and q ≥ p we have:

πq
(
jµ
)
≈
(∑

n

[πq(jn)]p
)1/p

≈
(∑

n,j

[2nµ(Rn,j)]
)1/p

≈
(∫

D

1
1− |z|

dµ(z)
)1/p

.

In the case p ≥ 2 and 2 ≤ q ≤ p we have:

πq
(
jµ
)
≈
(∑

n

[πq(jn)]q
)1/q

≈
(∑

n,j

[2nµ(Rn,j)]q/p
)1/p

.

For p > 2, the case 1 ≤ q < 2 is still open.
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The case p ≤ 2.
Littlewood-Paley theorem says that, if fn ∈ Xn, n = 0,1, . . . we
have ∥∥∥∑

n

fn
∥∥∥

Hp
≈
∥∥∥(∑

n

|f ∗n |2
)1/2∥∥∥

Lp(T)

and then(∑
n

‖fn‖2Hp

)1/2
/
∥∥∥∑

n

fn
∥∥∥

Hp
/
(∑

n

‖fn‖pHp

)1/p

This can be used to prove(∑
n

π2(jn)2
)1/2

/ π2(jµ) /
(∑

n

π2(jn)p
)1/p

But none of these two estimates is the correct one.
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The case p ≤ 2.

Theorem A
For 1 < p ≤ 2, the Carleson embedding jµ : Hp(D)→ Lp(µ) is
absolutely summing if and only if the space H1(D) is included in
Lr (ν), where

r = 1− p
2

and
dν(z) =

dµ(z)

(1− |z|)p/2

Applying a result of Blasco and Jarchow, we obtain:
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The case p ≤ 2.
Theorem A’
For 1 < p ≤ 2, the Carleson embedding jµ : Hp(D)→ Lp(µ) is
absolutely summing if and only if∫

T

(∫
Γ(ξ)

dµ(z)

(1− |z|)1+p/2

)2/p

dm(ξ) < +∞

Ξ

G HΞ L
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Proof of Theorem A.

Proposition 1
Suppose 1 < p ≤ 2. The necessary and sufficient condition for
the natural injection j : Hp(D)→ L2(µ) to be a 2-summing
operator is that∫

T

(∫
D

1
|z − w |2

dµ(z)

)p′/2

dm(w) < +∞ ,

In fact we have

π2
(
j : Hp(D)→ L2(µ)

)
≈
(∫

T

(∫
D

dµ(z)

|z − w |2
)q/2

dm(w)

)1/q

.
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Proof of Theorem A.

Proposition 2

Suppose 1 < p < 2 and let r > 1 be such that 1/r + 1/2 = 1/p.
Let X be a Banach space, and T : X → Lp(µ) a bounded
operator. The necessary and sufficient condition for T to be a
2-summing operator is that there exists F ∈ Lr (µ), with F > 0
µ-a.e., such that T : X → L2(ν) is well defined and 2-summing,
where ν is the measure defined by

dν(z) =
1

F (z)2 dµ(z) .

Moreover, we have

π2
(
T : X → Lp(µ)

)
≈ inf

{
π2
(
T : X → L2(ν)

)
:

dν = dµ/F 2,F ≥ 0,
∫

F r dµ ≤ 1
}
.
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Proof of Theorem A.

jµ : Hp(D)→ Lp(µ) is 2-summing ⇐⇒ the following is finite:

inf

{∫
T

(∫
D

dµ(z)

|z − w |2 · F (z)2

)p′/2

dm(w) : F ≥ 0,
∫

F r dµ ≤ 1

}

⇐⇒ the following is finite:

inf
F∈B+

Lt (T)

sup
g∈B+

Lr/2(µ)

∫
T

∫
D

g(w)

|z − w |2 · F (z)
dµ(z) dm(w), (♣)

where t is the conjugate exponent of p′/2, and 1/r + 1/2 = 1/p.
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Proof of Theorem A.

By Ky Fan’s lemma the order of taking the sup and the inf can
be interchanged.

Using Fubini and the fact that 1−|z|2
|z−w |2 is the Poisson kernel, we

obtain that (♣) is finite if and only if

Poisson integral sends Lt (T) into Lp/2(ν), for dν(z) = dµ(z)

(1−|z|)p/2

if and only if H t (D) ⊂ Lp/2(ν).
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