Two remarks on composition operators on the Dirichlet space

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza*

October 5, 2017

Abstract

We show that the decay of approximation numbers of compact composition operators on the Dirichlet space \mathcal{D} can be as slow as we wish. We also prove the optimality of a result of O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi on boundedness on \mathcal{D} of self-maps of the disk all of whose powers are norm-bounded in \mathcal{D}.

Mathematics Subject Classification. Primary: 47B33 - Secondary: 46E22; 47B06; 47B32

Key-words. approximation numbers - Carleson embedding - composition operator - cusp map - Dirichlet space

1 Introduction

Recall that if φ is an analytic self-map of \mathbb{D}, a so-called Schur function, the composition operator C_{φ} associated to φ is formally defined by

$$
C_{\varphi}(f)=f \circ \varphi .
$$

The Littlewood subordination principle ([4], p. 30) tells us that C_{φ} maps the Hardy space H^{2} to itself for every Schur function φ. Also recall that if H is a Hilbert space and $T: H \rightarrow H$ a bounded linear operator, the n-th approximation number $a_{n}(T)$ of T is defined as

$$
\begin{equation*}
a_{n}(T)=\inf \{\|T-R\| ; \operatorname{rank} R<n\}, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

In [12], working on that Hardy space H^{2} (and also on some weighted Bergman spaces), we have undertaken the study of approximation numbers $a_{n}\left(C_{\varphi}\right)$ of composition operators C_{φ}, and proved among other facts the following:

[^0]Theorem 1.1 Let $\left(\varepsilon_{n}\right)_{n \geq 1}$ be a non-increasing sequence of positive numbers tending to 0 . Then, there exists a compact composition operator C_{φ} on H^{2} such that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n}\left(C_{\varphi}\right)}{\varepsilon_{n}}>0 .
$$

As a consequence, there are composition operators on H^{2} which are compact but in no Schatten class.

The last item had been previously proved by Carroll and Cowen (3]), the above statement with approximation numbers being more precise.

For the Dirichlet space, the situation is more delicate because not every analytic self-map of \mathbb{D} generates a bounded composition operator on \mathcal{D}. When this is the case, we will say that φ is a symbol (understanding "of \mathcal{D} "). Note that every symbol is necessarily in \mathcal{D}.

In [11], we have performed a similar study on that Dirichlet space \mathcal{D}, and established several results on approximation numbers in that new setting, in particular the existence of symbols φ for which C_{φ} is compact without being in any Schatten class S_{p}. But we have not been able in [11 to prove a full analogue of Theorem 1.1 Using a new approach, essentially based on Carleson embeddings and the Schur test, we are now able to prove that analogue.

Theorem 1.2 For every sequence $\left(\varepsilon_{n}\right)_{n>1}$ of positive numbers tending to 0 , there exists a compact composition operator C_{φ} on the Dirichlet space \mathcal{D} such that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n}\left(C_{\varphi}\right)}{\varepsilon_{n}}>0
$$

Turning now to the question of necessary or sufficient conditions for a Schur function φ to be a symbol, we can observe that, since $\left(z^{n} / \sqrt{n}\right)_{n \geq 1}$ is an orthonormal sequence in \mathcal{D} and since formally $C_{\varphi}\left(z^{n}\right)=\varphi^{n}$, a necessary condition is as follows:

$$
\begin{equation*}
\varphi \text { is a symbol } \Longrightarrow\left\|\varphi^{n}\right\|_{\mathcal{D}}=O(\sqrt{n}) \tag{1.2}
\end{equation*}
$$

It is worth noting that, for any Schur function, one has:

$$
\varphi \in \mathcal{D} \quad \Longrightarrow \quad\left\|\varphi^{n}\right\|_{\mathcal{D}}=O(n)
$$

(of course, this is an equivalence). Indeed, anticipating on the next section, we have for any integer $n \geq 1$:

$$
\begin{aligned}
\left\|\varphi^{n}\right\|_{\mathcal{D}}^{2} & =|\varphi(0)|^{2 n}+\int_{\mathbb{D}} n^{2}|\varphi(z)|^{2(n-1)}\left|\varphi^{\prime}(z)\right|^{2} d A(z) \\
& \leq|\varphi(0)|^{2}+\int_{\mathbb{D}} n^{2}\left|\varphi^{\prime}(z)\right|^{2} d A(z) \leq n^{2}\|\varphi\|_{\mathcal{D}}^{2}
\end{aligned}
$$

giving the result.

Now, the following sufficient condition was given in [5]:

$$
\begin{equation*}
\left\|\varphi^{n}\right\|_{\mathcal{D}}=O(1) \quad \Longrightarrow \quad \varphi \text { is a symbol. } \tag{1.3}
\end{equation*}
$$

In view of (1.2), one might think of improving this condition, but it turns out to be optimal, as says the second main result of that paper.

Theorem 1.3 Let $\left(M_{n}\right)_{n \geq 1}$ be an arbitrary sequence of positive numbers tending to ∞. Then, there exists a Schur function $\varphi \in \mathcal{D}$ such that:

1) $\left\|\varphi^{n}\right\|_{\mathcal{D}}=O\left(M_{n}\right)$ as $n \rightarrow \infty$;
2) φ is not a symbol on \mathcal{D}.

The organization of that paper will be as follows: in Section 2, we give the notation and background. In Section 3 we prove Theorem 1.2 in Section 3.1 we prove Theorem [1.3, and we end with a section of remarks and questions.

2 Notation and background.

We denote by \mathbb{D} the open unit disk of the complex plane and by A the normalized area measure $d x d y / \pi$ of \mathbb{D}. The unit circle is denoted by $\mathbb{T}=\partial \mathbb{D}$. The notation $A \lesssim B$ indicates that $A \leq c B$ for some positive constant c.

A Schur function is an analytic self-map of \mathbb{D} and the associated composition operator is defined, formally, by $C_{\varphi}(f)=f \circ \varphi$. The operator C_{φ} maps the space $\mathcal{H o l}(\mathbb{D})$ of holomorphic functions on \mathbb{D} into itself.

The Dirichlet space \mathcal{D} is the space of analytic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\|f\|_{\mathcal{D}}^{2}:=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<+\infty \tag{2.1}
\end{equation*}
$$

If $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$, one has:

$$
\begin{equation*}
\|f\|_{\mathcal{D}}^{2}=\left|c_{0}\right|^{2}+\sum_{n=1}^{\infty} n\left|c_{n}\right|^{2} . \tag{2.2}
\end{equation*}
$$

Then $\|\cdot\|_{\mathcal{D}}$ is a norm on \mathcal{D}, making \mathcal{D} a Hilbert space, and $\|\cdot\|_{H^{2}} \leq\|.\|_{\mathcal{D}}$. For further information on the Dirichlet space, the reader may see [1] or [16].

The Bergman space \mathfrak{B} is the space of analytic functions $f: \mathbb{D} \rightarrow \mathbb{C}$ such that:

$$
\|f\|_{\mathfrak{B}}^{2}:=\int_{\mathbb{D}}|f(z)|^{2} d A(z)<+\infty
$$

If $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$, one has $\|f\|_{\mathfrak{B}}^{2}=\sum_{n=0}^{\infty} \frac{\left|c_{n}\right|^{2}}{n+1}$. If $f \in \mathcal{D}$, one has by definition:

$$
\|f\|_{\mathcal{D}}^{2}=\left\|f^{\prime}\right\|_{\mathfrak{B}}^{2}+|f(0)|^{2}
$$

Recall that, whereas every Schur function φ generates a bounded composition operator C_{φ} on Hardy and Bergman spaces, it is no longer the case for the Dirichlet space (see [14], Proposition 3.12, for instance).

We denote by $b_{n}(T)$ the n-th Bernstein number of the operator $T: H \rightarrow H$, namely:

$$
\begin{equation*}
b_{n}(T)=\sup _{\operatorname{dim} E=n}\left(\inf _{f \in S_{E}}\|T x\|\right) \tag{2.3}
\end{equation*}
$$

where S_{E} denotes the unit sphere of E. It is easy to see (11) that

$$
b_{n}(T)=a_{n}(T) \quad \text { for all } n \geq 1
$$

(recall that the approximation numbers are defined in (1.1)).
If φ is a Schur function, let

$$
\begin{equation*}
n_{\varphi}(w)=\#\{z \in \mathbb{D} ; \varphi(z)=w\} \geq 0 \tag{2.4}
\end{equation*}
$$

be the associated counting function. If $f \in \mathcal{D}$ and $g=f \circ \varphi$, the change of variable formula provides us with the useful following equation ([17], [11):

$$
\begin{equation*}
\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{2} d A(z)=\int_{\mathbb{D}}\left|f^{\prime}(w)\right|^{2} n_{\varphi}(w) d A(w) \tag{2.5}
\end{equation*}
$$

(the integrals might be infinite). In those terms, a necessary and sufficient condition for φ to be a symbol is as follows ([17], Theorem 1). Let:

$$
\begin{equation*}
\rho_{\varphi}(h)=\sup _{\xi \in \mathbb{T}} \int_{S(\xi, h)} n_{\varphi} d A \tag{2.6}
\end{equation*}
$$

where $S(\xi, h)=\mathbb{D} \cap D(\xi, h)$ is the Carleson window centered at ξ and of size h. Then φ is a symbol if and only if:

$$
\begin{equation*}
\sup _{0<h<1} \frac{1}{h^{2}} \rho_{\varphi}(h)<\infty \tag{2.7}
\end{equation*}
$$

This is not difficult to prove. In view of (2.5), the boundedness of C_{φ} amounts to the existence of a constant C such that:

$$
\int_{\mathbb{D}}\left|f^{\prime}(w)\right|^{2} n_{\varphi}(w) d A(w) \leq C \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z), \quad \forall f \in \mathcal{D}
$$

Since $f^{\prime}=h$ runs over \mathfrak{B} as f runs over \mathcal{D}, and with equal norms, the above condition reads:

$$
\int_{\mathbb{D}}|h(w)|^{2} n_{\varphi}(w) d A(w) \leq C \int_{\mathbb{D}}|h(z)|^{2} d A(z), \quad \forall h \in \mathfrak{B}
$$

This exactly means that the measure $n_{\varphi} d A$ is a Carleson measure for \mathfrak{B}. Such measures have been characterized in [7] and that characterization gives (2.7).

But this condition is very abstract and difficult to test, and sometimes more "concrete" sufficient conditions are desirable. In [11, we proved that, even if the Schur function extends continuously to $\overline{\mathbb{D}}$, no Lipschitz condition of order $\alpha, 0<\alpha<1$, on φ is sufficient for ensuring that φ is a symbol. It is worth noting that the limiting case $\alpha=1$, so restrictive it is, guarantees the result.

Proposition 2.1 Suppose that the Schur function φ is in the analytic Lipschitz class on the unit disk, i.e. satisfies:

$$
|\varphi(z)-\varphi(w)| \leq C|z-w|, \quad \forall z, w \in \mathbb{D}
$$

Then C_{φ} is bounded on \mathcal{D}.
Proof. Let $f \in \mathcal{D}$; one has:

$$
\begin{aligned}
\left\|C_{\varphi}(f)\right\|_{\mathcal{D}}^{2} & =|f(\varphi(0))|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} d A(z) \\
& \leq|f(\varphi(0))|^{2}+\left\|\varphi^{\prime}\right\|_{\infty}^{2} \int_{\mathbb{D}}\left|f^{\prime}(\varphi(z))\right|^{2} d A(z)
\end{aligned}
$$

This integral is nothing but $\left\|C_{\varphi}\left(f^{\prime}\right)\right\|_{\mathfrak{B}}^{2}$ and hence, since C_{φ} is bounded on the Bergman space \mathfrak{B}, we have, for some constant K_{1} :

$$
\int_{\mathbb{D}}\left|f^{\prime}(\varphi(z))\right|^{2} d A(z) \leq K_{1}^{2}\left\|f^{\prime}\right\|_{\mathfrak{B}}^{2} \leq K_{1}^{2}\|f\|_{\mathcal{D}}^{2}
$$

On the other hand,

$$
|f(\varphi(0))| \leq\left(1-|\varphi(0)|^{2}\right)^{-1 / 2}\|f\|_{H^{2}} \leq\left(1-|\varphi(0)|^{2}\right)^{-1 / 2}\|f\|_{\mathcal{D}}
$$

and we get

$$
\left\|C_{\varphi}(f)\right\|_{\mathcal{D}}^{2} \leq K^{2}\|f\|_{\mathcal{D}}^{2}
$$

with $K^{2}=K_{1}^{2}+\left(1-|\varphi(0)|^{2}\right)^{-1}$.

3 Proof of Theorem 1.2

We are going to prove Theorem 1.2 mentioned in the Introduction, which we recall here.

Theorem 3.1 For every sequence $\left(\varepsilon_{n}\right)$ of positive numbers with limit 0 , there exists a compact composition operator C_{φ} on \mathcal{D} such that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n}\left(C_{\varphi}\right)}{\varepsilon_{n}}>0
$$

Before entering really in the proof, we may remark that, without loss of generality, by replacing ε_{n} with $\inf \left(2^{-8}, \sup _{k \geq n} \varepsilon_{k}\right)$, we can, and do, assume that $\left(\varepsilon_{n}\right)_{n}$ decreases and $\varepsilon_{1} \leq 2^{-8}$.

Moreover, we can assume that $\left(\varepsilon_{n}\right)_{n}$ decreases "slowly", as said in the following lemma.

Lemma 3.2 Let $\left(\varepsilon_{i}\right)$ be a decreasing sequence with limit zero and let $0<\rho<1$. Then, there exists another sequence $\left(\widehat{\varepsilon}_{i}\right)$, decreasing with limit zero, such that $\widehat{\varepsilon_{i}} \geq \varepsilon_{i}$ and $\widehat{\varepsilon_{i+1}} \geq \rho \widehat{\varepsilon_{i}}$, for every $i \geq 1$.

Proof. We define inductively $\widehat{\varepsilon_{i}}$ by $\widehat{\varepsilon_{1}}=\varepsilon_{1}$ and

$$
\widehat{\varepsilon_{i+1}}=\max \left(\rho \widehat{\varepsilon_{i}}, \varepsilon_{i+1}\right)
$$

It is seen by induction that $\widehat{\varepsilon_{i}} \geq \varepsilon_{i}$ and that $\widehat{\varepsilon_{i}}$ decreases to a limit $a \geq 0$. If $\widehat{\varepsilon_{i}}=\varepsilon_{i}$ for infinitely many indices i, we have $a=0$. In the opposite case, $\widehat{\varepsilon_{i+1}}=\rho \widehat{\varepsilon_{i}}$ from some index i_{0} onwards, and again $a=0$ since $\rho<1$.

We will take $\rho=1 / 2$ and assume for the sequel that $\varepsilon_{i+1} \geq \varepsilon_{i} / 2$.
Proof of Theorem 3.1, We first construct a subdomain $\Omega=\Omega_{\theta}$ of \mathbb{D} defined by a cuspidal inequality:

$$
\begin{equation*}
\Omega=\{z=x+i y \in \mathbb{D} ;|y|<\theta(1-x), 0<x<1\} \tag{3.1}
\end{equation*}
$$

where $\theta:[0,1] \rightarrow[0,1[$ is a continuous increasing function such that

$$
\begin{equation*}
\theta(0)=0 \quad \text { and } \quad \theta(1-x) \leq 1-x \tag{3.2}
\end{equation*}
$$

Note that since $1-x \leq \sqrt{1-x^{2}}$, the condition $|y|<\theta(1-x)$ implies that $z=x+i y \in \mathbb{D}$. Note also that $1 \in \bar{\Omega}$ and that Ω is a Jordan domain.

We introduce a parameter δ with $\varepsilon_{1} \leq \delta \leq 1-\varepsilon_{1}$. We put:

$$
\begin{equation*}
\theta\left(\delta^{j}\right)=\varepsilon_{j} \delta^{j} \tag{3.3}
\end{equation*}
$$

and we extend θ to an increasing continuous function from $(0,1)$ into itself (piecewise linearly, or more smoothly, as one wishes). We claim that:

$$
\begin{equation*}
\theta(h) \leq h \quad \text { and } \quad \theta(h)=o(h) \text { as } h \rightarrow 0 . \tag{3.4}
\end{equation*}
$$

Indeed, if $\delta^{j+1} \leq h<\delta^{j}$, we have $\theta(h) / h \leq \theta\left(\delta^{j}\right) / \delta^{j+1}=\varepsilon_{j} / \delta$, which is $\leq \varepsilon_{1} / \delta \leq 1$ and which tends to 0 with h.

We define now $\varphi=\varphi_{\theta}: \overline{\mathbb{D}} \rightarrow \bar{\Omega}$ as a continuous map which is a Riemann map from \mathbb{D} onto Ω, and with $\varphi(1)=1$ (a cusp-type map). Since φ is univalent, one has $n_{\varphi}=\mathbb{1}_{\Omega}$, and since Ω is bounded, φ defines a symbol on \mathcal{D}, by (2.7). Moreover, (3.4) implies that $A[S(\xi, h) \cap \Omega] \leq h \theta(h)$ for every $\xi \in \mathbb{T}$; hence, ρ_{φ} being defined in (2.6), one has $\rho_{\varphi}(h)=o\left(h^{2}\right)$ as $h \rightarrow 0^{+}$. In view of [17], this little-oh condition guarantees the compactness of $C_{\varphi}: \mathcal{D} \rightarrow \mathcal{D}$.

It remains to minorate its approximation numbers.
The measure $\mu=n_{\varphi} d A$ is a Carleson measure for the Bergman space \mathfrak{B}, and it was proved in [10] that $C_{\varphi}^{*} C_{\varphi}$ is unitarily equivalent to the Toeplitz operator $T_{\mu}=I_{\mu}^{*} I_{\mu}: \mathfrak{B} \rightarrow \mathfrak{B}$ defined by:

$$
\begin{equation*}
T_{\mu} f(z)=\int_{\mathbb{D}} \frac{f(w)}{(1-\bar{w} z)^{2}} d A(w)=\int_{\mathbb{D}} f(w) K_{w}(z) d A(w) \tag{3.5}
\end{equation*}
$$

where $I_{\mu}: \mathfrak{B} \rightarrow L^{2}(\mu)$ is the canonical inclusion and K_{w} the reproducing kernel of \mathfrak{B} at w, i.e. $K_{w}(z)=\frac{1}{(1-\bar{w} z)^{2}}$.

Actually, we can get rid of the analyticity constraint in considering, instead of T_{μ}, the operator $S_{\mu}=I_{\mu} I_{\mu}^{*}: L^{2}(\mu) \rightarrow L^{2}(\mu)$, which corresponds to the arrows:

$$
L^{2}(\mu) \xrightarrow{I_{\mu}^{*}} \mathfrak{B} \xrightarrow{I_{\mu}} L^{2}(\mu) .
$$

We use the relation (3.5) which implies:

$$
\begin{equation*}
a_{n}\left(C_{\varphi}\right)=a_{n}\left(I_{\mu}\right)=a_{n}\left(I_{\mu}^{*}\right)=\sqrt{a_{n}\left(S_{\mu}\right)} . \tag{3.6}
\end{equation*}
$$

We set:

$$
\begin{equation*}
c_{j}=1-2 \delta^{j} \quad \text { and } \quad r_{j}=\varepsilon_{j} \delta^{j} \tag{3.7}
\end{equation*}
$$

One has $r_{j}=\varepsilon_{j}\left(1-c_{j}\right) / 2$.
Lemma 3.3 The disks $\Delta_{j}=D\left(c_{j}, r_{j}\right), j \geq 1$, are disjoint and contained in Ω.
Proof. If $z=x+i y \in \Delta_{j}$, then $1-x>1-c_{j}-r_{j}=\left(1-c_{j}\right)\left(1-\varepsilon_{j} / 2\right)=$ $2 \delta^{j}\left(1-\varepsilon_{j} / 2\right) \geq \delta^{j}$ and $|y|<r_{j}=\theta\left(\delta^{j}\right)$; hence $|y|<\theta\left(\delta^{j}\right) \leq \theta(1-x)$ and $z \in \Omega$. On the other hand, $c_{j+1}-c_{j}=2\left(\delta^{j}-\delta^{j+1}\right)=2(1-\delta) \delta^{j} \geq 2 \varepsilon_{1} \delta^{j} \geq 2 \varepsilon_{j} \delta^{j}=$ $2 r_{j}>r_{j}+r_{j+1}$; hence $\Delta_{j} \cap \Delta_{j+1}=\emptyset$.

We will next need a description of S_{μ}.
Lemma 3.4 For every $g \in L^{2}(\mu)$ and every $z \in \mathbb{D}$:

$$
\begin{align*}
I_{\mu}^{*} g(z) & =\int_{\Omega} \frac{g(w)}{(1-\bar{w} z)^{2}} d A(w) \tag{3.8}\\
S_{\mu} g(z) & =\left(\int_{\Omega} \frac{g(w)}{(1-\bar{w} z)^{2}} d A(w)\right) \mathbb{I}_{\Omega}(z) . \tag{3.9}
\end{align*}
$$

Proof. K_{w} being the reproducing kernel of \mathfrak{B}, we have for any pair of functions $f \in \mathfrak{B}$ and $g \in L^{2}(\mu)$:

$$
\begin{aligned}
\left\langle I_{\mu}^{*} g, f\right\rangle_{\mathfrak{B}}=\left\langle g, I_{\mu} f\right\rangle_{L^{2}(\mu)} & =\int_{\Omega} g(w) \overline{f(w)} d A(w)=\int_{\Omega} g(w)\left\langle K_{w}, f\right\rangle_{\mathfrak{B}} d A(w) \\
& =\left\langle\int_{\Omega} g(w) K_{w} d A(w), f\right\rangle_{\mathfrak{B}}
\end{aligned}
$$

so that $I_{\mu}^{*} g=\int_{\Omega} g(w) K_{w} d A(w)$, giving the result.
In the rest of the proof, we fix a positive integer n and put:

$$
\begin{equation*}
f_{j}=\frac{1}{r_{j}} \mathbb{I}_{\Delta_{j}}, \quad \quad j=1, \ldots, n \tag{3.10}
\end{equation*}
$$

Let:

$$
E=\operatorname{span}\left(f_{1}, \ldots, f_{n}\right)
$$

This is an n-dimensional subspace of $L^{2}(\mu)$.
The Δ_{j} 's being disjoint, the sequence $\left(f_{1}, \ldots, f_{n}\right)$ is orthonormal in $L^{2}(\mu)$. Indeed, those functions have disjoint supports, so are orthogonal, and:

$$
\int f_{j}^{2} d \mu=\int f_{j}^{2} n_{\varphi} d A=\int_{\Delta_{j}} \frac{1}{r_{j}^{2}} d A=1
$$

We now estimate from below the Bernstein numbers of I_{μ}^{*}. To that effect, we compute the scalar products $m_{i, j}=\left\langle I_{\mu}^{*}\left(f_{i}\right), I_{\mu}^{*}\left(f_{j}\right)\right\rangle$. One has:

$$
\begin{aligned}
m_{i, j} & =\left\langle f_{i}, S_{\mu}\left(f_{j}\right)\right\rangle=\int_{\Omega} f_{i}(z) \overline{S_{\mu} f_{j}(z)} d A(z) \\
& =\iint_{\Omega \times \Omega} \frac{f_{i}(z) \overline{f_{j}(w)}}{(1-w \bar{z})^{2}} d A(z) d A(w) \\
& =\frac{1}{r_{i} r_{j}} \iint_{\Delta_{i} \times \Delta_{j}} \frac{1}{(1-w \bar{z})^{2}} d A(z) d A(w) .
\end{aligned}
$$

Lemma 3.5 We have

$$
\begin{equation*}
m_{i, i} \geq \frac{\varepsilon_{i}^{2}}{32}, \quad \text { and } \quad\left|m_{i, j}\right| \leq \varepsilon_{i} \varepsilon_{j} \delta^{j-i} \quad \text { for } i<j \tag{3.11}
\end{equation*}
$$

Proof. Set $\varepsilon_{i}^{\prime}=\frac{r_{i}}{1-c_{i}^{2}}=\frac{\varepsilon_{i}}{2\left(1+c_{i}\right)}$. One has $\frac{\varepsilon_{i}}{4} \leq \varepsilon_{i}^{\prime} \leq \frac{\varepsilon_{i}}{2}$. We observe that (recall that $\left.A\left(\Delta_{i}\right)=r_{i}^{2}\right)$:

$$
m_{i, i}-\varepsilon_{i}^{\prime 2}=\frac{1}{r_{i}^{2}} \iint_{\Delta_{i} \times \Delta_{i}}\left[\frac{1}{(1-w \bar{z})^{2}}-\frac{1}{\left(1-c_{i}^{2}\right)^{2}}\right] d A(z) d A(w)
$$

Therefore, using the fact that, for $z \in \Delta_{i}$ and $w \in \mathbb{D}$:
$|1-w \bar{z}| \geq 1-|z| \geq 1-c_{i}-r_{i}=1-c_{i}-\varepsilon_{i}\left(\frac{1-c_{i}}{2}\right) \geq\left(1-c_{i}\right)\left(1-\frac{\varepsilon_{i}}{2}\right) \geq \frac{1-c_{i}}{2}$
and then the mean-value theorem, we get:

$$
\begin{aligned}
\left|m_{i, i}-\varepsilon_{i}^{\prime 2}\right| & \leq \frac{1}{r_{i}^{2}} \iint_{\Delta_{i} \times \Delta_{i}}\left|\frac{1}{(1-w \bar{z})^{2}}-\frac{1}{\left(1-c_{i}^{2}\right)^{2}}\right| d A(z) d A(w) \\
& \leq \frac{1}{r_{i}^{2}} \iint_{\Delta_{i} \times \Delta_{i}} \frac{32 r_{i}}{\left(1-c_{i}\right)^{3}} d A(z) d A(w) \\
& =\frac{32 r_{i}^{3}}{\left(1-c_{i}\right)^{3}} \leq 32 \times 8{\varepsilon_{i}^{\prime}}^{3} \leq \frac{\varepsilon_{i}^{\prime 2}}{2}
\end{aligned}
$$

since $\varepsilon_{i} \leq \varepsilon_{1} \leq 2^{-8}$ implies that $\varepsilon_{i}^{\prime} \leq 1 /(32 \times 16)$. This gives us the lower bound $m_{i, i} \geq \varepsilon_{i}^{\prime 2} / 2 \geq \varepsilon_{i}^{2} / 32$.

Next, for $i<j$:

$$
\begin{aligned}
\left|m_{i, j}\right| & \leq \frac{1}{r_{i} r_{j}} \iint_{\Delta_{i} \times \Delta_{j}}\left|\frac{1}{(1-w \bar{z})^{2}}\right| d A(z) d A(w) \leq \frac{1}{r_{i} r_{j}} \frac{4}{\left(1-c_{i}\right)^{2}} r_{i}^{2} r_{j}^{2} \\
& =\frac{4 \varepsilon_{i} \varepsilon_{j} \delta^{i+j}}{4 \delta^{2 i}}=\varepsilon_{i} \varepsilon_{j} \delta^{j-i}
\end{aligned}
$$

and that ends the proof of Lemma 3.5
We further write the $n \times n$ matrix $M=\left(m_{i, j}\right)_{1 \leq i, j \leq n}$ as $M=D+R$ where D is the diagonal matrix $m_{i}=m_{i, i}$ with $m_{i} \geq \frac{\varepsilon_{i}^{2}}{32}, 1 \leq i \leq n$. Observe that M is nothing but the matrix of S_{μ} on the orthonormal basis $\left(f_{1}, \ldots, f_{n}\right)$ of E, so that we can identify M and S_{μ} on E.

Now the following lemma will end the proof of Theorem 3.1
Lemma 3.6 If $\delta \leq 1 / 200$, we have:

$$
\begin{equation*}
\left\|D^{-1} R\right\| \leq 1 / 2 \tag{3.12}
\end{equation*}
$$

Indeed, by the ideal property of Bernstein numbers, Neumann's lemma and the relations:

$$
M=D\left(I+D^{-1} R\right), \quad \text { and } \quad D=M Q \quad \text { with } \quad\|Q\| \leq 2
$$

we have $b_{n}(D) \leq b_{n}(M)\|Q\| \leq 2 b_{n}(M)$, that is:

$$
a_{n}\left(S_{\mu}\right)=b_{n}\left(S_{\mu}\right) \geq b_{n}(M) \geq \frac{b_{n}(D)}{2}=\frac{m_{n, n}}{2} \geq \frac{\varepsilon_{n}^{2}}{64}
$$

since the n first approximation numbers of the diagonal matrix D (the matrices being viewed as well as operators on the Hilbertian space \mathbb{C}^{n} with its canonical basis) are $m_{1,1}, \ldots, m_{n, n}$. It follows that, using (3.6):

$$
\begin{equation*}
a_{n}\left(I_{\mu}\right)=a_{n}\left(I_{\mu}^{*}\right)=\sqrt{a_{n}\left(S_{\mu}\right)} \geq \frac{\varepsilon_{n}}{8} . \tag{3.13}
\end{equation*}
$$

In view of (3.6), we have as well $a_{n}\left(C_{\varphi}\right) \geq \varepsilon_{n} / 8$, and we are done.
Proof of Lemma 3.6. Write $M=\left(m_{i, j}\right)=D(I+N)$ with $N=D^{-1} R$. One has:

$$
\begin{equation*}
N=\left(\nu_{i, j}\right), \quad \text { with } \quad \nu_{i, i}=0 \quad \text { and } \quad \nu_{i, j}=\frac{m_{i, j}}{m_{i, i}} \text { for } j \neq i \tag{3.14}
\end{equation*}
$$

We shall show that $\|N\| \leq 1 / 2$ by using the (unweighted) Schur test, which we recall (6, Problem 45):
Proposition 3.7 Let $\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ be a matrix of complex numbers. Suppose that there exist two positive numbers $\alpha, \beta>0$ such that:

1. $\sum_{j=1}^{n}\left|a_{i, j}\right| \leq \alpha$ for all i;
2. $\sum_{i=1}^{n}\left|a_{i, j}\right| \leq \beta$ for all j.

Then, the (Hilbertian) norm of this matrix satisfies $\|A\| \leq \sqrt{\alpha \beta}$.

It is essential for our purpose to note that:

$$
\begin{align*}
i<j & \Longrightarrow\left|\nu_{i, j}\right| \leq 32 \delta^{j-i} \tag{3.15}\\
i>j & \Longrightarrow \quad\left|\nu_{i, j}\right| \leq 32(2 \delta)^{i-j} \tag{3.16}
\end{align*}
$$

Indeed, we see from (3.11) and (3.14) that, for $i<j$:

$$
\left|\nu_{i, j}\right|=\frac{\left|m_{i, j}\right|}{m_{i, i}} \leq 32 \varepsilon_{i} \varepsilon_{j} \varepsilon_{i}^{-2} \delta^{j-i} \leq 32 \delta^{j-i}
$$

since $\varepsilon_{j} \leq \varepsilon_{i}$. Secondly, using $\varepsilon_{j} / \varepsilon_{i} \leq 2^{i-j}$ for $i>j$ (recall that we assumed that $\left.\varepsilon_{k+1} \geq \varepsilon_{k} / 2\right)$, as well as $\left|m_{i, j}\right|=\left|m_{j, i}\right|$, we have, for $i>j$:

$$
\left|\nu_{i, j}\right|=\frac{\left|m_{j, i}\right|}{m_{i, i}} \leq 32 \frac{\varepsilon_{j}}{\varepsilon_{i}} \delta^{i-j} \leq 32(2 \delta)^{i-j} .
$$

Now, for fixed i, (3.15) gives:

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\nu_{i, j}\right| & =\sum_{j>i}\left|\nu_{i, j}\right|+\sum_{j<i}\left|\nu_{i, j}\right| \leq 32\left(\sum_{j>i} \delta^{j-i}+\sum_{j<i}(2 \delta)^{i-j}\right) \\
& \leq 32\left(\frac{\delta}{1-\delta}+\frac{2 \delta}{1-2 \delta}\right) \leq 32 \frac{3 \delta}{1-2 \delta} \leq \frac{96}{198} \leq \frac{1}{2}
\end{aligned}
$$

since $\delta \leq 1 / 200$. Hence:

$$
\begin{equation*}
\sup _{i}\left(\sum_{j}\left|\nu_{i, j}\right|\right) \leq 1 / 2 . \tag{3.17}
\end{equation*}
$$

In the same manner, but using (3.16) instead of (3.15), one has:

$$
\begin{equation*}
\sup _{j}\left(\sum_{i}\left|\nu_{i, j}\right|\right) \leq 1 / 2 . \tag{3.18}
\end{equation*}
$$

Now, (3.17), (3.18) and the Schur criterion recalled above give:

$$
\|N\| \leq \sqrt{1 / 2 \times 1 / 2}=1 / 2
$$

as claimed.

Remark. We could reverse the point of view in the preceding proof: start from θ and see what lower bound for $a_{n}\left(C_{\varphi}\right)$ emerges. For example, if $\theta(h) \approx h$ as is the case for lens maps (see [11]), we find again that $a_{n}\left(C_{\varphi}\right) \geq \delta_{0}>0$ and that C_{φ} is not compact. But if $\theta(h) \approx h^{1+\alpha}$ with $\alpha>0$, the method only gives $a_{n}\left(C_{\varphi}\right) \gtrsim \mathrm{e}^{-\alpha n}$ (which is always true: see [11], Theorem 2.1), whereas the methods of [11] easily give $a_{n}\left(C_{\varphi}\right) \gtrsim \mathrm{e}^{-\alpha \sqrt{n}}$. Therefore, this μ-method seems to be sharp when we are close to non-compactness, and to be beaten by those of [11] for "strongly compact" composition operators.

3.1 Optimality of the EKSY result

El Fallah, Kellay, Shabankhah and Youssfi proved in 5] the following: if φ is a Schur function such that $\varphi \in \mathcal{D}$ and $\left\|\varphi^{p}\right\|_{\mathcal{D}}=O(1)$ as $p \rightarrow \infty$, then φ is a symbol on \mathcal{D}. We have the following theorem, already stated in the Introduction, which shows the optimality of their result.

Theorem 3.8 Let $\left(M_{p}\right)_{p \geq 1}$ be an arbitrary sequence of positive numbers such that $\lim _{p \rightarrow \infty} M_{p}=\infty$. Then, there exists a Schur function $\varphi \in \mathcal{D}$ such that:

1) $\left\|\varphi^{p}\right\|_{\mathcal{D}}=O\left(M_{p}\right)$ as $p \rightarrow \infty$;
2) φ is not a symbol on \mathcal{D}.

Remark. We first observe that we cannot replace lim by limsup in Theorem3.8 Indeed, since $\varphi \in \mathcal{D}$, the measure $\mu=n_{\varphi} d A$ is finite, and

$$
\left\|\varphi^{p}\right\|_{\mathcal{D}}^{2}=p^{2} \int_{\mathbb{D}}|w|^{2 p-2} d \mu(w) \geq c p^{2}\left(\int_{\mathbb{D}}|w|^{2} d \mu(w)\right)^{p-1} \geq c \delta^{p}
$$

where c and δ are positive constants.
Proof of Theorem 3.8. We may, and do, assume that $\left(M_{p}\right)$ is non-decreasing and integer-valued. Let $\left(l_{n}\right)_{n \geq 1}$ be an non-decreasing sequence of positive integers tending to infinity, to be adjusted. Let Ω be the subdomain of the right half-plane \mathbb{C}_{0} defined as follows. We set:

$$
\varepsilon_{n}=-\log \left(1-2^{-n}\right) \sim 2^{-n}
$$

and we consider the (essentially) disjoint boxes $(k=0,1, \ldots)$:

$$
B_{k, n}=B_{0, n}+2 k \pi i
$$

with:

$$
B_{0, n}=\left\{u \in \mathbb{C} ; \varepsilon_{n+1} \leq \mathfrak{R e} u \leq \varepsilon_{n} \text { and }|\Im \mathrm{m} u| \leq 2^{-n} \pi\right\}
$$

as well as the union

$$
T_{n}=\bigcup_{0<k<l_{n}} B_{k, 2 n}
$$

which is a kind of broken tower above the "basis" $B_{0,2 n}$ of even index.
We also consider, for $1 \leq k \leq l_{n}-1$, very thin vertical pipes $P_{k, n}$ connecting $B_{k, 2 n}$ and $B_{k-1,2 n}$, of side lengths $4^{-2 n}$ and $2 \pi\left(1-2^{-2 n}\right)$ respectively:

$$
P_{k, n}=P_{0, n}+2 k \pi i
$$

and we set:

$$
P_{n}=\bigcup_{1 \leq k<l_{n}} P_{k, n}
$$

Finally, we set:

$$
F=\left(\bigcup_{n=2}^{\infty} B_{0, n}\right) \cup\left(\bigcup_{n=1}^{\infty} T_{n}\right) \cup\left(\bigcup_{n=1}^{\infty} P_{n}\right)
$$

and:

$$
\Omega=\stackrel{\circ}{F}
$$

Then Ω is a simply connected domain. Indeed, it is connected thanks to the $B_{0, n}$ and the P_{n}, since the $P_{k, n}$ were added to ensure that. Secondly, its unbounded complement is connected as well, since we take one value of n out of two in the union of sets $B_{k, n}$ defining F.

Let now $f: \mathbb{D} \rightarrow \Omega$ be a Riemann map, and $\varphi=\mathrm{e}^{-f}: \mathbb{D} \rightarrow \mathbb{D}$.
We introduce the Carleson window $W=W(1, h)$ defined as:

$$
W(1, h)=\{z \in \mathbb{D} ; 1-h \leq|z|<1 \text { and }|\arg z|<\pi h\} .
$$

This is a variant of the sets $S(1, h)$ of Section 2. We also introduce the HastingsLuecking half-windows W_{n}^{\prime} defined by:

$$
W_{n}^{\prime}=\left\{z \in \mathbb{D} ; 1-2^{-n}<|z|<1-2^{-n-1} \text { and }|\arg z|<\pi 2^{-n}\right\}
$$

We will also need the sets:

$$
E_{n}=\mathrm{e}^{-\left(T_{n} \cup B_{0,2 n+1} \cup P_{n}\right)}=\mathrm{e}^{-\left(B_{0,2 n} \cup B_{0,2 n+1} \cup P_{0, n}\right)},
$$

for which one has:

$$
\varphi(\mathbb{D}) \subseteq \bigcup_{n=1}^{\infty} E_{n}
$$

Next, we consider the measure $\mu=n_{\varphi} d A$, and a Carleson window $W=$ $W(1, h)$ with $h=2^{-2 N}$. We observe that $W_{2 N}^{\prime} \subseteq W$ and claim that:

Lemma 3.9 One has:

1) $w \in W_{2 N}^{\prime} \quad \Longrightarrow \quad n_{\varphi}(w) \geq l_{N}$;
2) $\left\|\varphi^{p}\right\|_{\mathcal{D}}^{2} \lesssim p^{2} \sum_{n=1}^{\infty} l_{n} 16^{-n} \mathrm{e}^{-p 4^{-n}}$.

Proof of Lemma 3.9, 1) Let $w=r \mathrm{e}^{i \theta} \in W_{2 N}^{\prime}$ with $1-2^{-2 N}<r<1-2^{-2 N-1}$ and $|\theta|<\pi 2^{-2 N}$. As $-(\log r+i \theta) \in B_{0,2 N}$, one has $-(\log r+i \theta)=f\left(z_{0}\right)$ for some $z_{0} \in \mathbb{D}$. Similarly, $-(\log r+i \theta)+2 k \pi i$, for $1 \leq k<l_{N}$, belongs to $B_{k, 2 N}$ and can be written as $f\left(z_{k}\right)$, with $z_{k} \in \mathbb{D}$. The z_{k} 's, $0 \leq k<l_{N}$, are distinct and satisfy $\varphi\left(z_{k}\right)=\mathrm{e}^{-f\left(z_{k}\right)}=\mathrm{e}^{-f\left(z_{0}\right)}=w$ for $0 \leq k<l_{N}$, thanks to the $2 \pi i$-periodicity of the exponential function.
2) We have $A\left(E_{n}\right) \lesssim \mathrm{e}^{-2 \varepsilon_{2 n+2}} 4^{-2 n} \leq 4^{-2 n}$ (the term $\mathrm{e}^{-2 \varepsilon_{2 n+2}}$ coming from the Jacobian of e^{-z}) and we observe that

$$
w \in E_{n} \quad \Longrightarrow \quad|w|^{2 p-2} \leq\left(1-2^{-2 n-1}\right)^{2 p-2} \lesssim \mathrm{e}^{-p 4^{-n}}
$$

It is easy to see that $n_{\varphi}(w) \leq l_{n}$ for $w \in E_{n}$; thus we obtain, forgetting the constant term $|\varphi(0)|^{2 p} \leq 1$, using (2.5) and keeping in mind the fact that $n_{\varphi}(w)=0$ for $w \notin \varphi(\mathbb{D})$:

$$
\begin{aligned}
\left\|\varphi^{p}\right\|_{\mathcal{D}}^{2} & =p^{2} \int_{\varphi(\mathbb{D})}|w|^{2 p-2} n_{\varphi}(w) d A(w) \\
& \leq p^{2}\left(\sum_{n=1}^{\infty} \int_{E_{n}}|w|^{2 p-2} n_{\varphi}(w) d A(w)\right) \\
& \leq p^{2}\left(\sum_{n=1}^{\infty} \int_{E_{n}}|w|^{2 p-2} l_{n} d A(w)\right) \\
& \lesssim p^{2} \sum_{n=1}^{\infty} l_{n} 16^{-n} \mathrm{e}^{-p 4^{-n}}
\end{aligned}
$$

ending the proof of Lemma 3.9.
End of the proof of Theorem 3.8. Note that, as a consequence of the first part of the proof of Lemma 3.9, one has

$$
\mu(W) \geq \mu\left(W_{2 N}^{\prime}\right)=\int_{W_{2 N}^{\prime}} n_{\varphi} d A \geq l_{N} A\left(W_{2 N}^{\prime}\right) \gtrsim l_{N} h^{2}
$$

which implies that $\sup _{0<h<1} h^{-2} \mu[W(1, h)]=+\infty$ and shows that C_{φ} is not bounded on \mathcal{D} by Zorboska's criterion ([17], Theorem 1), recalled in (2.7).

It remains now to show that we can adjust the non-decreasing sequence of integers $\left(l_{n}\right)$ so as to have $\left\|\varphi^{p}\right\|_{\mathcal{D}}=O\left(M_{p}\right)$. To this effect, we first observe that, if one sets $F(x)=x^{2} \mathrm{e}^{-x}$, we have:

$$
p^{2} \sum_{n=1}^{\infty} 16^{-n} \mathrm{e}^{-p 4^{-n}}=\sum_{n=1}^{\infty} F\left(\frac{p}{4^{n}}\right) \lesssim 1
$$

Indeed, let s be the integer such that $4^{s} \leq p<4^{s+1}$. We have:

$$
\sum_{n=1}^{\infty} F\left(\frac{p}{4^{n}}\right) \lesssim \sum_{n=1}^{s} \frac{4^{n}}{p}+\sum_{n>s} F\left(4^{-(n-s-1)}\right) \lesssim 1+\sum_{n=0}^{\infty} F\left(4^{-n}\right)<\infty
$$

where we used that F is increasing on $(0,1)$ and satisfies $F(x) \lesssim \min \left(x^{2}, 1 / x\right)$ for $x>0$. We finally choose the non-decreasing sequence $\left(l_{n}\right)$ of integers as:

$$
l_{n}=\min \left(n, M_{n}^{2}\right)
$$

In view of Lemma 3.9 and of the previous observation, we obtain:

$$
\begin{aligned}
\left\|\varphi^{p}\right\|_{\mathcal{D}}^{2} & \lesssim p^{2} \sum_{n=1}^{\infty} 16^{-n} \mathrm{e}^{-p 4^{-n}} l_{n} \\
& \leq p^{2} \sum_{n=1}^{p} 16^{-n} \mathrm{e}^{-p 4^{-n}} l_{p}+p^{2} \sum_{n>p} 16^{-n} l_{n} \\
& \lesssim l_{p}+p^{2} \sum_{n>p} 4^{-n} \lesssim l_{p}+p^{2} 4^{-p} \lesssim M_{p}^{2}
\end{aligned}
$$

as desired. This choice of $\left(l_{n}\right)$ gives us an unbounded composition operator on \mathcal{D} such that $\left\|\varphi^{p}\right\|_{\mathcal{D}}=O\left(M_{p}\right)$, which ends the proof of Theorem 3.8

References

[1] N. Arcozzi, R. Rochberg, E. T. Sawyer and B. D. Wick, The Dirichlet space: a survey, New York J. Math. 17A (2011), 45-86.
[2] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, vol. 98 (1990).
[3] T. Carroll and C. Cowen, Compact composition operators not in the Schatten classes, J. Oper. Theory, no. 26 (1991), 109-120.
[4] C. Cowen and B. MacCluer, Composition operators on spaces of analytic functions, CRC Press (1994).
[5] O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi, Level sets and composition operators on the Dirichlet space, J. Funct. Anal. 260, no. 6 (2011), 1721-1733.
[6] P. Halmos, A Hilbert space problem book, Second Edition, Graduate Texts in Mathematics 19, Springer-Verlag (1982).
[7] W. H. Hastings, A Carleson theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241.
[8] P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza, Compact composition operators on Bergman-Orlicz spaces, Trans. Amer. Math. Soc. 365, no. 8 (2013), 3943-3970.
[9] P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza, Some new properties of composition operators associated to lens maps, Israel J. Math. 195, no. 2 (2013), 801-824.
[10] P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza, Compact composition operators on the Dirichlet space and capacity of sets of contact points, J. Funct. Anal. 264 (2013), no. 4, 895-919.
[11] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Approximation numbers of composition operators on the Dirichlet space, Arkiv för Mat. doi. 10.1007/s11512-013-0194-z
[12] D. Li, H. Queffélec and L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164, no. 4 (2012), 431-459.
[13] D. Li, H. Queffélec and L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators on the Hardy space, Ann. Acad. Sci. Fenn. Math., Vol. 38 (2013), 1-18.
[14] B. MacCluer and J. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38, no. 4 (1986), 878-906.
[15] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201-223.
[16] W. T. Ross, The classical Dirichlet space, Recent advances in operatorrelated function theory, 171-197, Contemp. Math. 393, Amer. Math. Soc., Providence, RI (2006).
[17] N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126, no. 7 (1998), 2013-2023.

Daniel Li, Univ Lille Nord de France,
U-Artois, Laboratoire de Mathématiques de Lens EA 2462
\& Fédération CNRS Nord-Pas-de-Calais FR 2956,
Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18, F-62 300 LENS, FRANCE
daniel.li@euler.univ-artois.fr
Hervé Queffélec, Univ Lille Nord de France,
USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 \& Fédération CNRS Nord-Pas-de-Calais FR 2956, F-59 655 VILLENEUVE D'ASCQ Cedex, FRANCE
Herve.Queffelec@univ-lille1.fr
Luis Rodríguez-Piazza, Universidad de Sevilla,
Facultad de Matemáticas, Departamento de Análisis Matemático \& IMUS,
Apartado de Correos 1160,
41080 SEVILLA, SPAIN
piazza@us.es

[^0]: *Supported by a Spanish research project MTM 2012-05622.

