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students such as Aldo González Lorenzo or from other doctors like Pawe l
Pilarczyk without whose help it would have been impossible to adapt the
algorithm suitable for the calculation of Smith’s Normal Form; but it is
equally inestimable the emotional help, understanding and effort made by
all those who have understood my absences and dedication to this work. In
particular, I want to thank the understanding received by my wife without
whose help I would not have been able to face this thesis. Last but not
least, I can not miss the opportunity to apologize to all those who have
received less attention from the accustomed and especially my son born in
the course of the development of this dissertation.

To all of them, thank you very much.





Contents

Contents i

List of Figures iii

1 Introduction 1

2 Overview of algebraic topology 3
2.1 General Topology . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Algebraic Topology . . . . . . . . . . . . . . . . . . . . . . . 5

3 Parallelization strategy for homological calculation based
on membrane computing 25
3.1 Membrane computing . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Encoding images as cubical complexes and cubes as tuples . 30
3.3 Membrane computing implementation of homological calcu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . 45

4 Parallel calculation of an AM-model for a nD digital object 47
4.1 Parallel calculation of GVF in cubical complexes . . . . . . . 47
4.2 Parallel calculation of an AM-model for a cubical complex . 49
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Advanced (co)homological information extraction from
digital objects 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 (Co)homology information from AM-model . . . . . . . . . . 58
5.3 Cohomology operations from AM-model . . . . . . . . . . . 60
5.4 Conclusions to the chapter . . . . . . . . . . . . . . . . . . . 61

6 Implementation and experimentation 63
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 63

i



6.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Empirical complexity analysis . . . . . . . . . . . . . . . . . 76
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79

ii



List of Figures

2.1 Example of cubical complex . . . . . . . . . . . . . . . . . . . . 13
2.2 Discrete vector field . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Example of homology group calculation in a cubical complex. . 39

6.1 Simplicial structure on the Klein bottle . . . . . . . . . . . . . . 70
6.2 Acyclic vector field on the Klein bottle . . . . . . . . . . . . . . 70
6.3 Acyclic vector field on the Klein bottle from an AM-model . . . 71
6.4 Cubical complex decomposition of Bing’s house . . . . . . . . . 74
6.5 Cubical decomposition of torus. . . . . . . . . . . . . . . . . . . 75
6.6 Homology generators at dimension 1 . . . . . . . . . . . . . . . 75
6.7 Empirical complexity graph for 2, 3 and 4 dimensional complexes 77

iii





Abstract

Digital objects are finite subsets of n-xels within a n-dimensional
digital image. The study of the connectivity of these objects,
interpreted from a discrete, subdivided or continuous way, has been
a priority issue from the very beginning of Digital Imagery. The
topological tools that have been exhaustively used in this setting
are the notions of connected component, simple point and Euler
characteristic. Others topological invariants with a recent increasing
popularity are (co)homology groups of digital objects treated as cell
complexes. In this thesis, we propose parallelization strategies based
on extraction methods of (co)homological information, like Discrete
Morse Theory, Effective Homology or AT-model.

The first approach is related with Natural Computing, which
is a fruitful research area that provides interesting approaches
to computational problems inspiring in the way that Nature
“computes”. Concretely, we use Membrane Computing, which
summarizes with computational rules, the manner living cells work.
This area has provided interesting results in theoretical and applied
works. The application of these ideas to the process of calculating
(co)homology groups of digital objects allows us to develop better
algorithms as it brings a natural parallelization of the algorithms
implemented in Membrane Computing.

Nowadays, there is no current device capable of executing
Membrane Computing algorithms, hence the previous processes
need to be adapted to be executed by ordinary computing devices.
Therefore, in this thesis we present a set of algorithms that provides
a compact representation, optimal in some way, of a digital object
along with a bidirectional transformation that allows us to compute
not only the (co)homology groups but compute some algebraic
invariants or operation involving (co)homology classes which can be
used as intrinsic information of the digital object.

The work presented in this thesis focuses in two main contri-
butions. The first of all is related with Natural Computing. We
present a Membrane Computing framework used to make easier the
development of Membrane Computing algorithms in Computational
Algebraic Topology. This framework is strongly connected with Dis-
crete Morse Theory.

The second main contribution is the application of the framework
mentioned above for developing a parallel algorithm used to compute
a reduction from a cubical cell complex to a CW complex with a
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minimal amount of cells. This reduction makes the extraction of
(co)homological information simpler. This algorithm focus on n-
dimensional cubical complexes and uses Z as the ground ring, which
makes it useful for computing torsion.

Resumen

Un objeto digital es un conjunto de n-xels en de una imagen dig-
ital n-dimensional. El estudio de la conectividad de estos objetos,
interpretados de manera discreta, subdividida o continua, ha sido
una custión prioritaria desde los inicios del tratamiento de Imagen
Digital. Las herramientas topológicas que se han usado exhaustiva-
mente en esta tarea son las nociones de componente conexa, punto
simple o la caracteŕıstica de Euler. Otros invariantes topológicos
con una creciente popularidad son los grupos de (co)homoloǵıa de
objetos digitales tratados como complejos celulares. En esta tesis
proponemos estrategias de paralelización basadas en métodos de ex-
tracción de información (co)homológica como la Teoŕıa Discreta de
Morse, la homoloǵıa efectiva o los modelos AM.

La primera aproximación que realizamos está relacionada
con la Computación Natural, que es un área de investigación
fruct́ıfera que proporciona formas interesantes de abordar problemas
computacionales inspirándose en la forma en la que la Naturaleza
“computa”. Concretamente, usamos Computación con Membranas,
que resume mediante reglas de computación, la manera en la que
trabajan las células de los seres vivos. Este área ha proporcionado
resultados interesantes en trabajos teóricos y aplicados. La
aplicación de estas ideas al proceso de cálculo de los grupos de
(co)homoloǵıa de objetos digitales nos permite desarrollar mejores
algoritmos, ya que los algoritmos de Computación con Membranas
son naturalmente paralelos.

En la actualidad no existe ningún dispositivo capaz de ejecutar
(no emular) algoritmos de Computación con Membranas, por lo que
los algoritmos citados anteriormente necesitan ser adaptados para su
ejecución en dispositivos de computación ordinarios. De esta manera,
en esta tesis presentamos una serie de algoritmos que proporcionan
una representación compacta, de alguna manera óptima, de un
objeto digital junto con una transformación bidireccional que nos
permite no solo calcular los grupos de (co)homoloǵıa sino computar
algunos invariantes algebraicos mediante operaciones que involucren
clases de (co)homoloǵıa que puedan usarse como información
intŕınseca del objeto digital.
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El trabajo presentado en esta tesis se centra fundamentalmente
en dos contribuciones. La primera de ellas está relacionada
con la Computación Natural. Presentamos un marco de trabajo
en Computación con Membranas usado para hacer más fácil el
desarrollo de algoritmos en Computación con Membranas sobre
Topoloǵıa Algebraica Computacional. Este marco de trabajo está
fuertemente relacionado con la Teoŕıa Discreta de Morse.

La segunda contribución principal es la aplicación del marco de
trabajo anterior para desarrollar un algoritmo paralelo que compute
una reducción de un complejo celular cúbico en un CW complejo
con una cantidad minimal de celdas, esta reducción hace que la
extracción de información (co)homológica sea más simple. Este
algoritmo se centra en complejos cúbicos n-dimensionales y usa Z
como anillo base, lo que lo convierte en una herramienta muy útil
para el cálculo de la torsión.
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CHAPTER 1
Introduction

The understanding of a digital object is not only determined by the
knowledge of its geometry, given by its volume, its curvature or some other
geometrical characteristic, but a deeper knowledge that remains unaltered
by continuous deformations is preferable. In this case the topology presents
a fundamental framework. In this case the key aspect is not how close are
two points (geometric information given by a metric) but it is the relation
of proximity in itself what matters. The connectivity information appears
in this case.

Some connectivity information is given by connected components,
tunnels, voids and in general, by any part that encloses a void like the one
enclosed by a sphere of some dimension. This topo-geometric idea appears
unclear, since it refers to something that does not exist in the given space
and is perceived via confrontation to an ambient space. However, a digital
object is conceived as an abstract entity in an aseptical and independent
manner of the ambiance in which, actually, it lives on. Therefore it is
necessary to define holes, which do not exist in space, through information
provided by the space. This information is detailed by the homology groups.

On the other hand, cohomology generators in some sense represent
cutting paths by which a digital object can be cut so that a hole disappears.
There must be somehow a cohomology generator for each homology
generator in order to make them disappear1.

(Co)homology groups are commonly computed by algebraic means. Its

1This idea could be thought as an intuitive version of the Universal Coefficient
Theorem on cohomology.
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computation involves a large number of calculations that, in digital objects
coming from real applications, require working with a huge amount of data.

This work shows a solution to the problem of extracting (co)homological
information in a way that allows an improvement in its performance
by exploiting the massive parallelism present in the GPUs of today’s
computers. At the same time it focuses on applications of these ideas to
n-dimensional complexes. The usual (co)homological study is centered on
objects in R3 or in the use of Z2 as coefficients ring. In both cases it is
achieved that the (co)homology groups are free, i.e. the information of the
torsion subgroups is lost.

The solution presented in this dissertation is based on the key concept
of reduction. This algebraic object represents a transformation of the chain
complex associated to a digital object in another chain complex with the
minimum information to represent (co)homology. These reductions also
make visible the ”geometric” process that allows to obtain, from a homotopy
point of view, the reduced complex from the original one. This process can
be reversed to allow a reconstruction of the original object from the reduced
information.

This dissertation is organized as follows. Chapter 2 reviews fundamental
topological concepts. In chapter 3 a bioinspired strategy is presented to
parallelize the extraction of homological information from digital objects.
Next is shown how to extract advanced (co)homological information from
digital objects from a mimimal reduction of the chain complex associated
with the digital object. Finally, several practical cases of application are
presented and the implementation of the proposed algorithms in a real
prototype is discussed.
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CHAPTER 2
Overview of algebraic topology

In this chapter, some required concepts of Topology and Algebraic Topology
will be reviewed.

2.1 General Topology

Topology is the branch of mathematics devoted to the study of the
properties of spaces which are preserved under continuous deformations.
In this section we recall some concepts in this area.

Definition 2.1 (Topological Space).
A topological space is a pair (X, T ) where X is a set and T ⊂ 2X is a family
of subsets of X, called open sets, which satisfies the following conditions:

(a) {∅, X} ⊂ T : both empty set and the whole space X are open sets.

(b) For any family {Ai : i ∈ Λ} of open sets, its union
⋃
i∈ΛAi is open.

(c) For any finite family {Ai : 1 ≤ i ≤ n} of open sets, its intersection⋂n
i=1 Ai is open.

As an example, the Euclidean space Rn is a topological space with the
Euclidean topology E = {A ⊂ Rn|A =

⋃
i∈Λ B(xi, ri)} where B(x, r) ={

y ∈ Rn
∣∣∣√∑n

i=1(yi − x2
i ) < r

}
is the open ball centred at x with radius r.

Basically, open Euclidean sets are those who can be expressed as the union
of a family of open balls.
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Any subset of a topological space (X, T ) is, itself, a topological space
using the so called relative topology.

Definition 2.2 (Relative topology).
Let (X, T ) be a topological space and U ⊂ X. The relative topology TU is
defined as:

TU = {A ∩ U |A ∈ T }

Definition 2.3 (Continuous map).
A map f : X → Y between two topological spaces (X, TX) and (Y, TY ) is
continuous if for all A ∈ TY , f−1(A) ∈ TX .

The usual way of working in Mathematics involves the definition of
objects, relation (maps) between them and a relation of equality among
spaces. In Topology, the equality relation is given by homeomorphisms.

Definition 2.4 (Homeomorphism).
An homemorphism f : X → Y between two topological spaces is a bijective
continuous map with continuous inverse. In this case, X and Y are called
homeomorphic spaces.

Topological properties are those properties that remain unchanged by
homeomorphisms.

Definition 2.5 (Homotopic maps).
Two continuous map f : X → Y and g : X → Y are homotopic, f ' g,
if there is a continuous map F : X × [0, 1] → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x). The map F is called a homotopy. Two topological
spaces X and Y are homotopy equivalent if there exist two continuous map
f : X → Y and g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X .

Finding whether two spaces are homeomorphic is, in general, a very
hard problem. On the other hand, the relation of ”equality” induced by
homotopy equivalence relaxes the exigences of homeomorphism at the same
time it remain unchanged many interested properties of topological spaces.
For example, R × {0} and R × {0} ∪ {0} × R are two subspaces of the
Euclidean plane which are homotopy equivalent but not homeomorphic.
The homotopy equivalence is intuitively viewed as one copy of R retracting
to a point. However, the “cross”-like set is not homeomorphic to the line as
the former has all of it points as cut point of degree two, i.e. removing any
of its points leave two connected components, while the later has one point
of degree four, and this property is conserved under homeomorphisms.
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2.2 Algebraic Topology

To find out whether two topological spaces are homeomorphic is sometimes
an impossible task. It is preferable to find some properties that remain
unchanged under suitable maps and such that they allow to differentiate
both spaces. In other words, if both spaces have different values in some
property then it can be said that those spaces cannot be the same. Algebraic
Topology studies how an algebraic object (called algebraic invariant) can
be assigned to any topological space such that homotopy equivalent spaces
have isomorphic objects. Therefore, this algebraic property of spaces allows
to differentiate them.

One of very first algebraic invariant is the fundamental group of a
topological space.

The fundamental group

The fundamental group of a space X will be defined so that its elements
are loops in X starting and ending at a fixed basepoint x0 ∈ X , but two
such loops are regarded as being the same if one loop can be continuously
deformed to the other within the space X . (All loops that occur during
deformations must also start and end at x0.)

Definition 2.6 (Path).
A path in a space X is a continuous map γ : I = [0, 1] ⊂ R→ X.

Two paths will be considered the same if they are homotopic as
continuous maps between topological spaces.

As show in Proposition 1.2 in [16], the relation of homotopy on paths
with fixed endpoints in any space is an equivalence relation.

The equivalence class of a path γ under the equivalence relation of
homotopy will be denoted [γ] and called the homotopy class of γ.

Given two paths γ1, γ2 : I → X such that γ1(1) = γ2(0), there is a
composition or product path γ1 · γ2 that traverses first γ1 and then γ2 ,
defined by the formula

(γ1 · γ2)(s) =

{
γ1(2s) , 0 ≤ s ≤ 1/2
γ2(2s− 1) , 1/2 ≤ s ≤ 1

(2.1)

This product operation respects homotopy classes (see [16], for
example).
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In particular, we restrict attention to paths γ : I → X with the same
starting and ending point γ(0) = γ(1) = x0 ∈ X . Such paths are called
loops, and the common starting and ending point x0 is referred to as the
basepoint. The set of all homotopy classes [γ] of loops γ : I → X at the
basepoint x0 is denoted π1(X, x0). As is proved in Proposition 1.3 in [16],
π1(X, x0) is a group with respect to the product [γ1] · [γ2] = [γ1 · γ2].

This group is called the fundamental group of X at the basepoint x0.
π1(X, x0) is the first in a sequence of groups πn(X, x0), called homotopy
groups, which are defined in an entirely analogous fashion using the n
dimensional cube In in place of I.

Calculation of fundamental group and, in general, higher homotopy
groups is a very difficult task even in simple spaces. For example, calculation
of higher homotopy groups of spheres involves a non-negligent number of
sophisticated algebraic tools. This difficulty made mathematicians opt for
other algebraic invariants with simpler computation.

Homology groups

Homology groups are algebraic invariants with a purely geometric origin.
They are defined to capture the geometric idea of hole. A hole is easy to
imagine but has a non negligent definition. It can be though as a void in
the space, but this idea requires the definition of an ambient space. In order
to associate homology groups to a topological space, some decomposition
has to be done. This decomposition is known as combinatorialization of the
space.

We first introduce the required algebraic machinery.

Definition 2.7 (Chain complex).
Let R be a commutative ring with unit. A chain complex C is a sequence

· · · dn+2−−−→ Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ · · ·

where Cn are free R-modules, and dn are R-module homomorphisms, which
are called differentials, satisfying the identity dn ◦ dn+1 = 0, for all n.

The subgroup of cycles is defined as Zn(C;R) := ker(dn) and Bn(C;R) :=
Im(dn+1) is the subgroup of boundaries. The property dn ◦dn+1 = 0 implies
that Zn(C;R) ⊇ Bn(C;R), for all n, making the following definition possible.

Definition 2.8 (nth homology group).
For a chain complex C, the nth homology groups is defined by

Hn(C;R) := Zn(C;R)/Bn(C;R)

6
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Note that any object in an homology group represent a class of cycles
which are not boundaries so it represents a “hole” in some dimension.

Definition 2.9 (Chain map).
Let C = (C•, d•) and C ′ = (C′•, d

′
•) be two chain complexes. A collection

of R-module homomorphisms f = {f• : C• → C′•, is called a chain map,
written f : C → C ′, if for all n:

fn−1 ◦ dn = d′n ◦ fn (2.2)

Proposition 2.10 (3.30 in [21]).
Let C and C ′ be arbitrary chain complexes. Then any chain map f : C → C ′
induces homomorphisms on the homology groups f∗ : Hn(C;R)→ Hn(C ′;R),
for all n.

In the proof of previous proposition, f∗([c]) := [f(c)]

An important part of the theory of chain complexes is the observation
that the chain maps can be deformed algebraically.

Definition 2.11.
Let C = (C•, d•) and C ′ = (C•, d

′
•) be two chain complexes, and let

f = {f•} and g = {g•} be two chain maps f, g : C → C ′. A sequence
of homomorphisms h = {h•}, where hn : Cn → Cn+1 is a chain homotopy
between f and g if for all n we have

hn−1 ◦ dn + dn+1 ◦ hn = fn − gn (2.3)

Clearly, the existence of a chain homotopy between two maps is an
equivalence relation: just replace h with its negative to show the symmetry,
and add two chain homotopy maps to show the transitivity.

Without a doubt, the most important use of chain homotopies is to show
that two chain maps induce the same homology homomorphisms.

Proposition 2.12 (3.32 in [21]).
Let C1 = (C1

∗, d
1
∗) and C2 = (C2

∗, d
2
∗) be two chain complexes, and let

f, g : C1 → C2 be two chain maps such that there exists a chain homotopy
h between f and g. Then the induced maps f∗, g∗ : H•(C1) → H•(C2) are
equal.

7



Once the algebraic construction of homology groups has been intro-
duced, it is mandatory to assign a chain complex to every topological space.
In order to do that, the space is decomposed into smaller pices called cells in
general. Depending on the building blocks used to make that partition we
can speak of different types of combinatorialization of topological spaces.
The following subsection is devoted to review the most important ways of
decomposing a space into smaller pieces.

Combinatorialization of topological spaces

Each of the decompositions shown below will play a crucial role in the
calculation of homology groups of a topological space.

For each cellular structure associated to the topological space there
is one homology theory. We review here cubical homology, simplicial
homology, homology of CW complexes (CW homology) and, finally, singular
homology. The later does not become from a combinatorialization of the
topological space and, hence, does not require any additional structure.
However, is much more difficult to be calculated.

Simplicial complexes

Definition 2.13 (Simplex).
Given p+ 1 points {v0, . . . , vp} ⊂ Rn such that the vectors {−−→v0v1, . . . ,

−−→v0vp}
are linearly independent, the p-simplex 〈v0, . . . , vp〉 is the convex hull of the
set {v0, . . . , vp}, i.e.:

〈v0, . . . , vp〉 =

{
p∑
i=0

λivi

∣∣∣∣∣
p∑
i=1

λi = 1 ∧ λi ≥ 0

}

The faces of the simplex 〈v0, . . . , vp〉 are the simplices 〈vi0 , . . . , viq〉 where
{i0, . . . , iq} ⊆ {0, . . . , p} and 0 ≤ q ≤ p.

Definition 2.14 (Simplicial complex).
A simplicial complex K in Rn is a set of simplices such that:

1. The faces of all the simplices in K are also in K.

2. The intersection of any two simplices in K is empty or a simplex in
K.

The set of p-simplices in K is denoted by Kp.

8



A simplicial complex is a collection of sets in Rn, therefore the set
|K| =

⋃
σ∈K σ ⊂ Rn can be endowed with the relative topology and is,

of course, a topological space. Hence the simplicial complex K can be
viewed as simplicial structure of |K|. A space X is said to be triangulable
if there is a simplicial complex K such that there exists a homemorphism
f : |K| → X. Hence, a simplicial structure in X is given by the set
{f(σ) |σ ∈ K }.

For any triangulable space X, the corresponding simplicial structure K
enables the calculation of the simplicial homology groups of X as follows.

Definition 2.15 (Simplicial chain complex).
Let K be a simplicial complex and R a commutative ring with unit. The
R-module of p-chains, Cp(K;R) is the free R-module spanned by Kp. The
differential map dp is defined by linear extension of the differential of a
simplex, given by the following formula:

dp(〈v0, . . . , vp〉) =

p∑
i=0

(−1)i〈v0, . . . , v̂i, . . . , vp〉 (2.4)

where the hat over the vertex vi means the elimination of the vertex vi.

The chain complex C(K) = (C•(K;R), d) is the chain complex associated
to the simplicial complex K.

Is straightforward to prove that the chain complex defined below is,
in fact, a chain complex, i.e, the composition of any two consecutive
differentials is 0.

The p-th homology group Hp(K) can be, then, defined as the p-th
homology group of the chain complex C(K).

Recall that we have introduced a way of calculating the homology of
a simplicial structure K on a topological space X. For considering the
homology groups of X as topological invariant, it must be assured that they
do not depend on the triangulation of the space.

In the following paragraphs singular homology is presented. This
homology theory provides the same results as simplicial homology when
boths can be applied. Moreover, singular homology does not depend on
any combinatorial structure in the space to be calculated. On the contrary
it is not suitable to be used for real calculations.
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Singular complexes

The standard n-simplex, for a non negative integer n, is the set

∆n =

{
(λ0, . . . , λn) ∈ Rn+1

∣∣∣∣∣
n+1∑
i=0

λi = 1 ∧ λi ≥ 0

}

It is clear that the standard n-simplex is the simplex spanned by the
n+ 1 points in Rn+1 (1, 0, . . . , 0), . . . , (0, 0, . . . , 1).

There are some interesting maps from the standard (n − 1)-simplex to
the standard n-simplex, called the i-th degeneracy operator and defined by
the formula above:

εin : ∆n−1 → ∆n, εin(x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi+1, . . . , xn−1) (2.5)

Definition 2.16 (Singular simplex).
Let X be a topological space. A singular p-simplex is a continuous map
σ : ∆p → X. The faces of σ are given by the singular p-simplices
σ ◦ εip : ∆p−1 → X for 0 ≤ i ≤ p.

Once defined the singular simplices, we can define the singular chain
complex similarly as the simplicial chain complex.

Definition 2.17 (Singular chain complex).
Let X be a topological space and R a commutative ring with unit. The R-
module of singular p-chains is the free R-module spanned by the singular
p-simplices in X. It is denoted as Cp(X;R). Again, the differential map dp
is defined as the linear extension of the differential of a singular p-simplex,
given in the formula above:

dp(σ) =

p∑
i=0

(−1)iσ ◦ εip (2.6)

It is, again, straightforward to check that dp ◦ dp+1 = 0 and the singular
chain complex C(X) = (C∗(X;R), d∗) is, in fact, a chain complex. The
singular homology groups of X are then defined as the homology groups of
the singular chain complex C(X).

Note that the singular chain complex does not depend on any choice and
any two homotopy equivalents spaces have isomorphic homology groups (see
[16, Corollary 2.11]). Moreover, ifK is a simplicial structure ofX, then both
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simplicial and singular homology groups are isomorphic (see [16, Theorem
2.27]).

Recall that, even though simplicial homology does not provide a
practical tool for calculating homology groups of spaces, when a space
has some combinatorial structure, e.g. it is a simplicial complex, both
calculation agrees as the resulting homology groups are isomorphic. In this
sense, singular homology is the reference for all the other homology theories
on topological spaces.

Cubical complexes

We mainly follow the process introduced in [19] with some minor changes.
Specifically, Kaczyński et al. uses closed cubes as main combinatorial
objects while we use open cubes.

A cubical cell σ is a finite product of intervals:

σ = I1 × · · · × Ik ⊂ Rk

where Ij is an interval (mj,mj +1) with integer extremes and length one or
the singleton {mj}, denoted as (mj), for each j ∈ {1, . . . , k}. The interval
Ij is referred to as the jth component of σ and denoted by Ij(σ). The set
of all cubical cells in Rk is denoted by Kk. The set of all cubical cells is

K =
∞⋃
k=1

Kk (2.7)

We usually require the cubical cells to be bounded. Hence, we define

Kk∗,n = {σ ∈ Kk : 0 ≤ inf Ip(σ), sup Ip(σ) < n, 1 ≤ p ≤ k} (2.8)

where k and n are nonnegative integer numbers.

Given a cubical cell σ in Rk, its embedding number k is denoted by
emb(σ). The dimension of σ is defined as the number of unitary intervals
in its expression as product of intervals and is denoted by dim(σ). The
set of all elementary cubes with dimension p is denoted by Kp. The set of
all elementary cubes in Rk with dimension p is denoted by Kkp . Whenever
the dimension of a cubical cell require to be made explicit, it is denoted
as a superscript between parenthesis. Therefore, dim

(
σ(p)
)

= p. We also

explicitly indicate the dimension of a cell σ(p) writing that σ is a p-cell.
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The closure1 of a cubical cell can be decomposed into the union of lower-
dimensional cubical cells. If δ and σ are two cubical cells in Rk of any
dimension and δ ⊂ σ, then δ is a face of σ and is denoted as δ ≤ σ. If δ is
a face of σ and δ 6= σ, then δ is a proper face of σ, denoted as δ < σ. If δ is
a face of σ and dim(δ) = dim(σ)− 1 then δ is a primary face of σ, denoted
by δ ∈ ∂(σ). Therefore, the set of primary faces of a cell σ will be denoted
as ∂(σ)

As an example, let σ be the open square (0, 1)× (3, 4), a 2-dimensional
cubical cell in R2. Its closure is the square σ = [0, 1] × [3, 4] and is
decomposed as follows

[0, 1]× [3, 4] =(0, 1)× (3, 4)∪
(0, 1)× (3) ∪ (0, 1)× (4)∪
(0)× (3, 4) ∪ (1)× (3, 4)∪
(0)× (3) ∪ (0)× (4)∪
(1)× (3) ∪ (1)× (4)

Namely, the interior of the square, its four edges and its four vertices. The
set of primary faces is given by

∂ ((0, 1)× (3, 4)) = {(0, 1)× (3), (0, 1)× (4), (0)× (3, 4), (1)× (3, 4)}

A cubical complex is a collection K of cubical cells with the same
embedding number and such that, for every cubical cell σ ∈ K, all of
its primary faces are in the complex. We denote the set of p-cells in K as
Kp. In figure 2.1 a cubical complex in R2 is showed.

As usual, using cubical cells as algebraic objects allows us to define
the corresponding chain complex whose homology will be called cubical
homology of the given cubical complex. Again, as expected, cubical
homology agrees with singular homology (see [19] for more details).

However, the definition of the differential of a cubical cell is not as simple
as the simplicial or singular cases. We will proceed in a similar manner as
in the singular case, following the work in [31, 38].

Let σ = I1×· · ·×In be a p-cubical cell. Denote Iq = (a0
q, a

1
q) with aiq two

integers such that 0 ≤ a1
q−a0

q ≤ 1. Let k1, . . . , kp denote the indexes of non-
degenerated intervals. For any set J ⊂ {1, . . . , p} define k(J) = {ki |i ∈ J }

1Given a set A ⊂ Rk, its closure is A = {p ∈ Rk : ∀ε > 0 ∃q ∈ A|d(p, q) > ε}.
Informally, the closure of a set is the set itself together with the points that are “infinitely”
near to the set.
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Figure 2.1: Example of cubical complex K0 in R2.

and for i ∈ {0, 1} the cubical cell λiJ(σ) = I ′1 × · · · , I ′q, where I ′j = {aij}
if j ∈ k(J) or I ′j = Ij otherwise. Roughly speaking, for any set of non
degenerated intervals of σ given by indices in J , λiJ represents the face
given by degenerating those given intervals to the ”lower” value (given for
i = 0) or the ”upper” one (given by i = 1). We denote λi{j} as λij.

With the above notation in mind, the differential of a p-cubical cell σ is
given by:

dp(σ) =

p∑
j=1

(−1)j(λ1
j(σ)− λ0

j(σ)) (2.9)

It is a simple exercise to check that, in fact, dp ◦ dp+1 = 0 and, hence,
the chain complex given by cubical chains and the differential defined by
linear extension of the differential of a cubical cell can be used to define the
homology groups of a cubical complex.

If we do proceed in a similar manner as we done in the simplicial
case, and we call cubical spaces to those homeomorphic to the support
of any cubical complex (recall that the support of a cubical complex K is
|K| =

⋃
σ∈K σ ⊂ Remb(K)). Again as expected, cubical homology of K and

singular homology of |K| are isomorphic (see [19]).
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CW Complexes

As shown before, computation of homology groups of a space X requires
some partition of the space into smaller pieces (simplices or cubical cells).
CW complexes are a generalization of this procedure that moves away from
the simple geometry of cubes or simplices to more abstract shapes.

An m-cell is any topological space homeomorphic to an m-dimensional
closed unit ball Bm. An open m-cell is a topological space homeomorphic
to the interior of a ball Bm. To build a CW complex from its constituent
cells, we glue some cells with other cells. The following definition concretes
this gluing procedure.

Definition 2.18 (Attaching spaces along maps).
Let X and Y be topological spaces, let A ⊆ X be a closed subspace, and
let f : A → Y be a continuous map. Y ∪f X denotes the quotient space
X
∐
Y/ ∼, where the equivalence relation ∼ is generated by a ∼ f(a), for

all a ∈ A. We say that the space Y ∪f X is obtained from Y by attaching
X along f .

Observe that the space Y ∪f X is equipped with the quotient topology,
which means that S ⊆ Y ∪f X is open if and only if q−1(S) is open in
X
∐
Y , where q : X

∐
Y → Y ∪f X is the quotient map.

Definition 2.19 (Constructive definition of CW complex).
A CW complex X is obtained by the following inductive construction of the
skeletons:

(1) The 0-skeleton X(0) is a discrete set.

(2) Construct the n-skeleton X(n) by the simultaneous attachment of the
n-cells to X(n−1) along their boundaries. In particular, X(n) gets the
quotient topology as described above.

(3) Equip the space X =
⋃∞
n=0X

(n) with the weak topology: A ⊂ X is
open if and only if A ∩X(n) is open for any n.

The definition above asserts that a set A ⊆ X is open if and only if
f−1
α (A) is open for any cell α, where fα : Bn

α → X is the attachment map
(also called the characteristic map).

Definition 2.20 (Subcomplex).
Let X be a CW complex; A ⊆ X is called a subcomplex if A is a union of
open cells such that if e ⊆ A, then the closure e ⊆ A.
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An important property of CW complexes is expressed by the following
proposition.

Proposition 2.21.
A compact subspace of a CW complex is contained in a finite subcomplex.

Corollary 2.22.
For each open cell e in a CW complex X, its closure e is contained in finitely
many open cells.

Definition 2.23 (Definition of CW complex by J.H.C. Whitehead).
Let X be a Hausdorff topological space, and assume that it is represented as
a disjoint union of open cells eα. Then, the pair (X, {eα}α) is called a CW
complex if the following two conditions are satisfied:

(1) For any α, there exists a continuous map fα : Bm → X (m is the
dimension of eα) such that

• the restriction of fα to Bm is a homeomorphism onto eα;

• fα(∂Bm) is a subset of a union of finitely many cells of dimension
lessthan m.

(2) The subset A ⊆ X is closed in X if and only if A ∩ eα is closed for
any α.

CW complexes enjoy several properties:

• CW complexes are normal (meaning that disjoint closed subspaces
can be encapsulated in disjoint open subspaces);

• a CW complex is connected if and only if it is path connected;

• all CW complexes are locally contractible.

A nicer class of complexes is obtained by imposing an extra condition.

Definition 2.24 (Regular CW complex).
A CW complex X is called regular if for each cell α, the restriction of the
characteristic map fα : ∂Bα → fα(∂Bα) is a homeomorphism.

In order to define the differential for the chain complex associated to a
CW complex, we need to recall the concept of degree of a continuous map
between spheres.
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Definition 2.25 (Degree of continuous map between spheres).
For an arbitrary continuous map f : Sn → Sn, we have an induced
map f∗ : Hn(Sn;Z) → Hn(Sn;Z). As Hn(Sn;Z) = Z and the only
homomorphisms in Z are gn(x) = nx where n = g(1), the value f∗(1)
is called the degree of f , and is denoted by deg(f).

The differential of a n-cell σ in a CW complex structure K is given by

dn(σ) =
∑

τ∈Kn−1

[τ : σ]τ (2.10)

where the numbers [τ : σ] are the incidence numbers. These are defined by

[τ : σ] := deg(pτ ◦ f∂σ)

where f∂σ : ∂Bn → K(n−1) is the attachment map of the cell σ, and pτ is the
composition pτ : K(n−1) → K(n−1)/K(n−2) → Sn−1, where the first map is
the quotient map shrinking the (n− 2)-skeleton to a point, and the second
map is the projection onto the sphere corresponding to τ .

As can be check in related literature (see e.g. [16]), the chain complex of
cells with the differential above is in fact a chain complex whose homology
groups (called cellular homology groups) are isomorphic to the singular
homology groups.

Discrete Morse Theory

Discrete Morse Theory (DMT for short) is a discretization of Morse Theory.
The latter is used to build a CW complex structure on manifolds and to
obtain substantial information about their (co)homology.

A real-valued smooth map defined over a compact k-manifold is a Morse
function if all its critical points have non-singular Hessian matrix and no
two critical points have the same function value ([15]). Morse functions
allow to endow the manifold with a cellular structure.

Discrete Morse Theory introduced by Forman ([11]) adapts Morse
Theory to CW complexes instead of smooth manifolds.

Definition 2.26 (Discrete Morse function).
Let K be a cell complex and f : K → R a function that assigns scalar values
to every cell of K. f is a discrete Morse function if, for every cell σ(p) ∈ K
the following conditions hold:
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• #{τ (p+1) ∈ K|τ > σ ∧ f(τ) ≤ f(σ)} ≤ 1. I.e., there is at most one
facet2 of σ where f takes in it a lower value than it does on σ.

• #{µ(p−1) ∈ K|µ < σ ∧ f(τ) ≥ f(σ)} ≤ 1. I.e., there is at most one
face of σ where f takes in it a greater value than it does on σ.

where #A denotes de number of elements of the (finite) set A.

A discrete Morse function f can be thought as a discrete function that
is increasing with respect to cell dimension except for, at most, two cells
for each cell. Concretely, for each cell σ there is at most one face µ
(µ ∈ ∂σ) with f(µ) ≥ f(σ) and there is at most one facet τ (σ ∈ ∂τ)
with f(τ) ≤ f(σ).

A cell σ(p) is critical if one of the following conditions hold:

• #{τ (p+1) ∈ K|τ > σ ∧ f(τ) ≤ f(σ)} = 0

• #{µ(p−1) ∈ K|µ < σ ∧ f(τ) ≥ f(σ)} = 0

We define a discrete vector as a pair of incident cells {σ(p) < τ (p+1)}.
Vectors are represented as arrows from the cell of lower dimension to the
higher dimension cell3. A discrete vector field V on K is a collection of
vectors in K such that each cell in the vector belongs to, at most, one pair
of V .

Definition 2.27 (Discrete vector field).
A discrete vector field is a map V : K → K ∪ {0} such that:

1. for each σ ∈ K, if V (σ) 6= 0 then dimV (σ) = dim σ + 1

2. for each σ ∈ Kp, either V (σ) = 0 or σ ∈ ∂V (σ)

3. if σ ∈ Im(V ) then V (σ) = 0

4. for each σ ∈ Kp

#{µ(p−1) ∈ K|V (µ) = σ} ≤ 1

In figure 2.2, a vector field (red arrows) in the cubical complex in figure
2.1 is showed.

2A cell with σ in its boundary.
3In simplicial or cubical complexes, a discrete vector can be represented as an arrow

from the barycenter of the lower dimension cell to barycenter of the higher dimension
cell
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Figure 2.2: Discrete vector field V0 defined in K0 (see figure 2.1).

Definition 2.28 (V -path).
Given a discrete vector field V on K, a V -path of dimension p, γ, is a
sequence of cubical p-cells σ0, σ1, σ2, . . . , σr such that

1. If V (σi) = 0, then σi+1 = σi.

2. If V (σi) 6= 0, then σi+1 < V (σi) with σi+1 6= σi.

The set of V -paths is denoted as Γ(V ).

For example, γ = (0)× (0), (0)× (1), (0)× (2), (0)× (3) is a V -path of
dimension 0, where V is the vector field in figure 2.2.

A V -path γ = σ0, σ1, . . . , σr is called closed is σr = σ0 and is called
non-stationary if σ1 6= σ0. A vector field V is called acyclic if there is no
non-stationary closed V -paths. As an example, the vector field in figure 2.2
is, indeed, an acyclic vector field.

Given a discrete Morse function, a special discrete vector field called
discrete gradient vector field is defined so that f(V (σ)) ≤ f(σ). As shown
in [11], a cell complex can be transformed into another homotopically
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equivalent following a series of simplicial collapses4, where each of them
collapses both cells in each vector in the corresponding discrete gradient
vector field.

Recall that vectors give some kind of dynamic to the cells. Namely,
one can (imaginary) move from one cell σ to another one µ if µ ∈ ∂V (σ).
In the previous example, one can move from cell (0) × (0) to (0) × (1) as
V ((0)× (0)) = (0)× (0, 1) and (0)× (1) is in the boundary of the later.

We recall here one of the main results of Discrete Morse Theory.

Theorem 2.29 ([11] 9.3).
A discrete vector field V is the gradient vector field of some discrete Morse
function if and only if there are no non-stationary closed V -paths.

A vector field V is extended to a graded group homomorphism V :
Cp(K)→ Cp+1(K) such that

V (σ(p)) =

{
〈σ, ∂V (σ)〉τ (p+1) if {σ < τ} is a vector in V
0 otherwise

(2.11)

The reduced (discrete time) flow map, denoted as ϕ is defined by

ϕ = id−∂ ◦ V (2.12)

The reduced flow map associates a (p + 1)-chain ϕ(σ) to any p-cell σ,
such that ∂ V (σ) = σ−ϕ(σ). Hence, 〈σ, ϕ(σ)〉 = 0. The map ϕ establishes
a way of following the flow determined by the vector field. Concretely,
if there is a V -path of length r from a p-cell σ to another p-cell σ′, then
〈ϕr(σ), σ′〉 6= 0. This fact can be proved by induction in the length of the
V -path.

The reduced flow map encodes the dynamic idea presented before. If a
cell µ is present in the chain ϕ(σ), then σ, µ is a valid V -path.

Definition 2.30 (Morse chains).
Let K be a cell complex and f be a Morse discrete function on K. Let Cp(K)
denote the p-chains on K and Mp ⊆ Cp(K) the span of the critical p-cells5.
The graded group M = {Mp}p∈Z is called the space of Morse chains.

4In [11], Forman works with simplicial complexes, however the mathematical
scaffolding provided by DMT can be settled with no change to finite CW complexes.

5Linear combinations of the critical cells.
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In [11], Forman makes use of the set of V -paths to build the boundary
map of the Morse complex associated to a given complex and an acyclic
vector field. It is shown in the following result.

Theorem 2.31 ([11] 7.1).
There are boundary maps dM : M• → M•−1 so that

dM ◦ dM = 0

and such that the differential complex

0
(dM )k+1−−−−−→ Mk

(dM )k−−−→ Mk−1

(dM )k−1−−−−−→ · · ·
(dM )2−−−→ M1

(dM )1−−−→ M0

(dM )0−−−→ 0

calculates de homology of K. That is, if we define

Hp(M) =
ker (dM)p

Im (dM)p+1

then, for each p

Hp(M) ≡ Hp(K).

AM-models

As shown in previous sections, given a topological space X and some
cellularization K (simplicial, cubical or CW complex), we can compute
the homology groups as the corresponding quotient group of cycles module
boundaries. This computation is usually done by application of the Smith
Normal Form. This algorithm is not suitable for large complexes so it is
needed some procedure to reduce the size of the complexes without loosing
homological information. In this section we recall the notion of AM-model,
which represents a way of simplify the calculation of homology groups and
represents our main tool for extracting homological information of digital
objects. In this section we mainly follows [31].

Definition 2.32 (Reduction).
A reduction from C = (C•, d•) to C ′ = (C′•, d

′
•) is a triple (f, g, h) of chain

maps f : C → C ′ (projection), g : C ′ → C (inclusion) and h• : C• → C•+1

(chain homotopy or integral operator) that satisfy the following conditions:

(a) idC −g ◦ f = d ◦ h+ h ◦ d

(b) f ◦ g = idC′
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(c) f ◦ h = 0

(d) h ◦ g = 0

(e) h ◦ h = 0

This is a classical notion in homological algebra and algebraic topology;
see e.g. [10, §12] and comments on the terminology and applications in
[14, p. 86]. Note that because of the condition (a), if there exists a chain
contraction from C to C ′ then their homology modules are isomorphic.

Definition 2.33 (AM model).
An algebraic minimal model (introduced in [14]), or an AM model for short,
of a cell complex K is a chain contraction from C(K) to a chain complex
M = (M∗, dM) such that each Mp is a free R-module and all the non-zero
elements in the SNF of each (dM)p are non-invertible in R.

An AM model exists for every cell complex, and any two AM models
for the same complex are isomorphic.

Note that we are not distinguishing here the cellular structure of K, as
it can be any of simplicial, cubical or CW complex structure.

Cohomology

Cohomology is the result of a process of dualization in homology. However,
only the chain complex is dualized, instead of homology groups. This
dualization operation enriches the homological information of a topological
space not only with cohomology groups but with a larger structure called
cohomology ring. In this section we review the construction of cohomology
groups of any cell complex and how to define some ”products” of chains
to induce a ”product” operation in cohomology suitable to define the
mentioned ring structure.

As usual, given a R-module C, Hom(C,R) denotes the homomorphisms
from C to R.

Definition 2.34 (Dual chain complex).
Let C = (C•, d•) be a chain complex. Its dual complex C∗ = (C•, δ•) is
defined as follows:

1. The module of cochains is Cp = Hom(Cp,R)
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2. The codifferential δ• : C• → C•+1 is defined by δp(ϕ(p)) = ϕ(p) ◦ dp+1

where ϕ(p) is a p-cochain.

Basically, a p-cochain is an homomorphism that assigns an element
in R to every p-cell. As R-modules, Cp is isomorphic to Cp, hence the
real difference between a chain complex and a cochain complex is in the
connection morphism. In a chain complex, the differential map decreases
the dimension while the codifferential increases the dimension. From a
matricial point of view, the matrix of δp is the transpose of the matrix of
dp+1. This easily proves that δp+1 ◦ δp = 0.

If we define the submodule of cocycles as Zp = ker δp and the submodule
of coboundaries as Bp = Im δp−1, the p-th cohomology group of the cochain
complex is defined as Hp = Zp/Bp.

Again, this definition does not depend on the choice of the cellularization
of the given topological space.

If p-th homology generators can be understood as p-dimensional holes
(subspaces homotopy equivalent to Sp), p-th cohomology generators can be
viewed as ”paths” to cut the complex along them in order to remove a hole.

Most of the time, homoloy and cohomology groups are not enough to
distinguish two topological spaces. In some of these cases, establishing some
relations between (co)homology generators open the possibility of detecting
differences between the spaces. The following section is devoted to one of
this operations: the cup product.

Cup product

Sometimes, (co)homology groups are not enough to distinguish two
topological spaces. For example, the torus T 2 = S1 × S1 and the wedge
S2 ∨ S1 ∨ S1 have the same (co)homology groups but are not homotopy
equivalents (both spaces have non isomorphic fundamental groups, so
they cannot be homotopy equivalents as fundamental group is homotopy
invariant). Therefore, (co)homology groups need to be enriched with more
elaborated algebraic structure. Is in this place where cup product arises.

Cup product is an operation on cohomology classes. Given two
cohomology classes [ϕ(p)] and [ψ(q)], its cup product is a (p+ q) cohomology
class. Of course, cup product is closely associated with the relationship
between the (co)homology of the Cartesian product of two spaces and the
(co)homology of the factors.
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Cup product on singular or simplicial cohomology is defined as follows:

(ϕ(p) `ψ(q))(σ) = ϕ(p)(σp0) · ψ(q)(σp+qp ) (2.13)

where σ = 〈v0, . . . , vp+q〉 and σji = 〈vi, vi+1, . . . , vj〉.
This simple definition is not suitable to be directly translated to cubical

or cellular cohomology. Instead, it is required the intervention of the chain
map diag induced by the diagonal map diag : x ∈ X 7→ (x, x) ∈ X × X.
Concretely, the cup product is given by the following composition

` : C∗(X)× C∗(X)→ C∗(X ×X)→ C∗(X) (2.14)

where the first map is the Küneth map and the second is the map diag∗.
Recall that cup product is defined in cohomology as in homology the map
diag goes in the opposite direction of the one required.

In the previous example, if H1(T 2) = Z[a]⊕Z[b] and H1(S2∨S1∨S1) =
Z[a′] ⊕ Z[b′], then a` b 6= a′` b′, hence both spaces cannot be homotopy
equivalent.

In order to compute the cup product, it is helpful the calculation
of the approximation of the diagonal map. This approximation map is
computed in many different ways depending on the cellularization of the
space. The worst case is the CW decomposition, where the diagonal
has to be constructed inductively in the dimension, as states the Cellular
Approximation Theorem. However, we will not require the application of
that result.

The approximation of the diagonal map presents a very simple aspect
in the case of simplicial homology. In this case, its definition is given below.

diagSimp(〈v0, . . . , vn〉) =
n∑
p=0

〈v0, . . . , vp〉 ⊗ 〈vp, . . . , vn〉 (2.15)

However, the cubical case is not as simple as the simplicial one. For
example see [20] where an important proportion of the paper is devoted to
the construction of a cubical approximation to the diagonal map. We adopt
the ideas in [31, 38], giving as a result the following definition for diagCub

diagCub
(
σ(n)

)
=

∑
J⊂{1,...,n}

ρJ,J ′λ
0
J ′(σ)⊗ λ1

J(σ) (2.16)

where ρJ,J ′ = (−1)ν , ν = # {(i, j) ∈ J × J ′ |j < i} and J ′ = {1, . . . , n} \ J .
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CHAPTER 3
Parallelization strategy for

homological calculation based
on membrane computing

Most applications of topological data analysis (TDA for short) are
characterized by using a very large data set from which the internal
structure is revealed through TDA. This structure is extracted in the
form of connected components, holes and voids of higher dimensions.
This characterization is formally described by the notion of homology.
Calculation of homology requires a combinatorial representation of space
as a cellular complex (usually simplicial or cubical).

These applications require calculating real-time homology over a
growing data set. This fact makes fundamental the development of parallel
algorithms for calculating homology. One parallelization strategy based on
membrane computing is shown below.

Natural Computing studies new computational paradigms inspired by
Nature. It abstracts the way in which Nature computes, giving rise to
new models of computation. There are several research fields currently
well established in Natural Computing. Among them, Genetic Algorithms
introduced by Holland [18] that are inspired by evolution and natural
selection in order to find an optimal solution among a large set of feasible
solutions; Neural Networks, introduced by McCulloch and Pitts [28], that
are based on the interconnection of neurons in brain; or DNA-based
molecular computing, initiated by Head [17].
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Membrane Computing is a research area in Natural Computing based
on the interpretation of the processes that take place inside the cells of
living beings as computations.

Computational devices in Membrane Computing are called P systems.
In general, a P system consists of a membrane structure within which
there are multisets of objects, which evolve according to given rules, in
an asynchronous non-deterministic maximally parallel manner. From the
foundational article [32], different models of P systems have been studied.
Based on their architecture, these models can be classified into two broad
categories: cell-like P systems and tissue-like P systems. In cell-like P
systems, membranes are organized hierarchically into a tree-like structure.
The inspiration of this architecture is the set of organs inside the cell. Each
and every one of them carries out its biological processes in parallel.

Tissue-like P systems were introduced in [26, 27]. These types of
P systems are inspired by intercellular communication and cooperation
between neurons. The mathematical model of these devices is a network of
processors that manipulate symbols and communicate them through pre-
established channels. Communication between cells is based on symport /
antiport rules. Symport rules move objects across a membrane in a single
direction, while antiport rules move objects in opposite directions.

In tissue-like P systems the membrane structure is a general undirected
graph. The edges of this graph are not given explicitly, but are deduced
from the set of rules. Since the initial definition of the tissue-like P
systems, several lines of research have been developed and other variants
have appeared (see, for example, [1, 2, 13, 23, 30]).

Catalyst P systems were introduced by Păun in [32]. The fundamental
characteristic of these P systems is the presence of objects in the membranes
that are not consumed by the application of the rules, but their presence
is the membrane is necessary for the rule to be chosen as applicable.
Catalysts have been studied extensively in Membrane Computing (see, e.g.,
[12, 22, 24]).

This is not the first relation of Membrane Computing and Computa-
tional Algebraic Topology. For instance, in [34] Reina-Molina et al present
a Membrane Computing algorithm to solve the problem of thinning 2D and
3D images using cell complexes. In [4, 33], tissue-like P systems are used
to segment an image, in [5, 6, 7, 8, 9] Membrane Computing is used for
calculating homology groups of 2D digital images.

We present here an implementation of a Membrane Computing
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framework to adapt the ideas behind Discrete Morse Theory in order to
develop algorithms in order to solve the problem of computing homology
groups of 2D and 3D digital binary images. This work is based in [35].

3.1 Membrane computing

In this section we present various definitions concerned with Membrane
Computing.

We will use a variant of tissue-like P systems where the application of
the rules are regulated by promoters and inhibitors. These promoters have a
clear biological inspiration. The rule is applied if the reactants are present,
but it is also necessary the presence of all the promoters and none of the
inhibitors in the corresponding cell. The promoters are not consumed nor
produced by the application of the rule, but if they are not in the cell, the
rule cannot be applied. In one step, each reactant in a membrane can be
used only for one rule, but if several rules need the presence of the same
promoter, then the presence of one unique copy of the promoter suffices for
the application of all the rules.

In the general case, if there are several possibilities, the rule is non-de-
terministically chosen, but sometimes a priority relation between rules is
considered, so the concept of priority in our P systems is required.

Next, the formal definition of these P systems is recalled.

Definition 3.1 (Tissue-like P system with catalysts and priorities).
A tissue-like P system with promoters, inhibitors, priorities and input of
degree q ≥ 1 is a tuple of the form

Π = (Γ,Σ, E , w1, . . . , wq,R, P ri, iin, iout)

where q is the number of cells (or membranes) of the P system and

1. Γ is a finite alphabet, whose symbols are called objects. These objects
can be placed in the cells or in the surrounding space (called the
environment).

2. Σ ⊆ Γ is the input alphabet. The input of the computation performed
by the P system is encoded by using this alphabet.

3. E ⊆ Γ is a finite alphabet representing the set of the objects in the
environment. Following a biological inspiration, the objects in the
environment are available in an arbitrary large amount of copies;
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4. w1, . . . , wq are strings over Γ representing the multisets of objects
placed inside the cells at the beginning of the computation;

5. R is a finite set of rules of the following form:

(pro¬inh | i, u/v, j), for 0 ≤ i 6= j ≤ q, pro, inh, u, v ∈ Γ∗

6. Pri is a finite set of relations Ri > Rj, where Ri and Rj are rules from
R. It means that if Ri and Rj can be applied, then the application of
Ri has priority on the application of Rj.

7. iin ∈ {1, 2, . . . , q} denotes the input cell, i.e., the cell where the input
of the computation will be placed.

8. iout ∈ {1, 2, . . . , q} denotes the output cell, i.e., the cell where the
output of the computation will be placed.

Informally, a tissue-like P system with promoters, inhibitors and
priorities of degree q ≥ 1 can be seen as a set of q cells labeled by 1, 2, . . . , q.
The cells are the nodes of a virtual graph, where the edges connecting
the cells are determined by the communication rules of the P system, i.e.,
as usual in tissue-like P systems, the edges linking cells are not provided
explicitly: if a rule (pro¬inh | i, u/v, j) is given, then cells i and j are
considered linked. The application of a rule (pro¬inh | i, u/v, j) consists of
trading the multiset u (initially in the cell i) against the multiset v (initially
in j). After the application of the rule, the multiset u disappears from the
cell i and it appears in the cell j. Analogously, the multiset v disappears
from the cell j and it appears in the cell i. The trade can also be between
one cell and the environment, labeled by 0. The rule is applied if in the
cell with label i the objects of pro are present in the cell i (promoters),
while any of the objects in inh do not appear in the cell (inhibitors). The
promoters or the inhibitors are not modified by the application of the rule.
If the promoters and inhibitors are empty, we write (i, u/v, j) instead of
(∅¬∅| i, u/v, j). Finally, we write (pro |i, u/v, j) or (¬inh |i, u/v, j) when
only promoters or inhibitors appear, respectively.

As usual, some objects not belonging to E can arrive to the environment
during a computation. So, in a configuration (not initial) it could be found
two types of objects in the environment: firstly, those which belong to the
environment and appear in an arbitrary large number of copies. Secondly,
those which do not belong to the environment but have been sent to the
environment by the application of a rule.
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Rules are used as usual in the framework of membrane computing,
that is, in a maximally parallel way (a universal clock is considered).
A configuration is an instantaneous description of the P system and it
is represented as a tuple (w0, w1, . . . , wq), where w0 is the multiset of
objects from Γ − E placed in the environment (initially, w0 = ∅). Given
a configuration, we can perform a computation step and obtain a new
configuration by applying the rules in a parallel manner as it is shown
above. A configuration is halting when no rules can be applied to it. A
computation is a sequence of computation steps such that either it is infinite
or it is finite and the last step yields a halting configuration (i.e., no rules
can be applied to it). Then, a computation halts when the P system reaches
a halting configuration. The output of a computation is collected from its
halting configuration by reading the objects contained in the output cell.

Definition 3.2 (Distributed scheme).
A dP scheme (of degree s ≥ 1) is a construct

∆ = (Γ,Σ,Π1, . . . ,Πs, R, iin, iout)

where:

1. Γ is an alphabet of (communicated) objects.

2. Σ ⊂ Γ is the input alphabet, used as input for the module Πiin.

3. Π1, . . . ,Πs are tissue like P systems with promoters, inhibitors and
priorities whose alphabets contain Γ. Each Πi is called a component
or module of ∆.

4. R is a set of distribution rules of the form (pro¬inh|i, u→ v, j) where
pro, inh, u and v are multisets on Γ, 0 ≤ i 6= j ≤ s and i 6= 0. The
objects in pro are called promoters of the rule and the objects in inh
are called inhibitors, as usual in tissue like P systems with promoters
and inhibitors.

5. iin and iout represents the modules used as input and output,
respectively.

Informally, the evolution of a dP scheme can be summarized as follows.
A universal common clock is used for all the modules in the scheme.
Initially all the modules start evolving together, each of them with their
respective initial configuration except the input module, which also uses
the input alphabet Σ as input. On each computation step, every time a
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module reaches its halting configuration, a maximal multiset of distribution
rules is selected. Then, these rules are applied and some objects are
sent from the output membrane of some modules to the input membrane
of another. Then, the evolution starts again until all the modules have
reached their halting configuration and no distribution rule can be selected.
We use an special destination module, indexed by 0. Every time a rule
(pro¬inh|i, u → v, 0) is executed, the multiset u is removed from the
output membrane of the ith module. This is used as some kind of garbage
collection.

3.2 Encoding images as cubical complexes

and cubes as tuples

In this section, we work with a cubical cell version of a digital image.
A common problem appearing in the development and implementation of
algorithms with cubical complexes is the requirement of a huge amount of
memory resources. Below, an efficient encoding of cubical cells is described.

Given two non-negative integers k and n ≥ 2, the following auxiliary
sets are defined

T kn := {0, 1, 2, . . . , n− 1}k, (3.1)

T
k

n := T k2n−1, (3.2)

In,k := Tnk = {0, 1, 2, . . . , nk − 1}, (3.3)

In,k := T(2n−1)k = {0, 1, 2, . . . , (2n− 1)k − 1}. (3.4)

The set of points1 for the source images is the set T kn ⊂ Zk equipped
with a cubic neighborhood function, described as follows: two points i =
(i1, . . . , ik) and j = (j1, . . . , jk) are said (2k)-adjacent if

∑k
p=1 |ip − jp| = 1.

The neighborhood function is given by

N(i1, . . . , ik) =

{
(j1, . . . , jk) ∈ T kn :

k∑
p=1

|ip − jp| = 1

}

This function restricted to k = 2 defines 4-adjacency and to k = 3 defines
6-adjacency.

1The reader is supposed to be familiar with concepts of Image Algebra. For a detailed
text, see [36].
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Let I : T kn → {0, 1} be a k-D binary image of size nk, where the set of
points in the object (or black points) is given by I−1(1). Let K = K(I)
be the cubical cell complex associated to I. In K, the 0-cells are points
in the object, the 1-cells represent pairs of (2k)-adjacent points, the 2-cells
unit squares where its edges are pairs of (2k)-adjacent points, and so on.
In general, each p-cell is a p-dimensional unit hypercube whose edges are
determined by pairs of (2k)-adjacent points.

A cubical cell is encoded as a tuple through the function T : Kk → Zk
defined as follows

T(σ) = (sup I1(σ) + inf I1(σ), . . . , sup Ik(σ) + inf Ik(σ)) (3.5)

The main property of T is given in the following lemma.

Lemma 3.3.
The function T is a bijection and T(Kk∗,n) = T

k

n.

Proof. First at all, let us prove that T is injective. Let σ and µ be two
distinct cells. Then, let j0 ∈ {1, 2, . . . k} be the first index such that
Ij0(σ) 6= Ij0(µ). The following cases may come up:

• Ij0(σ) = (a, a+ 1) and Ij0(µ) = (b, b+ 1) with a 6= b. Then

inf Ij0(σ) = a 6= b = inf Ij0(µ)

• Ij0(σ) = (a, a + 1) and Ij0(µ) = (b). Then, either a 6= b or a + 1 6= b.
In the first case,

inf Ij0(σ) = a 6= b = inf Ij0(µ)

and in the second case

sup Ij0(σ) = a+ 1 6= b = sup Ij0(µ)

In all the cases showed above inf Ij0(σ) + sup Ij0(σ) 6= inf Ij0(µ) +
sup Ij0(µ) and, hence, T(σ) 6= T(µ).

To prove that T is surjective, it is enough to find a cell σ = I1× · · ·× Ik
such that, given a tuple (c1, . . . , ck) ∈ Zk, T(σ) = (c1, . . . , ck). It is easily
verified that such cell σ si given by setting each interval Ip as follows

Ip =

{ (
cp−1

2
, cp+1

2

)
if cp ≡ 1 (mod 2)( cp

2

)
if cp ≡ 0 (mod 2)

(3.6)
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for 1 ≤ p ≤ k.

Finally notice that, if I = (m,m+ 1) with 0 ≤ m,m+ 1 ≤ n− 1, then
sup I + inf I = 2m + 1 ≤ 2n − 2. In consequence, sup I + inf I ∈ T2n−1,
proving the last statement of the Lemma.

As an example, the cell σ = (0, 1) × (3, 4) × (2) is encoded as T(σ) =
(1, 7, 4).

A cubical cell can also be encoded as an integer. Concretely, a cubical
cell2 is encoded as a number In,k(σ) in In,k as follows:

In,k(σ) = In,k(c1, . . . , ck) =
k∑
p=1

cp · (2n− 1)k−p (3.7)

Lemma 3.4.
The function In,k : T

k

n → In,k defined above is a bijection.

Proof. To prove that the function In,k is surjective is enough to find a cell
σl for any l ∈ In,k such that In,k(σl) = l. The cell σl = (c1, . . . , ck) such that

cp = b l

(2n− 1)(k−p) c (mod (2n− 1)) for 1 ≤ p ≤ k (3.8)

satisfies that In,k(σl) = l.

To prove that In,k is injective, let σ, σ′ ∈ T
k

n be two cells such that
In,k(σ) = In,k(σ′). Then, if σ = (c1, . . . , ck) and σ′ = (c′1, . . . , c

′
k),

0 = In,k(σ′)− In,k(σ) =
k∑
p=1

(c′p − cp)(2n− 1)(k−p)

hence, taking iteratively remainders modulo (2n − 1), it turns out that
c′p ≡ cp (mod (2n − 1)) and, as 0 ≤ c′p, cp < 2n − 1, it is proved that
c′p = cp.

3.3 Membrane computing implementation

of homological calculation

In previous section, the formal requirements for a Membrane Computing
algorithm are presented, i.e. all the elements required to formally describe

2Lemma 3.3 grants the identification of cubical cells in a cubical complex in Rk with
k-tuples.
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a P system. Hence, a language must be defined in order to characterize
all the elements present in each membrane. The main goal in this paper
is the introduction of a membrane computing framework flexible enough to
be useful in many others applications than those presented below. Hence,
we define now those essential notions in order to represent the objects and
relations already outlined in Section 2.2.

Let K ⊂ T
k

n be a cubical complex. Let d represents the boundary map
in the associated chain complex. The cubical cells in K are represented as
σi, for some i ∈ In,k. The cubical geometry of K is achieved using objects
U±ij,d for i, j ∈ In,k and 1 ≤ d ≤ k. The presence of such an object is
interpreted as the cell σi is in the boundary of σj and the vector joining
their barycenters (from lower dimension to higher dimension cell) is ±1

2
~ud,

where ~ud is the d-th vector in the canonical base in Rk.

As the cubical complex K is usually built from a binary k-D image3

I : T kn → {0, 1}, black pixels in I−1(1) are denoted as Bi for i ∈ T kn .

The dimension of a cubical p-cell σi is represented by the presence of
the object dip, for i ∈ In,k and 0 ≤ p ≤ k.

The boundary map is symbolized by objects δ±ij whenever 〈σi, dσj〉 = ±1,
respectively. Recall that cubical complexes are regular, so it is ensured that
〈σ, dµ〉 ∈ {0,±1} for any pair of cells σ(p) and µ(p+1). Sometimes the
knowledge of how many cells share a given cell in their border is required.
The presence of objects Dif means that the set {σj ∈ K : 〈σi, dσj〉 6= 0}
has f elements.

Vector fields are represented by the presence of objects V ±ij where the

sign is given by the sign of 〈σi, dσj〉 with i, j ∈ In,k. Objects Vi depict that
the cubical cell σi is used as part of a vector. If a cubical cell is critical for
a given vector field V , it is denoted by the presence of some object Ci for
0 ≤ i ≤ N .

In order to stand for the operator ϕ defined in section 2.2, objects φ±ij,
for 0 ≤ i, j ≤ N , are used.

Hence, the common starting language for all the algorithms designed in

3In case of 2D images, Bi = Bi1i2 .
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the proposed framework is defined below:

Γ0 ={Bi : i ∈ T kn} ∪
{
σi : i ∈ In,k

}
∪ {Ci : i ∈ In,k}∪

∪
{

dip : i ∈ In,k ∧ 0 ≤ p ≤ k
}
∪
{
Dif : i ∈ In,k ∧ 0 ≤ f ≤ 2k

}
∪

∪
{
δ±ij : i, j ∈ In,k

}
∪
{
V ±ij : i, j ∈ In,k

}
∪
{
Vi : i ∈ In,k

}
∪ {V }∪

∪
{
U±ij,p : i, j ∈ In,k ∧ 0 ≤ p ≤ k

}
∪
{
φ±ij : i, j ∈ In,k

}
The framework presented here does not only consist of a language,

but also some dP modules and distribution rules are defined. Firstly,
the dP modules have to be such that allows performing only simple
tasks in each module. Hence, the implementation of the Membrane
Computing algorithm in current parallel devices is simplified. Secondly, the
development of algorithms in Computational Algebraic Topology usually
reduces to simplify some cell complexes by using Discrete Morse Theory.
We specify here some modules related to the process of removal of cells
which are the head and tails of discrete gradient vectors.

Previously mentioned common tasks are introduced as modules of a dP
scheme. Namely, two main tasks are to be defined:

1. Build a cubical complex from a binary k-D image.

2. Specify the Morse complex from a given cubical complex and a
gradient vector field.

For any i ∈ In,k, the cubical cell σ(i) ∈ Kk∗,n is defined as

σ(i) = T−1(I−1
n,k(i))

To determine the vertices of a cubical cell σ the function gen : Kkn → 2Zk

defined as

gen(I1 × . . .× Ik) = {inf I1, sup I1} × · · · × {inf Ik, sup Ik} (3.9)

is used. For example,

gen ((1, 2)× (2)× (0, 1)) = {1, 2}×{2}×{0, 1} = {(1, 2, 0), (1, 2, 1), (2, 2, 0), (2, 2, 1)}

are the vertices of a square in R3.

Let σ and µ be cubical cells such that σ ∈ dµ. Let b(σ) and b(µ)
represent the barycenter of cells σ and µ, respectively. Finally, denote
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the vector
−−−−−→
b(σ)b(µ) as ~vσµ. For example, let σ = (0, 1) × (2) × (2, 3) and

µ = (0, 1) × (2, 3) × (2, 3). Then, ~vσµ =
(
0, 1

2
, 0
)

as the barycenters are,
respectively, b(σ) =

(
1
2
, 2, 5

2

)
and b(µ) =

(
1
2
, 5

2
, 5

2

)
.

Notice that the barycenter of a cubical cell is defined as

b(I1 × · · · × Ik) =

(
inf I1 + sup I1

2
, . . . ,

inf Ik + sup Ik
2

)
(3.10)

Definition 3.5 (P system to build cubical complex).
Let I : T kn → {0, 1} be a binary k-D image. The tissue like P system with
promoters, inhibitors and priorities ΠCub is defined as

ΠCub = {Γ,Σ, E , w1,R, P ri, iin, iout}

where

• Γ = Γ0

• Σ = {Bi : i ∈ I−1(1)}

• E = Γ0

• w1 = ∅

• R is the following set of rules:

– R1 ≡ ({Bi : i ∈ gen(σ(l))}¬{σl}|1, λ/σlCl, 0) for l ∈ In,k
– R2 ≡

(
{σi, σj}¬{δ±ij}|1, λ/δ±ij , 0

)
for i, j ∈ In,k and 〈σ(i), dσ(j)〉 =

±1

– R3 ≡
(
{σi, σj}¬{U+

ij,d}|1, λ/U
+
ij,d, 0

)
for i, j ∈ In,k, 1 ≤ d ≤ k,

〈σ(i), dσ(j)〉 6= 0 and ~vσ(i)σ(j) · ~ud = 1
2

Note that ~ud is the d-th vector of the canonical base in Rk.

• Pri = ∅

• iin = iout = 1

Theorem 3.6.
Given a k-D binary image I, the corresponding P system ΠCub builds the
cubical complex for I in two computation steps.
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Remark. Let I : T kn → {0, 1} be a binary k-D image. Let K be the cubical
complex built from I. In the initial configuration, the first membrane
consists on objects Bi for i ∈ I−1(1). In this situation, only some rules in
R1 can be selected, because the other rules require the presence of objects
σi. The rules in R1 that can be selected are those for l ∈ In,k such that all
the points in gen(σ(l)) are in I−1(1). Therefore, the first computation step
builds the objects σl that represents cubical cells in the complex and, also,
introduce the mark for critical cells (Cl).

In the second configuration, no rule in R1 can be selected since the
proper objects representing each cubical cell act as inhibitors for this rules.
However, the rules in R2 and R3 are susceptible to be selected. In fact, the
selected rules in R2 introduce into the first membrane the objects that
symbolize the boundary map (δ±ij). The selected rules in R3 introduce
the objects that mark the (positive) direction of the boundary barycentric
vector ~vσµ for every pair of cells σ, µ ∈ K such that σ ∈ dµ and ~vσµ ·~ud = 1

2
.

The application of rules in R2 and R3 prevent the selection of any other
rule in R2 or R3 any time, because the inserted objects act as inhibitors.
Hence, the next computation step (the third) makes the system reach the
halting condition, inasmuch as no rule can be selected.

Remark 3.7.
If σ is in the boundary of µ, then both cells share all its intervals except
one, degenerated in σ and non-degenerated in µ. We suppose here that this
interval is the d-th. Then, all the coordinates of the vector ~vσµ are 0, except
the d-th one, whose value is 1

2
and, hence, ~vσµ = 1

2
~ud.

Definition 3.8 (P system to compute the Morse complex).
Let K be a cubical complex and d the associated boundary map. Let V be a
gradient vector field in K. The P system ΠFlow is defined as

ΠFlow = (Γ,Σ, E , w1,RFlow, P ri, iin, iout)

where

• The alphabet of objects is given by Γ = Γ0 ∪ {Eij : i, j ∈ In,k, i 6= j}.

36



• The input alphabet is given by

Σ ={σi : i ∈ In,k(T(K))} ∪ {δ±ij : i, j ∈ In,k(T(K)) ∧ 〈σ(i), dσ(j)〉 = ±1}∪
∪ {V ±ij , Vi, Vj : i, j ∈ In,k(T(K)) ∧ V (σ(i)) = ±σ(j)}∪
∪ {Ci : i ∈ In,k(T(K)) ∧ V (σ(i)) = 0 ∧ V −1(σ(i)) = ∅}∪
∪ {Eij : i, j ∈ In,k(T(K)) ∧ 〈σ(j), dV (σ(i))〉 6= 0 ∧ i 6= j}

• The environment alphabet is given by E = Γ0.

• The set of rules R is given by

– R1 ≡
(
{σiσjσlδs1il δ

s2
jl V

−s1
il }¬{φiφj}|1, λ/φ

−s1s2
ij φiφj, 0

)
for i, j, l ∈

In,k, i 6= j 6= l 6= i and s1, s2 ∈ {+,−}
– R2 ≡

(
{σiCi}¬{φ+

ii}|1, λ/φ+
ii , 0
)

for i ∈ In,k
– R3 ≡

(
{φs1i1i2V

s2
i2j1
φs3j1j2}|1, Ei2j1/φ

−s1s2s3
ij , 0

)
for i, j, l ∈ In,k,

s1, s2, s3 ∈ {+,−} and i 6= j 6= l 6= i.

– R4 ≡
(
{δs1li CiCj}¬{δ̃s1s2ji }|1, φ

s2
lj /δ̃

s1s2
ji C̃iC̃jσ̃iσ̃j, 0

)
for i, j, l ∈

In,k with i 6= j 6= l 6= i.

– R5 ≡
(

1, δ̃+
ij δ̃
−
ij/λ, 0

)
for i, j ∈ In,k, i 6= j.

• Pri = ∅

• iin = iout = 1.

Theorem 3.9.
Let K ⊂ Kk∗,n be a cubical complex and V a gradient vector field in K.
The module ΠFlow computes the Morse complex for K associated to V in,
at most, 4 + blog2 νc computation steps, where ν ≤ nk is the length of the
greatest V -path on K.

Remark. The initial configuration for ΠFlow consists in all the elements that
codify the cubical complex K (objects σi for cubical cells and Ci marking
critical cells), its boundary map (objects δ±ij) and the gradient vector field
(objects V ±ij ). There also are objects Eij depicting that σi and σj are distinct
maximal faces in V (σi). In this situation, only rules in R1 and R2 can be
selected, as the other rules require the existence of objects φ±ij introduced in
the first membrane by these rules. The application of rules R1 creates one
object φ±ij for each pair of cubical cells σi, σj ∈ K such that 〈ϕ(σi), σj〉 = ±1.
Recall that ϕ : C → C given by ϕ = id−d ◦V is the reduced (discrete time)
flow of the gradient vector field ([11]).
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The application of rules R2 previously selected introduce objects φ+
ii

for each critical cubical cell σi, representing that, for each critical cell µ is
ϕ(µ) = µ. In the current situation, the second configuration, only rules in
R3, R4 or R5 are available to be selected.

Recall that objects φ±ij encodes the presence of a V -path from σi to σj
with multiplicity equals to ±1. Rules in R3 concatenate two V -paths γ
and γ′ if there is a cell σ such that the ending cell of γ′, named σ(i), the
starting cell of γ lay on its boundary and V (σ(i)) = σ. Hence, rules in
R3 are applied until a maximal path is constructed. This process needs, at
most, log2 ν steps, where ν is the length of the longest maximal V -path.

Rules in R4 get some objects from the environment, encoding the cells
of the Morse complex. Indeed, for each critical path from σi to σj with
multiplicity ±1, there is an object φ±ij, hence for each critical cubical cell
σl with 〈σi, dσl〉 6= 0 there will be as many objects φ±ij as the number of
critical V -paths from σi to σj with multiplicity ±1, respectively.

Finally, rules in R5 cancel pairs of objects δ̃+
ij , δ̃−ij . The halting

configuration of ΠFlow has as many objects δ̃±ij as the incidence of σi in
the boundary of σj.

Notice that the entire process needs, at most, 4 + blog2 νc steps, where
ν is the length of the longest critical V -path.

We deal here with a membrane algorithm for computing an optimal
gradient vector field for a 3D digital object I. Working with a cubical
“cellularization” K(I) of I, we show that the critical cells of dimension p
(p = 0, 1, 2, 3) of this particular gradient vector field coincide with the pth
Betti number of K(I).

Discrete Morse Theory establishes a tool to simplify a cell complex4

while the homology groups are kept. This can be used to calculate the
homology groups of appropriate cell complexes. Concretely, the technique
explained below require the complex to be torsion free.

An acyclic vector field over a cubical complex K is built, removing as
many cubical cells as possible. In case that the resulting Morse complex
has non-null differential, another acyclic vector field is constructed to
accomplish the so called critical cell cancellation (see section 11 in [11]).
In this way, a sequence of Morse reductions is built until a complex with
null-differential is “reached”. To ensure the finiteness of this process, the
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(a) Example of cubical
complex.

(b) Acyclic vector field. (c) Critical cells where
two kinds of critical cells
are shown: ordinary crit-
ical cells representing a
hole at any dimension and
other critical cells show-
ing a “step” configura-
tion which will be can-
celed later

(d) Critical complex. (e) Final homological
complex with null
differential.

Figure 3.1: Example of homology group calculation in a cubical complex.
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cubical complex has to be torsion free.

Figure 3.1 presents an example of the calculation of homology groups
for a 2D cubical complex. In this example the strategy presented above is
shown. First, an acyclic vector field is built such that almost every cubical
p-cell σ is paired to one of its co-faces µ (cubical (p+ 1)-cell with σ ∈ dµ).
The algorithm used to determine the acyclic vector field returns two kind
of critical cubical cells: on one hand, cubical p-cells that represent a p-
dimensional hole and, on the other hand, 1-cells that represents an “step”
configuration (as 〈P11, P12〉 or 〈P15, P16〉 in figure 3.1). Therefore, another
acyclic vector field is required to cancel these spurious critical cells. Notice
that the first Morse complex is not a cubical complex but a CW complex.
However, it is usually much more simpler than the original cubical complex.

For binary 3D images, it suffices to build up to two acyclic vector fields
to calculate an homotopically equivalent cell complex with null differential,
which makes homology group calculation trivial. In the paragraphs below,
two P modules are defined to perform this task: ΠVector and ΠVector2 .

Definition 3.10 (P system to create an acyclic vector field).
Let I : T 3

n → {0, 1} be a k-D binary image. The module ΠVector is defined
as

ΠVector = {Γ,Σ, E , w1,R, P ri, iin, iout}
where

• Γ = Γ0

• Σ = {σi : i ∈ In,k(T(K(I)))}

• E = Γ0

• w1 = ∅

• R is the following set of rules:

– R1 ≡
(
¬{ViVj}|1, σiσjδ±ijdipU+

ij,dCiCj/σiσjδ
±
ijU

+
ij,dV

∓
ij ViVj, 0

)
for

i, j ∈ In,3, i 6= j, 0 ≤ p ≤ 3 and 1 ≤ d ≤ 3

These rules take a critical cubical p-cell (σi), a critical cubical
(p+1)-cell (σj) with σi ∈ dσj and such that the barycentric vector
~vσiσj is 1

2
~ud. Then, objects V ±ij are brought from the environment

(this represents that V (σi) = ±σj) as long as objects Vi and Vj
(used to prevent that a cubical cell is used in two different vectors
in the vector field).

4CW complex in [11] and cubical complex in this paper.
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• The priorities are given by

Pri ={R1[i, j, p, d] > R1[i, j′, p, d′] : i, j, j′ ∈ In,3 ∧ 0 ≤ p ≤ 3 ∧ 1 ≤ d < d′ ≤ 3}
∪ {R1[i, j, p, d] > R1[i′, j, p, d′] : i, i′, j ∈ In,3 ∧ 0 ≤ p ≤ 3 ∧ 1 ≤ d < d′ ≤ 3}
∪ {R1[i, j, p, d] > R1[j, j′, p+ 1, d′] : i, j, j′ ∈ In,3 ∧ 0 ≤ p ≤ 2 ∧ 1 ≤ d ≤ 3}

where R1[i, j, p, d] represents the corresponding instance of rule R1 for
the given values of the parameters.

The priorities in the first set are used to assign to a cubical cell σi a
cubical cell σj with the corresponding barycentric vector parallel to the
vector ~ud with the lowest d as possible.

The priorities of the second kind are used to choose between two cubical
cells σi and σi′ when another cubical cell σj can be assigned to be the
image by V . The criteria is again to select the cubical cell with the
lowest barycentric vector.

The last priority type is used to choose whether a cubical cell is chosen
as the source cell of a vector or the end cell of another. In this case
it is used as the end cell.

• iin = iout = 1

Informally speaking, the vector field tries to “go” in the direction of ~u1.
When it is not possible to go in that direction, it is used ~u2 and, if it cannot
be performed, ~u3 is used. Hence, the flow of V can be thought as a waterfall
going downside until it goes from left to right and, finally, rear to back.

Definition 3.11 (P system to reduce a vector field).
Let I : T 3

n → {0, 1} be a k-D binary image. The module ΠVector2 is defined
as

ΠVector2 = {Γ,Σ, E , w1,R, P ri, iin, iout}

where

• Γ = Γ0

• Σ = {σi : i ∈ In,k(T(M))} where M is the Morse complex built from
the acyclic vector field created by ΠVector.

• E = Γ0

• w1 = ∅
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• R is the following set of rules:

– R1 ≡
(
¬{ViVj}|1, σiσjδ±ijCiCj/σiσjδ±ijV ∓ij ViVjV, 0

)
for i, j ∈ In,3,

i 6= j.

These rules take two cells that can be used to build a vector and
create that vector. Notice that, once a cell is used in a vector, it
will not be used in another.

• Pri = ∅.

• iin = iout = 1

This P module cancels pairs of critical cells of ΠVector due to the
previously mentioned “step” configuration.

The dP scheme

∆Bin3DHom = (Γ0,Σ,ΠCub,ΠVector,ΠFlow,ΠVector2 ,R, iin, iout)

with four modules defined below, computes the homology groups for the
cubical complex generated from I.

• Σ = {Bi : i ∈ I−1(1)}

• The modules are given by

ΠCub This module builds a cubical complex from the 3D binary image
I.

ΠVector This module creates a maximal acyclic vector field.

ΠFlow This module determines the Morse complex associated to the
vector field created above.

ΠVector2 This module creates a maximal acyclic vector field in the
Morse complex.

• The distribution rules are given by

– R1 ≡ (Cub, σiCi → σiCi,Vector) for i ∈ In,3
– R2 ≡

(
Cub, δ±ij → δ±ij ,Vector

)
for i, j ∈ In,3

– R3 ≡
(
Cub, U+

ij,d → U+
ij,d,Vector

)
for i, j ∈ In,3 and 1 ≤ d ≤ 3

– R4 ≡ (Cub, dip → dip,Vector) for i ∈ In,3 and 0 ≤ p ≤ 3

– R5 ≡ (Vector, σi → σi,Flow) for i ∈ In,3
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– R6 ≡ (Vector,Ci → Ci,Flow) for i ∈ In,3
– R7 ≡

(
Vector, δ±ij → δ±ij ,Flow

)
for i, j ∈ In,3, i 6= j

– R8 ≡ (Vector, dip → dip,Flow) for i ∈ In,3 and 0 ≤ p ≤ 3

– R9 ≡
(
Vector, V ±ij → V ±ij ,Flow

)
for i, j ∈ In,3, i 6= j

– R10 ≡
(

Flow, σ̃iC̃i → σiCi,Vector2

)
for i ∈ In,3

– R11 ≡
(

Flow, δ̃±ij → δ±ij ,Vector2

)
for i, j ∈ In,3, i 6= j

– R12 ≡ ({V }|Vector2, σi → σi,Flow) for i ∈ In,3
– R13 ≡ ({V }|Vector2,Ci → Ci,Flow) for i ∈ In,3
– R14 ≡

(
{V }|Vector2, δ

±
ij → δ±ij ,Flow

)
for i, j ∈ In,3, i 6= j

– R15 ≡
(
{V }|Vector2, V

±
ij → V ±ij ,Flow

)
for i, j ∈ In,3, i 6= j

• iin = Cub, iout = Vector2

The modules ΠV ector and ΠVector2 are the only modules that do not rely
on the framework. In other words, the user of the framework only has to
deal, most of the times, with writing modules for calculating acyclic vector
fields, as the tasks for building the cubical complex associated to the binary
image and the building of the Morse complex associated to it, are left to
the framework.

Theorem 3.12.
The dP scheme ∆Bin3DHom defined above calculates the homology groups for
a given binary 3D image I : T 3

n → {0, 1} in O(log2n) computation steps.

Remark. The result is proved by following the behavior of the dP scheme
∆Bin3DHom for an input image I. First of all, the input alphabet for ΠCub

is set up from I as ΠCub is the input module. No distribution rules can be
selected until one module reaches its halting stage. By theorem 3.6, ΠCub

halts in two steps. Then, the only distribution rules that can be selected
are R1, R2, R3 and R4. After it application, the module ΠVector starts
calculating a vector field.

Rules R1 in ΠVector build a vector from a cell σi to a co-face σj. The
priorities ensures that all the p-cells are mapped by V , the vector field, to
a p+ 1-cell, prioritizing that the vector joining its barycenter has as lowest
index as possible. Also, the rules ensure that the vector field is acyclic,
as all the vectors are “parallel” to the vectors in the canonical base in R3

with positive direction. This work is done in only one computation step.

43



This way of building a vector field creates two kind of critical cells. First
of all, there are critical cells due to homology generators. Second, there are
critical cells due to “steps” in the cubical complex. In figure 3.1a, the cells
〈P11, P16〉 and 〈P11, P12〉 are in such position. It looks somewhat an “step”
in a stair in a bottom view. This configuration of critical cell is due to the
priority relation among rules in ΠVector. Hence, we have two kinds of critical
cells, those representing an homology generator and those cells that must
have to be canceled in later computation steps.

Once ΠVector halts, the only distribution rules that can be selected are
R5 to R9, sending objects to ΠFlow. Concretely, those rules send cells (σi),
boundary map (δ±ij), critical cells (Ci) and vector field V ±ij .

Module ΠFlow calculates the Morse complex associated to the previous
vector field in, at most, 4+3 log2(n−1). To prove this note that the longest
V -path in a 3D cubical complex with, at most, (n− 1)3 1-cells have length,
at most, (n− 1)3 and, then, use theorem 3.9.

Once the Morse complex is built, it is sent to the module ΠVector2 by
distribution rules R10 and R11. This module builds an acyclic vector field
that “removes” all the cells that do not represent an homology generator.
This computation is completed in only one step. If some vector field is built,
which means that there are cells that can be cancelled, at least one object
V comes from the environment that ensures the selection and application of
distribution rules R12 to R15, sending the Morse complex and the gradient
vector field to the module ΠFlow, where another Morse complex is built and
sent to ΠVector2 .

Once the second Morse complex has came to ΠVector2 the dP scheme
∆Bin3DHom reaches the halting state, as no other distribution rule can be
selected. This takes place as the only critical cells that are not homology
generators are 1-cells that are in a “step” configuration, and those cells are
removed by the second vector field. Formally, we have reduced the initial
cubical complex to another complex with null differential, which means that
all the cells are generators of the homology groups.

Recall that the sum of the computation steps required by each module
is, in the worst case, at most 12 + 6log2(n− 1), which is O(log2 n).

The full calculation process of homology groups can be followed in Figure
3.1. The module ΠCub builds the cubical complex in Figure 3.1a in two
computation steps. Then, the module ΠV ector builds the acyclic vector
field in Figure 3.1b in one computation step. Following, the module ΠFlow

constructs the (first) Morse complex in 7 steps (because the longest V -path
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in the complex has length 6). Figure 3.1c shows the two kinds of critical
cells. On one hand, P19 is a critical 0-cell due to an homology generator. On
the other hand, P12 and P16 are 0-cells due to “step” configuration. 〈P5, P6〉
is a critical 1-cell due to “hole” while 〈P11, P12〉 and 〈P15, P16〉 are critical 1-
cells originated by a “step” configuration. Next, the module ΠVector2 specify,
in one computation step, another acyclic vector field in the complex in
Figure 3.1d which leads to the computation in 5 computation steps of the
homological complex in Figure 3.1e, that has null differential, so that all
the cells are homology generators.

3.4 Conclusions of the chapter

In this chapter we have presented a brief introduction to Membrane
Computing and how it can be used to efficiently compute the homology
generators of 3D digital objects. The presented algorithms are executed
sequentially but each of them is massively parallel in the way that all the
rules that can be applied in parallel.

However, for the best of our knowledge, there is no computing device
capable of execute “membrane code” as if it was a living cell and some
adaptation have to be performed in those algorithms.

On the other hand, Membrane Computing algorithms do not count
with algebraic operations in its operations, but precisely Algebra is one
of our most useful tool as we are working with Computational Algebraic
Topology. Hence we must restrict our research in the development of
Membrane computing algorithms in Computational Algebraic Topology
to those situations where the algebra can be eluded. This is the case of
homology groups of 3D digital objects, which are torsion free.

In the following chapters the ideas presented above are used to develop
some massively parallel algorithms that provides an efficient tool to extract
(co)homological information of digital objects.
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CHAPTER 4
Parallel calculation of an

AM-model for a nD digital
object

In previous chapter we present a combinatorial approximation to calculation
of homology groups of a 3D digital object. In this chapter we show how
these ideas can be used to design an algorithm that allows us to calculate an
AM-model for a digital object nD. In a later chapter we demonstrate how
the AM-model will effectively provide us with great homological information
of the digital object.

The core of this algorithm is also based on DMT. We see that by
applying the DMT it is possible to construct a reduction of the cubical cell
complex associated with a digital object to a much simpler CW complex.

4.1 Parallel calculation of GVF in cubical

complexes

The higher organizational structure of a cubical complex can be exploded to
develop a parallel algorithm to create an acyclic vector field on the cubical
complex. This vector field is not, generally, optimal in the sense that there
are (critical) cells that do not represent an homology class. The problem of
finding an optimal GFV is known to be NP hard [25], so the development
of simplification techniques is required. Forman used the so called critical
cells cancellation, where a condition to delete two critical cells is presented.
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Concretely, two critical cells can be removed if there is a unique V-path from
the boundary of the higher dimension cell to the lower dimension cell. This
technique is also known as arrow reversing. However, the computational
cost of counting V-paths between two cells is, sometimes, too expensive.

We do prefer another equivalent way of facing the simplification of GVF.
Concretely, building another GVF in the critical complex can be proved
equivalent to arrow reversing, however building a GVF in a general cell
complex can be performed using a spanning tree based technique.

Let K be a cubical complex. We suppose, without loose of generality,
that there exists a non negative integer n, such that for every cell σ in K

0 ≤ inf Ip(σ) ≤ sup Ip(σ) < n (1 ≤ p ≤ embK) (4.1)

Let ~ep denote the p-th vector in the orthonormal canonical base of
RembK . We define the right shift of a cell σ = I1 × I2 × · · · × IembK by
σ ⊕ ~ep = I ′1 × I ′2 × · · · × I ′embK where

I ′k =

{
(inf Ip, 1 + inf Ip) if k = p ∧ inf Ip = sup Ip
Ik otherwise

For example, (1, 2)× (2, 3)× (2)⊕~e2 = (1, 2)× (2, 3)× (2) as the second
interval is non degenerated, and (1, 2)× (2, 3)× (2)⊕ ~e3 = (1, 2)× (2, 3)×
(2, 3). Roughly speaking, shifting a cell in a (principal) direction consists
on extending the cell along this direction.

Recall that Z[A] is the free Z-module with basis the elements of the
set A and V [µ, σ] is the coefficient of the chain V (σ) corresponding to cell
µ. Note that, essentially, a morphism between two free modules can be
represented as a matrix, hence the later notation gives direct access to the
elements of that matrix.

Algorithm 1 show how to compute an acyclic vector field in parallel for
a given cubical complex. It works as follows. In line 2 a null chain map
of degree +1 is created. The “for” loop in line 3 sequentially iterates over
the vectors belonging to the canonical orthonormal base for the embedding
space of the cubical complex. The parallel “for” in line 4 iterates in parallel
over all the cells in the cubical complex. In this situation, at most at
theoretical level, the algorithm will treat every cell at the same time. In line
5 the right shift of every cell along the current vector in the canonical base
is computed. The condition at line 6 ensures that the shift is well defined
(i.e., it returns a facet inside the cubical complex). In lines 8 through 11,
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Algorithm 1 Acyclic cubical vector field for a cubical complex.

1: function AcyclicCubicalVectorField(K)
2: V ← (0 : Z[K∗]→ Z[K∗+1])
3: for p← n, 1 do
4: for all σ ∈ K parallel do
5: τ ← σ ⊕ ~ep
6: if τ 6= σ ∧ τ ∈ K then
7: q ← dimσ
8: domσ ←

∑
µ∈Kq+1

|Vq[µ, σ]|
9: domτ ←

∑
µ∈Kq+2

|Vq+1[µ, τ ]|
10: imgσ ←

∑
µ∈Kq

|Vq[σ, µ]|
11: imgτ ←

∑
µ∈Kq+1

|Vq+1[τ, µ]|
12: if domσ + domτ + imgσ + imgτ = 0 then
13: Vq(σ)← 〈σ, d(τ)〉 τ
14: end if
15: end if
16: end for
17: end for
18: return V
19: end function

we calculate if σ or τ belongs to the domain or the image of the (previously
calculated) vector field. The condition at line 12 ensures that the vector
field is well defined, i.e. every cell belongs, at most, to only one vector
in the vector field. Finally, line 13 creates the corresponding vector with
the correct sign. Recall that the incidence of σ in V (σ) is the same as the
incidence of σ in τ .

Recall that all the vectors in the vector field follow one of the positive
directions in the canonical orthonormal base in RembK . This ensures that
the vector field is acyclic as we avoid the possibility of turning back and,
hence, preventing the generation of cycles.

The vector field showed in figure 2.2 is computed using algorithm 1.

4.2 Parallel calculation of an AM-model for

a cubical complex

Given a cubical complex K, we show in this section how to compute an
AM-model for K using as much parallel operations as possible. Recall that
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an AM-model is represented by a reduction

(f, g, h) : C(K) = (Cp, d)→M = (Mp, dM)

where the matrices of dM are in SNF. We proceed following the steps below:

Stage 1 Create an acyclic vector field V within the cubical complex K.
This stage finishes in embK parallel steps. See algorithm 1. This
stage is the only one requiring that K is a cubical complex. If other
kind of cell complex is given, e.g. simplicial or CW, the construction
of the acyclic vector field is the only step to be changed. The rest of
the stages remain unchanged as they do not depend on the geometry
of the cell complex but on its associated chain complex, which is an
algebraic object.

Stage 2 Calculate the reduction (fV , gV , hV ) : C(K)→MV (K) associated
to the vector field V .

Stage 3 Create another acyclic vector field in the Morse complex of the
previous vector field.

Stage 4 Repeat the two previous stages until the differential of the Morse
complex associated to the simplified vector field has no invertible
elements in its matrix.

Stage 5 If the Morse complex of the last reduced vector field has some non
zero element in its matrix representation, calculate the SNF-reduction
for it.

Stage 6 Compose all the reductions associated to the vector fields
previously calculated. This composition represents, in fact, an AM-
model for the cubical complex K.

From vector fields to reductions

In the seminal paper for DMT [11], Forman did not mention the term
reduction1 explicitly, however in the main theorem of equivalence of the
homology of the original cell complex and the critical complex, a chain
homotopy is used. From a simple combination of this chain homotopy with
the stabilization map of the flow and the inclusion, the required reduction
can be calculated. However, this method of calculation is too expensive
when the complexes are large.

1The term reduction is also known as chain contraction or Eilenberg-Zilber data.
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Fortunately, Romero et al calculated in [37] the corresponding reduction
in a more efficient way. In the following paragraphs is shown how to compute
a reduction ρV : C(K) → MV (K) for a given cell complex K and acyclic
vector field V .

The definition of vector field induces a partition in the set of cells. Let
us represent the set of source p-cells as Sp, the set of target p-cells as Tp and
the set of critical p-cells as Cp. As V is a (degree +1) homomorphism of
modules, the previously defined partition can be interpreted algebraically
expressing each chain module as a direct sum, concretely,

Cp = Tp ⊕ Sp ⊕Cp (4.2)

This decomposition induces a series of homomorphisms from the
differential map. Let us define the following projections from the full sum to
each operand and the inclusion of each operand into the sum. To emphasize
the decomposition above, each element a ∈ Cp will be represented as a

”vector”
[
ta sa ca

]t
where each coordinate is a unique chain in each

operand.

πp,t : Cp → Tp where πp,t(
[
ta sa ca

]t
) := ta (4.3)

πp,s : Cp → Sp where πp,s(
[
ta sa ca

]t
) := ts (4.4)

πp,c : Cp → Cp where πp,c(
[
ta sa ca

]t
) := tc (4.5)

ιp,t : Tp → Cp where ιp,t(c) :=
[
c 0 0

]t
(4.6)

ιp,s : Sp → Cp where ιp,s(c) :=
[

0 c 0
]t

(4.7)

ιp,c : Cp → Cp where ιp,c(c) :=
[

0 0 c
]t

(4.8)

dp,ss = πp−1,s ◦ dp ◦ ιp,s (4.9)

dp,st = πp−1,s ◦ dp ◦ ιp,t (4.10)

dp,sc = πp−1,s ◦ dp ◦ ιp,c (4.11)

dp,ts = πp−1,t ◦ dp ◦ ιp,s (4.12)

dp,tt = πp−1,t ◦ dp ◦ ιp,t (4.13)

dp,tc = πp−1,t ◦ dp ◦ ιp,c (4.14)

dp,cs = πp−1,c ◦ dp ◦ ιp,s (4.15)

dp,ct = πp−1,c ◦ dp ◦ ιp,t (4.16)

dp,cc = πp−1,c ◦ dp ◦ ιp,c (4.17)

Using previous decomposition, in [37] an explicit formula for the

51



reduction associated to V is constructed. More explicitly:

d′p = dp,cc − dp,ct ◦ d−1
p,st ◦ dp,sc (4.18)

fp =
[

0 −dp+1,ct ◦ d−1
p+1,st 1

]
(4.19)

gp =

 −d−1
p,st ◦ dp,sc

0
1

 (4.20)

hp =

 0 d−1
p+1,st 0

0 0 0
0 0 0

 (4.21)

The existence of d−1
p,st is granted by the aciclicity of V (see [37] for

details). Is straightforward to check that

(fp, gp, hp) : (Cp, dp)⇒⇒ (Cp, d
′
p)

from the chain complex C to the critical complex.

Simplification of vector fields

Now, the simplification of each vector acyclic field is performed by creating
a new vector field in the reduced complex.

To simplify a vector field we proceed by creating a new vector field in
the reduced complex. This complex, call it M for further reference,has a
combinatorial structure which is no longer cubic or even simplicial, but can
only be expected to be a CW complex.

The generation of an acyclic vector field in M is based on the creation
of a directed acyclic graph G whose nodes are cells satisfying the following
properties:

1. If σ(p)τ (p+1) is an edge of G then there is no other edge σ(p)η(p+1) with
η(p+1) ∈M \ {τ}.

2. If σ(p)τ (p+1) is an edge of G then there is no other edge ν(p)τ (p+1) with
ν(p) ∈M \ {σ}

3. If σ(p)τ (p+1) is an edge of G, there is an edge τ (p+1)µ(p) for each cell
µ ∈ ∂(σ) \ {σ}. With this property we deal with the vector field
flow concept. This step is fundamental because in this extension of
the vector field is where it should be ensured that there are no cyclic
V -paths.
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The algorithm 2 details the construction of an acyclic vector field in the
reduced complex.

Algorithm 2 Acyclic vector field for a generic CW complex.

1: function AcyclicCWVectorField(K)
2: V ← (0 : R[K•]→ R[K•+1])
3: G← DirectedGraph()
4: for σ ∈ K do
5: G.add node(σ)
6: if σ is critical then
7: for τ ∈ δ(σ) do
8: if V (τ) = 0 ∧ τ /∈ Im(V ) ∧ 〈σ, d(τ)〉 ∈ R∗ then
9: G.add node(τ)

10: G.add edge(σ, τ)
11: for µ ∈ ∂(τ) \ {σ} do
12: if not G.has node (µ) then
13: G.add node(µ)
14: end if
15: G.add edge(τ, µ)
16: end for
17: if G.has cycles() then
18: G.remove node(τ)
19: else
20: V (σ)← 〈σ, d(τ)〉τ
21: break
22: end if
23: end if
24: end for
25: end if
26: end for
27: return V
28: end function

Recall that a cell σ is critical if it is not either the source or the target of
any vector in V . In other words,a critical cell σ verifies that V (σ) = 0 and
σ is not in the support of any chain c ∈ Im(V ). This can be easily checked
in the matrices of V . Let us denote by [Vp] th matrix of Vp : Cp → Cp+1 in
the standard basis of chains. Then σ(p) is critical if both the p-th column
in [Vp] and the p-th row in [Vp−1] are zero.
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Theorem 4.1.
The function V returned by algorithm 2 is an acyclic vector field.

Proof. To prove that the map V returned by algorithm 2 is an acyclic vector
field it is mandatory to prove

(a) # supp(V (σ)) ≤ 1 where (c) denotes the support of a chain c, defined
by supp

(∑
i∈I ciσi

)
= {σi |i ∈ I };

(b) V 2 = 0 and

(c) there is no closed non-trivial V -paths.

(a) This statement is equivalent to prove that any (p + 1)-cell τ is the
target of, at most, one vector in V . This fact is guaranteed by line 8
in algorithm 2.

(b) To prove that V 2 = 0 is enough to show that for any cell σ. First
of all, suppose that V (σ) = 〈σ, d(τ)〉τ . Let us prove that V (τ) = 0.
In fact, line 6 in algorithm 2 only consider assigns a value to V (τ) if
τ /∈ Im(V ). Hence, if τ ∈ supp(Im(V )) then V (τ) = 0, so V 2(σ) = 0.

(c) The acyclicity of V is a direct consequence of the acyclicity of the
graph G in algorithm 2.

The SNF reduction

Pilarczyk implemented in [31] a SNF algorithm such that the change of
bases matrices of two consecutive dimension are mutually inverses, more
concretely:

[dp] = Ap−1 ·Dp ·Gp (4.22)

where [dp] is the matrix of the differential map at dimension p, Dp is in SNF
and Ap = G−1

p . This algorithm allows us to construct a reduction of a chain
complex to another in which the differential matrices are in SNF, where the
projection is given by matrices Ap and inclusion is given by matrices Gp.

Finally, the composition of all the reductions computed above gives a
reduction from the original cubical complex to a reduced complex in Smith
Normal Form.
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4.3 Conclusions

In this chapter we have seen a theoretical development to calculate an AM-
model for a cell complex. This model is based on iterative calculation of
Morse reductions until the differential of the final complex does not have
invertible inputs in the ground ring. A Morse reduction is given univocally
by an acyclic vector field. It is in this step where massive parallelism is
applied. Once the cubical cell complex is drastically reduced, the resulting
chain complex is reduced again in order to remove all the pairs σ(p), τ (p+1)

such that 〈σ, d(τ)〉 is invertible in the ground ring. This cancellations
are selected sequentially and performed in parallel. Recall that matricial
operations involved in composition of reductions are implemented using the
massive parallelism provided by current GPU.

In chapter 6 some implementation details are to be discussed.
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CHAPTER 5
Advanced (co)homological

information extraction from
digital objects

5.1 Introduction

An AM-model not only provides information on the (co)homology groups of
a cell complex, but also supplies a relationship between the corresponding
(co)chain complexes. This relation, given by the projection and inclusion
chain maps, allows an analysis of several characteristics in (co)homology.
For example, the inclusion of a reduced complex generator is always a
(co)cycle.

In addition, the homotopy operator of an AM-model can be interpreted
as a ”geometric” homotopy that allows to reduce the original complex into
the reduced complex.

In this chapter we will how to obtain a large amount of (co)homology
information from an AM-model. We also show how to compute cohomology
operations (cup and cap products) in the reduced complex so we can get
more information in order to distinguish two cell complexes.

From here to the end of the chapter, we assume that K is a cell complex,
C = {Cp, d} is its associated chain complex, and

(f, g, h) : C ⇒⇒M = {Mp, dM}
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is an AM-model. For simplifying the presentation, we will assume that the
ground ring is Z.

5.2 (Co)homology information from

AM-model

The first information of relevance at homology level is, of course, the
homology and cohomology groups. The AM-model directly provides the
(co)homology groups using the two following results.

Proposition 5.1.
A generator σ in Mp is a free homology generator if and only if dM(σ) = 0
and d∗M(σ) = 0. Moreover, if dM(σ) = 0 and d∗M(σ) = kτ then σ is a
homology generator of the torsion subgroup with coefficient k.

From now on and depending on the context, a chain σ can also means
the corresponding cochain whose value is 1 only in σ.

Proof. First of all, if dM(σ) = 0 it is clear that σ ∈ ker(dMp) for some p. If
d∗M(σ) = 0 then σ is not in Im(dMp+1). So σ is an homology generator of
the free part of the p-th homology group.

On the other hand, if dM(σ) = 0 and d∗M(σ) = kτ , then σ contributes
with a factor Z to ker(dMp). Also, as d∗M(σ) = kτ , there is a factor kZ in
Im(dMp+1). Therefore, there is a factor Z/kZ = Zk in the quotient that
defines homology.

By dualization of the proposition below, we can state the following result
concerning cohomology groups.

Proposition 5.2.
A generator σ in Mp is a free cohomology generator if and only if d∗M(σ) = 0
and dM(σ) = 0. Moreover, if d∗M(σ) = 0 and dM(σ) = kτ then σ is a
cohomology generator of the torsion subgroup with coefficient k.

Let us bear in mind that Mp
∼= M∗p as any chain can be uniquely viewed

as a cochain taking the value 1 on itself.

By direct combination of previous results, we can state the following
theorem.

Theorem 5.3.
Let (f, g, h) : (Cp, d)⇒⇒ (Mp, dM) be an AM-model. Then:
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(a) Hp =

 ⊕
σ∈Mp∧dM (σ)=0∧d∗M (σ)=0

Z

⊕
 ⊕
σ∈Mp∧dM (σ)=0∧d∗M (σ)=kτ

Zk



(b) Hp =

 ⊕
σ∈Mp∧d∗M (σ)=0∧dM (σ)=0

Z

⊕
 ⊕
σ∈Mp∧d∗M (σ)=0∧dM (σ)=kτ

Zk


Note that the second formula (b) is another way of expressing a

consequence of the Universal Coefficient Theorem on Cohomology in the
finite dimensional case. In other words, Hp ∼= Zβp ⊕ Torp−1 where βp is
the rank of Hp, the p-th Betti number, and Torp−1 is the (p− 1)-th torsion
subgroup.

Another homological property is the (co)boundary relationship. Let us
consider two generators σ ∈ Mp and τ ∈ Mp+1. We say that σ is a face of τ
in M if there is a face µ of τ in K such that f(µ) = σ. We can see here how
the boundary relationship in K is propagated to M . Forman proved in [11,
Corollary 3.5] that, given a Morse function1 f , K is homotopy equivalent
to a CW complex with exactly one cell per critical cell. This CW complex
is, concretely, the complex M . The boundary relationship defined above is
another step in the determination of the minimal CW structure for a given
cell complex.

The invariant factor decomposition for finitely generated Abelian groups
states that any finitely generated Abelian group G is isomorphic to the
direct sum Zn⊕Zk1 ⊕ · · · ⊕Zkr where ki | ki+1. This result, combined with
the last theorem, allows us to proof the following theorem.

Theorem 5.4.
The chain complex M is minimal in the number of cells.

Proof. The construction algorithm for an AM-model (see section 4.2)
ensures that the matrices of dM are in SNF and has no ±1 entries. Each
non invertible coefficient represents a torsion coefficient. Of course, the
matrix representation of the invariant factor decomposition is diagonal
diag(1, . . . , 1, k1, . . . , kr, 0, . . . , 0) where the 1 is repeated n times. Now, as
the differentials dM has no invertible entry, the matrices of dM has the form
diag(k1, . . . , kr, 0, . . . , 0). And those ki are precisely the torsion coefficients
calculated as in Proposition 5.1. Hence, the chain complex M is built
bearing in mind that any two cells with incidence invertible in the ground

1It is equivalent to give a Morse function or to give an acyclic vector field (see [11]).
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ring are cancelled. So the remaining cells are those essential for homology.
The using of SNF ensures that the differentials are either zero or a non
invertible multiple of a cell.

5.3 Cohomology operations from

AM-model

Cup product (see Section 2.2) defines a ring structure in the graded
cohomology group. This operation allows to topologically discriminate,
for example, a torus from a wedge of an sphere with two rings. In this case,
(co)homology groups cannot distinguish these two spaces. Cup product is
easily defined in simplicial homology.In cubical homology it is required a
cubical approximation of the diagonal map. We mainly follows the approach
in [31].

The definition of cup product on the cohomology ring H∗(K) of a
digital object2 K is easy starting from an AM-model (f, g, h) and a cubical
approximation of the diagonal map diag : C(K) → C(K) ⊕ C(K) (see
equation 2.16). Concretely, given two cochains ϕ(p) and ψ(q),

(ϕ(p) `ψ(q))(σ(p+q)) = (µ ◦ (ϕ⊗ ψ) ◦∆) (σ) (5.1)

where ∆ is the approximation of the diagonal map on the reduced complex
M given by

∆ = (f ⊗ f) ◦ diag ◦ g (5.2)

Cap product is another operation involving cohomology classes. Its
motivation and definition can be found in, for example, [16, Chapter 3].
It can be thought as a map from C(K) ⊗ C∗ to C(K) such that assigns
a (p − q)-chain to the tensor product of a p-chain and a q-cochain. The
following equation express this relation in terms of the Künneth formula

_ : C ⊗ C∗ ∆⊗id−−−→ C ⊗ C ⊗ C∗ id⊗ε−−→ C (5.3)

where ε : C ⊗ C∗ → R is the evaluation map defined below

ε
(
σ(p) ⊗ ϕ(q)

)
=

{
ϕ(σ) if p = q

0 otherwise
(5.4)

and the first id is the identity map on cochains while the second one is the
identity map on chains.

2Note that digital objects and cubical complexes can be exchanged without problems.
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If we define the projections onto the factors as πi : C1 ⊗ C2 → Ci for
i = 1, 2 with πi(σ1⊗ σ2) = σi, then the formula for cap product is given by

σ_ϕ = ϕ (π2 (∆(σ)))π1 (∆(σ)) (5.5)

Note how the equation above can be easily computed in the reduced
complex as the aproximation of the diagonal map has been previously
calculated.

5.4 Conclusions to the chapter

In this chapter, we show the versatility of an AM-model representation
in order to get (co)homological information of digital objects. This
information extraction begins with the construction of the cubical complex
associated to the digital object. This construction is computed in parallel
using a quasi literal implementation of the P system ΠCub in definition 3.5.
This adaptation basically check all the available cubical cells within the
cubes that cover all the points in the digital object and the cubical cells in
the complex are those such that all their vertices are in the object.

Once the cubical complex associated to the digital object has been
calculated, we need to create an AM-model and this is easily performed
following the steps in section 4.2. Recall that the construction of an acyclic
vector field in the cubical complex is performed in parallel. The design
patterns used in the parallelization of the construction of the vector field
in the cubical complex guarantee that the vector field is acyclic, however
some critical cells that, in fact, do not represent any homology class of the
object (called false critical cells), remain. This spurious cells are removed
in the next steps.

The spanning tree strategy used in the construction of an acyclic
vector field can be parallelized using the framework in [40]. We have not
implemented this parallelization in the software presented in chapter6 and
it is delayed to a future work.

The iterative application of the algorithm 2 results in a cell complex,
namely a CW complex, whose differential map is either zero or has all the
coefficients in the units set of the ground ring. This complex is transformed
in another with the same cells but with an equivalent differential in Smith
Normal Form. This last step allows to easily calculate all the (co)homology
groups of the digital object as the are the same of the last reduced complex.
Note that the condition on the differential ensures the minimality of the
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AM-model. As for each unit coefficient in the differential a reduction can
be performed so a pair of cells would disappear.

The AM-model brings in two chain maps, projection and inclusion, that
allow us to map cells from the reduced complex to (co)cycles in the original
complex and cells in the original complex to homology generators in the
reduced complex.

The approximation of the diagonal given in 5.2 is crucial in the
computation of cup and cap products. Both represents operations in
(co)homology that leads to homotopy invariants that provides more
interesting information of a digital object and relates holes ((co)homology
generator) at different dimensions. For instance, the cup product of the
two 1-dimensional holes of the torus is precisely its 2-dimensional homology
generator.
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CHAPTER 6
Implementation and

experimentation

6.1 Implementation

Associated to the theoretical study of this dissertation, a prototype of the
proposed algorithms is implemented. The prototype is developed in Python
([39], https://www.python.org/). This language is used because it is
multi-paradigm, since it allows imperative programming, object oriented
or functional programming; it also offers a large battery of modules
that simplify the implementation of many of the tasks that we need to
implement.

The developed code is basically supported in two large modules: numpy
(www.numpy.org, [41]) and numba (numba.pydata.org). The first provides
the necessary machinery for matricial calculation and serves as support to
implement massive parallelism, which is carried out through the interface
that numba implements for CUDA.

CUDA ([29]) offers the computing power of massive parallelism present
in GPUs for use by any software, regardless of whether its purpose is graphic
or not. This is what is known as GPGPU.

The paradigm or programming model that is used is Object Oriented
Programming. The following is a brief description of the implemented
objects, indicating in which source file they are and which dependencies
they have.
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• Reduction (reduction.py) This class represents a reduction be-
tween two chain complexes. Requires the use of numpy, the class Chain
(chain.py), the class ChainMap (chain map.py), and the function
AW (alexander whitney.py). This class is not only a container of
the three functions that define a reduction, i.e. inclusion, projection
and homotopy operator, but also implements other additional meth-
ods of special utility:

– vector field(): this method returns a vector field whose
associated reduction is the instance of the Reduction class.

– diagonal(): this method calculates the cellular approximation
of the diagonal associated with the reduced complex.

– cup product(): This method returns a chain morphism

` : M∗ ⊗M∗ → M∗

ϕ⊗ ψ 7→ ϕ`ψ

Which represents the cup product of two cochains.

– cap product(): This method returns a chain morphism

_ : M⊗M∗ → M
τ ⊗ ϕ 7→ τ _ϕ

Which represents the cup product of two cochains.

In addition, through operator overloading, the composition of reduc-
tions is implemented, which is a key operation in the development of
the calculation algorithm of an AM-model.

• ChainMap (chain map.py) This class implements a graded morphism
of modules. An example of graded morphism of modules are chain
maps. This class, instead, do not satisfy the relationship with
differential that chain maps obey. A ChainMap instance can be
regarded as a sequence of linear maps between modules. ChainMap

instances can be added, substracted, multiplied by an integer or
composed. The class for vector fields inherits from this class.

• Chain (cells.py) This class implements a chain, which is a
dictionary1 whose keys are cells and whose values are integers. This
class implements all the common operations on chains.

1A dicionary in python is a data structure that associate values with keys. It is also
known as associative array.
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• AbstractCell, Simplex, CubicalCell (cells.py) These classes
implement several types of cells. The first one is used as base class
and is not instantiated. The others represent simplex and cubical cell,
respectively.

• TensorCell (cells.py) A tensor cell is the cell resulting from
the tensor product of two cells. This class and the previous two
classes mentioned above are, from the programmer point of view,
indistinguishable as all of them inherits from AbstractCell and all
of them behaves as expected. Concretely, all classes that represent a
cell implement the same interface.

• VectorField (vector field.py) This class implements a vector
field. It inherits from ChainMap as a vector field is a degree +1 graded
morphism of modules. However, the class VectorField implements
other interesting methods that are described below:

– is critical(), is source(), is target() These methods
return whether a cell is critical, source or target.

– decomposition() This method returns a triple of three exact
chain complexes generated, respectively, by target cells, source
cells and critical cells. It is used in the calculation of the
reduction associated to the vector field.

– projections inclusions() This private method2 returns
the projections from the source chain complex to any of
the decomposition complexes and the inclusions from the
decomposition complexes to the source complex. It is used in
the calculation of the reduction associated to the vector field.

– reduction() This method calculate de reduction associated to
the vector field.

– am model() This is one of the main goals in the development.
This method compute the AM-model from an acyclic vector field
using the stages in section 4.2.

Objects instantiating the class VectorField are not created by
hand, but they are created using two functions. The first of
them is create vector field() in the source file vector field.py.
This function implements the algorithm 2. The second function is

2Python does not include private methods as C++. This is a naming convention
commonly adopted that informs to other developers that this method are not thought
to be used outside of the class.
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create cubical vector field() in the source file cubical homology.py.
This function calculates an acyclic vector field in a cubical complex
using massive parallelism by the CUDA interface in numba, imple-
menting algorithm 1.

• ChainComplex (chain complex.py) This class implements a chain
complex over the ring of integers. Its more important methods and
properties are listed below.

– d This property is the differential of the chain complex. It is an
instance of ChainMap of degree −1.

– D, A, G These properties3 represents, for each integer p,
matrices Dp, Ap and Gp such that Dp is the SNF of the
differential dp and Ap and Gp are invertible matrices in Z such
that Dp = Ap−1 · [dp] · Gp and Ap = G−1

p . These properties are
used to compute a reduction from a chain complex to another
chain complex whose differentials are in SNF. This reduction is
not really a reduction as the basis of the chain complex are of
the same size, however they are in a more simpler form.

– computeSNF(): This method calculates de SNF of the differen-
tials using the algorithm in [31]

– is minimal(): This method evaluates whether a chain complex
is in minimal. Recall that a chain complex is minimal if there
is no invertible elements of the ground ring (±1 in Z) in the
matrices of the differentials. A minimal chain complex is the
result of iteratively apply vector field reductions.

– id(): This method returns the identity map on the source
complex.

– SNF reduction(): This method returns the reduction from
the the source complex to other isomorphic complex whose
differentials are in SNF.

– matmul : Operators in Python are over-loadable using special
methods. Concretely, matmul overloads the operator @

which is initially used to represent ordinary product of matrices,
to distinguish it from * which is the element wise product. This
operator is used in our prototype to represent the tensor product
of chains, cells or chain complexes. However the tensor product

3More concretely, they must be called item properties as they behaves as lists indexed
by integers.
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of chain complexes does not actually implement the differential,
as it is currently a huge time consumer and it is not required by
any other element of the implemented software.

• CellComplex (cell complexes.py): This class represents a cell
complex which is mainly thought as a dictionary whose cells are
the dimensions of the cells and whose values are the cells at that
dimension. It is used in development stage to represent simplicial
complexes or the result of the reduction of any other cell complex.
Its most important method is chain complex() which is used to
calculate the chain complex associated to the cell complex. The most
time consuming stage of this method is the creation of the differential
map.

• CubicalComplex (cell complexes.py): This class inherits from
CellComplex and represents a cubical complex. It has two main
differences from its ancestor: first of all is the data structure used
to represent a cubical complex. It is a n-dimensional numpy array,
which can be viewed as an n-dimensional matrix. The element at
position (i1, . . . , in) represents the presence (if the value is not zero)
of a cubical cell I1 × · · · × In where

Ip =


(
ip
2

)
if ip ≡ 0 mod 2(

ip−1

2
, ip+1

2

)
if ip ≡ 1 mod 2

This structure is ideal to represent a cubical complex in a compact
way at the time it is in the appropriate form to be used in CUDA.
The most important method in this class are the following:

– chain complex(): This method calculates the chain complex
associated to the cubical complex, as expected. However,
the calculation of the differential operator is performed using
CUDA’s massive parallelism. It can be thought as calculating
te differential of all the cubical cells in te complex at the same
time.

– from file(), to file(): These methods are used to read
cubical complexes and write cubical complexes to files. The file
format is the one used in the software proposed in [31].
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– random(): This class method4 is designed to create random
cubical complexes.

– mul : This method overloads the * product operator in
Python. It is used to represent the Cartesian product of two
cubical complexes.

• HomologyGroups, CohomologyGroups (am homology.py): These classes
represents graded groups of homology and cohomology, respectively.
Basically they are dictionaries with integer keys representing dimen-
sions and a list of pairs of generator and torsion coefficient. The ab-
sence of torsion represents a generator of the free part of (co)homology.
The main method is the class method from am model, which calcu-
lates the (co)homology groups from an AM-model.

6.2 Experimentation

Simplicial Klein bottle

Consider the triangulation of the Klein bottle in figure 6.1. In this figure
blue big dots represents 0-simplices, black lines represents 1-simplices and
triangles represents 2-simplices.

The full process of calculating homology information on a triangulation
of the Klein bottle involves building acyclic vector fields iteratively and,
finally, calculating the SNF of some matrices. In figure 6.1 the triangulation
is shown along with the barycenters of each cell. Figure 6.2 shows the acyclic
vector field V 1 generated by algorithm 2, where the barycenters of critical
cells are drawn in green. The reduction ρ1 associated to V 1, the first vector
field, has as reduced complex the following

M1 : 0
d1
0←− M1

0

d1
1←− M1

1

d1
2←− M1

2

d1
3←− 0 (6.1)

where

M1
0 = Z[〈9〉] (6.2)

M1
1 = Z[〈0, 8〉]⊕ Z[〈3, 5〉]⊕ Z[〈5, 9〉]⊕ Z[〈6, 9〉]⊕ Z[〈6, 9〉] (6.3)

M1
2 = Z[〈0, 1, 5〉]⊕ Z[〈2, 5, 6〉]⊕ Z[〈0, 4, 7〉]⊕ Z[〈1, 7, 8〉] (6.4)

4A class method is a special kind of method in Python classes. They are designed
to be called from the class itself instead of from a class instance. They can be thought
as specialized constructors.
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and the differential d1 is given by

d1
0 = 0 (6.5)

d1
1 = 0 (6.6)

d1
2(〈0, 1, 5〉) = −〈0, 8〉 − 〈3, 5〉 (6.7)

d1
2(〈2, 5, 6〉) = 〈5, 9〉 − 〈6, 9〉+ 〈0, 8〉 (6.8)

d2
2(〈0, 4, 7〉) = 〈5, 9〉+ 〈6, 9〉 − 〈7, 9〉+ 〈3, 5〉 (6.9)

d1
2(〈1, 7, 8〉) = 〈7, 9〉 (6.10)

As there are invertible coefficients in the matrices of d1, another acyclic
vector field V 2 can be calculated on M1. The reduced complex is given in
the following equations.

M2
0 = Z[〈9〉]; d2

0 = 0 (6.11)

M2
1 = Z[〈6, 9〉]⊕ Z[〈0, 8〉]; d2

1 = 0 (6.12)

M2
2 = Z[〈2, 5, 6〉]; d2

2(〈2, 5, 6〉) = −2〈6, 9〉+ 2〈0, 8〉 (6.13)

Here, we can see that this reduced complex cannot be reduced using a
vector field, so let us compute the SNF reduction.This gives as result the
final reduced complex M shown below

M0 = Z[〈9〉]; dM 0 = 0 (6.14)

M1 = Z[〈6, 9〉]⊕ Z[〈0, 8〉]; dM 1 = 0 (6.15)

M2 = Z[〈2, 5, 6〉]; dM 2(〈2, 5, 6〉) = 2〈6, 9〉 (6.16)

This final complex is modified in order to have all the coefficients non
negative. The composition of all the reductions calculated above results
in the reduction ρAM = (f, g, h) : C ⇒⇒ M defining the AM-model for
the Klein bottle. In figure 6.3 the vector field generated by ρAM is shown.
Please note that the reduction generated by this vector field is not ρAM as
this reduction has been calculated using the SNF reduction.

From ρAM several homological information can be extracted. First, the
homology groups of the Klein bottle are given by

H0(K) = Z[〈9〉] (6.17)

H1(K) = Z[〈0, 8〉]⊕ Z2[〈6, 9〉] (6.18)
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Figure 6.1: Simplicial structure on the Klein bottle. The barycenters of
each cell are also drawn.

Figure 6.2: Acyclic vector field on the Klein bottle. Critical cells have its
barycenters drawn in green.
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Figure 6.3: Final acyclic vector field on the Klein bottle from the AM-
model. Critical cells have its barycenters drawn in green.

Note that both homology generators in dimension 1 are not really cycles.
Properly speaking, the homology generators are given below

g(〈0, 8〉) = −〈0, 1〉 − 〈1, 2〉+ 〈0, 8〉 − 〈2, 8〉 (6.19)

g(〈6, 9〉) = 〈8, 9〉 − 〈0, 6〉 − 〈6, 9〉+ 〈0, 8〉 (6.20)

However, for the sake of simplicity and bearing in mind that g takes
homology generators in M to cycles generating homology classes in C, we
use cells5 in M as homology classes.

From the AM-model, the cohomology groups can also be easily
calculated. This gives as result

H0 = Z[〈9〉∗] (6.21)

H1 = Z[〈0, 8〉∗] (6.22)

H2 = Z2[〈2, 5, 6〉∗] (6.23)

From the contravariance of cohomology functor, the dual reduction ρ∗AM
is given by

ρ∗AM = (g∗, f ∗, h∗) (6.24)
5As every chain complex is a a sequence of free modules, we call cells to the elements

in the corresponding basis.
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Please note that the dual of the inclusion is the projection and viceversa.
Hence, cohomology generators in the original complex are given below

f ∗(〈9〉∗) = 〈5〉∗ + 〈0〉∗ + 〈6〉∗ + 〈1〉∗ + 〈7〉∗ + 〈2〉∗ +

+〈8〉∗ + 〈3〉∗ + 〈9〉∗ + 〈4〉∗(6.25)

f ∗(〈0, 8〉∗) = 〈6, 9〉∗ − 〈2, 6〉∗ + 〈6, 8〉∗ + 〈4, 8〉∗ − 〈5, 6〉∗ + 〈0, 3〉∗ +

+〈0, 8〉∗ − 〈3, 4〉∗ + 〈0, 2〉∗ − 〈3, 5〉∗(6.26)

f ∗(〈2, 5, 6〉∗) = 〈2, 5, 6〉∗(6.27)

Cup product can also be easily calculated using the aproximation of the
diagonal given by equation 5.2.

On simplicial Klein bottle, the cup product in integer cohomology is
given by

〈9〉∗`〈9〉∗ = 〈9〉∗ (6.28)

〈9〉∗`〈0, 8〉∗ = 〈0, 8〉∗ (6.29)

〈9〉∗`〈2, 5, 6〉∗ = 〈2, 5, 6〉∗ (6.30)

〈0, 8〉∗`〈9〉∗ = 〈0, 8〉∗ (6.31)

〈0, 8〉∗`〈0, 8〉∗ = 0 (6.32)

〈0, 8〉∗`〈2, 5, 6〉∗ = 0 (6.33)

〈2, 5, 6〉∗`〈9〉∗ = 〈2, 5, 6〉∗ (6.34)

〈2, 5, 6〉∗`〈0, 8〉∗ = 0 (6.35)

〈2, 5, 6〉∗`〈2, 5, 6〉∗ = 0 (6.36)

Cubical Klein bottle

Now we will repeat the same calculation above using a cubical version
of Klein bottle found in the source code associated to [31]. This cubical
complex has 42 0-cells, 84 1-cells and 42 2-cells in R6.

Homology and cohomology groups are given by:

H0 = Z[(0)× (1)× (0)× (1)× (1)× (1)] (6.37)

H1 = Z[(1)× (1)× (1)× (0)× (0)× (0, 1)]⊕
⊕Z2[(1)× (1)× (0)× (0)× (0, 1)× (1)] (6.38)

H0 = Z[(0)× (1)× (0)× (1)× (1)× (1)] (6.39)

H1 = Z[(1)× (1)× (1)× (0)× (0)× (0, 1)] (6.40)

H2 = Z2[(0)× (0, 1)× (0, 1)× (0)× (0)× (0)] (6.41)
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` ν(0) σ(1) τ (2)

ν(0) ν σ τ

σ(1) σ 0 0

τ (2) τ 0 0

Table 6.1: Product table on the cohomology ring of the Klein bottle.

as expected by previous calculations.

However, the (co)homology generators inside the original cubical
complex are not presented here as they are too long and do not contribute
with any interesting information.

Cup product is given by table 6.1, whose results are congruent with the
simplicial case. Note that ν, σ and τ are the generator of cohomology at
dimensions 0, 1 and 2, respectively.

Bing’s house with two rooms

Bing’s house, also known as house with two rooms, is a contractible6

2-complex that is not collapsible (see [3]). In figure 6.4 a cubical
decomposition of Bing’s house is shown.

The (co)homology groups are given below

H0 = Z[(5)× (5)× (3)] (6.42)

H0 = Z[((5)× (5)× (3))∗] (6.43)

The inclusion of the cohomology generator is a chain supported by 90 0-
cells. Both results are consistent with the fact that Bing’s house is null
homotopic.

Of course, the cup product is trivial.

6A cell complex is contractible if it is homotopy equivalent to a point.
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Figure 6.4: Cubical complex decomposition of Bing’s house. Faces (cubical
2-cells) are coloured using its normal vector.

Torus and two handled sphere

Consider the torus T = S1 × S1 with cubical decomposition given in figure
6.5. The (co)homology groups are:

H0 = Z[(3)× (3)× (1)] (6.44)

H1 = Z[(2)× (2, 3)× (0), (1, 2)× (1)× (1)] (6.45)

H2 = Z[(0, 1)× (0, 1)× (0)] (6.46)

H0 = Z[(3)× (3)× (1)] (6.47)

H1 = Z[(2)× (2, 3)× (0), (1, 2)× (1)× (1)] (6.48)

H2 = Z[(0, 1)× (0, 1)× (0)] (6.49)
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Figure 6.5: Cubical decomposition of torus.

Figure 6.6: Homology generators at dimension 1
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The two 1-cycles generating homology group at dimension 1, are

c1
1 = −(2)× (2, 3)× (1) + (2)× (2, 3)× (0)− (2)× (2)× (0, 1) +

+(2)× (3)× (0, 1) (6.50)

c1
2 = (2)× (2, 3)× (1) + (1, 2)× (1)× (1)− (1)× (1, 2)× (1) +

+(2)× (1, 2)× (1)− (1)× (2, 3)× (1)− (1, 2)× (3)× (1) (6.51)

The non trivial cohomology cup product is the one given by ` :
H1 × H1 → H2 where the non zero products are given by

(2)× (2, 3)× (0)`(1, 2)× (1)× (1) = (0, 1)× (0, 1)× (0) (6.52)

Two handled sphere is the space S1 ∨ S2 ∨ S1. Its homology is trivially
isomorphic to the one of the torus. Below are the generators:

H0 = Z[(0)× (3)× (1)] (6.53)

H1 = Z[(0)× (0, 1)× (0), (0)× (2, 3)× (0)] (6.54)

H2 = Z[(0, 1)× (1, 2)× (0)] (6.55)

H0 = Z[(0)× (3)× (1)] (6.56)

H1 = Z[(0)× (0, 1)× (0), (0)× (2, 3)× (0)] (6.57)

H2 = Z[(0, 1)× (1, 2)× (0)] (6.58)

Therefore, torus and two handled sphere are homologically indistin-
guishable. However, as previously shown, both spaces are not homotopy
equivalent. The cup product is, in two handled sphere, trivial, as can be
computed used the equation 5.1.

6.3 Empirical complexity analysis

We approach the complexity analysis of the proposed algorithms from
an empirical point of view. We choose this approach as the algorithm
complexity finally depends on the number of spurious critical cells, that are
those critical cells in one step that are removed in the next stage.

We perform this analysis as follows. First, a battery of random
cubical complexes are created. Then, an AM-model is constructed for
each complex. Finally, the point cloud formed by the variables size of the
complexes, given by its number of cells, and time used in its computation
in the development computer, is approximated using the best fitting curve.
This curve represents, precisely, the empirical complexity of the proposed
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Figure 6.7: Empirical complexity graph for 2, 3 and 4 dimensional
complexes. Blue dots represents pairs of (size, time) data. Blue and red
lines represents the best fitting polynomial with degree 2 and 3 respectively.

algorithm. The curve election has been performed by experimentation with
different types of curves, resulting the better results with polynomials of
degree two and three. In figure 6.7 it can be observed how the empirical
complexity is quadratic (blue line), with practically no difference with the
cubical case (red line).
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6.4 Conclusion

Along this chapter a software prototype is presented. This prototype is
developed using Python as it is easy to read a write, is multiparadigm
and has a lot of implemented modules that help to the developer in many
different tasks. However, it is an interpreted language that experience
sometimes less speed than other compiled language. Notwithstanding the
foregoing, this implementation can be used as an “assembly map” to build
another compiled version much faster.

Another improvement that can be done to the implemented prototype
is related with the parallelization of the vector field simplification stage. As
mentioned above, a parallel implementation of the spanning tree algorithm
in [40] leads to an important speed up.

It also has to be improved one of the most used matrix operation, which
is the product of matrices. In cases where the dimension of the matrices are
greater than two thousand rows or columns, the multiplication performs so
slow. Nonetheless, this can be improved using CUDA libraries.

As can be seen from previous paragraphs, many improvements can be
done to the software in order to be used in real applications. However,
this improvements are left to future work. However, the starting point
determined by the work presented here is promising enough, as it shows a
good complexity as can be observed in figure 6.7.

As final conclusion to this dissertation, two different approaches to
the parallelization of (co)homological information extraction are presented.
Both approaches lives in two different universes, however they are closely
linked to each other. It can be thought as one being the concretion of other
to the real world, as it can be easily implemented in current computers.

At this point it is beyond doubt the utility of Computational Algebraic
Topology in many practical applications. Hence, the work presented here
provides a tool to extract many interesting (co)homological information
from digital objects regardless the dimension of the object or the ground
ring. In many of the literature consulted, the tools and research are
relegated to be only in 3D or the ground ring is supposed to be a field.
In both cases the homology groups are torsion free. In this dissertation we
focus, precisely, in ensuring that the torsion coefficients are calculated. This
presents the main obstacle to a full Membrane Computing implementation
of the information extraction procedure, as those coefficients have a purely
algebraic nature, not combinatorial, which is better to be boarded from
Membrane Computing.

78



Bibliography

[1] A. Alhazov, R. Freund, and M. Oswald. Tissue p systems with
antiport rules and small numbers of symbols and cells. In International
Conference on Developments in Language Theory, pages 100–111.
Springer, 2005.

[2] F. Bernardini and M. Gheorghe. Cell communication in tissue p
systems: universality results. Soft Computing, 9(9):640–649, 2005.

[3] R. Bing. Some aspects of the topology of 3-manifolds related to the
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