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Abstract. We show that for 1 ≤ p < ∞, the property that every Lp-valued vector
measure has finite X-semivariation in Lp(µ,X) is equivalent to the property that every
continuous linear map from `1 to X is p-summing. For 2 < p < ∞, we explicitly construct
an Lp([0, 1])-valued measure without finite Lp-semivariation.

1. Introduction

Given a Banach space X, a number 1 ≤ p < ∞ and a σ-finite measure space (Ω,S, µ),

equip the the tensor product X ⊗ Lp(µ) with the induced norm topology ∆p from the

Bochner space
(
Lp(µ, X), ‖ · ‖Lp(µ,X)

)
(see [4, p. 97]). It turns out that this induced norm

is a reasonable crossnorm, [4, Definition VIII.1.1]. Moreover, the completion X⊗̂∆pL
p(µ)

of the normed tensor product X ⊗∆pL
p(µ) equals Lp(µ, X) because X ⊗Lp(µ) is dense in

Lp(µ, X).

Now consider a vector measure m : E → Lp(µ) defined over a measurable space (Σ, E).

The X-semivariation of m in the completion X⊗̂∆pL
p(µ) = Lp(µ, X) of the normed tensor

product X ⊗∆p Lp(µ) is the set function βX(m) : E → [0,∞] defined by

(1.1) βX(m)(E) := sup

{∥∥∥∥ k∑
j=1

xj ⊗m(Ej)

∥∥∥∥
Lp(µ,X)

}
for every E ∈ E ; the supremum is taken over all pairwise disjoint sets E1, . . . , Ek from E∩E

and vectors x1, . . . , xk from X, such that ‖xj‖X ≤ 1 for all j = 1, . . . , k and k = 1, 2, . . . .

If it happens that X is one-dimensional, that is, X = C, then βC coincides with the

usual seminvariation ‖m‖ of the vector measure m (see [4, Definition I.1.4 and Proposition

I.1.11].

The condition that βX(m)(Σ) < ∞ is related to the m-integrability of uniformly bounded,

strongly measurable X-valued functions; see [9, Theorem 2.6] as motivated from the earlier

work [6, *-Theorem] and [15, Theorem 6]. The problem of finding conditions for the finite-

ness of X-semivariation arose from the theory of random evolutions [7] and is relevant to

stochastic integration. For example, an Lp(P )-valued gaussian random measure has finite

Lp(µ)-semivariation in Lp(µ⊗ P ) if and only if p ≥ 2, [14, Proposition 6.1].
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For the situation in which ν is a σ-finite measures and X = Lp(ν), we have the following

natural identifications

Lp(µ⊗ ν) = Lp
(
µ, Lp(ν)

)
= Lp(µ)⊗̂∆pL

p(ν).

In the case when 1 ≤ p < 2, we have explicitly constructed an Lp(µ)-valued measure

whose Lp(ν)-semivariation in Lp(µ⊗ν) is infinite (see [9, Example 2.3] and Example 2.3(ii)

below). For p = 2, the statement that every L2-valued measure has finite L2-semivariation

is equivalent to Grothendieck’s inequality; see [7, Proposition 4.5.3] or [9, Proposition 2.1].

In [9, Theorem 3.2], it was shown that, for every 2 < p < ∞, there is some vector

measure whose Lp([0, 1])-semivariation in Lp([0, 1]2) is infinite. In Theorem 2.1 below, by

modifying the arguments of [9], we show that for any Banach space X and any 1 ≤ p < ∞,

the condition that every vector measure m : E → Lp([0, 1]) has finite X-semivariation in

Lp([0, 1], X) is actually equivalent to the statement that every continuous linear map from

`1 into X is p-summing.

For 2 < p < ∞ and X = Lp([0, 1]), the proof of the existence of a vector measure

m : E → Lp([0, 1]) without finite X-semivariation in Lp([0, 1], X) in [9, Theorem 3.2]

appealed to a result of S. Kwapień [10, Theorem 7, 20] to show that not every continuous

linear map from `1 into X is p-summing. However, we did not actually provide an explicit

example of a measure with this property. In Section 3, we rectify the situation by exhibiting

such a measure—this amounts to constructing a continuous linear map u from `1 into `p

that is not p-summing and a sequence {xn}∞n=1 in `1 such that
∑∞

n=1 |〈xn, ξ〉|p < ∞ for

each ξ ∈ `∞, but
∑∞

n=1 ‖u(xn)‖p
`p = ∞. That this task is not straightforward is illustrated

by the observation that any such map u is automatically q-summing for any q > p ≥ 2;

see [2, Corollary 24.6].

2. X-semivariation in Lp-spaces

Let X and Y be Banach spaces. The space of all continuous linear maps from X into

Y is denoted by L(X, Y ). Let 1 ≤ p < ∞. An operator u ∈ L(X, Y ) is called absolutely

p-summing (briefly p-summing) if there exists a constant C > 0 such that

(2.1)

(
k∑

j=1

∥∥u(xj)
∥∥p

Y

)1/p

≤ C sup
‖x′‖X′≤1

(
k∑

j=1

∣∣〈xj, x
′〉
∣∣p)1/p

for all xj ∈ X, j = 1, . . . , k and k = 1, 2, . . . . The infimum of such numbers C is denoted

by πp(u). The vector space of all absolutely p-summing maps from X into Y equipped

with the norm πp is denoted by Πp(X, Y ). An absolutely summing map (for p = 1) is

characterised by the fact that it maps unconditionally summable sequences to absolutely

summable sequences, [4, Proposition VI.3.2]. For further details we refer to [5].

Let ‖m‖ : E → [0,∞) denote the usual semivariation of vector measure m, [4, Definition

I.1.4] and let P denote Lebesgue measure on the Borel σ-algebra B([0, 1]), and E the

associated expectation.

Theorem 2.1. Let X be a nonzero Banach space, 1 ≤ p < ∞ and (Ω,S, µ) a σ-finite

measure space containing infinitely many, pairwise disjoint non-µ-null sets, so that Lp(µ)

has infinite dimension. The following conditions are equivalent.

(i) L
(
L1([0, 1]), X

)
= Πp

(
L1([0, 1]), X

)
.
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(ii) L(`1, X) = Πp(`
1, X).

(iii) For every measurable space (Σ, E), every vector measure m : E → Lp(µ) has finite

X-semivariation in Lp(µ, X).

If any of conditions (i)–(iii) holds, then there exists a constant C > 0 such that

(2.2) ‖m‖(Σ) ≤ βX(m)(Σ) ≤ C‖m‖(Σ),

for every measurable space (Σ, E) and every vector measure m : E → Lp(µ).

To prove this theorem we shall use the following result.

Lemma 2.2. Let the assumption be as in Theorem 2.1. Suppose that gj ∈ L1([0, 1]), j =

1, 2, . . . , are functions satisfying
∑∞

j=1 |〈gj, f〉|p < ∞ for every f ∈ L∞([0, 1]). Then there

exists a vector measure m : B([0, 1]) → Lp(µ) such that

βX(m)(A) ≥

(
∞∑

j=1

∥∥u(gjχA
)
∥∥p

X

)1/p

, A ∈ B([0, 1]),

for all u ∈ L(L1([0, 1]), X) with operator norm ‖u‖ ≤ 1.

Proof. Let Ej, j = 1, 2, . . . , be pairwise disjoint sets belonging to the σ-algebra S with

finite, nonzero µ-measure. Define a function F : Ω → L1([0, 1]) by

(2.3) F (ω) =
∞∑

j=1

gj · χEj
(ω)/µ(Ej)

1/p.

Then ∫ 1

0

∣∣〈F (ω), f〉
∣∣pdµ(ω) =

∞∑
j=1

∣∣〈gj, f〉
∣∣p < ∞,

that is, 〈F (·), f〉 ∈ Lp(µ) for all f ∈ L∞([0, 1]).

Let m : B([0, 1]) → Lp(µ) be the vector measure defined by

(2.4) m(A)(ω) = 〈F (ω), χ
A
〉, A ∈ B([0, 1]), ω ∈ Ω.

That m is actually an Lp(µ)-valued measure is easily seen by writing it as the composition

of the embedding φ 7−→
∑∞

j=1 φ(j) · χ
Ej

/µ(Ej)
1/p of `p into Lp(µ) with the `p-valued

measure A 7−→ {
∫

A
gj(t) dt}∞j=1, A ∈ B([0, 1]).

Fix a set A ∈ B([0, 1]) and let FA(ω) := F (ω) χA, so that m(A∩B) = 〈FA(ω), χ
B
〉 for all

B ∈ B([0, 1]) and ω ∈ Ω. Let n be a positive integer and let In,k = [(k− 1)/2n, k/2n), k =

1, . . . , 2n, be the partition of [0, 1) into 2n intervals of equal length. Let Pn : L1([0, 1]) →
L1([0, 1]) denote the associated conditional expectation operator with respect to the algebra



4 BRIAN JEFFERIES, SUSUMU OKADA AND LUIS RODRÍGUES-PIAZZA

of finite unions of the intervals In,k, k = 1, . . . , 2n. Then for each ω ∈ Ω we have

Pn ◦ FA(ω) =
∞∑

j=1

Pn(gjχA
) · χ

Ej
(ω)/µ(Ej)

1/p

= 2n

∞∑
j=1

(
2n∑

k=1

E(χ
In,k∩A

gj) · χIn,k

)
.χ

Ej
(ω)/µ(Ej)

1/p

= 2n

2n∑
k=1

( ∞∑
j=1

E(χ
In,k∩A

gj) · χEj
(ω)/µ(Ej)

1/p

)
χ

In,k

=
2n∑

k=1

(m(In,k ∩ A))(ω) · 2nχ
In,k

.

Let u ∈ L(L1([0, 1]), X) have norm ‖u‖ ≤ 1. Then,

u(Pn ◦ FA(ω)) =
2n∑

k=1

(
m(In,k ∩ A)

)
(ω) · u(2nχ

In,k
).

Each vector xn,k = u(2nχ
In,k

), k = 1, . . . , 2n, belongs to the closed unit ball of X because

‖u‖ ≤ 1. Using the vectors xn,k to estimate the X-semivariation of m, we have∥∥∥∥ 2n∑
k=1

xn,k ⊗m(In,k ∩ A)

∥∥∥∥
Lp(µ,X)

=

(∫
Ω

∥∥∥∥ 2n∑
k=1

xn,k ·
(
m(In,k ∩ A)

)
(ω)

∥∥∥∥p

X

dµ(ω)

)1/p

=

(∫
Ω

∥∥u(Pn ◦ FA(ω))
∥∥p

X
dµ(ω)

)1/p

.

Because Pn(FA(ω)) → FA(ω) for each ω ∈ Ω as n →∞ and∫
Ω

∥∥u(FA(ω))
∥∥p

X
dµ(ω) =

∫
Ω

∞∑
j=1

‖u(gjχA
)‖p

X χ
Ej

(ω)/µ(Ej) dµ(ω),

it follows from Fatou’s Lemma that

lim inf
n→∞

∥∥∥∥ 2n∑
k=1

xn,k ⊗m(In,k ∩ A)

∥∥∥∥
Lp(µ,X)

≥
(∫

Ω

∥∥u(FA(ω))
∥∥p

X
dµ(ω)

)1/p

=

(
∞∑

j=1

‖u(gjχA
)‖p

X

)1/p

.

Therefore, the lemma holds. �

Proof of Theorem 2.1. Suppose that condition (i) holds. To deduce part (ii), fix T ∈
L(`1, X). Let Bj, j = 1, 2, . . . , be non-null, pairwise disjoint Borel subsets of [0, 1]. If

J : `1 → L1([0, 1]) denotes the isometry

φ 7−→
∞∑

j=1

χ
Bj
· φ(j)/P(Bj), φ ∈ `1,

then Q◦J is the identity map on `1 if Q : L1([0, 1]) → `1 denotes the continuous linear map

f 7−→ {E(fχ
Bj

)}∞j=1, f ∈ L1([0, 1]). By condition (i), the operator T ◦ Q is p-summing.

Because T = (T ◦Q) ◦ J , it follows that T ∈ Πp(`
1, X) and part (ii) holds.
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Now assume that condition (ii) is valid and m : E → Lp(µ) is a vector measure. Let n

be a positive integer, let Aj ∈ E , j = 1, . . . , n, be pairwise disjoint sets and let xj ∈ X,

j = 1, . . . , n, be vectors belonging to the closed unit ball of X. We establish a uniform

bound for
∑n

j=1 xj ⊗m(Aj) in the norm of Lp(µ, X).

Let u : `1 → X be a linear map with uniform norm bounded by one such that u(ej) = xj

for the standard basis vectors ej of `1 and j = 1, . . . , n. Then∥∥∥∥∥
n∑

j=1

xj ⊗m(Aj)

∥∥∥∥∥
Lp(µ,X)

=

(∫
Ω

∥∥∥∥ n∑
j=1

xj ·m(Aj)(ω)

∥∥∥∥p

X

dµ(ω)

)1/p

=

(∫
Ω

∥∥∥∥ n∑
j=1

u(ej) ·m(Aj)(ω)

∥∥∥∥p

X

dµ(ω)

)1/p

=

(∫
Ω

∥∥∥∥u
(

n∑
j=1

ej ·m(Aj)(ω)

)∥∥∥∥p

X

dµ(ω)

)1/p

.

Since u is p-summing by condition (ii), it follows that(∫
Ω

∥∥∥∥u
(

n∑
j=1

ej ·m(Aj)(ω)

)∥∥∥∥p

X

dµ(ω)

)1/p

≤ πp(u) sup
‖ξ‖`∞≤1

(∫
Ω

∣∣∣∣〈 n∑
j=1

ej ·m(Aj)(ω), ξ
〉∣∣∣∣p dµ(ω)

)1/p

= πp(u)

(
sup

‖ξ‖`∞≤1

∥∥∥∥ n∑
j=1

ξ(j)m(Aj)

∥∥∥∥p

Lp(µ)

)1/p

≤ πp(u)‖m‖(Σ).

Indeed, the first inequality follows from [12, Proposition 1.2] while the last inequality from

[4, Proposition I.1.11]. Hence, we have∥∥∥∥∥
n∑

j=1

xj ⊗m(Aj)

∥∥∥∥∥
Lp(µ,X)

≤ πp(u)‖m‖(Σ).

By condition (ii) and the Open Mapping Theorem, there exists a constant C > 0 such

that πp(T ) ≤ C‖T‖ for every T ∈ L(X), which implies that βX(m)(Σ) ≤ C‖m‖(Σ). So,

condition (iii) is satisfied. Moreover, the bound ‖m‖(Σ) ≤ βX(m)(Σ) follows by taking

xj = cjx, j = 1, . . . , n, for a fixed unit vector x ∈ X and cj ∈ C with |cj| ≤ 1, j = 1, . . . , n.

Consequently, (2.2) is established.

To prove that condition (iii) implies condition (i), we prove the contrapositive statement:

suppose that u ∈ L(L1([0, 1]), X) has norm ‖u‖ ≤ 1 but is not p-summing, that is, there

exist functions gj ∈ L1([0, 1]), j = 1, 2, . . . , such that
∑∞

j=1 |〈gj, f〉|p < ∞ for every

f ∈ L∞([0, 1]) and
∑∞

j=1 ‖u(gj)‖p
X = ∞. Take a vector measure m : B([0, 1]) → Lp(µ)

satisfying the conclusion of Lemma 2.2. Then,

βX(m)(Ω) ≥

(
∞∑

j=1

‖u(gj)‖p
X

)1/p

= ∞.

So condition (iii) implies (i). �
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Example 2.3. (i) Let 1 ≤ p < 2. An example of an Lp(µ)-valued measure without

finite Lp(ν)-semivariation in Lp(µ⊗ν) is given in [9, Example 2.3], so not every map

from `1 to `p is p-summing. In fact, the embedding J of `1 into `p is not p-summing

[5, p. 209]. We can see this more directly as follows. If the inclusion map J : `1 → `p

were p-summing, then J would factor through `2 via Pietsch’s Domination Theorem

[5, Inclusion Theorem 2.8 and Corollary 2.16]. Since 1 ≤ p < 2, every continuous

linear map from `2 into `p is compact by Pitt’s Theorem [11, Theorem 2.c.3], so it

would follow that J is compact. But this is false because {J(ek) : k = 1, 2, . . . } is

not relatively compact in `p.

(ii) Let 1 ≤ p < 2. A concrete example of an Lp(µ)-valued measure without finite

Lp(ν)-semivariation in Lp(µ ⊗ ν) on any set of positive measure is provided by a

gaussian random measure W : B([0, 1]) → Lp(µ) with µ a probability measure (see

[14, p. 184]). The gaussian random variable W (B) has mean zero and variance

|B|, the Lebesgue measure of B ∈ B([0, 1]). Then there exists Cp > 0 such that

‖W (B)‖Lp(µ) = Cp |B|1/2 for every B ∈ B([0, 1]). Consequently, the p-variation

sup
π

(∑
B∈π

‖W (B ∩ A)‖p
Lp(µ)

)1/p

of W is infinite on any Borel set A ⊆ [0, 1] with positive measure. Here the supre-

mum is over all finite Borel partitions. An appeal to [9, Proposition 2.2] shows

that βX(W )(A) = ∞ with X = Lp(ν) for any scalar measure ν such that X is

infinite-dimensional.

(iii) Let 2 < r < p < ∞. By [2, Corollary 24.6], every continuous linear map from `1 to

`r is p-summing, so every Lp(µ)-valued vector measure has finite `r-semivariation in

Lp(µ, `r). More generally, Πp(Z,X) = L(Z,X) if Z is an L1-space and X is an Lr-

space, see [5, p. 60] for the definition of Lq-spaces. Further results on semivariation

in tensor products of Lp-spaces are obtained in [1].

3. The measure

Let 2 < p < ∞ and let q be the conjugate index satisfying 1/p + 1/q = 1. We construct

an Lp-valued measure m defined on the Borel σ-algebra B([0, 1]) of the unit interval [0, 1]

via a family {gj}∞j=1 of independent, identically distributed, standard q-stable random

variables with respect to Lebesgue measure P on [0, 1]. Here a B([0, 1])-measurable function

f : [0, 1] → R is called a standard q-stable random variable if∫ 1

0

eisf(t) dP(t) = e−|s|
q

, s ∈ R.

A discussion of q-stable random variables appears in [16, V.5.6]. In particular, by [16,

Lemma V.5.4, p. 338], each standard q-stable random variable on [0, 1] belongs to Lr([0, 1])

for every 1 ≤ r < q and the equality

(3.1)

∥∥∥∥∥
n∑

j=1

cjgj

∥∥∥∥∥
L1([0,1])

=

(
n∑

j=1

|cj|q
)1/q

· ‖g1‖L1([0,1]),

holds for all numbers cj ∈ C, j = 1, . . . , n, and n = 1, 2, . . . . The equality (3.1) determines

an isometric embedding of `q into L1([0, 1]).
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Lemma 3.1. The sequence {gj}∞j=1 is weakly p-summable in L1([0, 1]), that is,

sup
‖f‖L∞([0,1])≤1

∞∑
j=1

|〈gj, f〉|p < ∞.

Proof. Let f ∈ L∞([0, 1]). Then, for all n = 1, 2, . . . and all scalars c1, . . . , cn, we have∣∣∣∣ n∑
j=1

cj〈gj, f〉
∣∣∣∣ =

∣∣∣∣ n∑
j=1

cj E
(
fgj

)∣∣∣∣ =
∣∣∣E(f n∑

j=1

cjgj

)∣∣∣
≤
∥∥∥ n∑

j=1

cjgj

∥∥∥
L1([0,1])

· ‖f‖L∞([0,1])

=

(
n∑

j=1

|cj|q
)1/q

· ‖g1‖L1([0,1]) · ‖f‖L∞([0,1]).

Hence, sup‖f‖L∞([0,1])≤1

∑∞
j=1 |〈gj, f〉|p is finite. �

Let m : B([0, 1]) → Lp([0, 1]) be the vector measure defined by formula (2.4) in the case

that µ is Lebesgue measure P on [0, 1]. Our goal is to prove the following result.

Theorem 3.2. The Lp([0, 1])-valued measure m has infinite Lp([0, 1])-semivariation in the

space Lp(P⊗ P) = Lp([0, 1]2) on every Borel set of positive measure.

In order to prove this, we find a continuous linear map u : L1([0, 1]) → `p for which

the sequence {gj}∞j=1 in L1([0, 1]) has the property that
∑∞

j=1

∥∥u(gjχA
)
∥∥p

`p = ∞ for every

Borel set A ⊆ [0, 1] of positive measure and then we appeal to Lemma 2.2.

4. A non-p-summing map

Let the notation be as in Section 3. Suppose that {gj}∞j=1 is the family of standard

q-stable independent identically distributed random variables with respect to Lebesgue

measure P on [0, 1] at the beginning of in Section 3 above. Next, we choose {cj}∞j=1 such

that
∑∞

j=1 |cj|q ≤ 1 and
∑∞

j=1 |cj|q|gj|q = ∞ (P-a.e.). This is possible according to [13, pp.

356–358]. In fact, choose such scalars cj, j = 1, 2, . . . , satisfying
∑∞

j=1 |cj|q ln(1/|cj|) = ∞.

To proceed, we need the following construction.

Lemma 4.1. Let {fj}∞j=1 be a sequence in L1([0, 1]) such that
∑∞

j=1 |fj(t)|q = ∞ for P-

almost all t ∈ [0, 1]. Then there exist Borel measurable functions h1, h2, . . . on [0, 1] such

that

(1)
∑∞

j=1 |hj(t)|p ≤ 1 for all t ∈ [0, 1],

(2) hj(t)fj(t) ≥ 0 for all t ∈ [0, 1] and j = 1, 2, . . . , and

(3)
∑∞

j=1 hj(t)fj(t) = ∞ for P-almost all t ∈ [0, 1].

Proof. For each n = 1, 2, . . . and for P-almost every t ∈ [0, 1], there exist numbers h
(n)
j (t),

j = 1, . . . , n, such that
∑n

j=1 |h
(n)
j (t)|p ≤ 1 and

∑n
j=1 h

(n)
j (t)fj(t) =

∑n
j=1 |fj(t)|q → ∞ as

n →∞. However, we need to choose hj independently of n.

By applying the assumption that
∑∞

j=1 |fj|q = ∞ (P-a.e.), for any strictly increasing se-

quence α = {αk}∞k=1 of positive integers, there exists a strictly increasing sequence {Nk}∞k=1
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of positive integers such that the measure P(Ak) of the set

(4.1) Ak =

{
t ∈ [0, 1] :

Nk∑
n=1

|fn(t)|q > αk

}

is greater than 1− (1/k). Then lim supk→∞ Ak = ∩∞j=1 ∪∞k=j Ak is a set of full measure, so

almost every t ∈ [0, 1] belongs to infinitely many sets Ak, k = 1, 2, . . . . The sequence α

will be chosen later.

For each k = 1, 2, . . . and t ∈ [0, 1], define

hj,k(t) =


0 if j > Nk,

|fj(t)|q · χAk
(t)

2kfj(t)
(∑Nk

n=1 |fn(t)|q
)1/p

if j = 1, . . . , Nk.

Here we set 0/0 = 0.

For each j, K = 1, 2, . . . , let h
(K)
j =

∑K
k=1 |hj,k| be the K’th partial sum of |hj,k|, k =

1, 2, . . . . Fix t ∈ [0, 1]. Given K = 1, 2, . . . , Minkowski’s inequality yields that

(4.2)

(
∞∑

j=1

∣∣∣h(K)
j (t)

∣∣∣p)1/p

=

(
∞∑

j=1

( K∑
k=1

|hj,k(t)|
)p
)1/p

≤
K∑

k=1

(
∞∑

j=1

|hj,k(t)|p
)1/p

.

Moreover, since p(q − 1) = q, we have, for every k = 1, . . . , K, that

∞∑
j=1

|hj,k(t)|p = 2−kp

Nk∑
j=1

|fj(t)|p(q−1) ·

(
Nk∑
n=1

|fn(t)|q
)−1

· χ
Ak

(t) ≤ 2−kp.

So (4.2) implies that
∑∞

j=1

(
h

(K)
j (t)

)p ≤ 1 for all K = 1, 2, . . . . In particular,

∞∑
k=1

|hj,k(t)| = lim
K→∞

K∑
k=1

|hj,k(t)| = lim
K→∞

h
(K)
j (t) ≤ 1

for every j = 1, 2, . . . , which enables us to define a Borel measurable function hj on [0, 1] by

hj(t) :=
∑∞

k=1 hj,k(t) for all t ∈ [0, 1]. Appealing to the Monotone Convergence Theorem

ensures that

∞∑
j=1

|hj(t)|p =
∞∑

j=1

∣∣∣ ∞∑
k=1

hj,k(t)
∣∣∣p ≤ ∞∑

j=1

( ∞∑
k=1

|hj,k(t)|
)p

=
∞∑

j=1

(
lim

K→∞
h

(K)
j (t)

)p

= lim
K→∞

∞∑
j=1

(
h

(K)
j (t)

)p

≤ 1.

Therefore, property (1) holds and because fj(t)hj(t) ≥ 0 for all j = 1, 2, . . . and t ∈ [0, 1],

property (2) also holds.
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To check property (3), let j = 1, 2, . . . and t ∈ [0, 1]. Then

hj(t)fj(t) = fj(t)
∞∑

k=1

hj,k(t)

= fj(t)

 ∑
{k:Nk<j}

hj,k(t) +
∑

{k:Nk≥j}

hj,k(t)


=

∑
{k:Nk≥j}

2−k · χ
Ak

(t) · |fj(t)|q
(

Nk∑
n=1

|fn(t)|q
)−1/p

.(4.3)

Then, given k = 1, 2, . . . and t ∈ Ak, it follows from equation (4.3) that

hj(t)fj(t) ≥ 2−k|fj(t)|q
(

Nk∑
n=1

|fn(t)|q
)−1/p

for all j = 1, . . . , Nk, and hence,

Nk∑
j=1

hj(t)fj(t) ≥ 2−k

(
Nk∑
n=1

|fn(t)|q
)1/q

> 2−kα
1/q
k .

As noted above, P-almost every t ∈ [0, 1] belongs to infinitely many sets Ak, k = 1, 2, . . . ,

so choosing αk := k2kq for each k = 1, 2, . . . ensures that
∑∞

j=1 hj(t)fj(t) = ∞ for P-almost

every t ∈ [0, 1]. �

Let {cj}∞j=1 be the sequence mentioned at the beginning of this section, fj = cjgj for

j = 1, 2, . . . and suppose that hj, j = 1, 2, . . . , are any measurable functions satisfying

properties (1), (2) and (3) of Lemma 4.1.

Lemma 4.2. The mapping u : f 7−→ {E(fhj)}∞j=1, f ∈ L1([0, 1]), is a continuous linear

map from L1([0, 1]) into `p such that
∑∞

k=1 ‖u(gkχA
)‖p

`p = ∞ whenever A is a Borel subset

of [0, 1] of positive measure.

Proof. Let f ∈ L1([0, 1]). To check that the sequence {E(fhj)}∞j=1 belongs to `p, suppose

that ξ ∈ `q. Then, given n = 1, 2, . . . , we have
∑n

j=1 ξ(j)E(fhj) = E(f
∑n

j=1 ξ(j)hj) and

∣∣∣ n∑
j=1

ξ(j)hj(t)
∣∣∣ ≤ ( n∑

j=1

|ξ(j)|q
)1/q( n∑

j=1

|hj(t)|p
)1/p

≤ ‖ξ‖`q .

for every t ∈ [0, 1] by property (1) of Lemma 4.1. Therefore, u(f) ∈ `p and

‖u(f)‖`p ≤ ‖f‖L1([0,1]) for every f ∈ L1([0, 1]).
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Appealing the Monotone Convergence Theorem and the fact that cjhjgj ≥ 0 for each

j = 1, 2, . . . , we have, for every non-null Borel set A ⊆ [0, 1], that
∞∑

k=1

∥∥u(gkχA
)
∥∥p

`p =
∞∑

k=1

∞∑
j=1

∣∣∣E(hjgkχA
)
∣∣∣p

≥
∞∑

j=1

∣∣∣E(hjgjχA
)
∣∣∣p

≥
∣∣∣ ∞∑

j=1

cj E(hjgjχA
)
∣∣∣p

=

∣∣∣∣E( ∞∑
j=1

cjhjgjχA

)∣∣∣∣p = ∞,

because
∑∞

j=1 |cj|q ≤ 1 and because property (3) of Lemma 4.1 gives
∑∞

j=1 cjhjgjχA
= ∞

(P-a.e. on A) . �

Proof of Theorem 3.2. Let 2 < p < ∞. Then the continuous linear map u : L1([0, 1]) →
`p constructed above is not p-summing and by Lemmas 3.1 and 4.2, the sequence {gj}∞j=1

in L1([0, 1]) has the property that
∑∞

j=1

∣∣〈gj, f〉
∣∣p < ∞, for every f ∈ L∞[0, 1], but∑∞

j=1

∥∥u(gjχA)
∥∥p

`p = ∞ for every Borel set A ⊆ [0, 1] of positive measure. Now it fol-

lows from Lemma 2.2 that βX(m)(A) ≥
∑∞

j=1

∥∥u(gjχA
)
∥∥p

`p = ∞. �

Remark 4.3. The continuous linear map u : L1([0, 1]) → `p is not p-summing because

sup‖f‖L∞([0,1])≤1

∑∞
k=1 |〈gk, f〉|p < ∞ by Lemma 3.1, but

∑∞
k=1 ‖u(gk)‖p

`p = ∞ by Lemma

4.2. For 2 < p < ∞, there are many examples of non-p-summing continuous linear maps

from L1([0, 1]) to `p. Indeed, if X is any Banach space and w : X → `p is a surjective

continuous linear map, then the lifting property of `1 ensures that the following diagram

is commutative:
T̃ X
↗ ↓ w

`1 → `p

T

If we choose T to be a non-p-summing continuous linear map [9, Lemma 4.1], then w cannot

be p-summing, that is, no surjective continuous linear map w : X → `p is absolutely p-

summing. However, for the purpose of proving Theorem 3.2, we also need an explicit

sequence busting the absolutely p-summing property.
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