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Abstract. A novel simple method using static test data for damage detection, localization,
and quantification in beams is presented in this paper. The method is based on the change of the
deflections of the beam between a reference and a damaged state. For simply supported beams
with a single damage, the maximum value of the change of deflections indicates the location of
damage. Once the damage is located, one could estimate the rotational stiffness at the damaged
cross section by applying a superposition scheme to isolate the effect of damage and by using
basic structural analysis equilibrium equations. Afterwards, damage extent is evaluated through
an existing relation between rotational stiffness and damage severity. Several static tests of a
simply supported steel beam with a point load at different locations were conducted to exam the
performance of the strategy. The damage is artificially introduced as an opened crack located at
the bottom of the beam. The deflections of the beam were measured by using a Digital Image
Correlation system. The results show that the method can accurately detect and quantify the
damage. The method is non-model based and can be easily conducted. No specific loading
positions are required and damage identification objective can be achieved from just one single
static test.

1. Introduction
The fundamental objective of damage detection is to identify the change of properies in a
structure caused by damage, which includes natural frequencies, dampings, stiffness or flexibility
matrix, mode shapes, and etc [1]. Many methodologies and techniques proposed by researchers
are based on system identification or parameter estimation through the dynamic response of the
structure. Various numerical methods are applied for damage detection and localization, such
as the transimissibility function [2–4], the BAT algorithm [5], etc.

Some researchers also applied similar ideas using static response data of the structure.
Caddemi and Morassi [6] identified a single crack in beams with different boundary conditions
using the static displacements. Lee and Eun [7] presented a method for locating damage through
the change of curvature of static deflections. Bakhtiari-Nejad, Rahai and Esfandiari [8] developed
an algorithm based on the change of stored strain energy in the elements using static noisy data
for damage detection. Seyedpoor and Yazdanpanah [9] also illustrated a method through the
change of strain energy using static noisy data.

In this paper, a novel non-model based simple method for single crack damage detection and
localization of beams is presented. Firstly, the theory of the method is presented to illustrate
how the change of pre- and post-damaged static displacements of the beam under external
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Figure 1. States of the superposition scheme: (a) Damaged State (D) , (b) reference or
Undamaged State (U) and (c) Incremental State (I).

loads can be used for damage localization. From the information about the damage location,
a damage quantification method based on structural analysis is introduced. Next, a series of
experimental tests of a cracked simply supported beam were conducted to exam the performance
of the method.

2. Theory background
It is known that the prescence of a crack will cause a reduction in the local stiffness at the
cracked cross section. Hence a single damaged beam could be modeled as a rotational spring
at the cracked location that connects two undamaged parts of the beam [10]. The problem of a
cracked beam under some external forces (P ) (Damaged State, D) can be decomposed into an
Undamaged State (U) plus an Incremental State (I) (Fig.1). Thus, the deformation (U) and
internal forces (f) can be written as

UD = UU + UI and fD = fU + fI (1)

In figures Fig. 1 (a), (b) and (c), CSL and CSR are the left and right sides of the damage
cross section respectively, Kt is the rotational stiffness of the spring that models the cracked
cross section, m is the internal bending moment at CSL and CSR (they are equal to each other),
msp is the internal torsional moment of the spring, θL and θR are the rotations at CSL and CSR,
respectively, and the footnotes U , D, and I stand for the Undamaged (or reference), Damaged,
and Incremental States respectively. In the Undamaged State, the rotations at CSL and CSR are
set to be equal (θL,U = θR,U ), which indicates the spring is not present in the undamaged beam.
It is found that this superposition is valid when the applied moment (M) in the Incremental
State is equal to the internal bending moment at damage location (mU ) in the Undamaged State.

The damage locations are revealed in the overall deformed shape of UI since the external forces
will introduce slope (rotation) discontinuities at damaged cross sections (Fig. 1 (c)). For a single
cracked simply-supported beam, the shape of UI is piecewise linear and it is independent from
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the loading position. Its magnitude depends on the magnitude of external loads, the severity of
damage and the relative position of the load and the damage.

A finite element model of a simply-supported Timoshenko beam with a 1200mm length (L)
and a 100 × 20mm rectangle cross section was built in ANSYS (mesh size 120mm). A spring
with a rotational stiffness (Kt) of 1.8e5N/m2 was used to model the crack at 0.4L from the left
end. A concentrated load, 1kN, was applied at 0.6L from the left end. The deflections of the
beams for the Damaged and Undamaged States are shown in Fig 2 (a). The deflection under
a self-equilibrated bending moment mU corresponding to the Incremental State (UI) and the
difference between the displacements of the Undamaged and Damaged States (∆U) are shown
in Fig. 2 (b). It is shown that UI is equal to ∆U . The discontinuity in the slope indicates the
damage location precisely. The slight difference between ∆U and UI is due to numerical errors.
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Figure 2. Deflection results of the finite element model: (a) UD and UU of simply-supported
beam; (b) ∆U and UI of simply-supported beam

Once the damage is localized, the rotational stiffness of the cracked beam could be estimated
from the Incremental State using the following expression:

Kt =
msp,I

(θL,I − θR,I)
=
msp,I

∆θI
(2)

The rotation discontinuity (∆θI) can be directly computed from ∆U (UI) and the moment
absorbed by the spring (msp,I) can be automatically calculated for a statically determinate beam
since the reactions of the beam for the Incremental State are null and therefore msp,I equals M
(and mU , as indicated previously). Once the rotational stiffness of the damaged cross-section is
determined, the extent of damage can be estimated by comparing it with an existing correlation
between damage size and rotational stiffness.

3. Experimental Test of A Simply-Supported Beam
3.1. Test Setup
An experimental test of a simply-supported steel beam was conducted to test the performance
of the methodology. The dimension of the beam was 1200 × 100 × 20mm. A notch was cut at
the bottom of the beam at 0.35L (425mm) from the left end. The depth of the notch was set to
be 7mm (35% of the beam height). A Digital Imagine Correlation(DIC) system (Fig. 3 (a), (b)
and (c)) was used for measuring the deflection of the beam under loading. A total number of
241 measuring points (damage at the 86th) were marked along the beam with an equal spacing
of 5mm. A concentrated force was applied on the beam vertically through hanging a 120kg mass
on it. 21 tests were performed by putting the mass at 21 equally distributed positions along the
beam. The scheme of the test is shown in Fig. 3 (d).
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Figure 3. (a) Experimental setup, (b) DIC measuring system, (c) Tested beam and (d) Test
scheme

3.2. Implementation of the methodology
Due to the effect of noise on the measured data, a trend estimate function named l1 Trending
Filter is used to estimate the overall shape of ∆U . The l1 Trending Filter produces trend
estimation that is piecewise linear through minimize the objective function in Eqn. (3), where
λ is a nonnegative parameter. xt is the estimated trend and yt is the signal [11]. This trending
filter automatically identifies the turning point along the piecewise shape data.

(1/2)
n∑

t=1

(yt − xt)2 + λ
n−1∑
t=2

|xt−1 − 2xt + xt+1|2 (3)

The results of ∆U and the application of l1 Filter to ∆U (∆Ul1) are displayed in Fig. 4
and 5. For all 21 loading positions, the shape of ∆U was estimated correctly. The effect of
noise only takes a relative high influence when the loading positions are close to supports of the
beam (at positions 1, 20 and 21). The position where the maximum value of ∆Ul1 takes place is
considered as the damage location. The predicted results are listed in table 1. All the predicted
damage locations fall into a small range from the correct location. The furthest predition is at
point 93 (for loading position 20), which is 35mm to the right of the real damage. Therefore, it
is shown that the methodology can successfully localize the damage for this damage scenario.

For a notch type opened cracked on an elastic beam with rectangular cross-section, the
equivalent rotational stiffness of the damaged cros-section (Kt) proposed by Rizos, Aspragathos,
and Dimarogonas [12] (Eqn. (4) and (5)) is used in this paper for damage extent estimation:
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Figure 4. ∆U and ∆Ul1 with loading at positions 1 (a) to 12 (l).
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Figure 5. ∆U and ∆Ul1 with loading at positions 13 (a) to 21 (i).

Kt = 1/c c = 6πhJ(ξ)/EI (4)

where h is the height of the beam, E the elastic modulus of the material of the beam, I the
inertia of the cross-section and J is the following function of the ratio (ξ) between the notch
depth and the height of the beam.

J(ξ) = 1.86(ξ)2 − 3.95(ξ)3 + 16.375(ξ)4 − 37.226(ξ)5

+ 76.81(ξ)6 − 126.9(ξ)7 + 172.5(ξ)8 − 143.97(ξ)9 + 66.56(ξ)10
(5)

By using this empirical relationship, damage severity can be estimated from the
experimentally identified rotational stiffness (Kt) in Eqn.(2). The rotation discontinuity (∆θI)
can be evaluated using a piecewise linear regression function of UI , whereas msp,I (equivalent to
mU ) can be easily computed from equilibrium equations of the undamaged beam. The estimated
damage extent for each test are also listed in table 1. All of the estimated damage severities are
bigger than the real value. This may indicate some discrepancy between the analytical model of
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Table 1. Estimated damage location and severity and their errors

Localization Quantification

Loading Measuring Location Deviation Severity Error Error
Position Point (mm) (mm) (mm) (mm) (%)

1 85 415 5 7.5 0.5 7
2 89 440 15 7.7 0.7 10
3 89 440 15 7.7 0.7 10
4 88 435 10 7.9 0.9 13
5 88 435 10 7.8 0.8 11
6 88 435 10 7.8 0.8 11
7 86 425 0 7.8 0.8 11
8 86 425 0 7.8 0.8 11
9 87 430 5 7.8 0.8 11

10 85 415 5 7.9 0.9 13
11 87 430 5 7.8 0.8 11
12 87 430 5 7.7 0.7 10
13 87 430 5 7.7 0.7 10
14 87 430 5 7.8 0.8 11
15 89 440 15 7.7 0.7 10
16 87 430 5 8.0 1.0 14
17 91 450 25 7.8 0.8 11
18 89 440 15 7.8 0.8 11
19 90 445 20 7.9 0.9 13
20 93 460 35 7.7 0.7 10
21 87 430 5 7.7 0.7 10

the crack as a rotational spring and the actual behavior of the damaged cross section. However,
for all the loading positions, the method provides predictions with high accuracy even for those
with low signal to noise ratio.

4. Conclusion
A non-model based damage detection and localization methodology based on the static
displacements is presented in this paper. No specific loading positions are needed for the
experimental test and structural identification is not required. Experimental results of a simply-
supported steel beam with a single crack are provided. The methodology successfully predicts
the crack location with a very high accuracy for all loading positions. From the predicted damage
locations, the damage extent can be estimated using an existing analytical correlations between
damage extent and rotational stiffness of the damaged cross section. The method provides
results with high accuracy as well. In summary, the paper proves the efficiency and simplicity
of the method for practical purpose.
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