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Abstract

DC-SIGN is a dendritic cell-specific C-type lectin receptor that recognizes highly glycosylated ligands
expressed on the surface of various pathogens. This receptor plays an important role in the early stages
of many viral infections, including HIV, which makes it an interesting therapeutic target. Glycomimetic
compounds are good drug candidates for DC-SIGN inhibition due to their high solubility, resistance to
glycosidases and non-toxicity. We studied the structural properties of the interaction of the tetrameric
DC-SIGN extracellular domain (ECD), with two glycomimetic antagonists, a pseudo-mannobioside (1)
and a linear pseudo-mannotrioside (2). Though the inhibitory potency of 2, as measured by SPR
competition experiments, was one order of magnitude higher than that of 1, crystal structures of the
complexes within DC-SIGN carbohydrate recognition domain showed the same binding mode for both
compounds. Moreover, when coupled to multivalent scaffolds, the inhibitory potencies of these
compounds became uniform. Combining isothermal titration microcalorimetry, analytical
ultracentrifugation and dynamic light scattering techniques to study DC-SIGN ECD interaction with
these glycomimetics, revealed that 2 is able, without any multivalent presentation, to cluster DC-SIGN
tetramers leading to an artificially overestimated inhibitory potency. The use of multivalent scaffolds
presenting 1 or 2 in HIV trans-infection inhibition assay confirms the loss of potency of 2 upon
coupling and the equal efficacy of chemically simpler compound 1. This study documents a unique
case where, among two active compounds chemically derived, the compound with the lower apparent
activity is the optimal lead for further drug development.

Keywords: C-Type Lectin, HIV, glycomimetics, clustering, analytical ultracentrifugation, isothermal
microcalorimetry
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Introduction

Immature dendritic cells (DCs) are professional antigen presenting cells of the innate immunity.
They routinely survey peripheral tissues for invading pathogens, and present the antigens to the T cells
thus boosting pathogen-specific adaptive immune responses(/). Pattern recognition receptors (PRRs) of
DCs are instrumental in capturing pathogens through the recognition of pathogen associated molecular
patterns (PAMPs). DCs express a wide range of PRRs including toll-like receptors (TLRs) and C-type
lectin receptors (CLRs), enabling DCs to recognize the majority of invading pathogens(2, 3). One of
these PRRs is DC-SIGN (Dendritic Cell-Specific ICAM-3 Grabbing Non-integrin), a CLR abundantly
expressed on immature DCs that has been extensively studied because of its intriguing roles in
immunity(4, 5). DC-SIGN was recognized as a receptor hijacked by various dangerous pathogens,
including viruses like HIV and Ebola, bacteria, fungi and parasites, to evade or modulate host immune
responses enhancing their infectivity(6, 7). These findings highlighted DC-SIGN as an interesting
therapeutic target and inspired many research groups to attempt the design of antagonists for infection

prevention.

DC-SIGN is a type Il membrane protein with a cytosolic domain followed by a transmembrane
region and an extracellular domain (ECD). The latter is organized into an elongated neck region and a
globular C-terminal carbohydrate recognition domain (CRD), which binds fucose and mannose-
containing oligosaccharides in a calcium-dependent manner(8, 9). The neck drives lectin’s
oligomerization into tetramers and serves as a stalk raising CRDs well above the cell membrane
(320 A) and presenting them in a tetravalent manner with ~40 A distances between vicinal binding sites

(10). These tetramers are further clustered to microdomains at the cell membrane(/7, 12).

Although monosaccharide affinity to DC-SIGN is very low, multimeric DC-SIGN organization
together with clustered presentation of pathogen glycans leads to the affinity enhancement through
avidity effects. Hence, the strategies to develop good DC-SIGN inhibitors not only involve
optimization of the monovalent ligands, but also include extensive search for the proper scaffolds for
multimeric ligand presentation, thus ensuring efficient competition with highly multivalent PAMPs

(reviewed in (13, 14)).

Our groups focus on the development of fucose- and mannose-based glycomimetic inhibitors of
DC-SIGN. We recently published series of LewisX trisaccharide mimics, which had slightly better

affinity as compared to natural LewisX and an improved selectivity to DC-SIGN versus langerin(/5), a
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C-type lectin implicated in the protection from HIV infection(/6). We have also developed two
mannose-type glycomimetics, corresponding to a terminal branch of high-mannose glycan, which are
the target ligands for DC-SIGN on the gp120 HIV envelope protein. Thus, we produced a Manal-
2Man mimic pseudomannobioside (1) and a Manal-2Manal-6Man mimic pseudomannotrioside (2)
and evaluated them as DC-SIGN inhibitors. The initial surface plasmon resonance (SPR) competition
assay indicated that 2 had an order of magnitude lower ICsy than 1(/7). Hence, this compound was
selected to generate a tetravalent dendron 3.2, which in turn was tested for the ability to inhibit HIV
trans-infection of T-lymphocytes mediated by B-THP-1/DC-SIGN cells(/7) as well as HIV
transmission inhibition in cervical tissue explants(/8). Indeed, the dendron 3.2 displayed a very

promising anti-HIV activity in these assays and was demonstrated to be non-toxic.

Additionally, the third generation (G3) Boltorn type dendrimers 4 bearing an average of 30-32
copies of 1 (compound 4.1) or 2 (compound 4.2) were built and evaluated in SPR competition
experiments and DC-SIGN-mediated Ebola infection assays(/9). Both dendrimers were highly active
in inhibiting Ebola infection, but surprisingly, no significant difference was found in their potencies
(ICso ~20 nM for both compounds). The SPR competition experiments gave a similar outcome (Figure
1): while the activities of the monovalent compounds have almost one order of magnitude difference in
favor of 2, nearly the same affinities were observed for tetravalent (3.1 and 3.2) and multivalent (4.1
and 4.2) forms of 1 and 2. Furthermore, the monovalent and tetravalent forms of 2 (2 and 3.2) had

basically the same activities.
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Figure 1. The comparison of 1 and 2 inhibitory efficiencies at monovalent and multivalent presentations. (A) The structures
of ligands 1-4; the red frames highlight the portions of the molecules conjugated to the scaffolds; the structure of G3
Boltorn type dendrimer 4, represented here as a grey sphere, is shown in SI. (B) The ICs, for the corresponding compounds
from SPR competition assay, adapted from reference (79).

Recently, we have structurally characterized the binding of 1 to DC-SIGN CRD(20). X-ray
crystallography of co-crystallized DC-SIGN CRD/1 complex revealed an unexpected binding mode of
the molecule, which was confirmed by solution studies using transfer NOE (tr-NOESY) and saturation
transfer difference (STD) NMR experiments. Although 1 and its natural counterpart Mano1-2Man
have similar affinities for DC-SIGN as observed in SPR competition test (ICsy values 1.0 mM and
0.9 mM, respectively), our results indicated that 1, contrary to Mana1-2Man, has only a single binding
mode within DC-SIGN CRD, a prerequisite for a good lead compound for further chemical
modifications to improve affinity and selectivity. We also found that 1 has an enhanced selectivity
towards DC-SIGN compared to langerin. This is an important feature for the development of
microbicides that shouldn’t interfere with the protective function of langerin, especially due to its
expression on Langerhans cells, which constitute the very first barrier for invading HIV virions in
genital and rectal mucosa(/6).

Herein we present our efforts to unravel the underlying reasons for the above-described
surprising behavior of the compound 2. Through series of biophysical studies we found that this small

glycomimetic, to our surprise, acts as a bivalent molecule, and this peculiar property led to an artificial
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overestimation of its potency in competition assays where soluble DC-SIGN tetramers are used. This
work emphasizes the importance of thorough and critical structural investigation of leads from primary
screening campaigns and highlights specific design challenges for the discovery of potent antagonists

of lectins’ activity.

Results and discussion

The study described in this paper was motivated by the need to understand why the relatively
high efficiency of 2 is lost when the compound is tethered on multivalent scaffolds, an essential
information in order to shape our ligand design program. We have co-crystallized the latter
glycomimetic with DC-SIGN CRD and solved the X-ray structure. Furthermore, we investigated the
thermodynamic and hydrodynamic properties of DC-SIGN ECD interaction with 1 and 2 by isothermal
titration microcalorimetry (ITC) and analytical ultracentrifugation (AUC). Our results indicated that
monovalent 2 in fact functions as a bivalent molecule capable of bridging DC-SIGN tetramers, a very
peculiar property for such a rather small molecule with relatively not so high affinity. Such peculiar
property of 2 resulted in an artificial overestimation of its potency in competition assays where soluble

DC-SIGN tetramers are used.

The X-ray structure of DC-SIGN CRD/2 complex and its comparison with DC-SIGN CRD/1

In order to compare the binding modes of 1 and 2 within DC-SIGN and thus to shed light on the
underlying reasons for the binding affinity of mono- and polyvalent versions of 2, we co-crystallized 2
with monomeric DC-SIGN CRD and solved the X-ray crystal structure.

Similarly to the recently published structure of DC-SIGN/1, the crystals of 2 in complex with
DC-SIGN CRD also had a single copy of CRD in an asymmetric unit with P43;2,2 space group. The

structure was solved by molecular replacement, at 1.35 A resolution (see Table S1 in SI).
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pseudo-mannotrioside

Figure 2. The binding mode of pseudo-mannotrioside 2 within DC-SIGN CRD. (A) and (B) Two orientations of the bound
ligand superimposed with the Fo-Fc electron density map (cyan 3o contour); the protein carbon backbone is represented in
olive cartoon with amino acids contributing to binding highlighted by stick representation; 2 is shown in yellow sticks.
V351 exhibits two alternative conformations with 50% occupancy in the crystal structure, both of them are represented in
(B). (C) pseudo-mannotrioside interaction to DC-SIGN. Hydrogen bonds are shown as dashed purple lines, Ca*"
coordination bonds are dashed black lines, and key van der Waals interaction are indicated by dashed blue lines. (D) The
superimposition of 1 (pink sticks) and 2 (yellow sticks) crystal structures bound to DC-SIGN CRD (pale cyan surface
representation). Oxygen and nitrogen atoms are in red and blue, Ca* ion is a green sphere.

When the structure was solved using the model without sugar, an electron density was observed
on Ca”" ion in the canonical carbohydrate binding site, indicating the presence of pseudomannotrioside
bound to DC-SIGN through a conventional Ca**-coordination by the 3-OH and 4-OH groups of the
non-reducing end mannose moiety (Figure 2A and 2B). It appeared that the binding mode of 2 within
DC-SIGN CRD (Figure 2A) was the same as that of 1, with exactly the same orientation of the

common portion of the molecule (Figure 2C and 2D). To our surprise, no additional contacts (other
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than those described previously for 1,pdb 2xr5) with the protein were observed. While the non-
reducing mannose moiety made coordination bonds with Ca*" ion with its 3-OH and 4-OH groups and
C6 methylene of the cyclohexane ring retained the van der Waals contact with Val351 side chain of the
protein, the reducing-end mannose was oriented away from the protein and apparently didn’t make any
contacts. Moreover, the electron densities of this second mannose unit as well as of its ethylazide linker
were rather poorly defined, suggesting a higher flexibility of these parts (Figure 2A). Thus the revealed
structure of 2 within DC-SIGN didn’t provide any clue about the reason why it could be a better ligand
than 1 for DC-SIGN having apparently the same binding mode and contacts with the protein. This

intriguing finding prompted us to investigate the interaction further on.

Thermodynamic characterization of DC-SIGN interaction with 1 and 2

To evaluate whether positive entropy contributions were responsible for the higher affinity of
monovalent 2 relative to 1, we analyzed the interaction of both glycomimetics with tetrameric DC-
SIGN by ITC. At the first set, the same experimental conditions with identical concentrations of
interaction components were used. The pseudosaccharides (12.7 mM) were titrated into lectin solution

(71 uM with respect to binding sites).
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Figure 3. ITC results of 1 and 2 titrations to DC-SIGN ECD. (A) and (B) show titrations of 1 and 2, respectively, at
12.7 mM to DC-SIGN ECD (71 uM). (C) 2 (1.18 mM) titration to 214 uM DC-SIGN ECD. Upper panels show the titration
thermograms and lower panels the data integration with fitted curves (1:1 binding model).

The ITC data (Figure 3A and 3B) indicated the low affinity of the ligands as the titration curves
didn’t adopt the full sigmoidal shape. Fitting one binding site model to the data with an assumed
stoichiometry value n fixed to 1 yielded the Kp of 990.10+19.7 uM and 75.76+7.29 uM for 1 and 2,
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respectively, but the low affinity prevented reliable interaction enthalpies and entropies to be obtained
and compared(2/). Nevertheless, an intriguing outcome could be observed: the first injections of 2 to
DC-SIGN solution resulted in twice more heat released using the same concentrations of both ligands
and the receptor. This suggested a higher affinity of 2 than 1, which could not be explained by the X-
ray data since 2 didn’t seem to make any other additional contacts compared to 1.

Because 2 had apparently higher affinity to DC-SIGN, we repeated the titration with different
concentrations (1.18 mM of 2 titrated to 214 uM of DC-SIGN ECD) in order to perform it in a more
relevant concentration range (Figure 3C). Fitting the same model this time gave Kp of 5.26+0.29 uM,

=-15.800.15 kcal mol”', TAS=-8.57 keal mol”', and AG of -7.20 kcal mol'. Thus a difference of 2
orders of magnitude between the Kp values of 1 and 2 was determined (990 puM and 5 uM,
respectively), which is much higher than what could be initially expected from the SPR data and
highlights even a stronger difference in the activities of the two molecules.

Furthermore, fitting of the data in Figure 3C yielded #n=0.5 stoichiometry. Because additional
DC-SIGN ECD purification step has been applied for this experiment (SI Figure S2), the contribution
of non-active binding sites to n<l value was excluded. Interaction with #=0.5 in this case means that
two DC-SIGN CRDs share one molecule 2, or in other words, two DC-SIGN tetramers bind four
copies of 2, on average. Since 2 is a relatively small molecule, it is impossible for it to reach two
different CRDs within the same tetramer (the approximate distance between vicinal binding sites
within the tetramer is 40 A(10)). Hence, this stoichiometry suggests that the same molecule of 2
bridges two DC-SIGN tetramers by simultaneously binding to one CRD in each, and would explain
why under the same experimental conditions titrating DC-SIGN with 2 released markedly more heat

than titrating with 1.

Analytical Ultracentrifugation analysis of DC-SIGN/I and DC-SIGN/2 complexes

To check the hypothesis that 2 can bridge DC-SIGN tetramers, sedimentation velocity (SV)
experiments were performed on the samples retrieved from the ITC measurements, where the ligands
were in 26-fold excess relative to the lectin binding sites. Figure 4 compares the sedimentation profiles
registered at 42000 rpm at the same time intervals (1 h) for each of the three samples (pure protein,
Figure 4A; DC-SIGN+1, Figure 4B; DC-SIGN+2, Figure 4C). Clearly, DC-SIGN alone or incubated
with 1 sediments similarly, while DC-SIGN incubated with 2 moves faster, suggesting that the
association of DC-SIGN tetramers is induced by 2 but not by 1.
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Figure 4. SV experiments of 62 uM DC-SIGN ECD alone and in presence of 1 or 2 at 1.63 mM. Experimental data
showing concentration profiles of DC-SIGN alone (A), in the presence of 1 (B) and 2 (C) recorded with time intervals
between successive profiles of 40 min for the two first ones, then 55 min; the first profiles at panels (A), (B) and (C) were
obtained 4, 10 and 14 min, respectively, after the beginning of the centrifugation. (D) and (E) show the superimposition of
the c(s) curves for DC-SIGN alone and with 1 (D) and 2 (E).

The data were treated in terms of size distribution analysis. Figure 4D shows a nearly perfect
superposition of the c(s) distributions obtained with DC-SIGN alone and in the presence of 1. On the
other hand, glycomimetic 2 induced the formation of larger species (Figure 4E).

DC-SIGN alone and with 1 sediments at s,0,=5.2 S, close to s204=5.4 S previously published for
the tetramer at infinite dilution(/0, 22). The additional peak observed for DC-SIGN in the presence of 2
1s at s20w=6.5 S. This value may correspond to a more compact tetramer (f/fnin=1.6 instead of 1.9 for
DC-SIGN alone) or to a more elongated complex of two tetramers (f/fmin=2.5). However, this
experiment was done only at one ratio, and we cannot exclude that 6.5 S peak corresponds to an
intermediate value between the s-value of the tetramer and of the larger complex. The shape of the
sedimentation boundary, thus the c(s), indeed depends on the kinetics and thermodynamics of the

interaction.
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To elucidate the origin of these larger species, a second set of SV experiments was performed
using several 2/DC-SIGN molar ratios (0, 0.25, 0.5, 1, 5, 11 and 27) and the results are summarized in
Figure 5.
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Figure 5. SV experiments of DC-SIGN ECD alone and in the presence of 2 at different 2/DC-SIGN molar ratios. (A) The
overlaid c(s) curves for DC-SIGN ECD alone and with 2 at different ratios. (B) The evolution of s,-values as a function of 2
concentration. DC-SIGN ECD concentration was 102 uM with respect to binding sites.

DC-SIGN ECD alone sediments at s,0,=4.8 S, which is a lower value than measured with
DC-SIGN ECD at 62 uM. This difference may be related to excluded volume effects, which are
expected at this concentration (4 mg mL™") considering the elongated shape of DC-SIGN ECD. The s-
value of this peak is slightly increasing up to a 2/DC-SIGN ECD ratio of 0.5 (Figure 5A). Starting from
ratio 1, an additional peak emerges at approximately s204,=6.3 S, corresponding to the formation of
larger species. Increasing the concentration of 2, the proportion of this peak increases up to 80% of the
total signal at a 2/DC-SIGN ECD ratio of 11. The s-values of both peaks start to decrease slightly from
ratio 5: for the largest species the observed s;0, maximum is 6.3 S at ratio 5, which decreases to 5.7 S
at ratio 27; for the smallest species at the same ratios the corresponding syoy-values are 5.2 and 4.7 S.
These variations of the absolute syoy-values are likely not related to experimental errors, but reflect the
complexity of a reaction boundary: for fast reactions, indeed, association-dissociation processes affect
the sedimentation boundary(23, 24). The integration of each c(s) curve under the two peaks gives, on
one hand, the total absorbance reflecting DC-SIGN ECD concentration (similar at all ratios), and on the
other hand, the weight-average sedimentation coefficient value (s,,) that does not depend on the
interaction kinetics. We attempted the s,-isotherm analysis using SEDPHAT, but fitting hetero-
association models failed, most likely due to the presence of a more complicated system and to non-

ideality conditions. Nevertheless, the data analysis in terms of s,,-value (Figure 5B) clearly shows that
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the addition of 2 up to 500 uM concentration to 102 uM DC-SIGN solution participates in the
formation of higher macromolecular complexes as indicated by the increase of s,-value, while further
excess of the compound induces the disassembly of DC-SIGN complexes. Although this type of data
analysis can be used to extract the interaction affinities(23, 24), the studied system is apparently too
complicated (tetravalent protein, presumably bivalent ligand, excluded volume effects), therefore no

model could be fitted to the data.

Characterization of DC-SIGN/2 interaction by static and dynamic light scattering
DC-SIGN association, induced by 2, was also examined by Static (SLS) and Dynamic Light
Scattering (DLS) simultaneously using the same sample conditions as for the second AUC study.
Correlation curves and hydrodynamic radius (Ry) distributions from DLS show the presence of one
contribution for most of the samples (example in Figure S3). Larger species (Ry =100 nm) were
marginally detected in negligible amounts of the peak intensity and are considered as irrelevant dust.
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Figure 6. Results of static and dynamic light scattering of 102 uM DC-SIGN ECD alone and in presence of 2 at different
2/DC-SIGN molar ratios. The error bars represent standard deviation values.

The Ry and MW values were plotted against the 2/DC-SIGN molar ratios (Figure 6). SLS and
DLS do not allow distinguishing monomers and dimers of tetrameric DC-SIGN ECD. The measured
MW and Ry are mean values dominated by the larger species, since scattered intensity is proportional to
> eiM Wiz, ¢; and MW, being the weight concentration and molar mass of species i. When increasing the
2/DC-SIGN ECD ratio, MW increases from 148 kDa for DC-SIGN ECD alone and reaches a constant
value of 350 kDa at ratio 5. Correspondingly, Ry increases from 7.5 nm without 2 to a maximum value
of 10.4 nm at ratio 11, followed by a slight and perhaps irrelevant decrease to 10.2 nm at ratio 27. The
evolution of MW and Ry reflects the general behavior observed in AUC (Figure 5B). We note that in
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the absence of 2, MW from SLS is close to the theoretical value for a tetrameric DC-SIGN ECD
(154.827 kDa); Ry is close to the value of 7.7 nm obtained from the combination of s,0,=4.8 S and the
theoretical MW of a tetramer. The maximum MW-value from SLS (350 kDa) is close to the expected
value for a dimer of tetramers (309.654 kDa), while the combination of s20,=6.3 S with
MW=309.654 kDa gives Ry=11.7 nm, close to the experimental value of 10.4 from DLS above 2/DC-
SIGN ratio >5.

Altogether, AUC, DLS and SLS data support that 2 promotes the dimerization of DC-SIGN
tetramers when 2/DC-SIGN ECD ratios are between 1 and 5, while higher excess of 2 saturates all the
binding sites, which interrupts the further bridging.

In order to get an insight to the possible organization of compound 2-mediated DC-SIGN
assembly, we generated a model of a supramolecular complex where two DC-SIGN ECDs were
bridged by four compounds 2 using a symmetry docking algorithm(25). The best resulting model
apparently showed no steric clashes between both facing DC-SIGN ECD (Figure 7). Finally, the
constructed model was subjected to HydroPro calculations(26), and yielded the theoretical s value for
the model structure of 6.8 S, which in turn gives Ry value of 9.6 nm. This Ry value is in agreement,
within standard deviation, with the experimentally measured Ry maximum (Figure 6). This suggests
that the supra-molecular assembly is compatible with such an elongated conformation. However, this
model must be taken only as a rough approximation of the real situation: it must be kept in mind that
such a system is presumably rather dynamic due to relatively low affinity of single mannose residue,
and thus possibly adopts different conformations and/or a mix of species in solution totally loaded with

2 (Figure 7) or partially bridged by one, two or three molecules of compound 2.

13
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Figure 7. A proposed model of the bridging of DC-SIGN tetramers by four molecules of compound 2. (A) Overall
organization of bridged DC-SIGN ECD. (B) Close-up view of the interaction area marked by a black frame in panel A. The
color scheme: one of the two DC-SIGN tetramers is represented as a gray surface, and the other one as red cartoon. For
clarity the neck domain of the red DC-SIGN ECD is omitted. Carbons of 2 are yellow; oxygens and nitrogens are red and
blue; Ca*" ions are green or pink spheres for the gray and red DC-SIGN tetramers, respectively.

Comparison of the ability of multivalent systems bearing 1 or 2 to inhibit HIV trans-infection

In our previous study, due to the better activity of 2 observed in SPR competition assays, only this
molecule was used to generate a tetravalent dendron which was tested with good results in cellular
studies of HIV trans-infection inhibition(/7). Upon full characterization of the binding modes of 1 and
2 and after the results described in this paper, inhibition of HIV-1 trans-infection was readdressed in
the same cellular model using both 1 and 2-based tetravalent dendrons (3.1 and 3.2) in order to
compare their HIV blocking abilities. Additionally, 32-valent dendrimers bearing 1 or 2 (Figure 1A)
were also studied. The results showed that both dendrons were able to reduce HIV transmission to
CD4" T-cells by a very similar extent (Figure 8): 5 uM concentrations displayed ~50% infection
inhibition, while incubation with 50 uM dendrons reduced infection almost to 90%.

Due to the higher binding avidity, the dendrimers with both 1 and 2 displayed significantly higher

efficiencies than dendrons and almost completely inhibited the infection at 50 uM concentration.
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Figure 8. Comparison of HIV frans-infection inhibition by multivalent systems 3.1, 3.2, 4.1 and 4.2. HIV infection is
expressed in terms of p24 concentration (mean+=SD). Data obtained in duplicate, from three healthy donors.

Despite slight differences of inhibitory efficiencies of 1 and 2 bearing dendrimers at lower
concentrations, these data correlate well with above described results and confirm once again that both
pseudosaccharides have very similar activities once they are tethered to multivalent scaffolds. It
definitely confirms that 1 is comparable to 2 and any residual difference is easily offset by the superior
synthetic accessibility of 1, which lends itself to easier optimization.

In summary, the development of multivalent glycomimetic antagonists required to efficiently
compete with natural multivalent interactions(27) is a multistep process comprising the design of active
monovalent ligands, screening for the monovalent leads, and their presentation on the designed
multivalent scaffolds. Here we demonstrated the importance of a thorough and critical evaluation of the
monovalent ligands, a crucial step for the rational design of the lectin antagonists where the choice of a
false positive could cost void efforts to develop a final active multivalent compound. We have designed
small related pseudosaccharides 1 and 2 as starting monovalent compounds. Although at monovalent
level compound 2 had markedly better activity than 1, it was lost at the multivalent presentation
resulting in comparable activities of multivalent forms of 1 and 2. Further structural investigation of
DC-SIGN interaction with 2 has revealed an unexpected property of this small molecule to induce DC-
SIGN ECD dimerization. Interaction of oligomannosides with C-lectins, including DC-SIGN, is indeed
a dynamic process, which allows multiple binding modes using different mannose residues at the
primary Ca®" site. Hence, it is not surprising that 2 can engage the protein with both of its sugar

moieties. However, although bridging lectin-carbohydrate interactions are common and have a
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biological relevance(28, 29), the case presented here is unique, considering the small size of the
molecule and the low affinity of single mannose residues for DC-SIGN. Probably, the absence of steric
hindrance between both DC-SIGN ECDs in the complex, as suggested by the modeling, allows such
bridging to occur. In biological systems the most common situation of multivalent sugar/protein
interactions is the formation of carbohydrate-lectin lattices(30) and lectin bridging property of
glycomimetic molecules has been previously engineered in relatively large multimeric
presentations(3/-34). However, to the best of our knowledge, bridging effects by an oligosaccharide as
small as a (pseudo)trimer have never been observed with one exception in the particular case of
crystallization conditions(33).

Unfortunately, this property of 2 depends on a precise format of the interaction assay and
requires both ligand and protein to be simultaneously in solution. This doesn’t correspond to the
biologically relevant situation where the receptor is anchored to cell membrane and the ligand in
solution. Additionally, the bridging ability of 2 apparently is lost, even in solution assays, when it is
tethered to a multivalent scaffold. Thus this ligand cannot fully profit of avidity effects generated by
multivalent presentations. In our development of DC-SIGN inhibitors, where we aim to design
multivalent platforms bearing multiple copies of moderately active glycomimetic leads, the bridging
ability of 2 was the underlying reason for its overestimation in competition assays. Once this ligand is
tethered to multivalent scaffolds, the second mannose moiety acts basically as an extended linker
providing no advantages. Without a thorough structural characterization of the binding mode of 1 and 2
to DC-SIGN (reference (20) and this work, respectively), compound 2 would have been chosen for
further chemical optimization on the sole basis of ICsg results. This option would have been extremely
costly, on a synthetic point of view, and probably ineffective at the end. From the outcome of these
interaction analyses, it is clear that optimization of the monovalent ligand, therefore, should focus on
the structure of the pseudo-disaccharide 1, which is synthetically much simpler than 2. Our recent
improvements in this direction have been recently reported(35). Besides providing a structural rationale
for observations made during our DC-SIGN antagonists research program, these results deliver a

general lesson for the design of lectin antagonists.

Methods

Compound synthesis.
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Syntheses of 1(36), 2, 3.2(/7) 3.1, 4.1 and 4.2(/9) were described previously.

DC-SIGN production and purification
DC-SIGN CRD-StrepTagll (S-CRD) and ECD constructs were produced as described previously(70,
20).

DC-SIGN/2 co-crystallization, data collection and structure solution

Crystallization was performed at 20°C in EasyXtal plates (Qiagen) by hanging-drop vapor-diffusion
method. The drops were prepared combining 1 uL of a purified DC-SIGN S-CRD (4.4 mgmL"' in
25 mM Tris-HCI pH 8, 150 mM NaCl, 4 mM CaCl,, buffer-A) and 2 (300 mM) mixture (9:1, v/v) with
1 puL of reservoir solution and equilibrated against 1 mL of reservoir solution. The best crystals were
obtained when reservoir solution was 35% PEG3350, 100 mM cacodylate pH 6.5, and 200 mM NaCl.
The X-ray diffraction data collection, structure solution and refinement are described in Supplementary
Information. Crystal structure of DC-SIGN CRD/2 has been deposited in Protein Data Bank under
PDB code 2xr6.

Isothermal titration microcalorimetry
ITC experiments were performed at 25°C using Microcal/VP-ITC microcalorimeter (Microcal,
Northampton, MA) with 1.4 mL cell volume. . The pseudosaccharides and DC-SIGN ECD were
prepared in buffer-A. Pseudosaccharides were stepwise injected (10 uL aliquots) to DC-SIGN solution
using 5 min intervals between injections. In the first set of experiments 71 pM (in terms of binding
sites) lectin and 12.7 mM pseudosaccharide concentrations were used; in the second set 1.18 mM 2 was
titrated to 214 uM DC-SIGN ECD. The blank titrations (compounds to buffer) were done for
subtraction of dilution heat from the integrated data. A one-site binding model was fit to the data
(Microcal Origin-7) yielding association constants (Ka) and binding enthalpies (AH). The free energy
changes (AG) and entropy (AS) were calculated using equation:
AG=AH—TAS=—-RTIn Ku

where 7 is the absolute temperature, and R=8.314 J mol ' K.

Static and Dynamic Light Scattering
The SLS and DLS were performed using DynaPro/Nanostar instrument (Wyatt Technology Corp.,

Santa Barbara, USA) equipped with 658 nm laser at 90° scattering angle. Triplicate measurements of
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10 scattering readings per sample in a quartz cuvette were recorded at 25°C. The samples, prepared in
buffer-A and centrifuged prior to analysis, contained DC-SIGN ECD alone (102 uM with respect to
binding sites) or with 2 at different 2/DC-SIGN molar ratios (0, 0.11, 0.25, 0.5, 1, 5, 11 and 27). The
data were analyzed with Dynamics-7.1 software (Wyatt Technology Corp.).

Analytical Ultracentrifugation

SV experiments were performed using Beckman XL-I analytical ultracentrifuge with AN-50 TI rotor
(Beckman instruments), at 20°C and 42 000 rpm, using 55 pl samples, loaded into the two-channel
0.15 cm path-length centerpieces with sapphire windows (Nanolytics). The absorbance at 280 nm was
monitored every 5 or 11 min for the first and second set experiments, respectively, with a 30 um radial
step size.

The samples were prepared in buffer-A. The first set of experiments was done with samples retrieved
from first set ITC measurements, thus contained DC-SIGN ECD alone at 62 uM, or with 1.63 mM 1 or
2. The identical freshly prepared samples were used for the control, giving identical results.

For the second set, the samples contained 102 pM DC-SIGN ECD alone or with 2 added at different
2/DC-SIGN molar ratios (0, 0.25, 0.5, 1, 5, 11 and 27). The MW and partial specific volume (V) of
DC-SIGN tetramers were estimated from amino acid composition using SEDNTERP software and
resulted 154827 Da and 0.733 cm® g, respectively. The V-values for 1 and 2 were considered equal to
v -value of a hexose (0.607 cm’ g™"). SV profiles were analyzed using the size distribution analysis(39)

embedded in the SEDFIT software (available at http://www.analyticalultracentrifugation.com), and for

each analysis by global modeling taking typically 20 regularly spaced experimental profiles obtained
over 4 h. The c(s) analysis was performed considering 200 particles, and fitting the frictional ratio, f/f; .
For the regularization, a 0.68 confidence level was used. All s-values were corrected for solvent density

and viscosity, and thus are given as syoy-values.

DC-SIGN/2 bridging complex modeling.

To generate a tetrahedral DC-SIGN assembly, we used a novel symmetry docking algorithm(25). We
assembled a tetrahedral octamer possessing D4 symmetry starting from a monomer of the reported
crystal structure (PDB 2xr6) with a single mannose in the Ca®" binding-site using the exhaustive search
in six degrees of freedom. Then, we selected an octameric solution that fulfilled geometric constraints

at the coiled—coil start and fitted the pseudotrisaccharide 2 into its binding pocket using Autodock/Vina
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software(40). Solutions, where ECD organization was compatible with the previously described DC-
SIGN ECD SAXS envelope, have been conserved(/0). To set-up the ligand docking simulations, we
used Autodock/Vina plugin for PyMOL(41).

Calculation of theoretical hydrodynamic radius from the model.
HYDROPRO program(26) was used to obtain the theoretical sedimentation coefficient value for the
model of bridged DC-SIGN tetramers. The experimental values of solvent viscosity, density and
temperature were #=0.01024 poise, p=1.006 g cm™, and the temperature was 293 K. The resulting
sedimentation coefficient s-value of 6.848 S was used to calculate theoretical Ry using Svedberg’s
equation:
. MW - (1= p-v)
N, 6 71 RH,

where MW the molecular mass of the dimer of DC-SIGN tetramers (309.654 kDa), and v is the partial

specific volume of the dimer of tetramers (0.733 cm’ g™).

Infection studies.

The studies of HIV frans-infection inhibition by 3.1, 3.2, 4.1 and 4.2 without removal of compounds

prior to virus exposure were performed as described previously(/7).
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