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Abstract 

Rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation 

short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and 

cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid 

dissociation, which requires the formation of a complex that has limited specificity. The 

interaction of the soluble fragment of cytochrome f and cytochrome c6 from the 

cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray 

diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were 

determined. The M58C variant is an excellent low potential mimic of the wild type protein and 

was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to 

characterize the complex with cytochrome f. The interaction is highly dynamic and can be 

described as a pure encounter complex, with no dominant stereospecific complex. Ensemble 

docking calculations and Monte-Carlo simulations suggest a model in which charge-charge 

interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an 

ensemble of orientations with extensive contacts between the hydrophobic patches on both 

cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron 

transfer. This model of complex formation allows for a gradual increase and decrease of the 

hydrophobic interactions during association and dissociation, thus avoiding a high transition 

state barrier that would slow down the dissociation process. 

 

 

Keywords: 

Electron transfer, photosynthesis, crystallography, paramagnetic relaxation enhancement, 

Monte-Carlo modeling, protein interaction 

 

I Abbreviations: 

Cb6f Cytochrome b6f 

Cc6 Cytochrome c6 

Cf Cytochrome f 

ET Electron transfer 

PRE Paramagnetic relaxation enhancement 

MTS  (1-acetyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-methanethiosulfonate  

MTSL  (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-methanethiosulfonate  
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1. Introduction 

 

Protein complex formation is at least a two-step process[3] in which the formation of a final, 

well-defined complex − dominated by short-range interactions − entails the initial formation of 

a dynamic encounter complex. The lifetime of the protein complex is determined by the 

dissociation rate. Highly transient complexes, with lifetimes on the order of milliseconds, 

exhibit moderate or low binding affinities, with dissociation constants in the M–mM range. 

Electron transfer (ETI) reactions mediated by soluble redox proteins exchanging electrons 

between large membrane complexes in photosynthesis and respiration are excellent examples 

of transient interactions. The purpose of the protein complex formation in these cases is two-

fold. A complex must be formed that is sufficiently specific to allow rapid electron transfer and 

at the same time the complex needs a high dissociation rate to enable rapid turn-over in order 

not to limit the flow of electrons through the redox chain. The electron transfer rate is 

exponentially dependent on the distance between the redox centres. Thus, bringing the 

centres in close approximation (<16 Å)[4] is essential, but the formation of a well-defined 

complex is not required if multiple orientations exist in which ET can occur. In fact, such a 

specific complex is not desirable from the point of view of fast dissociation, because a well-

defined state has a lower free energy than all similar states and thus a higher transition state 

energy to be overcome to dissociate. In other words, high specificity opposes rapid turnover. 

The study of transient complexes enables the understanding of the biophysical mechanisms 

that exist to reach the right compromise between these two properties of a complex. 

In oxygenic photosynthesis, the ET from the cytochrome b6f (Cb6f) complex to Photosystem I 

(PSI) – both membrane-embedded complexes – is carried out by two soluble metalloproteins 

plastocyanin (Pc) and cytochrome c6 (Cc6).[5-8] Most cyanobacteria and green algae 

synthesize either Pc or Cc6 depending on the availability of copper and iron, their respective 

cofactor metals.[9,10] Higher plants only contain Pc, although a Cc6-like protein has been 

identified in Arabidopsis,[11] but it is unable to transfer electrons to PSI.[12] 

The hetero-oligomeric Cb6f complex contains eight tightly bound polypeptide subunits that 

couples the ET to proton translocation, generating a proton electrochemical potential gradient 

necessary for ATP synthesis. The three-dimensional crystal structure has been determined for 

the Cb6f complex from the green alga Chlamydomonas reinhardtii,[13] the cyanobacteria 

Mastigocladus laminosus[14] and Nostoc sp. PCC 7120.[15] The main difference between the 

cyanobacterial Cb6f crystallographic structures is the acetylation of the Nostoc Rieske Fe-S 

protein at the N terminus, a post-translational modification unprecedented in cyanobacterial 

membrane and ET proteins.[15] Cytochrome f (Cf) is a subunit of the Cb6f complex, anchored 

to the thylakoid membrane by a C-terminal transmembrane helix leaving a 28-kDa soluble 

portion exposed to the lumen with a clear two-domain structure. The large domain harbours 

the haem and the small domain possesses a patch of charged residues. Cf is considered an 
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unusual c-type cytochrome because of its -sheet structure, elongated form and particular 

haem axial coordination with the amino group of the N-terminus, residue Tyr1.[13-17] 

Cc6 is a more typical 10-kDa single haem c-type cytochrome with the cofactor covalently 

bound to the cysteine residues in a CXXCH motif. The Fe atom is hexacoordinated with His and 

Met residues acting as axial ligands, as revealed by the available cyanobacterial and green 

algal Cc6 structures.[18-22] One of the most important functional characteristic of Cc6 is its 

midpoint redox potential (Em) around +335 mV at physiological pH value, with the exception of 

that present in plants whose Em is substantially lower (ca. +100 mV) despite having the same 

axial ligand.[23] This finding can be partly explained by the replacement of a highly conserved 

Gln in cyanobacterial Cc6 by a Val residue in the plant Cc6-like protein, which regulates the 

Fe-S(Met) bond stability and causes a 100 mV-drop in the Em.[20,24] A more drastic Em 

change occurs when the sixth axial ligand Met is substituted by His, leading to inhibition of 

both the spontaneous self-reduction of Cc6 mutant and its reduction by the Cb6f complex.[25] 

Cc6-involving physiological interactions have been extensively studied in recent years as a 

model to understand the nature of protein–protein interactions in ET chains. The Cc6-PSI 

interaction from Nostoc has been well-characterized from the structural and functional point of 

view.[26-30] Fast-kinetics studies combined with Brownian dynamics using Chlamydomonas 

Zn-Cc6 derivative and Cf have been reported[31,32], concluding that the nature of this 

complex is dynamic and that hydrophobic contacts are important. Two NMR-based structural 

approaches using haem proteins from different cyanobacterial sources also suggest that the 

binding site on Nostoc Cc6 involves the predominantly hydrophobic patch surrounding the Cf 

haem.[33,34] In silico data on Chlamydomonas Cc6-Cf complex show not only the relevance of 

hydrophobic and electrostatic interactions in bringing both haem proteins sufficiently close to 

allow efficient ET,[35,36] but also the key role of the Cf small domain in binding to Cc6, 

suggesting that Cc6 explores different positions on Cf.[37]  

Here, experimental approaches using NMR spectroscopy are combined with charge-driven 

docking simulations to study the molecular recognition processes in ET complexes, using the 

physiological Nostoc Cc6-Cf interaction as a model system. Our paramagnetic relaxation 

enhancement (PRE) NMR data are not compatible with a well-defined Cc6-Cf complex. The 

complex is best described by a highly dynamic ensemble, first formed by electrostatic pre-

orientation and stabilized mainly by hydrophobic contacts.  

 

2. Materials and Methods 

 

2. 1 Mutagenesis 

The expression vector pEAC-WT for wt Cc6 from Nostoc sp. PCC 7119[38] was used as the 

template for site-directed mutagenesis to obtain the M58H and M58C variants using the 

QuikChange PCR protocol (Stratagene La Jolla, CA). The following primer pairs were used:  

5’ CGGTAAGAACGCCCACCCTGCTTTCAAAGG and its complement for M58H and  
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5’ CGGTAAGAACGCCTGCCCTGCTTTCAAAGG and its complement for M58C. For the introduction 

of Cys residues in Cf, the pEAF-wt[39] expression plasmid encoding the soluble domain of Cf 

from Nostoc sp. PCC7119 was used as template. The single-cysteine variants Q7C, A63C, 

N71C, Q104C and S192C have been described before.[40,41] All constructs were verified by 

DNA sequencing. 

 

2.2 Protein production and purification 

Uniformly 15N-labelled Nostoc sp. PCC 7119 Cc6 wt and its mutants were produced as 

described before[26] in Escherichia coli JM109 cells co-transformed with pEAC-WT[38] and 

pEC86[42]. Culture conditions and protein purification methods were as reported 

previously.[26,33] Protein concentrations were determined by absorption spectrophotometry 

using a 553 of 26.2 mM−1 cm−1 for the ferrous form of Cc6 wt,[38] a 554 of 20.8 mM−1 cm−1 for 

the ferrous form of M58H and a 540 of 7.2 mM−1 cm−1 for the ferric form of M58C mutant. The 

Cc6 wt 278 was estimated using protein concentration values from Bradford assays. A A278/A553 

ratio of 1.05 of the wt ferrous Cc6 indicated sufficient purity for characterization by NMR. 

To obtain a high yield of holo-Cf and promote the correct insertion of the haem group, E. coli 

strain MV1190 (Bio-Rad) was co-transformed with plasmids pEC86 and (mutated) pEAF 

plasmid. The cells were plated on Lysogeny Broth (LB) medium plates and incubated at 37º C 

for 24 h. All media were supplemented with 20 mg/L ampicillin and chloramphenicol. Several 

pre-cultures were prepared in 100 mL flasks with 20 mL of LB medium and incubated at 37 °C 

and 250 rpm for 5-6 hours. The pre-cultures with the highest OD600 were used to inoculate 1.7 

L (in 2 L Erlenmeyer flasks) of LB, ratio 1:100. The cultures were incubated at 25 °C and 150 

rpm under semi-anaerobic conditions and high antibiotics pressure by adding further ampicillin 

and chloramphenicol after 20 h and 40 h. Expression was induced 20 h after the inoculation of 

the large culture using 1 mM IPTG (isopropyl-β-thiogalactopyranoside). More than 80 h after 

the induction the cultures appeared brown because of the presence of Cf. The cells were 

harvested by centrifugation and the periplasmic fraction was extracted by osmotic shock. The 

pink water fraction (about 200 mL per 1.7 L of culture), was dialyzed against 2 L of 5 mM Tris-

HCl buffer, pH 8 and 3 mM dithiothreitol (DDT). The yield in the periplasmatic fraction was 10 

mg/L of culture of protein for N71C and Q7C and 5 mg/L for Q104C, S192C and A63C. The 

resulting dialysate was cleared by centrifugation and loaded on a DEAE column equilibrated in 

the same buffer. Elution was performed with a gradient of 20–500 mM NaCl and 3 mM DTT. 

The fraction containing the Cf was concentrated and loaded on a gel-filtration (G75 Superdex) 

column and eluted in the same buffer containing 150 mM NaCl. The protein fractions were 

pooled, concentrated, dialyzed against 5 mM MES, pH 6 and 3 mM DTT and loaded on a DEAE 

column equilibrated in the same buffer. The Cf was eluted with a gradient 0-500 mM NaCl. Pure 

fractions showed a A280/A556 of 1.3 under reducing conditions. Protein concentrations were 

determined by optical spectroscopy using ε419 of 85.5 mM-1 cm-1 for Cc6 M58C and ε556 = 31.5 

mM-1cm-1 for reduced Cf.[39] 
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2.3 Labelling of Cf with spin labels 

For attachment of spin label to Cf, DTT was first removed by ultrafiltration (Amicon, MW cut-off 

10 kDa). The protein was subsequently exchanged to 10 mM sodium phosphate, pH 6.0 and 

concentrated to ~40 μM. The protein was oxidized by a 100-fold excess of K3[Fe(CN)6] and a 

10-fold excess was added of either MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-

methanethiosulfonate] or MTS [(1-acetyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-

methanethiosulfonate] (TRC, North York, Ontario, Canada). Stock solutions of 0.1 M MTS(L) in 

DMSO were used. The protein solution was kept for 2 hours at RT and O/N at 4° after which 

the excess K3[Fe(CN)6] and MTS(L) were removed by ultrafiltration.  

 

2. 4 Electrochemistry 

The redox potential value for the haem group in each Cc6 wt and mutants was determined as 

reported previously,[38] for which the differential absorbance changes at 553 minus 570 nm 

were followed. Menadione, diaminodurol and -benzoquinone, at 20 M final concentration, 

were used as redox mediators. Errors in the experimental determinations were less than 20 

mV. 

 

2. 5 Crystallization and data collection 

Crystals were obtained with the sitting drop method. The final protein concentration was 10 

mg/mL in the following solutions. Cc6 wt: 0.1 M Tris/HCl pH 7.0, 2.3 M ammonium sulphate, 

0.1 M lithium sulphate; Cc6 M58H: 0.1 M Tris/HCl pH 8.0, 2.5 M ammonium sulphate, 0.1 M 

lithium sulphate; Cc6 M58C: 0.1 M citrate pH 5.0, 2.5 M ammonium sulphate. The crystals 

were frozen and diffraction data for the wild type and M58H crystals were collected at the 

BM16 beamline of the ESRF synchrotron on a MAR 165 CCD detector at the peak wavelength of 

the iron (1.5418 Å), whereas M58C crystals were collected in-house on an Enraf-Nonius FR591 

generator and MAD 345 image plate detector. All crystals were collected with a 1.0 degree 

oscillation at 100 K. For the wild type crystals 360 images were collected, for the M58H 

crystals 230 and for the M58C crystals 200 images. All data sets were processed by 

MOSFLM[43] and SCALA[44] from CCP4[45]. 

Molecular replacement for the wild type Cc6 structure was unsuccessful due to the presence of 

translational non-crystallographic symmetry, as noted by a large off-origin peak in the 

Patterson map. However, the anomalous signal from the intrinsic iron atoms was sufficient for 

structure determination by SAD phasing. The CRANK[46] software pipeline was used to solve 

the structure and used CRUNCH2[47] for substructure detection, BP3[46] for heavy atom 

refinement, and density modification by DM[48] estimates. Automated model building with 

ARP/wARP[49] using the iterative refinement with the SAD target[50] in REFMAC[51] provided 

a good quality model of the structure consisting of 483 backbone residues, 478 of which were 

(correctly) docked in the 6 wild type molecules present in the asymmetric unit. Some of the 
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chains traced missed several residues from either the C- or N-terminus, however, one chain 

contained all the residues fitting well in the electron density. The haem group was fitted 

manually into the chain that was built completely at this stage. The resulting completely built 

Cc6 molecule was superimposed on the five other cytochrome molecules present in the 

asymmetric unit to fit in any missed residues present in the density as well as the other haem 

groups. The model obtained in this way was refined by REFMAC5 with tight NCS restraints. 

Manual corrections to the model were performed with XtalView,[52] followed by refinement 

with REFMAC with loose NCS restraints.  

The point mutation M58C crystal was isomorphic to the wild type crystal, thus the final wild 

type model was used as a starting model in the refinement of the M58C mutant. The structure 

of M58H Cc6 was solved by molecular replacement using the wild type structure and contained 

two molecules in the asymmetric unit. Manual fitting and refinement of both mutant structures 

was done with COOT[1] and REFMAC. Data collection and refinement statistics are reported in 

Table 1. The coordinates have been deposited in the protein data bank with ID 4GYD for 

wildtype, 4H0J for M58C, and 4H0K for M58H Cc6. 

 

2.6 NMR spectroscopy and data analysis  

Cc6 wt and M58C mutant protein solutions were concentrated to the required volume by 

ultrafiltration methods (Amicon, YM3 membrane) and exchanged into 10 mM sodium 

phosphate, pH 6.0, H2O/D2O 95:5 solutions. The soluble domain of Cf was concentrated using 

an Amicon YM10 membrane and exchanged into 10 mM sodium phosphate, pH 6.0, 3 mM 

sodium ascorbate, H2O/D2O 95:5 solutions. A 3.7 mM ferrous Cf stock solution with a A278/A556 

ratio of 0.9 was used. Cf was kept in a reduced form with a few equivalents of sodium 

ascorbate and was stable in this form for days. The ferric form was prepared by the addition of 

a 5-fold excess of potassium ferricyanide (K3[Fe(CN)6]) followed by gel filtration (Amersham 

Biosciences Superdex G75) to remove ferrocyanide. Complete oxidation was verified by the 

disappearance of the absorption band at 556 nm. Then, a 2.0 mM ferric Cf stock solution was 

prepared. 

All NMR experiments were performed on a Bruker DMX 600 NMR spectrometer with a TXI or 

TCI-cryo triple resonance probehead operating at 298 K. The 1H and 15N assignments of the 

backbone amide resonances ferric Nostoc M58C Cc6 mutant (Table S1) were elucidated by 

recording 2D 1H,15N HSQC-NOESY with 150 ms mixing time and 2D 1H,15N HSQC-TOCSY with 

80-ms mixing time spectra. The effects of complex formation on M58C were followed by 

acquiring 2D 1H,15N HSQC spectra during titrations of aliquots of Cf stock solutions into a 

solution of 0.2 mM 15N-labeled M58C. For the measurements of PRE, samples contained 0.3 

mM 15N M58C Cc6 and 0.1 mM Cf-MTS(L).  

All data processing was performed with AZARA 2.7 (www2.ccpn.ac.uk/azara), and spectral 

analysis was performed with Ansig.[53,54] The spectra were calibrated against the internal 

standard [15N]acetamide (0.5 mM). 
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Titration curves were obtained by plotting chemical-shift perturbations (Bind) against the 

molar ratio of Cf and Cc6 M58C for the most strongly affected signals. Non-linear least squares 

fits to a 1:1 binding model[55] were performed in Origin 8.0 (Microcal Inc.). The chemical-shift 

perturbations (CSP) observed in the complex M58C-Cf with 3 eq of Cf were extrapolated to 

100% bound for all residues using the Ka obtained from the fits. The average chemical-shift 

perturbation (avg) of each amide was calculated using the following equation: avg = 

(((N/5)2 + (H)
2) / 2)1/2 in which N is the change in the 15N chemical shift, and H is the 

change in the 1H chemical shift when the protein is 100% bound to Cf.  

PREs were derived from the ratio of intensities in the spectra from paramagnetic and 

diamagnetic samples and converted into distances, as described.[56,57] The correlation time 

assumed for the Cf and Cc6 complex was 20 ns. PREs are only observed for the fraction of Cc6 

that is bound Cf. The binding is in fast exchange, so the PREs are weighted by the fraction 

bound. Therefore, the PREs were extrapolated to the 100% bound state of Cc6 for docking 

calculations.  

 

2.7 Ensemble docking 

Cf from Nostoc sp. PCC 7120 is identical to that of PCC 7119. The crystal structure of Cf of the 

former species from PDB ID 2ZT9,[15] residue 1 – 254 was modified to introduce Cys residues 

and MTSL spin labels for Gln 7, Ala 63, Asn 71, Gln 104 and Ser 192. Each spin label was built 

in four orientations, to represent its mobility.[58] For Cc6 the structure from the wt protein 

from Nostoc sp. PCC 7119 (this study) was used. Protons were added to both structures.  

In the combined single structure/ensemble docking, first the experimental distances were 

assigned as restraints between the oxygens of the four MTSL conformers of a spin label and an 

amide proton of a single copy of Cc6. During the docking the spin labels were free to rotate. 

After docking, the distances were measured in the lowest energy structure and converted back 

to PREs. These back-calculated values were subtracted from the experimental PREs and the 

difference served as the input for the ensemble docking. Five copies of Cc6 were used and the 

input PREs were assigned as distance restraints between the nitroxy oxygens and the five 

copies of the amide protons simultaneously. All averaging was done using the sixth power of 

the distance. The Cf structure resulting from the single-structure docking was used as the 

input for the ensemble docking and the spin label orientations were fixed during the ensemble 

docking. In this was, the compatibility between the two stages of the docking is ensured. The 

top ten ensembles were used to calculate the average distance violations. To ensure that the 

ensemble docking is not strongly influenced by the starting structure, the ensemble docking 

was repeated several times using the next best structure from the single structure docking as 

input and repeating the entire procedure. These results yielded the average distance violation 

and error margins (SD) shown in Figure 3. For the 0% and 100% ensemble fractions, only a 

single-structure or ensemble docking was used, respectively, and the experimental PREs 

served as the restraints. All docking calculations treated the proteins as rigid bodies, using the 
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rigid body dynamic routine in XPLOR-NIH.[59] PREs were divided into three classes, as 

described before.[57] Resonances that are not significantly effected yield a distance that 

serves as lower bound only. Resonances that are affected but not completely broadened yield a 

distance (with and upper and lower bound of 3 Å in the docking calculations) and signals that 

are strongly affected (PRE of 100% bound state > 200 s-1) or completely broadened provide 

only an upper bound distance. The distance violations were defined as the difference between 

the target distance or range and the back-calculated value. For the first and the third class, 

this criterion means a violation for values below or above the distance bound, respectively, and 

for the second class the violations is the absolute difference between target and back-

calculated values (so the error margins were not considered for the violation).  

 

2. 8 Monte Carlo docking 

In the Monte-Carlo simulations the PDB IDs 2ZT9[15] and 4GYD (this work) were used for Cf 

and Cc6, respectively. The structure preparation and the Monte Carlo simulation[60] was 

similarly performed as was done before[40,61] The iron of Cf and Cc6 were considered to be in 

the oxidized state. In order to match the experimental conditions, the electrostatic potential 

was calculated for an ionic strength of 0.01 M and a temperature of 298 K with APBS.[62] 

10,000 randomly chosen encounters of the simulation were used for the analysis. 

 

 

3. Results 

 

3.1 Self-reduction of Cc6 and ligand mutagenesis.  

For the characterization of the complex of Cf and Cc6, paramagnetic relaxation enhancement 

(PRE) was used. With this method intermolecular PREs of Cc6 nuclei are measured that are 

caused by spin labels attached to the surface of Cf at various positions. The PREs are then 

converted into distance restraints for docking calculations. The spin label MTSL is linked to site-

specific Cys residues engineered on Cf via a disulphide bridge. To maintain the spin label in the 

paramagnetic state and the disulphide bridge intact, it is essential that both cytochromes 

remain in the oxidized, ferric state. In the past we experienced rapid self-reduction with c-type 

cytochromes, a phenomenon that has been described also by others for yeast iso-1-

cytochrome c.[63] To avoid the problem, it was decided to use a mutant Cc6 with a much 

lower redox potential to prevent self-reduction. Two mutants were produced in which the 

purposed axial Met ligand (M58) to the haem iron was replaced with either His or Cys.  

 

The midpoint potential of wt Cc6 is 335 mV at pH 7.0.[38] Both mutations result in a very 

large decrease of the midpoint potential, with Em = -140 mV (pH 7.0) and -235 mV (pH 

6.5)[25] for M58H and M58C Cc6, respectively. Thus, the replacement of the Met with a Cys 

ligand decreases the potential by 570 mV. To determine the effect of the mutation on the 
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structure, the crystal structures were determined. Table 1 reports the refinement statistics and 

Figure 1A illustrates the quality of the data. The structure of the wt Cc6 of Nostoc sp. PCC 

7119 consists of the classic Cc fold, with 4 -helices and 3 coils. The haem group is attached 

covalently to Cys14 and Cys17, and His18 and Met58 coordinate the iron. The structure is very 

similar to Cc6 from other sources, including green algae.[18-22] The closest resemblance is to 

Cc6 from Phormidium laminosum with an RMSD for the backbone heavy atoms of 0.58 Å (PDB 

ID 2v08).[20] The structures of the mutants are similar to that of the wt Cc6, with backbone 

RMSDs of 0.95 and 0.13 Å for M58H and M58C, respectively. Clearly, the M58C Cc6 structure is 

essentially identical to that of the wild type, although the thiolate-iron distance in M58C is 

longer for all six of the Cc6 molecules in the asymmetric unit (the average distance is 3.27 ± 

0.04 Å) than the distance between the iron and the Sδ of the Met ligand (2.38 ± 0.06 Å). A 

picture of the electron density in this region for one of the molecules in shown in Figure 1A. 

Significant differences are observed for M58H Cc6 (Figure 1, panels B and C). The His 58 Nε is 

coordinated to the iron (2.02 Å), resulting in a backbone change around Lys 55, rotating it to a 

more solvent-exposed orientation. Surprisingly, also Trp85 and the C-terminal residue Lys86, 

on the other side of the protein, far from the His58, show a large displacement compared to 

the wt structure. 
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Table 1. Data collection and refinement statistics for Cc6 crystals 

 

 Wild type M58C M58H 

Space group P 21 21 2 P 21 21 2 P 32 2 1 

Cell dimensions    

a, b, c (Å) 77.72, 79.80, 80.15 78.82, 80.16, 80.15 60.37, 60.37, 95.37 

Resolution (Å) 18.00-1.80 (1.90-1.80)a 28.33-2.00 (2.10-2.00)a 35.23 – 1.95 (2.06-1.95)a 

Rpim 0.026 (0.113) 0.021 (0.129) 0.022 (0.221) 

I/σI 27.0 (10.1) 23.8 (6.3) 18.8 (3.4) 

Completeness (%) 97.3 (94.0) 98.6 (93.8) 99.7 (99.1) 

Redundancy 3.4 (2.4) 7.5 (5.2) 12.4 (11.4) 

N° unique reflections 44311 32761 14317 

N° molecules in ASU 6 6 2 

R
work

/ R
free

 0.182/ 0.216 0.207/ 0.246 0.213/0.268 

R.m.s. deviations    

Bond lengths (Å) 0.021 0.017 0.018 

Bond angles (°) 1.92 1.72 1.96 

Ramachandran favoredb 90.7 % 93.7 % 91.6 % 

Ramachandran outliersb 0.40 % 0.20 % 2.99 % 

a Values from the highest resolution shell are given in brackets; bAs defined by COOT. 
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It was decided to use 

M58C Cc6 as a redox 

inactive substitute for 

the wt protein, 

because of its low 

midpoint potential and 

structural similarity. 

M58C Cc6 was 

enriched in 15N and the 

amide nuclei were 

assigned on the basis 

of NOESY-15N HSQC 

(150 ms mixing time) 

and TOCSY-15N HSQC 

spectra with 80 ms 

mixing. For the M58C 

Cc6 variant, no self-

reduction was 

observed, as expected 

from its low midpoint 

potential. The 

backbone amide 

assignments are 

reported in Table S1 in 

the supplementary 

information. Those 

corresponding to the 

two loops surrounding 

the haem edge are 

partly missing or tentative. Sequential connections were difficult to make in these regions, 

most likely due to some dynamics on the micro-millisecond timescale.  

 

3.2 Dissociation constant and chemical shift map.  

To determine the affinity between M58C Cc6 and Cf a titration was performed. Ferrous Cf was 

titrated into M58C Cc6 and HSQC spectra were recorded at every point. Figure 2, panel A 

shows the chemical-shift perturbations of several Cc6 amide nuclei plotted as a function of the 

Cf-Cc6 ratio. The curves can be fitted with a 1:1 binding model, yielding a binding constant of 

7(2) mM-1, identical within error to that for the wt complex, 8(2) mM-1.[34] Panel B in Figure 2 

shows the binding map, in which the surface of the protein has been coloured according to the 

 

   
        A         B 

 
        C 
 

Figure 1. Comparison of Cc6 structures. A) Electron density 

contoured at 2.2 sigma with the final M58C Cc6 model in the 

region around the haem iron. This figure was created with 

COOT.[1] B) Overlay of Cα traces of wt (blue), M58C (yellow) and 

M58H (green). Residue 58 and the haem are shown in sticks. The 

arrows indicate the large differences between M58H and wt Cc6. 

C) Surface representations of M58C (left), wt (middle) and M58H 

(right). The surface is coloured according to the surface potential 

from red to blue (negative to positive, calculated with DeepView 

(http://www.genebee.msu.su/spdbv). Non-polar residues are in 

brown and the haem is in green. 
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size of the average amide chemical-shift perturbation for each residue, extrapolated to the 

100% bound state of Cc6 (ΔδAvg). The map is similar to the one reported for wt Cc6 binding to 

Nostoc[34] as well as P. laminosum Cf[33] and shows that the complex uses mainly the haem 

edge region for binding, although some residues at the other sides of the protein are affected, 

most notably Glu 68. The overall size of the shifts and this distribution of residues on the 

surface suggest that Cc6 mostly binds with one side toward Cf, in a relatively well-defined 

orientation.[64] Whether it binds on a single site of Cf cannot be established on the basis of 

these data.  

 

 
   A 
 

 
      B 

 

Figure 2. Binding of M58C Cc6 to Cf. A) Binding curves for the interaction of M58C mutant 

with ferrous Cf. The data were fitted globally to a 1:1 model (non-linear, least-squares), 

yielding an association constant of 7 (±2) 103 M-1. B) Chemical shift perturbations map. 

Residues for which a ΔδAvg (ppm) was calculated are colour-coded on the structure of M58C 

mutant according to the following categories: blue for <0.025 ppm, yellow for 0.025 ppm, 

orange for 0.050 ppm, red for 0.125 ppm. Prolines are shown in grey and the haem group 

in dark green. Residues are identified with the single-letter amino acid code, and the 

surfaces have been rotated in anti-clockwise 90º steps  around the vertical axis, with 

respect to the one on the left. Surface representations were generated using MOLMOL.[2] 
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3.3 Paramagnetic relaxation enhancements.  

To obtain intermolecular PREs for docking and structure determination of the complex, five 

mutants of Cf were produced in which cysteines residues were introduced on the surface of Cf 

in the region surrounding the haem. To avoid changes in the pI, which could affect the protein-

protein interactions, only neutral amino acid residues were selected, Gln7, Ala63, Asn71, 

Gln104 and Ser192. Either the paramagnetic spin label MTSL or the non-paramagnetic 

analogue MTS was linked to the Cys residues. By measuring the intensity ratio of Cc6 M58C 

amide resonances in spectra recorded on samples with MTSL-Cf and MTS-Cf, the PRE was 

determined.[56] All the spin labels have large effects on Cc6 signals (Figure S1). Interestingly, 

the effects are all found in the same region of Cc6, the loops centred around residues 20 and 

55, which is also the area exhibiting the largest chemical-shift perturbations (Figure 2). This 

observation suggests that Cc6 is always oriented toward Cf with this surface patch, comprising 

the region where the haem penetrates the surface, the haem edge. It also implies that Cc6 

samples a significant surface area of Cf with this patch, because it is affected by the spin labels 

at every position. If it would assume a single orientation on Cf, located between the spin label 

positions, PREs from each spin label would affected a different side of Cc6. 

 

3.4 Docking Cc6 in a single orientation.  

The PREs were converted into 

distances and docking calculations 

were performed. The spin label 

dynamics were represented by using 

four orientations per spin label[58] and 

the spin labels were allowed to rotate 

during the docking to avoid steric 

clashes with Cc6. The proteins were 

treated as rigid bodies. It turned out 

that Cc6 docks so closely to the spin 

labels (see below) that tiny distance 

variations led to very large changes in 

PRE, a consequence of dependence of 

the PRE on the sixth power of the 

distance between nucleus and spin 

label. For this reason it was preferable 

to use the PRE-based distances and 

not the PREs themselves as restraints 

in the docking calculations and 

evaluation of the quality of the fit with 

the observed data. 

 
Figure 3. Average violation plots. A) The average 

distance violation plotted for increasing ensemble 

size. B) The average distance violation is plotted for 

different ensemble fractions (p). The results for the 

average violation for the single structure only (open 

symbols) and for the combination of single structure 

and ensemble (solid symbols) are shown. For p = 1, 

the complex consists entirely of an ensemble. The 

ensemble size used in these calculations was five. 

The definition of the error bars is given in the 

Experimental section. 
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First, a simple model of Cc6 and Cf 

interaction was tested, by assuming that 

the PREs represent only a single, well-

defined orientation of the proteins within 

the complex. The resultant structure that 

best fits the experimental data is physically 

unrealistic, because Cc6 does not make 

contact Cf, but rather remains at a 

distance of several Ångström from the 

surface. The degree to which the structure 

represents the experimental data was 

expressed as the average distance 

violation, which represents the difference 

between the experimental and the back-

calculated distances for all residues and all 

spin labels (the definition is given in the 

Experimental section). Thus, the larger the 

average violation, the poorer the quality of 

the fit. Figure 3A shows that the average 

distance violation for the simple model, 

with a fraction of a well-defined structure 

of 100% (p=0), is 2.0 Å. Figures 4A and 

S2 plot the experimental and back-

calculated distances for each residue. 

Several regions of Cc6 experience more 

paramagnetic effects than predicted by 

this model and these residues are 

expected to be closer to the spin label than 

is found in the model. It is clear that the 

PRE data cannot be described by Cc6 in a 

single orientation within the complex with 

Cf. 

 

3.5 Ensemble docking.  

Ensemble docking was used to obtain a 

better fit to the experimental data. This 

approach assumes that the complex exists 

in more than a single orientation and can 

 
Figure 4. Fitting of the experimental distances. 

The average distances between the oxygen atom 

of spin label N71C and Cc6 amide protons were 

back-calculated from various ensembles (thick 

line and solid symbols), plotted against the 

residue number and compared with the 

experimental distances (open symbols). The 

grey areas indicate the experimental error 

margins. In (A, B) the solid line represents the 

averages for the ten best structures obtained 

from docking a single copy (A), or ten ensembles 

of five copies (B) of Cc6. In (C), it represents the 

averages from three sets of 10,000 randomly 

selected structures from the MC ensemble. The 

error bars indicate the SD of the ensembles. 
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be represented by an ensemble of orientations.[65] Several copies of Cc6 were docked 

simultaneously, driven by the PRE-derived distances. The average distance between the spin 

label and the set of identical nuclei in the ensemble was compared with the experimental 

distance and minimized, resulting in an ensemble of orientations of Cc6 around Cf. This 

procedure was repeated many times, creating a cloud of orientations. The quality of the fit is 

expressed as the average violation of the experimental distances. The size of the ensemble, 

which is the number of copies of Cc6 used in the docking, was varied, demonstrating that the 

fit improvement by adding more copies levels off quickly (Figure 3A). In the subsequent 

calculations an ensemble size of five Cc6 copies was used. Adding more copies does not 

significantly improve the fits and results in superfluous copies of Cc6 that are placed far from 

the surface of Cf.  

The ensemble docking can be executed assuming that all the PREs derive from this ensemble 

(100% ensemble, p = 1) or that a two-state model is applicable, with a dynamic encounter 

state and a well-defined state (0<p<1). In the latter case, a single Cc6 molecule is docked 

first, assuming a certain population, for example 40%, and then the back-calculated PRE 

effects for this structure are subtracted from the observed PREs and the remaining PREs are 

input for the subsequent ensemble docking to obtain the encounter complex that represents 

the remaining 60% of the complex.[66] The back-calculated distances from the combined 

single structure + ensemble are compared with the experimental distances to evaluate the 

quality of the fit. Figure 3B shows the results for such calculations. The average distance 

violation is plotted as a function of the fraction of encounter complex (p), for the single 

structures only (open symbols) and for the single structure + ensemble, so the entire complex 

(solid symbols). As expected, ensemble docking yields lower average violations, because more 

degrees of freedom are added in such calculations. Interestingly, the fit does not improve for 

p-values up to 0.6. That means that a large fraction of the PRE is attributable to the encounter 

complex. The best results are found for p = 1.0, so in the absence of a single, well-defined 

orientation of Cc6. These results suggest that a single dominant orientation is not present and 

that the complex of Cf and Cc6 is best described by an ensemble of orientations.  

The average distances back-predicted from the ensemble (p=1.0) fit the experimental distance 

much better than the single structure (Figures 4B and S3), indicating that the ensemble is an 

acceptable representation of the PRE data.  

 

3.6 Monte Carlo docking calculations.  

We then wondered whether the ensemble is of purely electrostatic nature. Before, it had been 

shown that the encounter complex of cytochrome c peroxidase and cytochrome c could be 

described by a theoretical ensemble obtained via Monte Carlo (MC) calculations that only 

considered electrostatic interactions between the proteins.[61] Similar calculations were 

performed for the Cf-Cc6 complex and a large ensemble was created. From this ensemble the 

average distances from the Cc6 amide protons and the spin labels were calculated and 
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compared with the experimental distances (Figures 4C and S4). The distance patterns roughly 

follow the experimental ones, but it is clear that the MC ensemble cannot describe the 

experimental data very well. In most of the MC orientations Cc6 is oriented with its haem edge 

face oriented toward the Cf surface, in line with the conclusion from the experimental PRE 

patterns. Thus, it can be concluded that Cc6 pre-orients this face toward Cf upon its approach, 

due to electrostatic interactions. However, the poor quantitative match with the experimental 

distances indicates that the places where Cc6 is located on the Cf surface in the MC ensemble 

do not agree well with the real complex, suggesting that within the encounter complex, other 

interactions than electrostatics contribute significantly. 

 

3.7 Analysis of the ensemble.  

The centres-of-mass of the 610 Cc6 molecules obtained from 122 runs of ensemble docking 

show that Cc6 visits an area including and surrounding the hydrophobic surface patch near the 

haem of Cf (Figure 5, green). Clearly, a single structure cannot describe this ensemble. It is 

possible that the Cc6 samples an even larger area, because the five spin labels did not cover 

all the surface of Cf, so in the calculations there are no restraints to guide Cc6 to those 

regions. The charge distribution on Cf shows that it has an overall negative charge, with strong 

negative potential around the hydrophobic patch. Cc6 has a ring of positive charges around its 

hydrophobic patch, close to the haem edge (Figure 1C). Cc6 is always oriented with this region 

toward Cf, as can be seen in Figure 5. The blue spheres represent the iron atoms of Cc6 in the 

ensemble. These atoms are always closer to Cf than the centres-of-mass (yellow spheres), 

indicating that Cc6 has a preferred binding orientation. Most of the Cc6 molecules are found to 

interact with the hydrophobic patch of Cf, not with the charged regions, in accord with the 

finding that the MC calculations, which are based purely on charge-charge interactions, do not 

produce an ensemble that fits the experimental data well. 

 

 

Figure 5. The ensemble of Cc6 around Cf shown in two orientations. Cf is shown in 

surface representation with the haem in magenta spheres. Negative, positive and 

hydrophobic residues (including Tyr and Trp) of Cf are displayed in red, marine and green, 

respectively. The yellow and dark blue spheres represent the centers-of-mass and iron 

atoms of Cc6 in the ensemble, respectively.  
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4. Discussion 

 

Characterization of the complex of Cf and Cc6 was hindered by self-reduction of Cc6 during 

NMR experiments. A solution was found by replacement of the methionine ligand of the haem 

iron. Substitution with a His or a Cys residue resulted in a large decrease of the midpoint 

potential. The crystal structures of the Nostoc wt Cc6 and both variants were determined. In 

particular the Cys mutant is remarkably similar in structure to the wt protein, despite the 

shorter side chain length of Cys. Mutant M58C was used in the interactions studies with Cf, 

because its low midpoint potential abolished the problem of self-reduction. Substitution of 

haem ligands by Cys has been reported for haem enzymes to study the effects on enzyme 

activity ([67] and references therein) and the spectroscopic characterization of semi-synthetic 

Cc with a Cys replacing the ligand Met has been described.[68,69]. Very recently, an extensive 

study of yeast Cc with a co-ordinating Cys was published. Replacement of the Thr at position 

78 by Cys yielded a protein that was more stable than Met80Cys Cc.[70] It is difficult to 

produce redox-inactive cytochrome c analogues by metal substitution, because removal of the 

haem iron can only be achieved under harsh conditions, requiring denaturation and refolding of 

the protein. The substitution of Met co-ordination by that with a Cys thiolate can be used as a 

convenient alternative. In each of the described cases the midpoint potentials dropped by 

many hundreds of mV. 

 

The PRE data indicate that the complex is not dominated by a single well-defined orientation, 

but instead it is best described by an ensemble of orientations. The chemical-shift perturbation 

results as well as the PRE data indicate that Cc6 pre-orients upon approaching Cf. It is 

expected that the long-range electrostatic attraction causes Cc6 to orient with its positive 

charges toward the overall negative Cf. Given the dipolar nature of Cc6, this movement results 

in Cc6 facing Cf with its hydrophobic patch located around the haem edge. It has been known 

for a long time that the haem edge provides strong coupling for electron transfer, so the pre-

orientation primes Cc6 for rapid electron transfer from the Cf haem. At short distance, 

hydrophobic interactions appear to be important, because the ensemble that fits the PRE data 

is located mostly above the hydrophobic region around the Cf haem group. Contrary to the 

encounter complex of the electron transfer complex of cytochrome c and cytochrome c 

peroxidase, which can be described with electrostatic interactions only,[57,61] the Cf-Cc6 

complex also involves hydrophobic interactions. These findings are in line with recent studies 

on the Cf-Pc complex from the same Nostoc species.[40,41] Also in that case the complex is at 

least partly in an encounter state and electrostatic MC calculations cannot fully describe the 

PRE data. In this complex hydrophobic interactions appear to play a similar important role, as 

became clear from a recent comparative study on Cf-Pc complexes from Nostoc and 

Phormidium laminosum.[71] Other studies on Cc6 from Nostoc and Chlamydomonas 

reinhardtii, using NMR, kinetic measurements and docking calculations also indicated the 
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importance of hydrophobic 

interactions with its partners, 

Cf,[31-33] photosystem I[26,29] 

and cytochrome c oxidase.[72] The 

data further suggest that the Cf-Cc6 

complex consists predominantly or 

entirely of an ensemble of 

orientations, whereas in the Cf-Pc 

complex a stereospecific complex is 

also present a significant amount of 

the time.  

 

These studies raise the question 

whether the two state model of an 

electrostatic encounter complex and 

a well-defined complex, with specific hydrophobic interactions, hydrogen bonding and van der 

Waals forces as well as electrostatic interactions, is generally applicable to electron transfer 

complexes. At least in the Nostoc case, of Cf reacting with Cc6 and Pc, the complex is better 

described by electrostatic pre-orientation when the proteins are still approaching and an 

ensemble of orientations in which the proteins exhibit a form of hydrophobic sliding, with 

increasing desolvation of the hydrophobic patches and thus a gradual transition to the most 

stably bound orientation (Cf-Pc) or orientations (Cf-Cc6).[40] The model is illustrated in Figure 

6. Such a hydrophobic search mechanism has been suggested on the basis of theoretical 

studies by Camacho and co-workers.[73,74] Although the encounter complex is normally 

considered to be dominated by electrostatic interactions,[3,75,76] the involvement of 

hydrophobic contacts in the encounter state has been reported before.[40,66,71,77] 

 

In the ensemble some orientations will exhibit optimal coupling between the redox centres, 

resulting in rapid electron transfer. As long as the distance between the haems is short and the 

space jump between the proteins is small, electron transfer will be fast. A single, well-defined 

orientation is not required in that case. In fact, it is not desirable, because a well-defined 

complex needs to be stabilized by multiple interactions, making it too stable for rapid 

dissociation. The view that in some complexes multiple orientations, part of a larger ensemble, 

are suited for ET, is similar to the dynamic docking model described for myoglobin and 

cytochrome b5, although that complex appears to be dominated by charge-charge 

interactions.[78,79] It is supported by a recently published kinetic study demonstrating that 

multiple conformations of Cc6 contribute to electron transfer within the Cf-Cc6 complex.[31] In 

the described model of gradual desolvation, the reverse process happens upon dissociation. 

Gradual resolvation avoids a high transition state barrier between the electron transfer active 

 
Figure 6. Model for complex formation of Cf and 

Cc6. A) Free proteins approach via diffusion. B) 

Electrostatic pre-orientation during approach. C) Cc6 

slides over the surface of Cf optimizing hydrophobic 

contacts (grey areas). Some of the positions in this 

state are compatible with fast electron transfer.  
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state and the free proteins, thus ensuring rapid dissociation. For photosynthetic electron 

transfer proteins, a high off-rate is as important as fast electron transfer to avoid product 

inhibition and reduction of the electron flow rate in the redox chain.[80] The relatively low 

affinity between Cf and its partners is in line with the idea that rapid turn-over is important. In 

the thylakoids, Cf is present in a tilted orientation, with the side shown in Figure 5 facing the 

lumen. The other side is close to the membrane and not accessible to Cc6 and Pc. Given the 

considerable confinement within the lumen, it is expected that the local concentrations are 

high and affinity is not a stringent requirement for complex formation. 

 

5. Conclusions 

The findings on the complexes of Cf with Pc and Cc6 show that encounter complexes represent 

an important part of the photosynthetic ET protein complexes. Experimental evidence for a role 

of hydrophobic interactions in the encounter complex is accumulating, blurring the distinction 

between encounter complex and stereospecific complex. This is true in particular for ET 

complexes, because a distance between the metal ions that is sufficient short for rapid ET is all 

that is required for activity, so there is no reason for the presence of a single active orientation 

within the complex. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 

 

 

 

 

Acknowledgements 

We thank Daniel de Geus, Ellen Thomassen and Irakli Sikharulidze for assistance in the X-ray 

diffraction data collection. Financial support was provided by the Netherlands Organisation for 

Scientific Research (NWO), VIDI grants 700.52.425 (RH, MU) and 700.55.425 (NSP), VICI 

grant 700.58.441 (MU), Open Competition grant 700.50.026 (MF), by the Spanish Ministry of 

Economy and Competiveness (Grant No. BFU2003-00458/BMC, BFU2006-01361/BMC, 

BFU2009-07190/BMC and BFU2012-31670/BMC) and by the Andalusian Government (Grant 

PAI, BIO198). IDM was supported by the Programme Human Potential and Mobility of 

Researchers of the European Commission (Contract No. HPRN-CT-1999-00095) and by the 

Spanish Ministry of Education (Grant No. AP2000-2937). BMB was awarded with a PhD 

fellowship (AP2009-4092) from the Spanish Ministry of Education, Culture and Sports, co-

funded by European Social Fund-ERDF (2007-2013). DC and GLR were supported by the 

Italian Ministry of University and Research, MIUR, Grant PRIN 20074TJ3ZB_004. JMF and GMU 

were supported by grant DFG RTG 1640 of the Deutsche Forschungsgemeinschaft. 

 

Statement supporting information 

A tables with assignments of Cc6 amides, intensity ratio plots (Ipara/Idia), distance plots for 

single structure and ensemble docking and Monte-Carlo simulations, an example of a ensemble 

docking script for XPLOR and an input file with PRE restraints. 

 

Deposits 

PDB IDs Cc6 wt (4GYD), M58C (4H0J) and M58H (4H0K).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

22 

 

 

 

References 

 
 [1] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Features and development of Coot, Acta 

Cryst. D 66 (2010) 486-501. 

 [2] R. Koradi, M. Billeter, K. Wuthrich, MOLMOL: A program for display and analysis of 

macromolecular structures, Journal of Molecular Graphics 14 (1996) 51-&. 

 [3] M. Ubbink, The courtship of proteins: Understanding the encounter complex, FEBS Lett. 

583 (2009) 1060-1066. 

 [4] C.C. Moser, J.M. Keske, K. Warncke, R.S. Farid, P.L. Dutton, Nature of biological electron 

transfer, Nature 355 (1992) 796-802. 

 [5] A. Diaz-Quintana, J.A. Navarro, M. Hervás, F.P. Molina-Heredia, B. De la Cerda, M.A. De 

la Rosa, A comparative structural and functional analysis of cyanobacterial 

plastocyanin and cytochrome c(6) as alternative electron donors to Photosystem 

I - Photosystem I reduction in cyanobacteria, Photosynth. Res. 75 (2003) 97-

110. 

 [6] B. De la Cerda, J.A. Navarro, M. Hervás, M.A. De la Rosa, Changes in the reaction 

mechanism of electron transfer from plastocyanin to photosystem I in the 

cyanobacterium Synechocystis sp. PCC 6803 as induced by site-directed 

mutagenesis of the copper protein, Biochemistry 36 (1997) 10125-10130. 

 [7] J. Sun, W. Xu, M. Hervás, J.K. Navarro, M.A. De la Rosa, P.R. Chitnis, Oxidizing side of 

the cyanobacterial photosystem I - Evidence for interaction between the electron 

donor proteins and a luminal surface helix of the PsaB subunit, J. Biol. Chem. 

274 (1999) 19048-19054. 

 [8] G.M. Ullmann, M. Hauswald, A. Jensen, N.M. Kostic, E.W. Knapp, Comparison of the 

physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis 

of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be 

isofunctional with tyrosine 83 in plastocyanin, Biochemistry 36 (1997) 16187-

16196. 

 [9] R.V. Duran, M. Hervás, M.A. De la Rosa, J.A. Navarro, The efficient functioning of 

photosynthesis and respiration in Synechocystis sp PCC 6803 strictly requires 

the presence of either cytochrome c6 or plastocyanin, J. Biol. Chem. 279 (2004) 

7229-7233. 

 [10] M.A. De la Rosa, J.A. Navarro, A. Diaz-Quintana, B. De la Cerda, F.P. Molina-Heredia, A. 
Balme, P.D. Murdoch, I. Diaz-Moreno, R.V. Duran, M. Hervás, An evolutionary 

analysis of the reaction mechanisms of photosystem I reduction by cytochrome 

c(6) and plastocyanin, Bioelectrochemistry 55 (2002) 41-45. 

 [11] R. Gupta, Z.Y. He, S. Luan, Functional relationship of cytochrome c(6) and plastocyanin 

in Arabidopsis, Nature 417 (2002) 567-571. 

 [12] F.P. Molina-Heredia, J. Wastl, J.A. Navarro, D.S. Bendall, M. Hervás, C.J. Howe, M.A. De 

la Rosa, A new function for an old cytochrome?, Nature 424 (2003) 33-34. 

 [13] D. Stroebel, Y. Choquet, J.L. Popot, D. Picot, An atypical haem in the cytochrome b(6)f 

complex, Nature 426 (2003) 413-418. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 

 

 [14] G. Kurisu, H.M. Zhang, J.L. Smith, W.A. Cramer, Structure of the cytochrome b6f 

complex of oxygenic photosynthesis: Tuning the cavity, Science 302 (2003) 

1009-1014. 

 [15] D. Baniulis, E. Yamashita, J.P. Whitelegge, A.I. Zatsman, M.P. Hendrich, S.S. Hasan, 

C.M. Ryan, W.A. Cramer, Structure-function, stability, and chemical modification 

of the cyanobacterial cytochrome b(6)f complex from Nostoc sp PCC 7120, J. 

Biol. Chem. 284 (2009) 9861-9869. 

 [16] S.E. Martinez, D. Huang, A. Szczepaniak, W.A. Cramer, J.L. Smith, Crystal-structure of 

chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme 

ligation, Structure 2 (1994) 95-105. 

 [17] I. Diaz-Moreno, S. Diaz-Moreno, G. Subias, M.A. De la Rosa, A. Diaz-Quintana, The 

atypical iron-coordination geometry of cytochrome f remains unchanged upon 

binding to plastocyanin, as inferred by XAS, Photosynth. Res. 90 (2006) 23-28. 

 [18] M. Beissinger, H. Sticht, M. Sutter, A. Ejchart, W. Haehnel, P. Rosch, Solution structure 

of cytochrome c(6) from the thermophilic cyanobacterium Synechococcus 

elongatus, EMBO J. 17 (1998) 27-36. 

 [19] M.R. Sawaya, D.W. Krogmann, A. Serag, K.K. Ho, T.O. Yeates, C.A. Kerfeld, Structures 

of cytochrome c-549 and cytochrome c(6) from the cyanobacterium Arthrospira 

maxima, Biochemistry 40 (2001) 9215-9225. 

 [20] J.A.R. Worrall, B.G. Schlarb-Ridley, T. Reda, M.J. Marcaida, R.J. Moorlen, J. Wastl, J. 
Hirst, D.S. Bendall, B.F. Luisi, C.J. Howe, Modulation of heme redox potential in 

the cytochrome c(6) family, J. Am. Chem. Soc. 129 (2007) 9468-9475. 

 [21] W. Bialek, S. Krzywda, M. Jaskolski, A. Szczepaniak, Atomic-resolution structure of 

reduced cyanobacterial cytochrome c(6) with an unusual sequence insertion, 

Febs J. 276 (2009) 4426-4436. 

 [22] L. Banci, I. Bertini, M.A. De la Rosa, D. Koulougliotis, J.A. Navarro, O. Walter, Solution 

structure of oxidized cytochrome c(6) from the green alga Monoraphidium 

braunii, Biochemistry 37 (1998) 4831-4843. 

 [23] M.J. Marcaida, B.G. Schlarb-Ridley, J.A.R. Worrall, J. Wastl, T.J. Evans, D.S. Bendall, B.F. 
Luisi, C.J. Howe, Structure of cytochrome c(6A), a novel dithio-cytochrome of 

Arabidopsis thaliana, and its reactivity with plastocyanin: Implications for 

function, J. Mol. Biol. 360 (2006) 968-977. 

 [24] B.S. Rajagopal, M.T. Wilson, D.S. Bendall, C.J. Howe, J.A.R. Worrall, Structural and 

kinetic studies of imidazole binding to two members of the cytochrome c(6) 

family reveal an important role for a conserved heme pocket residue, J. Biol. 

Inorg. Chem. 16 (2011) 577-588. 

 [25] A. Kranich, H. Naumann, F.P. Molina-Heredia, H.J. Moore, T.R. Lee, S. Lecomte, M.A. De 

la Rosa, P. Hildebrandt, D.H. Murgida, Gated electron transfer of cytochrome c(6) 

at biomimetic interfaces: a time-resolved SERR study, Physical Chemistry 

Chemical Physics 11 (2009) 7390-7397. 

 [26] I. Diaz-Moreno, A. Diaz-Quintana, F.P. Molina-Heredia, P.M. Nieto, O. Hansson, M.A. De 
la Rosa, B.G. Karlsson, NMR analysis of the transient complex between 

membrane photosystem I and soluble cytochrome c(6), J. Biol. Chem. 280 

(2005) 7925-7931. 

 [27] I. Diaz-Moreno, A. Diaz-Quintana, G. Subias, T. Mairs, M.A. De la Rosa, S. Diaz-Moreno, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

 

Detecting transient protein-protein interactions by X-ray absorption 

spectroscopy: The cytochrome c(6)-photosystem I complex, FEBS Lett. 580 

(2006) 3023-3028. 

 [28] M. Hervás, J.A. Navarro, M.A. De la Rosa, Electron transfer between membrane 

complexes and soluble proteins in photosynthesis, Acc. Chem. Res. 36 (2003) 

798-805. 

 [29] F.P. Molina-Heredia, A. Diaz-Quintana, M. Hervás, J.A. Navarro, M.A. De la Rosa, Site-

directed mutagenesis of cytochrome c(6) from Anabaena species PCC 7119 - 

Identification of surface residues of the hemeprotein involved in photosystem I 

reduction, J. Biol. Chem. 274 (1999) 33565-33570. 

 [30] F.P. Molina-Heredia, M. Hervás, J.A. Navarro, M.A. De la Rosa, A single arginyl residue in 

plastocyanin and in cytochrome c(6) from the cyanobacterium Anabaena sp PCC 

7119 is required for efficient reduction of photosystem I, J. Biol. Chem. 276 

(2001) 601-605. 

 [31] T.Z. Grove, G.M. Ullmann, N.M. Kostic, Simultaneous true, gated, and coupled electron-

transfer reactions and energetics of protein rearrangement, J. Inorg. Biochem. 

106 (2012) 143-150. 

 [32] T.Z. Grove and N.M. Kostic, Metalloprotein association, self-association, and dynamics 

governed by hydrophobic interactions: Simultaneous occurrence of gated and 

true electron-transfer reactions between cytochrome f and cytochrome c6 from 

Chlamydomonas reinhardtii, J. Am. Chem. Soc. 125 (2003) 10598-10607. 

 [33] P.B. Crowley, A. Diaz-Quintana, F.P. Molina-Heredia, P. Nieto, M. Sutter, W. Haehnel, 
M.A. De la Rosa, M. Ubbink, The interactions of cyanobacterial cytochrome c6 and 

cytochrome f, characterized by NMR, J. Biol. Chem. 277 (2002) 48685-48689. 

 [34] I. Diaz-Moreno, A. Diaz-Quintana, M. Ubbink, M.A. De la Rosa, An NMR-based docking 

model for the physiological transient complex between cytochrome f and 

cytochrome c(6), FEBS Lett. 579 (2005) 2891-2896. 

 [35] E.L. Gross and D.C. Pearson, Brownian dynamics Simulations of the interaction of 

Chlamydomonas cytochrome f with plastocyanin and cytochrome c6, Biophys. J. 

85 (2003) 2055-2068. 

 [36] E.J. Haddadian and E.L. Gross, Brownian dynamics study of cytochrome f interactions 

with cytochrome c(6) and plastocyanin in Chlamydomonas reinhardtii 

plastocyanin, and cytochrome c(6) mutants, Biophys. J. 88 (2005) 2323-2339. 

 [37] E.J. Haddadian and E.L. Gross, A Brownian dynamics study of the effects of cytochrome 

f structure and deletion of its small domain in interactions with cytochrome c(6) 

and plastocyanin in Chlamydomonas reinhardtii, Biophys. J. 90 (2006) 566-577. 

 [38] F.P. Molina-Heredia, M. Hervás, J.A. Navarro, M.A. De la Rosa, Cloning and correct 

expression in Escherichia coli of the petE and petJ genes respectively encoding 

plastocyanin and cytochrome c6 from the cyanobacterium Anabaena sp. PCC 

7119, Biochem. Biophys. Res. Commun. 243 (1998) 302-306. 

 [39] C. Albarran, J.A. Navarro, F.P. Molina-Heredia, P.S. Murdoch, M.A. De la Rosa, M. 

Hervas, Laser flash-induced kinetic analysis of cytochrome f oxidation by wild-

type and mutant plastocyanin from the cyanobacterium Nostoc sp PCC 7119, 

Biochemistry 44 (2005) 11601-11607. 

 [40] S. Scanu, J.M. Foerster, G.M. Ullmann, M. Ubbink, Role of Hydrophobic Interactions in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

25 

 

the Encounter Complex Formation of the Plastocyanin and Cytochrome f 

Complex Revealed by Paramagnetic NMR Spectroscopy, J. Am. Chem. Soc. 135 

(2013) 7681-7692. 

 [41] S. Scanu, J. Förster, M.G. Finiguerra, M.H. Shabestari, M. Huber, M. Ubbink, The 

complex of cytochrome f and plastocyanin from Nostoc sp PCC 7119 is highly 

dynamic, ChemBioChem 13 (2012) 1312-1318. 

 [42] E. Arslan, H. Schulz, R. Zufferey, P. Kunzler, L. Thony-Meyer, Overproduction of the 

Bradyrhizobium japonicum c-type cytochrome subunits of the cbb(3) oxidase in 

Escherichia coli, Biochem. Biophys. Res. Commun. 251 (1998) 744-747. 

 [43] A.G.W. Leslie, Integration of macromolecular diffraction data, Acta Cryst. D 55 (1999) 

1696-1702. 

 [44] P. Evans, Scaling and assessment of data quality, Acta Cryst. D 62 (2006) 72-82. 

 [45] M.D. Winn, C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, R.M. Keegan, 

E.B. Krissinel, A.G.W. Leslie, A. Mccoy, S.J. McNicholas, G.N. Murshudov, N.S. 

Pannu, E.A. Potterton, H.R. Powell, R.J. Read, A. Vagin, K.S. Wilson, Overview of 

the CCP4 suite and current developments, Acta Cryst. D 67 (2011) 235-242. 

 [46] N.S. Pannu, W.J. Waterreus, P. Skubak, I. Sikharulidze, J.P. Abrahams, R.A.G. de Graaff, 

Recent advances in the CRANK software suite for experimental phasing, Acta 

Cryst. D 67 (2011) 331-337. 

 [47] R.A.G. de Graaff, M. Hilge, J.L. van der Plas, J.P. Abrahams, Matrix methods for solving 

protein substructures of chlorine and sulfur from anomalous data, Acta Cryst. D 

57 (2001) 1857-1862. 

 [48] K. Cowtan, Error estimation and bias correction in phase-improvement calculations, 

Acta Cryst. D 55 (1999) 1555-1567. 

 [49] A. Perrakis, R. Morris, V.S. Lamzin, Automated protein model building combined with 

iterative structure refinement, Nature Struct. Biol. 6 (1999) 458-463. 

 [50] P. Skubak, G.N. Murshudov, N.S. Pannu, Direct incorporation of experimental phase 

information in model refinement, Acta Cryst. D 60 (2004) 2196-2201. 

 [51] G.N. Murshudov, P. Skubak, A.A. Lebedev, N.S. Pannu, R.A. Steiner, R.A. Nicholls, M.D. 

Winn, F. Long, A.A. Vagin, REFMAC5 for the refinement of macromolecular crystal 

structures, Acta Cryst. D 67 (2011) 355-367. 

 [52] D.E. McRee, XtalView Xfit - A versatile program for manipulating atomic coordinates and 

electron density, Journal of Structural Biology 125 (1999) 156-165. 

 [53] P.J. Kraulis, Ansig - A Program for the assignment of protein H-1 2D-NMR spectra by 

interactive computer-graphics, J. Magn. Reson. 84 (1989) 627-633. 

 [54] M. Helgstrand, P. Kraulis, P. Allard, T. Hard, Ansig for Windows: An interactive computer 

program for semiautomatic assignment of protein NMR spectra, J. Biomol. NMR 

18 (2000) 329-336. 

 [55] A. Kannt, S. Young, D.S. Bendall, The role of acidic residues of plastocyanin in its 

interaction with cytochrome f, Biochim. Biophys. Acta-Bioenerg. 1277 (1996) 

115-126. 

 [56] J.L. Battiste and G. Wagner, Utilization of site-directed spin labeling and high-resolution 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

26 

 

heteronuclear nuclear magnetic resonance for global fold determination of large 

proteins with limited nuclear overhauser effect data, Biochemistry 39 (2000) 

5355-5365. 

 [57] A.N. Volkov, J.A.R. Worrall, E. Holtzmann, M. Ubbink, Solution structure and dynamics 

of the complex between cytochrome c and cytochrome c peroxidase determined 

by paramagnetic NMR, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 18945-18950. 

 [58] J. Iwahara, C.D. Schwieters, G.M. Clore, Ensemble approach for NMR structure 

refinement against H-1 paramagnetic relaxation enhancement data arising from 

a flexible paramagnetic group attached to a macromolecule, J. Am. Chem. Soc. 

126 (2004) 5879-5896. 

 [59] C.D. Schwieters, J.J. Kuszewski, N. Tjandra, G.M. Clore, The Xplor-NIH NMR molecular 

structure determination package, J. Magn. Reson. 160 (2003) 65-73. 

 [60] G.M. Ullmann, E.W. Knapp, N.M. Kostic, Computational simulation and analysis of 

dynamic association between plastocyanin and cytochrome f. Consequences for 

the electron-transfer reaction, J. Am. Chem. Soc. 119 (1997) 42-52. 

 [61] Q. Bashir, A.N. Volkov, G.M. Ullmann, M. Ubbink, Visualization of the encounter 

ensemble of the transient electron transfer complex of cytochrome c and 

cytochrome c peroxidase, J. Am. Chem. Soc. 132 (2010) 241-247. 

 [62] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Electrostatics of 

nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. 

Sci. U. S. A. 98 (2001) 10037-10041. 

 [63] S.J. Moench and J.D. Satterlee, A comparison of spectral and physicochemical 

properties of yeast iso-1 cytochrome c and Cys 102-modified derivatives of the 

protein, J. Prot. Chem. 14 (1995) 567-582. 

 [64] Q. Bashir, S. Scanu, M. Ubbink, Dynamics in electron transfer protein complexes, Febs J. 

278 (2011) 1391-1400. 

 [65] C. Tang, J. Iwahara, G.M. Clore, Visualization of transient encounter complexes in 

protein-protein association, Nature 444 (2006) 383-386. 

 [66] Y.C. Kim, C. Tang, G.M. Clore, G. Hummer, Replica exchange simulations of transient 

encounter complexes in protein-protein association, Proc. Natl. Acad. Sci. U. S. 

A. 105 (2008) 12855-12860. 

 [67] S.W. Vetter, A.C. Terentis, R.L. Osborne, J.H. Dawson, D.B. Goodin, Replacement of the 

axial histidine heme ligand with cysteine in nitrophorin 1: spectroscopic and 

crystallographic characterization, J. Biol. Inorg. Chem. 14 (2009) 179-191. 

 [68] A.L. Raphael and H.B. Gray, Semisynthesis of axial-ligand (position 80) mutants of 

cytochrome c, J. Am. Chem. Soc. 113 (1991) 1038-1040. 

 [69] C.J. Wallace and I. Clark-Lewis, Functional role of heme ligation in cytochrome c. Effects 

of replacement of methionine 80 with natural and non-natural residues by 

semisynthesis, J. Biol. Chem. 267 (1992) 3852-3861. 

 [70] F.F. Zhong, G.P. Lisi, D.P. Collins, J.H. Dawson, E.V. Pletneva, Redox-dependent stability, 

protonation, and reactivity of cysteine-bound heme proteins, Proc. Natl. Acad. 

Sci. U. S. A. 111 (2014) E306-E315. 

 [71] S. Scanu, J.M. Foerster, M. timmer, G.M. Ullmann, M. Ubbink, Loss of electrostatic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

27 

 

interactions causes increase of dynamics within the plastocyanin-cytochrome f 

complex., Biochemistry 52 (2013) 6615-6626. 

 [72] S.E. Hart, C.J. Howe, K. Mizuguchi, J. Fernandez-Recio, Docking of cytochrome c(6) and 

plastocyanin to the aa(3)-type cytochrome c oxidase in the cyanobacterium 

Phormidium laminosum, Prot. Eng. Des. Sel. 21 (2008) 689-698. 

 [73] C.J. Camacho, S.R. Kimura, C. DeLisi, S. Vajda, Kinetics of desolvation-mediated 

protein-protein binding, Biophys. J. 78 (2000) 1094-1105. 

 [74] C.J. Camacho, Z.P. Weng, S. Vajda, C. DeLisi, Free energy landscapes of encounter 

complexes in protein- protein association, Biophys. J. 76 (1999) 1166-1178. 

 [75] G. Schreiber, G. Haran, H.X. Zhou, Fundamental aspects of protein-protein association 

kinetics, Chem. Rev. 109 (2009) 839-860. 

 [76] J.Y. Suh, C. Tang, G.M. Clore, Role of electrostatic interactions in transient encounter 

complexes in protein-protein association investigated by paramagnetic relaxation 

enhancement, J. Am. Chem. Soc. 129 (2007) 12954-12955. 

 [77] K. Sugase, H.J. Dyson, P.E. Wright, Mechanism of coupled folding and binding of an 

intrinsically disordered protein, Nature 447 (2007) 1021-1025. 

 [78] Z.X. Liang, J.M. Nocek, K. Huang, R.T. Hayes, I.V. Kurnikov, D.N. Beratan, B.M. 

Hoffman, Dynamic docking and electron transfer between Zn-myoglobin and 

cytochrome b5, J. Am. Chem. Soc. 124 (2002) 6849-6859. 

 [79] J.A.R. Worrall, Y.J. Liu, P.B. Crowley, J.M. Nocek, B.M. Hoffman, M. Ubbink, Myoglobin 

and cytochrome b5: A nuclear magnetic resonance study of a highly dynamic 

protein complex, Biochemistry 41 (2002) 11721-11730. 

 [80] S. Kuhlgert, F. Drepper, C. Fufezan, F. Sommer, M. Hippler, Residues psaB Asp612 and 

psaB G1u613 of Photosystem I confer pH-dependent binding of plastocyanin and 

cytochrome c(6), Biochemistry 51 (2012) 7297-7303. 

 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

28 

 

Graphical Abstract 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

29 

 

Highlights 

 

 Cytochrome f and cytochrome c6 form an electron transfer (ET) complex. 

 The complex is highly transient and dynamic. 

 It consists mainly or entirely of an encounter complex. 

 The encounter complex is stabilized by charge and hydrophobic interactions. 

 A model is proposed to explain how the complex can be so efficient in ET. 


