
On spiking neural P systems

Oscar H. Ibarra Æ Mario J. Pérez-Jiménez Æ Takashi Yokomori

Abstract This work deals with several aspects concerning the formal verification of SN P
systems and the computing power of some variants. A methodology based on the
information given by the transition diagram associated with an SN P system is presented.
The analysis of the diagram cycles codifies invariants formulae which enable us to establish
the soundness and completeness of the system with respect to the problem it tries to resolve.
We also study the universality of asynchronous and sequential SN P systems and the
capability these models have to generate certain classes of languages. Further, by making a
slight modification to the standard SN P systems, we introduce a new variant of SN P
systems with a special I/O mode, called SN P modules, and study their computing power. It
is demonstrated that, as string language acceptors and transducers, SN P modules can
simulate several types of computing devices such as finite automata, a-finite transducers,
and systolic trellis automata.

Keywords Spiking neural P system � Formal verification � Universality � Asynchronous �
Sequential � Finite automaton � Finite state transducer �
Systolic trellis automaton

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced by Ionescu et al.
(2006) with the aim of incorporating in membrane computing ideas of spiking neurons,

O. H. Ibarra (&)
Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
e-mail: ibarra@cs.ucsb.edu

M. J. Pérez-Jiménez
Department of Computer Science and AI, University of Seville, Sevilla, Spain
e-mail: marper@us.es

T. Yokomori
Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda
University, 1-6-1 Nishi-waseda, Shinjuku-ku, Tokyo 169-8050, Japan
e-mail: yokomori@waseda.jp

which is a promising research line in neural computing (see, e.g., Gerstner and Kistler

2002; Maass 2002).

SN P systems have a biological motivation based on recent discoveries on neural coding.

Various studies show evidence of precise temporal correlations between pulses of different

neurons and stimulus-dependent synchronisation of the activity in populations of neurons

(see, e.g., Eckhorn et al. 1988 or Gray and Kistler 2002). The flow of information is carried

on the action potentials, which are encoded by objects (spikes) of the same type. These

spikes are placed inside the neurons and can be sent from presynaptic to postsynaptic

neurons according to specific rules and making use of the time as a support of information.

In the field of membrane computing, SN P systems try to capture the fact that most of

the neural impulses are almost identical from an electrical point of view and the intervals

of time between signals are crucial.

In this paper we study some interesting topics related to SN P systems, and they are

organized as follows. The next section introduces basic concepts about SN P systems. In

Section 3, a (restricted) methodology for the formal verification of these systems is pre-

sented. Section 4 is devoted to study of some characterizations of generalized models of

SN P systems with an extended form of spiking rules. Finally, the computational power of

new variants of SN P systems with a special input/output mode is presented in Section 5.

2 Spiking neural P systems

Informally, an SN P system consists of a set of neurons placed in the nodes of a directed

graph which send signals (called spikes) along the arcs of the graph (representing the

synapses between neurons). The system evolves according to a set of spiking rules and

forgetting rules each of which is associated with a neuron that uses the rules for sending or

internally consuming spikes. The rules for spiking should take into account all spikes

present in a neuron not only part of them, although not all spikes are consumed in this way.

The produced spikes are sent (maybe with a delay of some steps) to all neurons where there

is a synapse outgoing from the neuron where the rule was applied.

A global clock is assumed and in each time unit each neuron which can use a rule

should use one such rule (thus, only one rule is used in each neuron). One of the neurons is

considered to be the output neuron, and its spikes are also sent to the environment.

Definition 2.1 A spiking neural P system (abbreviated as SN P system) of degree m C 1,

is a tuple of the form P ¼ ðO; r1; . . .; rm; syn; outÞ; where:

• O = {a} is the singleton alphabet (the object a is called spike);

• ri = (ni, Ri), 1 B i B m, where ni C 0 and Ri is a finite set of rules of the types:

(1) Spiking rules: E=ac ! a; d;where E is a regular expression over a, c C 1, and d C 0;

(2) Forgetting rules: as ! k; for some s C 1, with the restriction that for each rule

E=ac ! a; d of type (1) from Ri, we have as 62 LðEÞ;
• syn � f1; 2; . . .;mg � f1; 2; . . .;mg with ði; iÞ 62 syn for i 2 f1; . . .;mg (synapses);

• out 2 f1; 2; . . .;mg:

That is, an SN P system consists of a set of neurons fr1; . . .; rmg of the form ri = (ni, Ri)

where ni represents the number of spikes initially contained by neuron ri. Besides, syn
specifies the set of arcs of a directed graph representing the synapses between neurons, and
out indicates the index of the output neuron.

If a spiking rule is of the form E=ac ! a; d 2 Ri; with L(E) = {ac}, then such a rule

only is applicable when neuron ri contains exactly k spikes. In this case, we denote that

rule by ac ! a; d:
A spiking rule E=ac ! a; d 2 Ri; is applicable in a step t if the neuron ri contains

exactly k spikes, ak [L(E) and k C c. By applying such a rule, c spikes are consumed, the

neuron ri is fired and it produces one spike after d time units. If d = 0, then the spikes are

emitted immediately, otherwise the spikes are emitted after d steps. In the case d C 1, in

steps t; t þ 1; t þ 2; . . .; t þ d � 1 the neuron is closed, and it cannot receive new spikes. In

the step t ? d, the neuron spikes and becomes again open, hence it can receive spikes. The

spike emitted by a neuron ri is replicated and it goes to all neurons rj such that (i, j) [syn.

A forgetting rule as ! k 2 Ri is applicable in a step t if the neuron ri contains exactly s
spikes in the instant t. By applying such a rule, s spikes are removed from the neuron ri.

In each time unit, if some rules from Ri is applicable, then one rule (and only one) must

be applied, chosen non-deterministically among all possible rules applicable to ri. That is,

each neuron processes sequentially its spikes by using, at most, one rule in each time unit.

Let us recall that a spiking rule and a forgetting rule cannot be simultaneously applied to a

neuron.

The rules are used in a maximally parallel way at the level of the system: at each step,

all neurons which can use some rule, must evolve using one rule.

A configuration of an SN P system of degree m C 1 is a tuple ððp1; q1Þ; . . .; ðpm; qmÞÞ
where pi (1 B i B m) describes the number of spikes present in the neuron ri, and qi

(1 B i B m) represents the number of steps to count down until it becomes open. The

initial configuration of P is ððn1; 0Þ; . . .; ðnm; 0ÞÞ; that is, all neurons are open initially.

Using the rules of the system in the way described before, a configuration C2 can be

reached from another configuration C1; such a step is called a transition, and we denote it

by C1 ¼) C2: Any (finite or infinite) sequence of transitions C0 ¼) C1 ¼) C2 ¼) � � �Cr

is a computation if C0 is the initial configuration of the system, and either r = ? or r [N
and all neurons are open and no rule can be used (in this case, Cr is called an halting
computation).

Let P be an SN P system and let C ¼ C0 ¼) C1 ¼) C2 ¼) � � � be a computation in P.

The spike train of computation C; denoted by stðCÞ; is the sequence of steps i such that Ci

emits a spike out, and we write it in the form stðCÞ ¼ ht1; t2; . . .i; with 1� t1\t2\. . .: That

is, we consider the moments when the output neuron spikes not when it fires.

The set of all spike trains (over the set COM(P) of all computations) of P is denoted by

ST(P), and can be considered as the result of the evolution of the system P. In Sects. 2 and

3 we consider SN P systems as computing devices, which compute sets of natural numbers.

One can associate a set of numbers with ST(P) in several ways. We denote NðCÞ ¼ fn j
n ¼ ti � ti�1; for 2� i� k; stðCÞ ¼ ht1; t2; . . .ig; and as in Ionescu et al. (2006), we can

consider the intervals between consecutive spikes as numbers computed by a computation,

with several alternatives:

• Taking into account only the first k C 2 spikes:

NkðPÞ ¼ fn j 9C 2 COMðPÞðstðCÞ ¼ ht1; t2; . . .i; and stðCÞ has at least k spikes,

and n ¼ ti � ti�1; for 2� i� kÞg
• Taking into account all spikes of computations with infinite spike trains:

NxðPÞ ¼ fn j 9C 2 COMðPÞðstðCÞ ¼ ht1; t2; . . .i infinite, and n ¼ ti � ti�1; for i� 2Þg

• Taking into account all intervals of all computations:

NallðPÞ ¼
[

k� 2

NkðPÞ [NxðPÞ

Definition 2.2 An SN P system P is said to be weakly x-coherent if there is a com-

putation C in P such that NðCÞ ¼ NallðPÞ:
That is, an SN P system is weakly x-coherent if there exists a computation which

provides all numbers which all other computations can provide.

3 Formal verification in SN P systems

This section aims to provide a methodology for the verification of certain SN P systems.

The idea is to describe the evolution of the system by a transition diagram in such a way

that the analysis of its cycles provide invariant formulae of the (evolutive) process.

Definition 3.1 Given a P system, P, the computation tree, T(P), associated with P is the

rooted labelled tree defined as follows: (a) the nodes of the tree are labelled by configu-

rations of P; (b) the label of the root is the initial configuration of P; and (c) the children

of a node are labelled by the configurations obtained from the configuration labelling the

node through a step of transition.

The maximal branches of the computation tree associated with a P system are called

computations of the system.

It is possible to consider an orientation in the computation tree, T(P), in a natural way

through the parent–child relation, that is, (u,v) is an oriented arc in the tree if and only if u
is the parent of v (or v is a child of u).

Next, we define the transition diagram of an SN P system as a directed graph where the

nodes are configurations and an arc is drawn between two nodes/configurations if a

transition is possible between them.

Definition 3.2 Given a SN P system, P, the oriented graph associated with P is obtained

from the (oriented) computation tree of P, by identifying the nodes having the same label.

We intend to show that transition diagrams are an interesting tool to establish the formal

verification of SN P systems. Next, we justify this assertion with an example.

3.1 An example

Let us consider the SN P system P1 whose graphical representation is depicted in Fig. 1.

We aim to prove that the system P1 computes the numerical set NallðP1Þ ¼ fr þ 2i j
i� 1g; in the sense described in the previous section.

Theorem 1

(a) For each computation, C of P1 we have NðCÞ � fr þ 2i j i� 1g (soundness).
(b) For each i C 1 there exists a computation, C of P1 such that r þ 2i 2 NðCÞ

(completeness). Moreover, The SN P system P1 is weakly x-coherent.
(c) For each q C 2, let Nq� ðP1Þ be the set

ftq � tq�1jstðCÞ ¼ ht1; . . .; tq�1; tq; . . .i; for some computation C of P1g

Then, we have Nq� ðP1Þ ¼ NallðP1Þ ¼ fr þ 2iji� 1g:

Proof A configuration C of P1 can be described by a tuple C ¼ ðCð1Þ; . . .;Cð6þ rÞÞ
where C(j) is the multiset over {a} contained in neuron j, for 1 B j B 6, in neuron cj-6, for

7 B j B 5 ? r, or in neuron c0r-1 for j = 6 ? r. We denote by Cd (with d = 0, 1) the

configuration obtained from C applying in neuron 2 the rule a! a; d:

It is easy to prove that the only configurations sending a spike to the neighbouring

neurons are C1 and Cr?3
1 , and that Cr?4

00 = Cr?2
0 and Cr?4

01 = Cr?2
1 . The transition diagram

associated with P1 is depicted in Fig. 2, and we deduce that there is no halting

computation.

Let us denote by r the path C0 ! C1 ! � � � ! Cr ! Crþ1; and let s be the path C1
rþ3 !

C1
rþ4 ! � � � ! C1

2rþ1 ! Cr ! Crþ1: Then, Length(r) = r ? 1 and Length(s) = r.

For each j C 0, let c(j) the path Crþ1 ! C0
rþ2 !

ðjÞ
C0

rþ3 ! C1
rþ2 ! C1

rþ3; meaning that

the computation goes through Cr?2
0 exactly j times. Then, Length (c(j)) = 2(j ? 1).

Taking into account that the computations of P1 are the maximal branches of the

computation tree, for every computation, C; of P1 there exists an infinite sequence of

natural numbers fik j k� 1g such that C can be described through the following path in the

transition diagram associated with P1 (we denote it by Cðfik j k� 1gÞÞ :

rcði1Þscði2Þscði3Þscði4Þscði5Þ. . .

Fig. 1 The SN P system P1

Next, we describe the spike train of the computation Cðfik j k� 1gÞ 	 C0) C1)
C2) C3. . .; through the sequence of steps i such that the configuration Ci sends a spike

out. We have:

t1 ¼ 1

tkþ1 ¼ tk þ r þ 2ðik þ 1Þ

(

Hence, NallðCðfik j k� 1gÞ ¼ ftkþ1 � tk j k� 1g ¼ fr þ 2ðik þ 1Þ j k� 1g:

(a) Let C be a computation of P1. Then there exists an infinite sequence of natural

numbers fik j k� 1g such that C ¼ Cðfik j k� 1gÞ: Then, NðCðfik j k� 1gÞ ¼ fr þ
2ðik þ 1Þ j k� 1g � fr þ 2i j i� 1g: Hence, NallðP1Þ � fr þ 2i j i� 1g:

(b) Let us prove that there exists a computation C of P1 such that NðCÞ ¼ NallðP1Þ ¼
fr þ 2i j i� 1g:
Indeed, let s be the infinite sequence fik j k� 1g such that ik = k - 1, for each k C 1.

Then, NðCðsÞÞ ¼ fr þ 2ðik þ 1Þ j k� 1g ¼ fr þ 2i j i� 1g: Hence, fr þ 2i j i� 1g ¼
fr þ 2ðik þ 1Þ j k� 1g ¼ NðCðsÞÞ � NallðP1Þ � fr þ 2i j i� 1g:

(c) If fik j k� 1g is an infinite sequence of natural numbers, then

.

.

.

C r+2
1Cr+2

0
C r+1

C r

C r−1

C r−2

C1

C0

.
.

.

C

C

C

1

1

1

r+4

2r+1

2r

C r+3
0

C r+3
1

Fig. 2 Transition diagram of P1

NðCðfik j k � 1gÞÞ ¼ fr þ 2ðik þ 1Þ j k � 1g

For each j C 0 let Cj ¼ Cðfik j k � 1g; where ik = j, for every k C 1.

Let q C 2. For each j C 0, we have Nq� ðCjÞ ¼ ftq � tq�1g ¼ fr þ 2ðj þ 1Þg: Then, fr þ
2i j i � 1g ¼ fr þ 2ðj þ 1Þ j j � 0g ¼ fNq� ðCjÞ j j � 0g: Hence, Nq� ðP1Þ � NallðP1Þ ¼
fr þ 2i j i � 1g: (

4 Characterizations

In this section, we will discuss some characterizations of SN P systems. We will mainly
look at a generalized model of SN P systems with an extended form of spiking rules. This
model was introduced and studied in Chen et al. (2008) and Păun and Păun (2007).

An extended rule has the form E=a j ! ap; d: This rule operates in the same manner as

before except that firing sends p spikes along each outgoing synapse (and these p spikes are

received simultaneously by each neighboring neuron). Clearly, when p = 1 the extended

rules reduce to the standard (or non-extended) rules in the original definition. Note also that

forgetting rules are just a special case of firing rules, i.e., when p = 0.

We will consider systems with three types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai=aj ! ap; d; where

1 B j B i, p C 0, and d C 0. There can be several such rules in the neuron. These

rules are called bounded rules.

2. A neuron is unbounded if every rule in the neuron is of the form aiðakÞ�=aj ! ap; d;
where i C 0, k C 1, j C 1, p C 0, d C 0. Again, there can be several such rules in the

neuron. These rules are called unbounded rules.

3. A neuron is general if it can have general rules, i.e., bounded as well as unbounded

rules.

One can allow rules like a1 þ � � � þ an ! ap; d in the neuron, where all ai’s have bounded

(resp., unbounded) regular expressions as defined above. But such a rule is equivalent to

putting n rules ai ! ap; d (1 B i B n) in the neuron. It is known that any regular set over a

1-letter symbol a can be expressed as a finite union of regular sets of the form {ai(aj)k |

k C 0} for some i, j C 0. Note such a set is finite if j = 0. We can define three types of SN

P systems:

1. Bounded SN P system—a system in which every neuron is bounded.

2. Unbounded SN P system—a system in which every neuron is either bounded or

unbounded.

3. General SN P system—a system with general neurons (i.e., each neuron can contain

both bounded and unbounded rules).

Let k C 1. A k-output SN P system has k output neurons, O1,…,Ok. We say that the system

generates a k-tuple ðn1; . . .; nkÞ 2 N
k if, starting from the initial configuration, there is a

sequence of steps such that each output neuron Oi generates (sends out to the environment)

exactly ni spikes and then the system eventually halts. We will consider systems with

delays and systems without delays (i.e., d = 0 in all rules).

4.1 Asynchronous general SN P systems

The standard model of SN P systems is synchronized, meaning that all neurons fire at each

step of the computation whenever they are fireable. This synchronization is quite powerful:

It is known that a set Q � N
1 is recursively enumerable if and only if it can be generated by

a 1-output general SN P system (with or without delays) (Ionescu et al.2006; Ibarra et al.

2007). This result holds for systems with standard rules or extended rules, and it gener-

alizes to systems with multiple outputs. Thus, such systems are universal.

In Cavaliere et al. (2007) the computational power of SN P systems that operate in an

asynchronous mode was introduced and studied. In an asynchronous SN P system, we do

not require the neurons to fire at each step. During each step, any number of fireable

neurons are fired (including the possibility of firing no neurons). When a neuron is fireable

it may (or may not) choose to fire during the current step. If the neuron chooses not to fire,

it may fire in any later step as long as the rule is still applicable. (The neuron may still

receive spikes while it is waiting, which may cause the neuron to no longer be fireable.)

Hence there is no restriction on the time interval for firing a neuron. Once a neuron chooses

to fire, the appropriate number of spikes are sent out after a delay of exactly d time steps
and are received by the neighboring neurons during the step when they are sent.

We recall the definition of a counter machine. A nondeterministic multicounter machine
(CM) M is a nondeterministic finite automaton with a finite number of counters (it has no
input tape). Each counter can only hold a nonnegative integer. The machine starts in a fixed
initial state with all counters set to zero. During the computation, each counter can be
incremented by 1, decremented by 1, or tested for zero. A distinguished set of k counters
(for some k C 1) is designated as the output counters. The output counters are non-

decreasing (i.e., cannot be decremented). A k-tuple ðn1; . . .; nkÞ 2 Nk is generated if M
eventually halts in an accepting state, where all non-output counters are set to zero and the
contents of the output counters are n1, …, nk, respectively. We will refer to a CM with k
output counters (the other counters are auxiliary counters) as a k-output CM.

It is well-known that a set Q � Nk is generated by a k-output CM if and only if Q is
recursively enumerable. Hence, k-output CMs are universal.

The following result was shown in Cavaliere et al. (2007). It says that SN P systems
which operate in an asynchronous mode of computation are still universal provided that the
neurons are allowed to use extended rules.

Theorem 2 A set Q � Nk is recursively enumerable if and only if it can be generated by
an asynchronous k-output general SN P system with extended rules. The result holds for
systems with or without delays.

It remains an open question whether the above result holds for the case when the system
uses only standard (i.e., non-extended) rules.

4.2 Asynchnronous unbounded SN P systems

Next, we will study unbounded SN P systems, again assuming the use of extended rules.
Recall that these systems can only use bounded and unbounded neurons (i.e., no general
neurons are allowed). In contrast to Theorem 2, these systems can be characterized by
partially blind multicounter machines (PBCMs).

A partially blind k-output multicounter machine (k-output PBCM) (Greibach 1978) is a
k-output CM, where the counters cannot be tested for zero. The output counters are non-
decreasing. The other counters can be incremented by 1 or decremented by 1, but if there is
an attempt to decrement a zero counter then the computation aborts (i.e., the computation
becomes invalid). Again, by definition, a successful generation of a k-tuple requires that the
machine enters an accepting state with all non-output counters set to zero.

It is well known that k-output PBCMs can be simulated by k-dimensional vector
addition systems, and vice-versa (Greibach 1978). Hence, such counter machines are not
universal. In particular, a k-output PBCM can generate the reachability set of a vector
addition system.

4.2.1 Systems without delays

In Cavaliere et al. (2007), asynchronous unbounded SN P systems without delays were
investigated. The systems considered in Cavaliere et al. (2007) are restricted to halt in a
pre-defined configuration. Specifically, a computation is valid if, at the time of halting, the
numbers of spikes that remain in the neurons are equal to pre-defined values; if the system
halts but the neurons do not have the pre-defined values, the computation is considered

invalid and the output is ignored. These systems were shown to be equivalent to PBCMs in

Cavaliere et al. (2007). However, it was left as an open question whether the ‘pre-defined

halting’ requirement was necessary to prove this result. It was recently shown in Ibarra and

Woodworh (2007b) (see also Woodworh 2007) that this condition is, in fact, not necessary.

Note that for these systems, firing zero or more neurons at each step is equivalent to firing

one or more neurons at each step (otherwise, since there are no delays, the configuration

stays the same when no neuron is fired).

Theorem 3 A set Q � N
k is generated by a k-output PBCM if and only if it can be

generated by an asynchronous k-output unbounded SN P system without delays. Hence,
such SN P systems are not universal.

Note that by Theorem 2, if we allow both bounded rules and unbounded rules to be

present in the neurons, SN P systems become universal. Again, it is an open problem

whether the above theorem holds for the case when the system uses only standard rules.

It is known that PBCMs with only one output counter can only generate semilinear sets

of numbers. Hence:

Corollary 4.1 Asynchronous1-output unbounded SN P systems without delays can only
generate semilinear sets of numbers.

The results in the following corollary can be obtained using Theorem 3 and the fact that

they hold for k-output PBCMs.

Corollary 4.2

1. The family ofk-tuples generated by asynchronous k-output unbounded SN P systems
without delays is closed under union and intersection, but not under complementation.

2. The membership, emptiness, infiniteness, disjointness, and reachability problems are
decidable for asynchronous k-output unbounded SN P systems without delays; but
containment and equivalence are undecidable.

4.2.2 Systems with delays

Theorem 3 assumed an asynchronous SN P system without delays. However, it is possible

that allowing delays would give additional power. For asynchronous unbounded SN P

systems with delays, we can no longer assume that firing zero or more neurons at each step

is equivalent to firing one or more neurons at each step.

Note that not every step in a computation has at least one neuron with a fireable rule. In

a given configuration, if no neuron is fireable but at least one neuron is closed, we say that

the system is in a dormant step. If there is at least one fireable neuron in a given con-

figuration, we say the system is in a non-dormant step. (Of course, if a given configuration

has no fireable neuron, and all neurons are open, we are in a halting configuration.) Thus,

an SN P system with delays might be dormant at some point in the computation until a rule

becomes fireable. However, the clock will keep on ticking. Interestingly, the addition of

delays does not increase the power of the system (Ibarra and Woodworth 2007b; see also

Woodworth 2007):

Theorem 4 A set Q � N
k is generated by ak-output PBCM if and only if it can be

generated by an asynchronous k-output unbounded SN P system with delays.

This result contrasts the result in Ibarra et al. (2007) which shows that synchronous

unbounded SN P systems with delays and standard rules (but also standard output) are

universal.

4.3 Asynchronous bounded SN P systems

In this section we consider asynchronous SN P systems, where the neurons can only use

bounded rules. We show that these bounded SN P systems with extended rules generate

precisely the semilinear sets.

A k-output monotonic CM is a nondeterministic machine with k counters, all of which

are output counters. The counters are initially set to zero and can only be incremented by 1

or 0 (they cannot be decremented). When the machine halts in an accepting state, the

k-tuple of values in the k-counter is said to be generated by the machine. Clearly, a k-output

monotonic CM is a special case of a PBCM, where all the counters are output counters and

all the instructions are addition instructions.

It is known that a set Q � N
k is semilinear if and only if it can be generated by a

k-output monotonic CM (Harju et al. 2002). We can show the following (see, e.g., Ibarra

and Woodworth 2006; Woodworth 2007):

Theorem 5 Q � N
k can be generated by a k-output monotonic CM if and only if it can be

generated by a k-output asynchronous bounded SN P system with extended rules. The
result holds for systems with or without delays.

At present, we do not know whether Theorem 5 holds when the system is restricted to

use only standard (non-extended) rules. However, we can show the result holds for

synchronous bounded SN P systems using only standard rules (Woodworth 2007).

4.4 Sequential SN P systems

Sequential SN P systems are another closely related model introduced in Ibarra et al.

(2006). These are systems that operate in a sequential mode. This means that at every step

of the computation, if there is at least one neuron with at least one rule that is fireable, we

only allow one such neuron and one such rule (both nondeterministically chosen) to be

fired. If there is no fireable rule, then the system is dormant until a rule becomes fireable.

However, the clock will keep on ticking. The system is called strongly sequential if at

every step, there is at least one neuron with a fireable rule.

Unlike for asynchronous systems (considered in the previous section), where the results

relied on the fact that the systems use extended rules, the following results in Ibarra et al.

(2006) and Woodworth (2007) hold for systems that use standard rules as well as for

systems that use extended rules.

Theorem 6 The following results hold for systems with delays.

1. Sequential k-output unbounded SN P systems with standard rules are universal.
2. Strongly sequential k-output general SN P systems with standard rules are universal.
3. Strongly sequential k-output unbounded SN P systems with standard rules andk-output

PBCMs are equivalent.

The above results also hold for systems with extended rules.

Item 3 in the above theorem improves the result in Ibarra et al. (2006) which required a

special halting configuration similar to the halting configuration in Cavaliere et al. (2007).

In fact, this halting requirement is not necessary (Ibarra and Woodworth 2007b).

4.5 SN P systems as language generators

SN P systems can be used as language generators, as described in two recent papers (Chen

et al. 2006a, b). Consider an SN P system P with output neuron, out, which is bounded.

Interpret the output as follows. At times when out spikes, a is interpreted to be 1, and at

times when it does not spike, interpret the output to be 0. We say that a binary string

x = a1…an, where n C 1, is generated by P if starting in its initial configuration, it outputs

x and halts. We assume that the SN P systems use standard rules.

4.5.1 Regular languages

It was recently shown in Chen et al. (2006a) that for any finite binary language F, the

language F1 (i.e., with a supplementary suffix of 1) can be generated by a bounded SN P

system. This is not true in general if F is an infinite regular language as was shown in

Ibarra and Woodworth (2007a):

Observation 4.1 Let F = 0*. Then F1 cannot be generated by a bounded SN P system.

However, it was also shown in Ibarra and Woodworth (2007a) that by just modifying

the previous lanuage F to begin with at least one zero, one can generate F1:

Observation 4.2 Let F = 0?. Then F1 can be generated by a bounded SN P system. Thus,
it is possible to generate some languages where F is an infinite language.

The following result, also shown in Ibarra and Woodworth (2007a), contrasts Obser-

vation 4.1:

Observation 4.3 Let F = 0*. Then 1F can be generated by a bounded SN P system.

Observation 4.3 actually generalizes to the following rather surprising result shown in

Ibarra and Woodworth (2007a):

Theorem 7 Let L � ð0þ 1Þ � : Then the language 1L (i.e., with a supplementary prefix
1) can be generated by a bounded SN P system if and only if L is regular. (The result holds
also for 0L, i.e., the supplementary prefix is 0 instead of 1.)

4.5.2 Another way of generating languages

We can define another way of ‘‘generating’’ a string. We say that a binary string

x = a1…an, where n C 0, is generated by P if it outputs 1x10d, for some d which may

depend on x, and halts. Thus, in the generation, P outputs a 1 before generating x, followed

by 10d for some d. (Note that the prefix 1 and the suffix 10d are not considered as part of

the string.) The set L(P) of binary strings generated in the manner described is the lan-
guage generated by P. Note that d provides the ‘‘space’’ needed for the computation, just

like worktape space in Turing machine computations. One can characterize various classes

of languages by putting restrictions on the value of d as a function of the length of x. See

Ibarra and Woodworth (2007a).

5 A new variant of SN P systems with I/O mode

In the study of SN P systems there are several manners of defining string languages

generated or accepted by those systems. One can consider as language the set of binary

strings (studied in the previous section) or traces associated with halting computations

(Chen et al. 2006b). Another way is to associate a string over an arbitrary alphabet in such

a way that a symbol ai is associated with a step when a certain designated neuron (output

neuron) emits i spikes, leading to a string language over the alphabet generated by an

extended SN P system (Chen et al. 2008).

Based on the idea suggested from the latter manner, in this section we introduce a new

variant of SN P systems with a special I/O mode, called SN P modules, and study their

computing power, to show that several types of computing devices based on finite state

control can be simulated by SN P modules.

5.1 Spiking neural P module

A spiking neural P module (in short, an SN P module), of degree m C 1, is a construct of

the form:

P ¼ ðfag; r1; . . .; rm; syn;Ni;NoÞ;

where

1. {a} is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri = (ni, Ri), 1 B i B m, where

(a) ni C 0 is the initial number of spikes contained by the neuron;

(b) Ri is a finite set of rules of the following form: E=ac ! ap with a regular

expression E over {a} and c C p C 1;

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with ði; iÞ 62 syn for 1 B i B m (synapses);

4. Ni and Noð� f1; 2; . . .;mgÞ indicate the sets of input neurons and output neurons,

respectively.

An SN P module P behaves in the usual way: An application of a rule of the form

E=ac ! ap implies that c spikes are consumed and p spikes are produced, provided the

number of spikes in the neuron is covered by E, and so forth. (Note that each rule in P has

no delay and both firing and spiking occur without any time delay.)

In contrast to the usual SN P systems, however, an SN P module P has the following

distinguished feature:

In each step of computation, each input neuron rci
(ci in Ni) takes as input a number

of a’s at a time (from the environment, denoted by Env), while each output neuron

rco
ðco in NoÞ produces as output ap to Env, if a rule of the form E=ac ! ap is

successfully applied in rco
: (Note that Ni and No may share some neurons.)

Thus, an SN P module is a special form of an extended SN P system having neurons
with input–output mode.

In the sequel, we only deal with the case when a regular language L(E) is a singleton
{am}; therefore, each rule is given in the form am=ac ! ap: In particular, for a rule of the
form ac=ac ! ap; we simply denote it by ac ! ap:

5.2 Computing with SN P modules

As is shown below, SN P modules can simulate in a direct manner several types of

computing devices based on finite state transitions.

5.2.1 Simulating finite automata

Let M = (Q, R, d, qn, F) be a deterministic finite state automaton (DFA), where R = {b1,

…, bm}, Q = {q, …, qn} and qn is the initial state. We demonstrate that DFA M can be

simulated by an SN P module.

Consider an SN P module:

Pa ¼ ðfag; r1; r2; r3; syn; f3g; f3gÞ;

where

r1 ¼ðn; fan ! angÞ;
r2 ¼ðn; fan ! angÞ;
r3 ¼ðn; fa2nþiþk=a2nþiþk�j ! ajjdðqi; bkÞ ¼ qjgÞ;

syn ¼fð1; 2Þ; ð2; 1Þ; ð1; 3Þg:

The module is given in a pictorial way in (a) of Fig. 3. Note that n and m are given fixed
numbers, and that for each 1 B i B n, qi in Q is represented by ai, while for each

1 B k B m, bk in R is represented by an?k. The number of spikes ai in neuron 3 is refered

to (or identified) as a state of Pa.

The manner of constructing Pa is a modification of the one presented for the generating

SN P system in Chen et al. (2008).

This system works as follows. Neurons 1 and 2 can fire and spike in the first step, and

exchange an each other. At the same time, neuron 1 emits an to neuron 3. This action is

repeatedly performed in arbitrary times.

Suppose that, in the first step, neuron 3 contains ai and is ready to receive input an?k

(representing bk in R) from Env. In the next step, it can fire by receiving an (from neuron 1)

(a) (b)

Fig. 3 (a) SN P module Pa simulating a finite automaton M: Pa is currently in the state qi (represented by
ai). If input bk (represented by an?k) is read, then Pa changes its state to qj (represented by aj), and at the
same time produces it as output symbol. Thus, one transition d(qi, bk) = qj is simulated and the latest state
(qj) is available (on demand). (b) SN P module Ps simulating a finite transducer S: Ps is currently in the
state qi (represented by ai). If input bk (represented by an?t?k) is read, then Ps changes its state to qj

(represented by aj) and produces as output cs (represented by an?s). In this moment, there remains aj in
neuron 3 keeping the state qj. Thus, one transition process d(qi, bk) = (qj, cs) is simulated

together with input an?k, and emits aj (representing qj) to Env by consuming (2n ? i ?

k - j) spikes, leaving aj in neuron 3. Hence, one state transition d(qi,bk) = qj is simulated.

Thus, (with 1 step delay) for a given input w ¼ bi1 ; . . .; bir in R*, Pa produces a

sequence of states: z ¼ qi1 ; . . .; qir (represented by ai1 ; . . .; air Þ such that dðqi‘ ; bi‘Þ ¼ qi‘þ1

for each ‘ = 0, …, r where qi0 ¼ qn: We denote this configuration by z = Pa(w). Then, it

holds that w is accepted by M (i.e., d(qn, w) [F) iff z = Pa(w) ends up with a state in F
(i.e., qir is in F).

We now define the language accepted by Pa as:

LðPaÞ ¼ fw 2 R�jPaðwÞ is in Q�Fg:
Then, the following is clearly proved.

Theorem 8 Any regular language L can be expressed as L = L(Pa) for some SN P
module Pa.

5.2.2 Simulating finite state transducers

By slightly modified construction presented above, one can construct an SN P module

which simulates a finite state transducer (or sequential machine) as well.

Let S = (Q, R, D, d, qn, F) be a deterministic finite state transducer (with accepting

states), where R = {b1, …, bm}, D = {c1, …, ct}, Q = {q1, …, qn} and qn is the initial

state.

We now construct an SN P module:

Ps ¼ ðfag; r1; r2; r3; syn; f3g; f3gÞ;

where

r1 ¼ðn; fan ! angÞ;
r2 ¼ðn; fan ! angÞ;
r3 ¼ðn; fa2nþtþiþk=a2nþtþiþk�j ! anþsjdðqi; bkÞ ¼ ðqj; csÞgÞ;

syn ¼fð1; 2Þ; ð2; 1Þ; ð1; 3Þg:

It should be noted that n, m and t are given fixed numbers. Further, for each
1 B i B n(1 B s B t), qi in Q(cs in D) is represented by ai (an?s, respectively), while for
each 1 B k B m, bk in R is represented by an?t?k.

The module is given in Fig. 3b. The manner of constructing Ps is a modification of the
one for Pa presented above, and the computation process of an input w (in R*) by Ps is in
parallel to the one by Pa, with the difference that the former produces an output symbol in
D, while the latter provides the latest state in Q.

From the manner of constructing Ps and the previous argument to claim that
L = L(Pa), we have the following.

Theorem 9 Any finite state transducer S can be simulated by some SN P module Ps.

5.2.3 Simulating systolic trellis automata

Systolic automata are parallel computing models in the form of regular network structures
of simple processors with 1-way flow of data. There are two types of underlying structures
for regular networks: systolic trees and systolic trellis, while both employ in common a
simple finite state control devices as functional elements (of processors).

Here we shall show that systolic trellis automata can be simulated by regular networks

of SN P modules. (Note that the developed construction here also apply to simulate systolic

tree automata in a straightforward manner.)

Formally, a homogeneous systolic trellis automaton (trellis automaton, in short) is a

construct

K ¼ ðR;C;C0; f Þ

where R, C and C0 (with R � C;C0 � CÞ are finite alphabets of terminal, operating

and accepting symbols, respectively, and f : C� C! C is the transition function. The

domain of f is extended to C* as follows: If |w| = 1, then f(w) = w = f0(w), and if

w = x1…xn [Cn (n C 2), then

f ðwÞ ¼ f ðx1; x2Þf ðx2; x3Þ. . .f ðxn�1; xnÞ:

The language accepted by K is defined by: L(K) = {w [R*| f |w|-1(w) [C0} (Culik et al.

1996).

Example Consider a trellis automaton K = ({a, b}, {a, b, A, B, X, Y}, {X}, f) where

f ða; aÞ ¼ A; f ða; bÞ ¼ X; f ðb; aÞ ¼ Y ; f ðA;AÞ ¼ A;

f ðA;BÞ ¼ X; f ðA;XÞ ¼ A; f ðB;BÞ ¼ B; f ðX;BÞ ¼ B

and for any other pair (x, y), f(x, y) = Y. Note that X is the only accepting symbol, while Y
is a trap symbol to behave in such a way that once Y is introduced, it leads to a rejecting

computation of an input. Figure 4 illustrates examples of both accepting and rejecting

computations in K. It is easy to see that L(K) = {anbn | n C 1}.

We demonstrate that K can be simulated by a network of SN P modules with two input
neurons and one output neuron.

Consider an SN P module:

Pf ¼ ðfag; rin1; rin2; rout; r1; . . .; rpþ1; syn; fin1; in2g; foutgÞ;

where p is the cardinality of C, and the details of the module is given in Fig. 5a.

Note that p is a given fixed number, and that for each 1 B i B p, qi in C is represented

by ai.

The module Pf works as follows. Suppose that, in t-th step, neuron in1 (in2) takes as

input ai (aj) from input 1 (input 2, respectively). Then, ai of in1 is passed through neuron

(p ? 1) in (t ? 1)-th step and will reach neuron ‘‘out’’ in (t ? 2)th step, while aj of in2 is

Fig. 4 (a) An accepting computation of aaabbb; (b) A rejecting computation of aaabb

distributed to all neurons 1 through p in (t ? 1)th step, and the sum of p copies of it (i.e.,

ajp) will reach neuron ‘‘out’’ in (t ? 2)th step.

On the other hand, in tth step neuron ‘‘out’’ contains no spike and is ready to receive

both ai from neuron (p ? 1) and the total amount of ajp from neurons 1 through p, where

neuron (p ? 1) will emit ai and each neuron i (1 B i B p) will emit aj in (t ? 1)th step.

Therefore, in (t ? 2)th step, neuron ‘‘out’’ can fire and emit ak to the environment, by fully

exhausting (i ? jp) spikes and leaving no spike there. Hence, one state transition

f(qi, qk) = qk is simulated by Pf in three steps.

In order to simulate the global process of computation in K, we have only to allocate Pf

to all nodes of the underlying network structure of K (Fig. 5b) so that the function f is

replaced by Pf. Let NW(Pf) be such a trellis network consisting of Pfs.

Let w ¼ qi1 ; . . .;¼ qir in R* be an input which is simultaneously fed, in the form

ai1 . . .air ; from the frontier of the network (shown in Fig. 5b). Then, an input w is accepted

by K iff f|w|-1(w) is in C0 iff after 3(|w| - 1) steps the module Pf placed at the root of

NW(Pf) produces as output ah representing some qh in C0.

Theorem 10 Any trellis automaton K with the transition function f can be simulated by a
trellis network NW(Pf) for some SN P module Pf.

6 Conclusions

In this work, we have studied some topics related to SN P systems. Firstly, we presented

the transition diagram, associated with a SN P system, as a tool to formally verify that such

systems solve a given problem. The methodology is based on the information, encoded by

the diagram, about some invariant formulae of the evolution.

Secondly, different characterizations of the power of SN P systems with an extended form

of spiking rules were presented. Specifically, we focused on asynchronous (with or without

delays), sequential SN P systems and we also used the models as language generators.

Finally, we have started a new research direction to explore the potential computing

power of SN P systems with IO mode. It is known that the class of homogeneous trellis

i+j p i+j p k

(where f(q , q) = q)
ij k

. . .

input 1 input 2

output

a a a
a i i

(i=1,2, . . . , p)
a

a i i

(i=1,2, . . . , p)
a

a j j

(j=1,2, . . . , p)
a a j j

(j=1,2, . . . , p)
a

a j j

(j=1,2, . . . , p)
a

out

p1

p+1

in1 in2

(a) (b)

root

a i 1 a i 2 a i 3 a i r

Fig. 5 (a) SN P module Pf simulating a transition function f of trellis automaton K: Pf takes qi (represented
by ai) for input 1 and qj (represented by ajp) for input 2, and produces as output qk (represented by ak). Thus,
one transition process f(qi,qj) = qk is simulated. (b) The underlying network structure of K

languages contains the class of linear languages and is closed under Boolean operations,

and is also recongized in time O(n2) by Turing machines (Culik et al. 1986; Ibarra and Kim

1984). Furthermore, as mentioned earlier, the class of systolic tree languages can be

simulated in terms of networks of SN P modules in a natural manner.

In these respects, there remains much to be investigated on SN P modules P and their

networks NW(P) with systolic structures: how far their computing power goes beyond

regularity, and their closure and decidability properties, and so on.

Acknowledgments The work of the first author was supported in part by NSF Grant CCF-0524136. The
second author was supported by the project TIN2006-13425 of the Ministerio de Educación y Ciencia of
Spain, cofinanced by FEDER funds, and the project of excellence TIC-581 of the Junta de Andalucı́a.

References

Cavaliere M, Egecioglu, Ibarra OH, Ionescu M, Păun Gh, Woodworth S (2007) Asynchronous spiking
neural P systems; decidability and undecidability. In: Proceedings of DNA 13, Memphis, TN, USA,
pp 246-255

Chen H, Freund R, Ionescu M, Păun Gh, Pérez-Jiménez MJ (2006a) On string languages generated by
spiking neural P systems. In: Proceedings of the 4th Brainstorming Week on membrane computing,
Seville, Spain, pp 169–194

Chen H, Ionescu M, Păun A, Păun Gh, Popa B (2006b) On trace languages generated by (small) spiking
neural P systems. In: Pre-proceedings of the 8th workshop on descriptional complexity of formal
systems, Las Cruces, NM, USA, pp 94–105

Chen H, Ionescu M, Ishdorj T-O, Păun A, Păun Gh, Pérez-Jiménez MJ (2008) Spiking neural P systems with
extended rules: universality and languages. Nat Comput 7:147–166

Culik K II, Gruska J, Salomaa A (1986) Systolic trellis automata: stability, decidability and complexity. Inf
Control 71:2181–230

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a
mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130

Gerstner W, Kistler W (2002) Spiking neuron models. Single neurons, populations, plasticity. Cambridge
University Press, Cambridge, MA

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual
cortex. Proc Natl Acad Sci 86:1698–1702

Greibach S (1978) Remarks on blind and partially blind one-way multicounter machines. Theor Comput Sci
7(3):311–324

Harju T, Ibarra OH, Karhumaki J,Salomaa A (2002) Some decision problems concerning semilinearity and
commutation. J Comput Syst Sci 65:278–294

Ibarra OH, Kim SM (1984) Characterization and computational complexity of systolic trellis automata.
Theor Comput Sci 29:123–153

Ibarra OH, Woodworth S (2006) Characterizations of some restricted spiking neural P systems. In: Pro-
ceedings of the 7th workshop on membrane computing. LNCS 4361:424–442

Ibarra OH, Woodworth S (2007a) Characterizing regular languages by spiking neural P systems. Int J Found
Comput Sci 18:1247–1256

Ibarra OH, Woodworth S (2007b) Spiking neural P systems: some characterizations. In: Proceedings of the
16th international symposium on fundamentals of computation theory. LNCS 4639:23–37

Ibarra OH, Woodworth S, Yu F, Păun A (2006) On spiking neural P systems and partially blind counter
machines. In: Proceedings of the 5th international conference on unconventional computation. LNCS
4135:113–129

Ibarra OH, Păun A, Păun Gh, Rodrı́guez-Patón A, Sosik P, Woodworth S (2007) Normal forms for spiking
neural P systems. Theor Comput Sci 372:196-217

Ionescu M, Păun Gh, Yokomori T (2006) Spiking neural P systems. Fundamenta Informaticae 71(2–3):
279–308

Maass W (2002) Computing with spikes. Special Issue Found Inf Process TELEMATIK 8(1):32–36
Păun A, Păun Gh (2007) Small universal spiking neural P systems. BioSystems 90(1):48–60
Woodworth S (2007) Computability limits in membrane computing. PhD Dissertation, Department of

Computer Science, University of California, Santa Barbara, CA

	On spiking neural P systems
	Abstract
	Introduction
	Spiking neural P systems
	Formal verification in SN P systems
	An example

	Characterizations
	Asynchronous general SN P systems
	Asynchnronous unbounded SN P systems
	Systems without delays
	Systems with delays

	Asynchronous bounded SN P systems
	Sequential SN P systems
	SN P systems as language generators
	Regular languages
	Another way of generating languages

	A new variant of SN P systems with I/O mode
	Spiking neural P module
	Computing with SN P modules
	Simulating finite automata
	Simulating finite state transducers
	Simulating systolic trellis automata

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

