On average connectivity of the strong product of graphs

E. Abajo, R.M. Casablanca, A. Diánez, P. García-Vázquez
Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain

Keywords:
Average connectivity Strong product of graphs Maximally connected graphs Average degree

A B S T R A C T

The average connectivity $\bar{\kappa}(G)$ of a graph G is the average, over all pairs of vertices, of the maximum number of internally disjoint paths connecting these vertices. The connectivity $\kappa(G)$ can be seen as the minimum, over all pairs of vertices, of the maximum number of internally disjoint paths connecting these vertices. The connectivity and the average connectivity are upper bounded by the minimum degree $\delta(G)$ and the average degree $\bar{d}(G)$ of G, respectively. In this paper the average connectivity of the strong product $G_{1} \boxtimes G_{2}$ of two connected graphs G_{1} and G_{2} is studied. A sharp lower bound for this parameter is obtained. As a consequence, we prove that $\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right)=\bar{d}\left(G_{1} \boxtimes G_{2}\right)$ if $\bar{\kappa}\left(G_{i}\right)=\bar{d}\left(G_{i}\right), i=1,2$. Also we deduce that $\kappa\left(G_{1} \boxtimes G_{2}\right)=\delta\left(G_{1} \boxtimes G_{2}\right)$ if $\kappa\left(G_{i}\right)=\delta\left(G_{i}\right), i=1,2$.

1. Introduction

Throughout this paper, all the graphs are simple, that is, with neither loops nor multiple edges. Notations and terminology not explicitly given here can be found in the book by Chartrand and Lesniak [4].

Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The cardinalities of these sets are denoted by $|V(G)|=n$ and $|E(G)|=e$. Let u and v be two distinct vertices of G. A path from u to v, also called an $u v$-path in G, is a subgraph P with vertex set $V(P)=\left\{u=x_{0}, x_{1}, \ldots, x_{r}=v\right\}$ and edge set $E(P)=\left\{x_{0} x_{1}, \ldots, x_{r-1} x_{r}\right\}$. This path is usually denoted by $P: x_{0} x_{1} \cdots x_{r}$ and r is the length of P, denoted by $l(P)$. Two $u v$-paths P and Q are said to be internally disjoint if $V(P) \cap V(Q)=\{u, v\}$. A cycle in G of length r is a path $C: x_{0} x_{1} \cdots x_{r}$ such that $x_{0}=x_{r}$. The girth of G, denoted by $g(G)$, is the length of a shortest cycle in G, and if G contains no cycles, then $g(G)=\infty$. The set of adjacent vertices to $v \in V(G)$ is denoted by $N_{G}(v)$. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$, whereas $\delta(G)=\min _{v \in V(G)} d_{G}(v)$ and $\bar{d}(G)=\frac{1}{n} \sum_{v \in V(G)} d_{G}(v)=2 e / n$ are the minimum degree and the average degree of G, respectively. The connectivity of a graph G, is the smallest number of vertices whose deletion from G produces a disconnected or a trivial graph. Clearly, a complete graph cannot be disconnected by deleting vertices, so that $\kappa\left(K_{n}\right)=n-1$ is adopted. The connectivity between two distinct vertices u and v in a graph G, denoted by $\kappa_{G}(u, v)$, is the minimum number of vertices whose deletion separates u and v in G. Whitney [15] proved in 1932 that a graph G is r-connected, that is, $\kappa(G) \geq r$, if and only if every pair of vertices is connected by r internally disjoint paths. From this result, we know that the connectivity $\kappa_{G}(u, v)$ between two distinct vertices u and v in G is the maximum number of pairwise internally disjoint $u v$-paths in G. In this way, the connectivity of a graph can be seen as $\kappa(G)=\min _{u, v \in V(G)} \kappa_{G}(u, v)$. In [15] the author also showed that $\kappa(G) \leq \delta(G)$. The graph G is maximally connected if the previous bound is attained, that is, if $\kappa(G)=\delta(G)$.

[^0]

Fig. 1. The strong product of a cycle of length 6 and a path of order 3 .
For a graph G of order n, the average connectivity $\bar{\kappa}(G)$ is defined as the average of the connectivities between all pairs of vertices of G, that is,

$$
\bar{\kappa}(G)=\frac{1}{\binom{n}{2}} \sum_{u, v \in V(G)} \kappa_{G}(u, v) .
$$

In order to avoid fractions, we also consider the total connectivity $K(G)$ of G, defined as $K(G)=\sum_{u, v \in V(G)} \kappa_{G}(u, v)$. While the connectivity is the minimum number of vertices whose removal separates at least one connected pair of vertices, the average connectivity is a measure for the expected number of vertices that have to be removed to separate a randomly chosen pair of vertices.

It is well known that most networks can be modeled by a graph $G=(V, E)$, where V is the set of mainly elements and E is the set of communication links between them in the network. The best known measure of reliability of a graph is its connectivity, defined above. As the connectivity is a worst-case measure, it does not always reflect what happens throughout the graph. For example, a tree and the graph obtained by appending an end-vertex to a complete graph both have connectivity 1. Nevertheless, for large order the latter graph is far more reliable than the former. Interest in the vulnerability and reliability of networks such as transportation and communication networks, has given rise to a host of other measures of reliability, see for example [1]. In this paper we pay attention to a measure for the reliability of a graph, the average connectivity, introduced by Beineke, Oellermann and Pippert [3].

There is a lot of research on the connectivity of a graph (see [10]). Many works provide sufficient conditions for a graph to be maximally connected or super connected [5,8,14]. Others study the maximal connectivity in networks that are constructed from graph generators, as Cartesian product graphs [6,12,16], line graphs [11,13], permutation graphs [2,9]. There are two excellent papers where the average connectivity has been investigated. In the first one, Beineke, Oellermann and Pippert [3] find upper and lower bounds on the average connectivity of a graph G in terms of its order n and its average degree $\bar{d}(G)$. In the second one, Dankelmann and Oellermann [7] obtain sharp upper bounds for some families of graphs, such as planar and outerplanar graphs and Cartesian product of graphs. In this paper, we study the average connectivity of one kind of product graphs, the so called strong product of graphs.

For a large system, configuration processing is one of the most tedious and time-consuming parts of the analysis. Different methods have been proposed for configuration processing and data generation. Some of them are structural models which can be seen as the product graph of two given graphs, known as generators. Many properties of structural models can be obtained by considering the properties of their generators. In this sense, a usual objective in network design is the extension of a given interconnection system to a larger and fault-tolerant one so that the communication delay among nodes of the new network is small enough. To achieve this goal, many works in Graph Theory have studied fault-tolerant properties of some products of graphs, such as the Cartesian product, the direct product or the strong product of graphs, among others.

We focus on this last one. The strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} is defined on the Cartesian product of the vertex sets of the generators, so that two distinct vertices $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ of $G_{1} \boxtimes G_{2}$ are adjacent if $x_{1}=y_{1}$ and $x_{2} y_{2} \in E\left(G_{2}\right)$, or $x_{1} y_{1} \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$, or $x_{1} y_{1} \in E\left(G_{1}\right)$ and $x_{2} y_{2} \in E\left(G_{2}\right)$. From the definition, it clearly follows that the strong product of two graphs is commutative. A picture of the strong product of a cycle of length 6 and a path of order 3 is shown in Fig. 1.

In this work we provide, by a constructive method, a lower bound on the average connectivity of the strong product $G_{1} \boxtimes G_{2}$ of two connected graphs G_{1} and G_{2} with at least three vertices and girth at least 5 . As a consequence, we prove that the strong product of two maximally connected graphs of girth at least 5 is maximally connected, and also, that $\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right)=\bar{d}\left(G_{1} \boxtimes G_{2}\right)$ if $\bar{\kappa}\left(G_{i}\right)=\bar{d}\left(G_{i}\right), i=1,2$.

2. Main results

To estimate the average connectivity of the strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2}, we must find a lower bound on the number of internally disjoint paths that join any two arbitrary vertices in $V\left(G_{1} \boxtimes G_{2}\right)$. The following two lemmas provide these estimations.

Fig. 2. Construction of paths $R_{u, j}$ in Lemma 2.1.
Given two vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$, we denote by $k=\kappa_{G_{1}}\left(x_{1}, y_{1}\right)$ and let P_{1}, \ldots, P_{k} be k internally disjoint $x_{1} y_{1}$-paths in G_{1}. Similarly, for vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, we denote by $\ell=\kappa_{G_{2}}\left(x_{2}, y_{2}\right)$ and let Q_{1}, \ldots, Q_{ℓ} be ℓ internally disjoint $x_{2} y_{2^{-}}$ paths in G_{2}. Without loss of generality we assume that $l\left(P_{1}\right)=\min \left\{l\left(P_{1}\right), \ldots, l\left(P_{k}\right)\right\}$ and that $l\left(Q_{1}\right)=\min \left\{l\left(Q_{1}\right), \ldots, l\left(Q_{e}\right)\right\}$. Observe that for every $u \in V\left(G_{1}\right)$, the subgraph of $G_{1} \boxtimes G_{2}$ induced by the set $\left\{\left(u, x_{2}\right): x_{2} \in V\left(G_{2}\right)\right\}$ is isomorphic to G_{2}, and so, this subgraph will be denoted by G_{2}^{u}. Thus, for each $x_{2} y_{2}$-path Q_{j} in G_{2}, there exists an $\left(u, x_{2}\right)\left(u, y_{2}\right)$-path in G_{2}^{u}, which will be denoted by Q_{j}^{u}.

In the first result we estimate the connectivity between two vertices (x_{1}, x_{2}), (y_{1}, y_{2}) in $V\left(G_{1} \boxtimes G_{2}\right)$ such that either $x_{1}=y_{1}$ or $x_{2}=y_{2}$. In the former case, it means that both vertices belong to a subgraph isomorphic to G_{2}, namely the copy $G_{2}^{x_{1}}$ corresponding to the vertex $x_{1} \in V\left(G_{1}\right)$.

Lemma 2.1. Let G_{1} and G_{2} be two connected graphs with at least three vertices and girth at least 5. Let $x_{i}, y_{i} \in V\left(G_{i}\right)$ be two distinct vertices, $i=1,2$. Then the following assertions hold:
(i) There exist $d_{G_{1}}\left(x_{1}\right) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+d_{G_{1}}\left(x_{1}\right)+\kappa_{G_{2}}\left(x_{2}, y_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.
(ii) There exist $\kappa_{G_{1}}\left(x_{1}, y_{1}\right) d_{G_{2}}\left(x_{2}\right)+\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+d_{G_{2}}\left(x_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

Proof. By the commutativity of the strong product of two graphs, it suffices to prove (i). Given vertices $x_{1} \in V\left(G_{1}\right)$ and x_{2}, y_{2} in $V\left(G_{2}\right)$, let us denote by $\ell=\kappa_{G_{2}}\left(x_{2}, y_{2}\right)$. For any $\left(x_{2}, y_{2}\right)$-path Q_{j} in G_{2}, we will denote by Q_{j}^{\prime} the corresponding path obtained from Q_{j} by removing its end-vertices.

Now, we introduce some general constructions of $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$. Let $u \in N_{G_{1}}\left(x_{1}\right)$ and $j \in\{1, \ldots, \ell\}$. If $l\left(Q_{j}\right) \geq 2$, then vertices $\left(x_{1}, x_{2}\right)$ and $\left(x_{1}, y_{2}\right)$ are adjacent to the first and to the last internal vertex of Q_{j}^{u}, respectively. Hence, it makes sense to consider the path $R_{u, j}:\left(x_{1}, x_{2}\right)\left(Q_{j}^{u}\right)^{\prime}\left(x_{1}, y_{2}\right)$ in $G_{1} \boxtimes G_{2}$ constructed as above (see Fig. 2). Also, when there exists a vertex $w_{u} \in N_{G_{1}}(u) \backslash\left\{x_{1}\right\}$, we can consider the $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-path $R_{w_{u}}:\left(x_{1}, x_{2}\right)\left(u, x_{2}\right)\left(Q_{1}^{w_{u}}\right)^{\prime}\left(u, y_{2}\right)\left(x_{1}, y_{2}\right)$.

Observe that vertices (x_{1}, x_{2}) and (x_{1}, y_{2}) belong to the same copy $G_{2}^{x_{1}}$ of $G_{1} \boxtimes G_{2}$, therefore, $Q_{1}^{x_{1}}, \ldots, Q_{\ell}^{x_{1}}$ are ℓ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$. To construct the $(\ell+1) d_{G_{1}}\left(x_{1}\right)$ remaining paths we distinguish whether $x_{2} y_{2}$ belongs to $E\left(G_{2}\right)$ or not.

First, assume that $x_{2} y_{2} \in E\left(G_{2}\right)$, that is, $l\left(Q_{1}\right)=1$. Let $u \in N_{G_{1}}\left(x_{1}\right)$. The paths $\widetilde{R}_{u}:\left(x_{1}, x_{2}\right)\left(u, x_{2}\right)\left(x_{1}, y_{2}\right)$ and \widehat{R}_{u} : $\left(x_{1}, x_{2}\right)\left(u, y_{2}\right)\left(x_{1}, y_{2}\right)$ are contained in $G_{1} \boxtimes G_{2}$. Moreover, since G_{2} is a simple graph, for every $j \in\{2, \ldots, \ell\}$, the path Q_{j} have length at least 2 and there exists the path $R_{u, j}$. Hence, $Q_{1}^{x_{1}}, \ldots, Q_{\ell}^{x_{1}}, \widetilde{R}_{u}, \widehat{R}_{u}, R_{u, 2}, \ldots, R_{u, \ell}$, for every $u \in N_{G_{1}}\left(x_{1}\right)$ are at least $\ell+2 \delta\left(G_{1}\right)+\delta\left(G_{1}\right)(\ell-1)=\left(\delta\left(G_{1}\right)+1\right) \ell+\delta\left(G_{1}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

Second, assume that $x_{2} y_{2} \notin E\left(G_{2}\right)$. For $j \in\{1, \ldots, \ell\}$ and $u \in N_{G_{1}}\left(x_{1}\right)$, we consider the path $R_{u, j}$. Thus, we have $\left(d_{G_{1}}\left(x_{1}\right)+1\right) \ell$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths. If there exists a vertex $u \in N_{G_{1}}\left(x_{1}\right)$ such that $d_{G_{1}}(u)=1$, notice that $d_{G_{1}}\left(x_{1}\right) \geq 2$ and then $\left(d_{G_{1}}\left(x_{1}\right)+1\right) \ell \geq 3 \ell \geq 2 \ell+1=\left(\delta\left(G_{1}\right)+1\right) \ell+\delta\left(G_{1}\right)$. Otherwise, there exists a vertex $w_{u} \in N_{G_{1}}(u) \backslash\left\{x_{1}\right\}$ for every $u \in N_{G_{1}}\left(x_{1}\right)$. Since $g\left(G_{1}\right) \geq 5$, then $w_{u} \neq w_{v}$ for all $u, v \in N_{G_{1}}\left(x_{1}\right)$ with $u \neq v$. Hence, the paths $R_{w_{u}}, u \in N_{G_{1}}\left(x_{1}\right)$, are at least $\delta\left(G_{1}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

Now we study in the following lemma the number of internally disjoint paths between two vertices in $G_{1} \boxtimes G_{2}$ which come from two different vertices in G_{1} and from another two different ones in G_{2}.

Lemma 2.2. Let G_{1} and G_{2} be two connected graphs with at least three vertices and girth at least 5 . Then for every two distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$ and every two distinct vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, there exist $\kappa_{G_{1}}\left(x_{1}, y_{1}\right) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+$ $\kappa_{G_{2}}\left(x_{2}, y_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

Proof. Let us denote by $k=\kappa_{G_{1}}\left(x_{1}, y_{1}\right)$ and $\ell=\kappa_{G_{2}}\left(x_{2}, y_{2}\right)$. Let P_{1}, \ldots, P_{k} be k internally disjoint $x_{1} y_{1}$-paths in G_{1}, and Q_{1}, \ldots, Q_{ℓ} be ℓ internally disjoint $x_{2} y_{2}$-paths in G_{2}. Let us denote by $P_{i}: u_{0}^{i} u_{1}^{i} \ldots u_{r_{i}}^{i}$ and $Q_{j}: v_{0}^{j} v_{1}^{j} \ldots v_{s_{j}}^{j}$, so that $\left(x_{1}, x_{2}\right)=\left(u_{0}^{i}, v_{0}^{j}\right)$ and $\left(y_{1}, y_{2}\right)=\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right)$ for $i \in\{1, \ldots, k\}$ and $j \in\{1, \ldots, \ell\}$. The proof is constructive, that is, we provide next $k \ell+k+\ell$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

Fig. 3. Construction of path R^{*} if $k=1$.

Fig. 4. Construction of path R^{*} if $k \geq 2$.
(I) Associated to the $x_{1} y_{1}$-path P_{1} in G_{1} and the $x_{2} y_{2}$-path Q_{1} in G_{2}, we construct 3 internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$, denoted by $R_{1,1}^{\prime}, R_{1,1}$ and R^{*}, depending on the lengths of P_{1} and Q_{1}.
(a) If $l\left(P_{1}\right)=1$ and $l\left(Q_{1}\right)=1$, that is, if $P_{1}: x_{1} y_{1}$ and $Q_{1}: x_{2} y_{2}$, then
$\mathcal{R}_{1,1}^{\prime}:\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right)$.
$\widetilde{R}_{1,1}:\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$.
$R^{*}:\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$.
(b) If $l\left(P_{1}\right)=1$ and $l\left(Q_{1}\right) \geq 2$ (the case $l\left(P_{1}\right) \geq 2$ and $l\left(Q_{1}\right)=1$ is analogous by the commutativity of the strong product of graphs), then
${\underset{R}{1,1}}_{\prime}^{\sim}:\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{0}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{1}^{1}, v_{s_{1}}^{1}\right)$.
$\widetilde{R}_{1,1}:\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{1}^{1}, v_{s_{1}}^{1}\right)$.
Observe that it is impossible to construct in $G_{1} \boxtimes G_{2}$ one more path induced only by P_{1} and Q_{1}. We solve this problem in two different ways depending on the value k.

If $k=1$, since $x_{1} y_{1} \in E\left(G_{1}\right)$ and G_{1} has at least three vertices, there exists a vertex $w \in V\left(G_{1}\right)$ such that either $w x_{1} \in E\left(G_{1}\right)$ or $w y_{1} \in E\left(G_{1}\right)$. Without loss of generality, we consider that $w x_{1} \in E\left(G_{1}\right)$ and hence the end-vertices of the path Q_{1}^{w} are adjacent in $G_{1} \boxtimes G_{2}$ to (x_{1}, x_{2}) and (x_{1}, y_{2}), respectively. Thus, we obtain the ($\left.x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path (see Fig. 3)
$R^{*}:\left(x_{1}, x_{2}\right)\left(Q_{1}^{w}\right)\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right)$.
If $k \geq 2$, since $g\left(G_{1}\right) \geq 5$ and $l\left(P_{1}\right)=1$, the path P_{2} exists and $l\left(P_{2}\right) \geq 4$. Also, by the hypothesis, $l\left(Q_{1}\right) \geq 2$. Notice that $u_{0}^{1}=u_{0}^{2}=x_{1}, u_{1}^{1}=u_{r_{2}}^{2}=y_{1}, v_{0}^{1}=v_{0}^{2}=x_{2}$ and $v_{s_{1}}^{1}=v_{s_{2}}^{2}=y_{2}$. Hence, (see Fig. 4)
$R^{*}:\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{0}^{1}\right)\left(u_{r_{2}-1}^{2}, v_{0}^{1}\right)\left(u_{r_{2}-2}^{2}, v_{1}^{1}\right) \ldots\left(u_{r_{2}-2}^{2}, v_{s_{1}-1}^{1}\right) \ldots\left(u_{2}^{2}, v_{s_{1}-1}^{1}\right)\left(u_{1}^{2}, v_{s_{1}}^{1}\right)\left(u_{0}^{2}, v_{s_{1}}^{1}\right)\left(u_{1}^{1}, v_{s_{1}}^{1}\right)$
(c) If $l\left(P_{1}\right) \geq 2$ and $l\left(Q_{1}\right) \geq 2$, then
$\underset{R_{1,1}}{\prime}:\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{0}^{1}, v_{s_{1}}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right)$.
$\widetilde{R}_{1,1}:\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right)$.
$R^{*}:\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{1}^{1}, v_{s_{1}-1}^{1}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right)$.
Notice that these three paths prove constructively the desired result when $k=1$ and $\ell=1$.
(II) If $\ell \geq 2$ then associated to the $x_{1} y_{1}$-path P_{1} in G_{1} and the $x_{2} y_{2}$-paths Q_{2}, \ldots, Q_{ℓ} in G_{2}, we construct the following $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$:

$$
\left.\begin{array}{l}
R_{1, j}^{\prime}:\left(u_{0}^{1}, v_{0}^{j}\right) \ldots\left(u_{0}^{1}, v_{s_{j}-1}^{j}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{s_{j}-1}^{j}\right)\left(u_{r_{1}}^{1}, v_{s_{j}}^{j}\right) \\
\widetilde{R}_{1, j}:\left(u_{0}^{1}, v_{0}^{j}\right)\left(u_{1}^{1}, v_{1}^{j}\right) \ldots\left(u_{r_{1}}^{1}, v_{1}^{j}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{j}}^{j}\right)
\end{array}\right\}, \quad \text { for } j \in\{2, \ldots, \ell\}
$$

As $g\left(G_{2}\right) \geq 5$, we have $l\left(Q_{j}\right) \geq 3$ for every $j \in\{2, \ldots, \ell\}$. This fact has made possible the construction of the previous $2(\ell-1)$ pairwise internally disjoint paths.

If $k=1$ then (I) and (II) provide $3+2(\ell-1)=2 \ell+1$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ and the proof is finished.

Fig. 5. Construction of path $R_{i, j}$.
(III) If $k \geq 2$ then associated to the $x_{1} y_{1}$-paths P_{2}, \ldots, P_{k} in G_{1} and the $x_{2} y_{2}$-path Q_{1} in G_{2}, we find the following $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$:

$$
\begin{aligned}
& R_{i, 1}: \begin{cases}\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{1}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{1}^{1}\right), & \text { if } l\left(Q_{1}\right)=1 \\
\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{1}^{1}\right) \ldots\left(u_{1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{2}^{i}, v_{s_{1}}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } l\left(Q_{1}\right) \geq 2\end{cases} \\
& \widehat{R}_{i, 1}: \begin{cases}\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{0}^{1}\right)\left(u_{r_{1}}^{i}, v_{1}^{1}\right), \\
\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-2}^{i}, v_{0}^{1}\right)\left(u_{r_{i}-1}^{i}, v_{1}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } l\left(Q_{1}\right)=1\end{cases}
\end{aligned}
$$

for $i \in\{2, \ldots, k\}$. As $g\left(G_{1}\right) \geq 5$, we have $l\left(P_{i}\right) \geq 3$ for every $i \in\{2, \ldots, k\}$, yielding that the previous $2(k-1)$ paths are pairwise internally disjoint.

If $\ell=1$, then (I) and (III) provide $3+2(k-1)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$, which finishes the proof.
(IV) If $k \geq 2$ and $\ell \geq 2$, then associated to the $x_{1} y_{1}$-paths P_{2}, \ldots, P_{k} in G_{1} and the $x_{2} y_{2}$-paths Q_{2}, \ldots, Q_{ℓ} in G_{2}, we obtain the remaining $(k-1)(\ell-1)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths $R_{i, j}$, for $i \in\{2, \ldots, k\}, j \in\{2, \ldots, \ell\}$, given as (see Fig. 5)
$R_{i, j}:\left(u_{0}^{i}, v_{0}^{j}\right)\left(u_{1}^{i}, v_{1}^{j}\right) \ldots\left(u_{1}^{i}, v_{s_{j}-1}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{j}-1}^{j}\right)\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right)$.
Hence, (I)-(IV) provide $3+2(\ell-1)+2(k-1)+(k-1)(\ell-1)=k \ell+k+\ell$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$.

The previous lemmas together with the fact that the minimum degree of $G_{1} \boxtimes G_{2}$ is $\delta\left(G_{1} \boxtimes G_{2}\right)=\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right)$, give a sufficient condition to guarantee maximal connectivity of $G_{1} \boxtimes G_{2}$.

Theorem 2.1. Let G_{1} and G_{2} be two connected graphs with at least three vertices and girth at least 5 . If both G_{1} and G_{2} are maximally connected, then $G_{1} \boxtimes G_{2}$ is maximally connected.

Proof. Denote by $G=G_{1} \boxtimes G_{2}$ and let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ be two vertices of $V(G)$. If $x_{1}=y_{1}$ then by Lemma 2.1 we have

$$
\begin{aligned}
\kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & \geq d_{G_{1}}\left(x_{1}\right) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+d_{G_{1}}\left(x_{1}\right)+\kappa_{G_{2}}\left(x_{2}, y_{2}\right) \\
& \geq \delta\left(G_{1}\right) \kappa\left(G_{2}\right)+\delta\left(G_{1}\right)+\kappa\left(G_{2}\right) \\
& =\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right),
\end{aligned}
$$

the last equality due to the maximal connectivity of G_{2}. The reasoning is analogous if $x_{2}=y_{2}$. Finally, if $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$ then, from Lemma 2.2 and the fact that both G_{1} and G_{2} are maximally connected, it follows that

$$
\begin{aligned}
\kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & \geq \kappa_{G_{1}}\left(x_{1}, y_{1}\right) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+\kappa_{G_{2}}\left(x_{2}, y_{2}\right) \\
& \geq \kappa\left(G_{1}\right) \kappa\left(G_{2}\right)+\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right) \\
& =\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right) .
\end{aligned}
$$

Hence, $\delta(G)=\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right) \leq \kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)$.
Therefore, $\delta(G) \leq \min \left\{\kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V\left(G_{1} \boxtimes G_{2}\right)\right\}=\kappa(G) \leq \delta(G)$, it follows that $\kappa(G)=\delta(G)$, that is, $G=G_{1} \boxtimes G_{2}$ is maximally connected.

Let G_{1} and G_{2} be two connected graphs of order n_{1} and n_{2}, size e_{1} and e_{2}, average connectivity $\bar{\kappa}\left(G_{1}\right)$ and $\bar{\kappa}\left(G_{2}\right)$, and average degree $\bar{d}\left(G_{1}\right)$ and $\bar{d}\left(G_{2}\right)$, respectively. From the previous lemmas, we obtain a lower bound on the average connectivity of $G_{1} \boxtimes G_{2}$ in terms of the aforementioned parameters of G_{1} and G_{2}. To do that, let us denote by \mathcal{P} the set of non-ordered pairs of vertices of $V\left(G_{1} \boxtimes G_{2}\right)$. Then the following sets

$$
A=\bigcup_{x_{2}, y_{2} \in V\left(G_{2}\right)}\left\{\left\{\left(u, x_{2}\right),\left(u, y_{2}\right)\right\}: u \in V\left(G_{1}\right)\right\}
$$

$$
\begin{aligned}
& B=\bigcup_{x_{1}, y_{1} \in V\left(G_{1}\right)}\left\{\left\{\left(x_{1}, v\right),\left(y_{1}, v\right)\right\}: v \in V\left(G_{2}\right)\right\} \\
& C=\bigcup_{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V\left(G_{1} \boxtimes G_{2}\right)}\left\{\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\}: x_{1} \neq y_{1} \text { and } x_{2} \neq y_{2}\right\}
\end{aligned}
$$

form a partition of \mathcal{P}. Indeed, $\left|V\left(G_{1} \boxtimes G_{2}\right)\right|=n_{1} n_{2},|A|=n_{1}\binom{n_{2}}{2},|B|=n_{2}\binom{n_{1}}{2}$ and $|C|=2\binom{n_{1}}{2}\binom{n_{2}}{2}$.
Theorem 2.2. Let G_{1} and G_{2} be two connected graphs with orders $n_{1}, n_{2} \geq 3$, respectively, and girth at least 5 . Then

$$
\begin{aligned}
\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right) \geq & \frac{1}{n_{1} n_{2}-1}\left[\left(n_{1}-1\right)\left(n_{2}+\bar{d}\left(G_{2}\right)\right) \bar{\kappa}\left(G_{1}\right)+\left(n_{2}-1\right)\left(n_{1}+\bar{d}\left(G_{1}\right)\right) \bar{\kappa}\left(G_{2}\right)\right. \\
& \left.+\left(n_{1}-1\right)\left(n_{2}-1\right) \bar{\kappa}\left(G_{1}\right) \bar{\kappa}\left(G_{2}\right)+\left(n_{2}-1\right) \bar{d}\left(G_{1}\right)+\left(n_{1}-1\right) \bar{d}\left(G_{2}\right)\right] .
\end{aligned}
$$

Proof. Let $G=G_{1} \boxtimes G_{2}$. Since the elements of $A \cup B$ satisfy the hypothesis of Lemma 2.1, it follows that

$$
\begin{aligned}
\sum_{A} \kappa_{G}\left(\left(u, x_{2}\right),\left(u, y_{2}\right)\right) & \geq \sum_{A}\left[(1+d(u)) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+d(u)\right] \\
& =\sum_{x_{2}, y_{2} \in V\left(G_{2}\right)} \kappa_{G_{2}}\left(x_{2}, y_{2}\right) \sum_{u \in V\left(G_{1}\right)}(1+d(u))+\binom{n_{2}}{2} \sum_{u \in V\left(G_{1}\right)} d(u) \\
& =\sum_{x_{2}, y_{2} \in V\left(G_{2}\right)} \kappa_{G_{2}}\left(x_{2}, y_{2}\right)\left(n_{1}+2 e_{1}\right)+2 e_{1}\binom{n_{2}}{2} \\
& =\left(n_{1}+2 e_{1}\right) K\left(G_{2}\right)+2 e_{1}\binom{n_{2}}{2} .
\end{aligned}
$$

By applying Lemma 2.1 and the commutativity of the strong product of graphs, we also deduce that

$$
\sum_{B} \kappa_{G}\left(\left(x_{1}, v\right),\left(y_{1}, v\right)\right) \geq\left(n_{2}+2 e_{2}\right) K\left(G_{1}\right)+2 e_{2}\binom{n_{1}}{2} .
$$

Since the elements of C satisfy the hypothesis of Lemma 2.2, we have

$$
\begin{aligned}
\sum_{C} \kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & \geq \sum_{C}\left[\kappa_{G_{1}}\left(x_{1}, y_{1}\right) \kappa_{G_{2}}\left(x_{2}, y_{2}\right)+\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+\kappa_{G_{2}}\left(x_{2}, y_{2}\right)\right] \\
& =\sum_{C}\left[\left(\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+1\right)\left(\kappa_{G_{2}}\left(x_{2}, y_{2}\right)+1\right)-1\right] \\
& =2 \sum_{x_{1}, y_{1} \in V\left(G_{1}\right)}\left(\kappa_{G_{1}}\left(x_{1}, y_{1}\right)+1\right) \sum_{x_{2}, y_{2} \in V\left(G_{2}\right)}\left(\kappa_{G_{2}}\left(x_{2}, y_{2}\right)+1\right)-|C| \\
& =2 K\left(G_{1}\right) K\left(G_{2}\right)+2\binom{n_{2}}{2} K\left(G_{1}\right)+2\binom{n_{1}}{2} K\left(G_{2}\right) .
\end{aligned}
$$

Thus, from the partition of \mathcal{P} into the sets A, B, C, we deduce that

$$
\begin{aligned}
K\left(G_{1} \boxtimes G_{2}\right)= & \sum_{\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\} \in \mathcal{P}} \kappa_{G}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \\
\geq & \left(n_{1}+2 e_{1}\right) K\left(G_{2}\right)+2 e_{1}\binom{n_{2}}{2}+\left(n_{2}+2 e_{2}\right) K\left(G_{1}\right)+2 e_{2}\binom{n_{1}}{2} \\
& +2 K\left(G_{1}\right) K\left(G_{2}\right)+2\binom{n_{2}}{2} K\left(G_{1}\right)+2\binom{n_{1}}{2} K\left(G_{2}\right) \\
= & \left(n_{2}^{2}+2 e_{2}\right) K\left(G_{1}\right)+\left(n_{1}^{2}+2 e_{1}\right) K\left(G_{2}\right)+2 K\left(G_{1}\right) K\left(G_{2}\right)+2 e_{1}\binom{n_{2}}{2}+2 e_{2}\binom{n_{1}}{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right)= & \frac{2}{n_{1} n_{2}\left(n_{1} n_{2}-1\right)} K\left(G_{1} \boxtimes G_{2}\right) \\
\geq & \frac{1}{n_{1} n_{2}-1}\left[\left(n_{1}-1\right)\left(n_{2}+\bar{d}\left(G_{2}\right)\right) \bar{\kappa}\left(G_{1}\right)+\left(n_{2}-1\right)\left(n_{1}+\bar{d}\left(G_{1}\right)\right) \bar{\kappa}\left(G_{2}\right)\right. \\
& \left.+\left(n_{1}-1\right)\left(n_{2}-1\right) \bar{\kappa}\left(G_{1}\right) \bar{\kappa}\left(G_{2}\right)+\left(n_{2}-1\right) \bar{d}\left(G_{1}\right)+\left(n_{1}-1\right) \bar{d}\left(G_{2}\right)\right] .
\end{aligned}
$$

Theorem 2.2 is best possible in the sense that the hypothesis of girth at least 5 cannot be relaxed. Indeed, let G_{1} be the graph formed by two cycles of length 5 which share a common vertex z, and let G_{2} be a cycle of length 4 . Clearly G_{1} is 1 -connected, since z is a cut vertex of G_{1}, and G_{2} is 2-connected. Let us consider two distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right) \backslash\{z\}$ such that any $x_{1} y_{1}$-path in G_{1} pass through z. For any two vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, it is impossible to find five internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$, because each of these paths must contain a vertex of the subgraph G_{2}^{z}. But this graph has only four vertices because it is isomorphic to G_{2}, that is, to the cycle of length 4 .

In [3] the following result is proved.
Theorem 2.3 (See [3]). Let G be a graph on n vertices and e edges with $e \geq n$, and let $r=2 e-n\lfloor 2 e / n\rfloor$. Then

$$
\bar{\kappa}(G) \leq \bar{d}(G)-\frac{r(n-r)}{n(n-1)}
$$

From Theorem 2.3 it directly follows that

$$
\begin{equation*}
\bar{d}(G) \geq \bar{\kappa}(G) \tag{1}
\end{equation*}
$$

for any connected graph G of minimum degree at least 2 . Hence, applying (1) to the inequality of Theorem 2.2, we have

$$
\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right) \geq \bar{\kappa}\left(G_{1}\right) \bar{\kappa}\left(G_{2}\right)+\bar{\kappa}\left(G_{1}\right)+\bar{\kappa}\left(G_{2}\right)
$$

Since the average degree of $G_{1} \boxtimes G_{2}$ is $\bar{d}\left(G_{1} \boxtimes G_{2}\right)=\bar{d}\left(G_{1}\right) \bar{d}\left(G_{2}\right)+\bar{d}\left(G_{1}\right)+\bar{d}\left(G_{2}\right)$, we obtain the following corollary whose proof is immediate.

Corollary 2.1. Let G_{1} and G_{2} be two connected graphs with at least three vertices and girth at least 5 . If $\bar{\kappa}\left(G_{i}\right)=\bar{d}\left(G_{i}\right)$, for $i=1,2$, then

$$
\bar{\kappa}\left(G_{1} \boxtimes G_{2}\right)=\bar{d}\left(G_{1} \boxtimes G_{2}\right) .
$$

References

[1] K.S. Bagga, L.W. Beineke, R.E. Pippert, M.J. Lipman, A classification scheme for vulnerability and reliability parameters of graphs, Math. Comput. Modelling 17 (1993) 13-16.
[2] C. Balbuena, P. García-Vázquez, X. Marcote, Reliability of interconnection networks modeled by a product of graphs, Networks 48 (3) (2006) 114-120.
[3] L.W. Beineke, O.R. Oellermann, R.E. Pippert, The average connectivity of a graph, Discrete Math. 252 (2002) 31-45.
[4] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall/CRC, 2005.
[5] Y.-C. Chen, Super connectivity of k-regular interconnection networks, Appl. Math. Comput. 217 (21) (2011) 8489-8494.
[6] W.-S. Chiue, B.-S. Shieh, On connectivity of the Cartesian product of two graphs, Appl. Math. Comput. 102 (2-3) (1999) 129-137.
[7] P. Dankelmann, O.R. Oellermann, Bounds on the average connectivity of a graph, Discrete Appl. Math. 129 (2003) 305-318.
[8] J. Fàbrega, M.A. Fiol, Maximally connected digraphs, J. Graph Theory 13 (3) (1989) 657-668.
[9] W. Goddard, M.E. Raines, P.J. Slater, Distance and connectivity measures in permutation graphs, Discrete Math. 271 (1-3) (2003) 61-70.
[10] A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: a survey, Discrete Math. 308 (15) (2008) $3265-3296$.
[11] M. Knor, L. Niepel, Connectivity of iterated line graphs, Discrete Appl. Math. 125 (2-3) (2003) 255-266.
[12] M. Lü, C. Wu, G.-L. Chen, C. Lv, On super connectivity of Cartesian product graphs, Networks 52 (2) (2008) 78-87.
[13] Y. Shao, Connectivity of iterated line graphs, Discrete Appl. Math. 158 (18) (2010) 2081-2087.
[14] T. Soneoka, H. Nakada, M. Imase, C. Peyrat, Sufficient conditions for maximally connected dense graphs, Discrete Math. 63 (1) (1987) 53-66.
[15] H. Whitney, Congruent graphs and the conectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
[16] X. Zhao, Z. Zhang, Q. Ren, Edge neighbor connectivity of Cartesian product graph $G \times K_{2}$, Appl. Math. Comput. 217 (12) (2011) $5508-5512$.

[^0]: the This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2011-28800-C02-02; and under the Catalonian Government project 1298 SGR2009.

 * Corresponding author. Tel.: +34 660989865.

 E-mail addresses: eabajo@us.es (E. Abajo), rociomc@us.es (R.M. Casablanca), anadianez@us.es (A. Diánez), pgvazquez@us.es (P. García-Vázquez).

