Abstract

 determinants of Latin squares of order up to 7 determine their isotopic classes [5], we will study the set of isotopic classes of Latin squares of these orders related to each cycle structure.

Introduction and notation

- A Latin square L of order n is an $n \times n$ array with elements chosen from a set of n distinct symbols (in this paper, it will be the set and each column. The set of Latin squares of order n is denoted by $L S(n)$. Given $L=\left(l_{i, j}\right) \in L S(n)$, the orthogonal array representation of L is the set of n^{2} triples $\left\{\left(i, j, l_{i, j}\right) \mid i, j \in[n]\right\}$
- The permutation group on $[n]$ is denoted by S_{n}. Every permutation $\in S_{n}$ can be uniquely written as a composition of \mathbf{n}_{δ} pairwise disjoint cycles, $\delta=C_{1}^{\delta} \circ C_{2}^{\delta} \circ \ldots C_{\mathbf{n}_{n},}^{\delta}$, where for all $i \in\left[\mathbf{n}_{\mathbf{0}}\right\}$, one has $C_{i}^{\delta}=\left(c_{i, 1}^{\delta} c_{i, 2}^{\delta} \ldots \ldots c_{i, x i}^{\delta}\right)$, with $c_{i, 1}^{\delta}=\min _{j}\left\{c_{i, j}^{\delta}\right\}$. The cycle structure of δ is the sequence l_{δ} $=\left({ }_{1}^{1}, 1_{2}^{\delta}, \ldots, l_{n}^{\delta}\right)$, where I_{i}^{δ} is the number of cycles of length i in δ, for all $i \in\{1,2, \ldots, n\}$. Thus, ${ }^{1}{ }_{1}^{1}$ is the cardinal of the set of fixed points of δ, $F i x(\delta)=\{i \in[n] \mid \delta(i)=i\}$. Given $\sigma \in S_{3}$, one defines the conjugate Latin square $L^{\sigma} \in L S(n)$ of L, such that if $T=\left(i, j, l_{i, j}\right) \in L$, then $\left(\pi_{\sigma(1)}(T), \pi_{\sigma(2)}(T), \pi_{\sigma(3)}(T)\right) \in L^{\sigma}$, where π_{i} gives the $i^{\text {th }}$ coordinate of T, for all $i \in[3]$. In this way, each L Latin square L has six conjugate Latin squares associated with it: $\left.L^{I d}=L, L^{(12)}\right) L^{t}, L^{(13)}, L^{(23)}, L^{(123)}$ and $L^{(132)}$.
- Given $L=\left(l_{i, j}\right) \in L S(n)$, it is defined its associated matrix X_{L}, which is obtained by replacing each element $l_{i, j}$ by the variable $x_{l_{i, j}}$. The determinant $\operatorname{det}(L)$ of L is the homogeneous polynomial of degree n in n
variables det $\left(X_{L}\right)$. Two polynomials p_{1} and p_{2} in $\left\{x_{1}\right.$ be similar, and it is denoted $p_{1} \sim p_{2}$, if there exists a permutation $\sigma \in S$ be similar, and it is denoted $p_{1} \sim p_{2}$, if there exists a permutation $\sigma \in S_{n}$
such that $p_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \pm p_{2}\left(x_{\sigma(1)}, x_{\sigma(2)} \ldots, x_{\sigma(n)}\right)$. Thus, it is verified such that $p_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \pm p_{2}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$. Thus, it is ve
that isotopic and transposed Latin squares have similar determinants.
- An isotopism of a Latin square $L=\left(l_{i, j}\right) \in L S(n)$ is a triple $\Theta=(\alpha, \beta, \gamma) \in \mathcal{I}_{\mathbf{n}}=S_{n} \times S_{n} \times S_{n}$. In this way, α, β and γ are permutations of rows, columns and symbols of L, respectively. The resulting square $\mathbf{L}^{\boldsymbol{\Theta}}=\left\{\left(\alpha(i), \beta(j), \gamma\left(l_{i, j}\right)\right) \mid i, j \in[n]\right\}$ is also a Latin square and it is said to be isotopic to L. To be isotopic is an equivalence relation and thus, the set of Latin squares being isotopic to a given one is its isotopic class. Given two isotopic Latin squares $L, L^{\prime} \in L S(n)$ and $\sigma \in S_{3}$, it is verified that L^{σ} and $L^{\prime \sigma}$ are also isotopic. Two Latin squares L_{1} and L_{2} are said to be of the same type if L_{1} is isotopic to L_{2} or L_{2}^{t}. It is also an equivalence relation. The number of isotopic classes and types of the set $L S(n)$ is known for all $n \leq 10$

- The cycle structure of Θ is the triple $\mathbf{l}_{\Theta}=\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)$. The set of cycle structures of $L S(n)$ is denoted by $C S(n)$. An isotopism which maps L to itself is an autotopism. The possible cycle structures of the set of non-trivial autotopisms of Latin squares of order up to 11 were obtained in [3]. \mathfrak{A}_{n} is the set of all possible autotopisms of order n and $\mathfrak{A}_{n}\left(\mathbf{1}_{\Theta}\right)$ denotes the set of autotopisms having the same cycle structure that a given autotopism Θ. The stabilizer subgroup of L in \mathfrak{A}_{n} is its autotopism group $\mathfrak{A}(L)$. Given $L \in L S(n), \Theta \in \mathfrak{A}(L)$ and $\sigma \in S_{3}$, it is verified that $\Theta^{\sigma}=\left(\pi_{\sigma(1)}(\Theta), \pi_{\sigma(2)}(\Theta), \pi_{\sigma(3)}(\Theta)\right) \in \mathfrak{A}\left(L^{\sigma}\right)$, where π_{i} gives the $i^{t h}$ component of Θ, for all $i \in[3]$. Given $\Theta \in \mathfrak{A}_{n}$, the set of all Latin squares L such that $\Theta \in \mathfrak{A}(L)$ is denoted by $L S(\Theta)$ and the cardinality of $L S(\Theta)$ is denoted by $\Delta(\Theta)$. Specifically, if Θ_{1} and Θ_{2} are two autotopisms with the same cycle structure, then $\Delta\left(\Theta_{1}\right)=\Delta\left(\Theta_{2}\right)$.
- Gröbner bases were used in [2] to describe an algorithm that allows one to obtain the number $\Delta(\Theta)$ in a computational way. This algorithm was implemented in Singular [6] to get the number of Latin squares of order ≤ 7 related to any autotopism of a given cycle structure [4]. However, in order to improve the time of computation, it is convenient to combine Gröbner bases with some combinatorial tools. In this sense, the study of the determinants of those Latin squares related to a given cycle structure can be very useful, because they can be seen as polynomials which can be included into the previous Gröbner bases.

Determinants of Latin squares following a given pattern

Given an autotopism $\Theta \in \mathfrak{A}_{n}$, let us consider the set:
$\operatorname{det}(\Theta)=\{\operatorname{det}(L) \mid L \in L S(\Theta)\}$.
We will say that a set \mathcal{B} of polynomials in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis
of $\operatorname{det}(\Theta)$ if:
i) Two different polynomials of \mathcal{B} are not similar
ii) Given $p \in \mathcal{B}$, there exists $L \in L S(\Theta)$ such that $p \sim \operatorname{det}(L)$.
iii) Given $L \in L S(\Theta)$, there exists $p \in \mathcal{B}$ such that $\operatorname{det}(L) \sim p$

Lemma 1. Given $\Theta \in \mathfrak{A}_{n}$, let $\mathcal{B}_{1}, \mathcal{B}_{2}$ be two different basis
$\operatorname{det}(\Theta)$. Both basis have the same number of elements.
The number of elements of any basis of $\operatorname{det}(\Theta)$ will be called its order and it will be denoted by $\sharp \operatorname{det}(\Theta)$. Since we are interested in those autotopisms $\Theta \in \mathcal{A}_{n}$ such that $\Delta(\Theta)>0$, it must be $\sharp \operatorname{det}(\Theta) \geq$

Moreover, it is the number of different classes in the quotient set $\operatorname{det}(\Theta) /$

Proposition 1. Let $\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right) \in C S(n)$ and let us consider $\Theta_{1}, \Theta_{2} \in \mathfrak{A}_{n}\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)$. There exists a $1-1$ correspondence $f: \operatorname{det}\left(\Theta_{1}\right) \rightarrow \operatorname{det}\left(\Theta_{2}\right)$, such that $f(p) \sim p$, for all $p \in \operatorname{det}\left(\Theta_{1}\right)$. As a consequence, a set \mathcal{B} of polynomials in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is

 a basis of $\operatorname{det}\left(\Theta_{1}\right)$ if and only if it is a basis of $\operatorname{det}\left(\Theta_{2}\right)$. $\quad \square$Let $\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right) \in C S(n)$ and $\Theta \in \mathfrak{A}_{n}\left(\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)\right)$ and let us consider a basis $\mathcal{B}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ of $\operatorname{det}(\Theta)$ such that $\mathcal{B} \subseteq \operatorname{det}(\Theta)$. Let $L_{1}, L_{2}, \ldots, L_{m} \in L S(\Theta)$ be such that $\operatorname{det}\left(X_{L_{i}}\right)=p_{i}$, for all $i \in[m]$.
The set $\left\{X_{L_{i}} \mid i \in[m]\right\}$ will be called a set of patterns of The set $\left\{X^{\prime}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)$.

Theorem 1. The set of determinants \mathcal{B} of a given set of patterns $\mathcal{P}=\left\{X_{L_{1}}, X_{L_{2}}, \ldots, X_{L_{m}}\right\}$ of a cycle structure $\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right) \in$ $C S(n)$ is a basis of $\operatorname{det}(\Theta)$, for all $\Theta \in \mathfrak{A}_{n}\left(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma}\right)$. More-
over, the Latin squares of $L S(\Theta)$ belong to at least m different isotopic classes of $L S(n)$, where each pattern of \mathcal{P} corresponds to a different isotopic class of $L S(n)$

Proposition 2. Let $\left\{L_{1}, L_{2}, \ldots, L_{m}\right\} \subseteq L S(n)$ be the set of Latin squares whose associated matrices constitute the set of patterns \mathcal{P} of the cycle structure $\mathbf{1}_{\Theta}$ of an autotopism $\Theta \in \mathfrak{A}_{n}$. It is verified that $\mathcal{P}^{t}=\left\{X_{L_{1}^{t}}, X_{L_{2}^{t}}, \ldots, X_{L_{m}^{t}}\right\}$ is a set of patterns of the cycle structure $\mathbf{1}_{\Theta^{(12}}$

Patterns of autotopi
Finally, we give the classification of the sets of patterns and determinants
corresponding to the cycle structures of all autotopisms of Latin squares of
order $2 \leq n \leq 6$. To do it, we have used the classification of all possible cycle
structures given in $[3]$ and the following result:
$\begin{aligned} & \text { Proposition 3. Given } n \leq 7 \text { and } \Theta \in \mathfrak{A}_{n} \text {, it is verified that } \sharp \operatorname{det}(\Theta) \\ & \text { is smaller than the number of different types of Latin squares of order } \\ & n \text {. }\end{aligned}$
By computing the distinct factorizations of the determinants of the Latin squares related to each cycle structure, we have obtained the following table

n	$\mathrm{l}_{\alpha}=\mathrm{l}_{\beta}$	\mathbf{l}_{γ}	$\Delta(\Theta)$	Set of patterns	$\# \operatorname{det}(\Theta)$	Classes of determinants
2	$(0,1)$	$(2,0)$	2	\mathcal{P}_{2}	1	D_{2}
3	(0,0,1)	$(0,0,1)$	3	\mathcal{P}_{3}	1	D_{3}
		$(3,0,0)$	6	\mathcal{P}_{3}	1	D_{3}
	(1,1,0)	(1,1,0)	4	\mathcal{P}_{3}	1	D_{3}
4	(0,0,0,1)	(0,2,0,0)	8	$\mathcal{P}_{4, a}$	1	$D_{4,1}$
		(2,1,0,0)	8	$\mathcal{P}_{4, b}$	1	$D_{4,2}$
		$(4,0,0,0)$	24	$\mathcal{P}_{4, a}$	1	$D_{4,1}$
	(0,2,0,0)	(0,2,0,0)	32	$\mathcal{P}_{4, b}$	1	$D_{4,2}$
		(2,1,0,0)	32	$\mathcal{P}^{\text {P }, a}$	1	$D_{4,1}$
		$(4,0,0,0)$	96	$\mathcal{P}_{4, c}$	2	$D_{4,1, D_{4,2}}$
	(1,0,1,0)	(1,0,1,0)	9	$\mathcal{P}_{\text {A,b }}$	1	$D_{4,2}$
	(2,1,0,0)	(2,1,0,0)	16	$\mathcal{P}_{4, c}$	2	$D_{4,1,} D_{4,2}$
5	(0,0,0,0,1)	($0,0,0,0,0,1)$	15	$\mathcal{P}_{\text {5,a }}$	1	$D_{5,1}$
		($5,0,0,0,0$)	120	$\mathcal{P}_{5, a}$	1	$D_{5,1}$
	(1,0,0,1,0)	(1,0,0,1,0)	32	$\mathcal{P}_{\text {5,a }}$	1	$D_{5,1}$
	($1,2,0,0,0,0)$	(1,2,0,0,0)	256	$\mathcal{P}_{5, a}$	1	$D_{5,1}$
	($2,0,1,0,0$)	(2,0,1,0,0)	144	$\mathcal{P}_{5, b}$	1	$D_{5,2}$
6	(0,0,0,0,0,1)	(0,0,2,0,0,0)	72	$\mathcal{P}_{6, a}$	2	$D_{6,1}, D_{6,2}$
		(1,1,1,0,0,0)	72	$\mathcal{P}_{6, b}$	2	$D_{6,3}, D_{6,4}$
		(2,2,0,0,0,0)	144	$\mathcal{P}_{6, \mathrm{c}}$	2	$D_{6,4}, D_{6,5}$
		(3,0,1,0,0,0)	144	$\mathcal{P}_{6, d}$	2	$D_{6,5,}, D_{6,6}$
		(4,1,0,0,0,0)	288	$\mathcal{P}_{6, \mathrm{e}}$	1	$D_{6,4}$
		($6,0,0,0,0,0,0)$	720	$\mathcal{P}_{6, f}$	1	$D_{6,1}$
	(0,0,2,0,0,0)	($0,0,2,0,0,0,0)$	648	$\mathcal{P}_{6,9}$	2	$D_{6,1}, D_{6,2}$
		(3,0,1,0,0,0)	2592	$\mathcal{P}_{6, h}$	4	$\begin{aligned} & D_{6,3}, D_{6,4}, \\ & D_{6,5}, D_{6,6} \end{aligned}$
		(6,0,0,0,0,0)	25920	$\mathcal{P}_{6, i}$	2	$D_{6,4}, D_{6,7}$
	(1,0,0,0,1,0)	(1,0,0,0,1,0)	75	$\mathcal{P}_{6, j}$	2	$D_{6,3}, D_{6,8}$
	(0,3,0,0,0,0)	(2,2,0,0,0,0)	36864	$\mathcal{P}_{6, k}$	6	$\begin{aligned} & D_{6,1}, D_{6,2}, D_{6,4}, \\ & D_{6,5}, D_{6,6}, D_{6,9} \end{aligned}$
		(4,1,0,0,0,0)	110592	$\mathcal{P}_{6, l}$	5	$\begin{gathered} D_{6,3,3}, D_{6,4}, D_{6,10}, \\ D_{6,11}, D_{6,12} \end{gathered}$
	(2,0,0,1,0,0)	(2,0,0,1,0,0)	768	$\mathcal{P}_{6, m}$	5	$\begin{gathered} D_{6,3}, D_{6,8}, D_{6,10}, \\ D_{6,13}, D_{6,14} \\ \hline \end{gathered}$
	(2,2,0,0,0,0)	(2,2,0,0,0,0)	20480	$\mathcal{P}_{6, n}$	5	$\begin{gathered} D_{6,3,3}, D_{6,6}, D_{6,10}, \\ D_{6,15}, D_{6,16} \\ \hline \end{gathered}$
	(3,0,1,0,0,0)	(3,0,1,0,0,0)	2592	$\mathcal{P}_{6,0}$	3	$D_{6,4}, D_{6,5}, D_{6,17}$

[3] Falcón, R. M. Cycle structures of autotopisms of the Latin square of order up to 11. Ars Combinatoria (in press). http://arxiv.org/ abs/0709. 2973
[4] http://www.personal.us.es/raufalgan/LS/latinSquare.lib
[5] Ford, D. and Johnson, K. W. Determinants of Latin squares of order 8. Experiment. Math. Volume 5, Issue 4 (1996), 317-325.
[6] Greuel, G.-M., Pfister, G. and Schönemann, H., 2005. Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserlautern. http://www . singular.uni-kl.de.
[7] McKay, B. D., Meynert, A. and Myrvold, W. Small Latin Squares Quasigroups and Loops, Journal of Combinatorial Designs 15 (2007) 98-119.

