Graphs related to principal autotopisms of Latin squares
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Abstract. Latin squares of order n are equivalent to 1-factorizations of K, ,. In this way,
fixed a principal isotopism ® = (a,8,€) € S3, where S, is the symmetric group of the
set N ={0,1,...,n— 1}, we are going to study in this paper the set of graphs related to ©®
when this last one is a principal autotopism of a Latin square. To do it, the number Ag(®)
of reduced Latin squares having ® as a principal autotopism is studied.
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1. Introduction

Fixed a graph G = (V,E), a 1-factor f of G is a subgraph of G with the same
set V of vertices that G and whose edges are a subset E ¢ of E such that every vertex
has exactly one edge incident on it. If E can be partitioned into disjoint subsets
decomposing G into 1-factors, then G is said to be 1-factorizable and this partition
F is said to be a 1-factorization of G. An isomorphism from a 1-factorization
F = [fo,f1,...s fa—1] of a graph G to a l-factorization F' = [f{. f{,....f,_,] of a
graph G’ is a pair (®, ), where @ is a bijection between the vertices of G and G’
and 7 : § — S is a permutation of the elements of the set S = {0, 1,...,n— 1}, such
that ®(Ef) = Ef;/:m forallie N.

A Latin square L of order n is a n x n array with elements chosen from a
set N = {x1,...,x,}, such that each symbol occurs precisely once in each row
and each column. The set of Latin squares of order n is denoted by LS(n). In
this paper we will consider N = {0,1,...,n —1}. So, if L = (I;;), the orthogonal
array representation of L is the set of n” triples {(i, j,;;) : i, j € N}. By permuting
in the same way the coordinates in each one of these triples, it is obtained one
of the six conjugate Latin squares associated to L. L = (I;;) is a reduced Latin
square if Ly, = k = [y for all k € N. The set of reduced Latin squares of order n
is denoted by RLS(n). A partial Latin square P of order n is a n X n array with
elements chosen from a set of n symbols, such that each symbol occurs at most
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once in each row and in each column. The set of partial Latin squares of order n
is denoted by PLS(n). An isotopism of a Latin square L is a triple ® = (a, 3,7) €
S = Sy X S, X Sy, where S, is the symmetric group of N and so, o, 3 and y
are respectively, permutations of rows, columns and symbols of L. The resulting
square L® is also a Latin square and it is said to be isotopic to L. If y = ¢, the
identity map on N, O is called a principal isotopism. An isotopism which maps L
to itself is an autotopism. (€,¢€,¢€) is called the trivial autotopism. The stabilizer
subgroup of L in .%, is its autotopism group, % (L) = {® € .#, : L® = L}. Fixed
O € .7, the set of all Latin squares L such that ® € % (L) is denoted by LS(®).
The main class of L is the set of all Latin squares isotopic to some conjugate of L.

Every Latin square of order n is equivalent to a 1-factorization of a bipartite
graph K, , [3]. In particular, given a Latin square L € LS(n) and fixed a set of
n colors {co,c1,..., cn—1}, it can be defined a bipartite graph G = (V,E) with
colored edges. To do it, V is partitioned into two subsets U and W, where |U| =
|W|=nand U and W represent, respectively, the rows and columns in L. Besides,
if (i, j,k) € L, then there will be an edge of color ¢ joining the vertices i € U and
j € W. Each symbol of L determines therefore a monochromatic 1-factor of G and
so, we obtain a 1-factorization .% (L) = [fo, f1,-.-, fu—1] of G, where each 1-factor
f; is associated to the color ¢;. The reciprocal construction is also possible in a
similar way and we can then construct a Latin square .£'(F') associated to each 1-
factorization F of K,, ,. Indeed, .# (£ (F)) = F and .Z (% (L)) = L. In particular,
F and F' are two isomorphic 1-factorizations if and only if Z(F) and .Z(F') are
in the same main class.

Figure 1: 1-factorization of K3 3 starting from a Latin square.

Cardinalities of autotopism groups have been studied to obtain the number of
Latin squares of order up to 11 [5], where computer programs incorporating two
methods of approach to generation are used: the orderly approach method [2] and
the canonical construction path method (CCPM) [4]. In particular, this last one
allows to construct a Latin square one row block at a time, where a row block
consists of the rows corresponding to a cycle of «. Besides, fixed an isotopism
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0= (a,B,y) € Hp, the CCPM has been also used [1] to study the number A(®)
of Latin squares L € LS(n) such that L € LS(®):

Proposition 1. Ler ® = (., B,Y) € .#, be a non-trivial isotopism. If one of the
permutations o, 3 or Y is equal to €, then A(®) > 0 if and only if the other two
permutations are both the composition of k cycles of length 7.

Theorem 1. Fixed k € N, let ® = (o, B,€) € Sy, where n > k is a multiple of k,
be such that o and B are both the composition of k cycles of length . Then:

A(®) =n!- (%!)WH) -Q(0),

where Q(®) is 1, if k = 1, and the number of different ways in which the row
blocks can be chosen in the CCPM, if k > 1.
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Table 1: Values of Q(®) and A(®) when2 <n <9.

The number A(®) is useful in Cryptography, when a Latin square L and a
family § C % (L) are used to get a secret-sharing system, that is, a method of
sharing a secret key K, by giving n pieces of information called shares to n parti-
cipants, in such a way that K can be reconstructed from certain authorized groups
of shares and it cannot be done from unauthorized groups of them. Specifically,
in this case, K = L and the shares are the triples of L and the isotopisms of §. In
this way, the weight of information given by the latter is usually greater than that
given by the former. On the contrary, the size of an isotopism is much larger than
that of a triple. As this problem rises with n, it is necessary to identify an isoto-
pism with a share of a smaller size. In this paper we study one possibility in this
sense, when @ is a principal isotopism such that the number Ag(®) of reduced
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Latin squares having ® as an autotopism is positive. In this way, we study the set
of 1-factorizations associated to these reduced Latin squares and we identify ©®
with a graph %g of smallest size with colored vertices and edges.

2. The canonical construction path method.

Fixed n € Nand O € .9, Ag(®) will denote the cardinal of the set RLS(®) of
reduced Latin squares of order n such that ® is an autotopism of all of them. In
this paper, we are interested in the value of Agx(®) if ® is a non-trivial principal
isotopism. From Proposition 1, it suffices to study those isotopisms ® = (¢, B, €),
such that & and 3 have all their cycles of the same length and without fixed points:

a=C{oClo..oCY,, B=CPoclo. . oct |,

where C9 = (cfo Ci5,1 cf,_k,_l> is a cycle of length 7 for all 6 € {&, B} and i €
{0,1,....,k — 1}, being C;"S,j € N, for all j € {0,1,...,7 — 1}. Besides, it must be
cfj # Clil’ for all (7, j) # (k,1). From now on, we will suppose that ¢, = c(lio =0.
Lemma 1. IfCE # (C&)™", then Ar(®) = 0.

Now, if we want to find a reduced Latin square L = (;;) € RLS(®), we will
use the CCPM. So, we define the following subrectangles of L:

ij "
R = { (Cgs,Cﬁ;ch cf,> 25,1 € {0, 17_._% _ 1}}7

for all i, j € {0,1,...,k— 1}. When all these subrectangles are known, then L is
determined. Due to it, it is useful to define also the following sets:

S ={ly: (s,t,ly) €RY}, foralli,j€{0,1,....k—1}.
Lemma 2. The following asserts are verified:
a) S| =14, foralli,j€{0,1,...k—1}.
b) U=l S =N, forall j € {0,1,....k—1}.
c) UZgS™ =N, forall i € {0,1,....k—1}.
d) If (i, j) # (s,t), then S* NS = O wheneveri=sor j=t.

e) SO=8%={i- %241, (i+1)-L—1}, forallic{0,1,....k—1}.
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f) If Iy is known, being (s,t,ls,) € R™, then the 7 cells (u,v,1,y) of R™ such
that 1, =l are known.

g) If S/ is known then R™ can be chosen of 7! ways.

As a consequence, the subrectangles R*? and R*/ are known for all i, j €
{0,1,...,k— 1} and we can define the following partial Latin square:

Py = JRU| JR™ € PLS(n),
i J

which is common to all Latin squares of RLS(®). Indeed, to determine L, we only
must fix the (k — 1)? subrectangles R"/ with i # 0 # ;.

Theorem 2. Ag(®) = (%!)(kfl)_ - Qr(0), where Qg(®) denotes the number of
different ways in which the elements of all sets S/ can be chosen.

In particular, the cases k € {1,2,3,4} of Table 1 are easily computable by
following the CCPM. The following result is then verified:

Theorem 3. Fixed k € {1,2,3,4}, let ® = (o, B, €) € &, where n > k is a multi-
ple of k, be such that o and 3 are both the composition of two cycles of length %,

being Cg = (C¥)~". Then:

1ifk=1,
a) Ifk#4: Qp(©) =1, Ag(®) =1 11, ifk =2,
(2%, ifk=3.
b) Ifk = 4:
Qr(©) =Y ZZ) > < 4= ¢
-

Q BIS
T N
o S N

=)

3. 1-factorizations associated to principal autotopisms of reduced
Latin squares

Let ® € .7, such that Ag(®) > 0. By following the CCPM described in the pre-
vious section, we can define the set RLS(®), starting from the subrectangles R"/
associated to ®. So, we can define the set .7 (RLS(®)) = {.# (L) : L € RLS(©)}.
As we have previously observed, all Latin squares of RLS(®) have the partial La-
tin square Pg in common. Due to it, it can be useful to extend to partial Latin
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n 2|3 4 5 6 7 8 9

k 1112|112 1112 4 1 3
Qr@)* || 1| 1|11 |1]1|1|1L]1]1]1 145 |1 1
Ag(@) L[ L |1 |21 ]|1]|6|16]1]|1|24]|74240 |1 | 1296

+ Being CF = (C%) ™", Otherwise, Ag(®) = 0.

Table 2: Values of Qr(®) and Ag(®) when2 <n <9.

squares the above algorithm which allows to construct a 1-factorization starting
from a Latin square. Indeed, it is enough to ignore in the mentioned algorithm tho-
se edges corresponding to triples (i, j,0). In this way, we will obtain a subgraph
of K, , with colored edges. Fixed P € PLS(n), we will denote this subgraph as
F(P).

Proposition 2. The following asserts are verified:
a) |7 (RLS(0®))| = Ag(©).
b) Nrezwse©) F =7 (Po).
Let us see an example:

Example 1. Let N = {0,1,2,3}. The unique possible isotopisms verifying the
conditions of Theorem 3 for k = 2 are:
©; = ((01)(23),(01)(23),e);  ©2 = ((02)(13),(02)(13),¢);

Now, the graphs .% (P@i) related to each ®; are shown in Table 3. Indeed, it
can be proved that .7 (P, ), .Z (Pe,) and .# (Pe, ) are isomorphic 1-factorizations.

However, we can find an other graph related to ® with smaller size than
F (Pg). To do it, it is enough to observe that the first row and column of Pg
are fixed with the elements of N = {0, 1,...,n — 1}, which determine the colours
of .7 (Pe). So, we can follow this algorithm:

Algorithm 1.
i) Fixed i # 0, we colour each pair of vertex u; and w; with the color c;.
ii) We eliminate the vertices uy € U, and wy € W and their incident edges.

The resulting graph has therefore colored vertices and edges and determines
0. This graph will be denoted by ¥g and it will be called the graph related to ©.
In Table 4, we can see the case of Example 1.
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Q; 0, 0, 0;
0 1 2 3 0 1 2 3 0 1 2 3
10 3 2 1 0 3 2 1 0 3 2
2 3 0 1 2 3 0 1 2 3 0 1
3 2 1 0 302 1 0 32 1 0

RLS(®;)

0 1 2 3 01 2 3 01 2 3
1 0 3 2 1 2 3 0 13 0 2
2 3 1 0 2 3 0 1 2 0 3 1
3 02 0 1 30 1 2 302 10
0o 1 2 3
1 o 3 2

P®i 2 3 - -
3 o2 - -

u
u

Table 3: Graphs .7 (Pg,) related to ©;.

4.

Final remarks

The graph ¥g allows to recover the isotopism ©. In this way, we can consider
a set of vertices and edges of ¥g as shares in a secret-sharing system. So, the size
of these shares would be smaller than that of @. It would allow to increase the
number of participants in such a system and to adjust the weight of information of
the used shares. Anyway, it is possible to find a graph of smaller size than ¥g. To
do it, let us observe that, fixed a vertex in this graph, its color must be different of
those of its incident edges. Furthermore, these last ones have also different colors
between themselves. So, keeping in mind these properties, we can eliminate some
vertices and edges of ¢ and we can therefore obtain a graph of the smallest size
allowing to recover @. It would be therefore necessary an analogous study to that
of forcing sets of a 1-factorization.

O (C)) C2)
u:v
'I/l3 /, ) c, u
u
3
@
wz
Yo,

Table 4:

Graphs %, related to ©;.
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u © ® w,
[ E—
w, €o u

Figure 2: Forcing set related to the isotopism ®, of Example 1.
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