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Abstract. The mutation graph of an asexual diploid organism is introduced as an edge-

coloured graph derived from the genetic pattern by isotopisms of an evolution algebra

over a finite field. We describe the step-by-step construction of this graph and establish

some of its basic properties. In order to illustrate this construction, we focus on the

spectrum of genetic patterns of two distinct genotypes during a mitosis process.
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1 Introduction

In order to simulate algebraically self-reproduction processes in Genetics, Tian
and Vojtechovsky [8, 9] introduced the concept of evolution algebra on a set β =
{e1, . . . , en} of distinct genotypes with respect to a given phenotype of an asexual
organism as an n-dimensional algebra over a field K having β as a natural basis
such that eiej = 0, whenever i 6= j. The tuple (e1e1, . . . , enen) is called the genetic
pattern of the algebra. Evolution algebras present interesting connections with
graph theory. In this regard, Tian [8] defined the evolution algebra related to a
graphG with a finite set of vertices {v1, . . . , vn} as the algebra of basis {e1, . . . , en}
described as e2i =

∑
k∈Γ(vi)

ek and eiej = 0, for all i, j ∈ {1, . . . , n} such that i 6= j.
Here, Γ(vi) denotes the set of neighbours of the vertex vi in G. This definition
enabled him to contemplate as a further work the development of known results
on graph theory in the context of evolution algebras. More recently, Elduque and
Labra [3, 4], and Cabrera et al. [1] dealt with the reverse problem. The former
associated a weighted digraph to a given finite-dimensional evolution algebra and
proved that the nonexistence of oriented cycles in such a graph is equivalent to
the nilpotency of the corresponding algebra. The latter, in turn, described an
alternative directed graph whatever the dimension of the evolution algebra is,
from which its annihilator and irreducibility can be determined. Unlike Tian’s
graphs, whose isomorphisms are equivalent to those of the evolution algebras
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under consideration, both proposals depend on the selected basis of the algebra
so that isomorphic algebras are not related in general to isomorphic graphs.

In order to ensure an affirmative statement in the last regard, this paper deals
with a new proposal to establish a relationship between evolution algebras and
graph theory. This is based on a recent work of the authors [7], who identify
any algebra over a finite field with a pair of vertex-coloured graphs so that every
isomorphism and every isotopism of the algebra under consideration gives rise
to an isomorphism of the corresponding graph. We focus in particular on the
study of isotopisms because of their importance to formulate algebraically the
mutation of genotypes in the inheritance process [2]. Currently, it is known [5, 6]
the distribution into isotopism classes of two- and three-dimensional evolution
algebras over any base field, which determines in turn the spectrum of genetic
patterns of two and three distinct genotypes during a mitosis process.

2 Mutation graphs

Let A be an algebra over a finite field K and let Ann(A) = {u ∈ A | uv =
0, for all v ∈ A} denote its annihilator. Let us describe the step-by-step con-
struction of the mutation graph of the algebra A. In order to illustrate this
construction, we refer the reader to Figure 1.1, where we describe in detail how
to obtain the mutation graph of the evolution algebra over F2 with genetic pat-
tern (e1, e1). Further, Figure 1.2 shows the spectrum of mutation graphs related
to non-trivial genetic patterns of two distinct genotypes during a mitosis process.

• Step 1: According to the description proposed by the authors in [7], we
define the vertex-coloured graph G1(A) with the following four maximal
monochromatic subsets of vertices

RA = {ru | u ∈ A \ Ann(A)}, CA = {cu | u ∈ A \ Ann(A)},

SA = {su | u ∈ A2 \ {0}} and TA = {tu,v | u, v ∈ A, uv 6= 0},

and set of edges {rutu,v, cvtu,v, swtu,v | u, v, w ∈ A, uv = w 6= 0}. Suppose
the vertices of the four sets RA, CA, SA and TA to be respectively coloured
with the colours red, blue, green and black.

• Step 2: We construct the edge-coloured line graph G2(A) associated to
G1(A). The colours of its edges are inherited in natural way from those of
the corresponding vertices in G1(A). Let u, v, w ∈ A be such that uv = w 6=
0. Each triple (rutu,v, cvtu,v, swtu,v) of edges in G1(A) gives rise to a triangle
in G2(A), which we call structural triangle in G2(A). Its edges are called
structural, whereas the rest of edges in G2(A) are called non-structural.
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Lemma 1. The following results hold.

a) Every structural edge in G2(A) is coloured in black.

b) The colours of every pair of non-structural edges that are incident to
the same vertex in G2(A) coincide.

c) The colours of every pair of non-structural edges that are respectively
incident to a pair of distinct vertices of the same structural triangle in
G2(A) are distinct.

• Step 3: We define the edge-coloured multigraph G3(A) that results after
contracting the three vertices of each structural triangle in G2(A).

Proposition 1. The following results hold.

a) The colours of every pair of parallel edges in G3(A) are distinct.

b) There do not exist three parallel edges in G3(A).

c) There always exists a green edge in any pair of parallel edges in G3(A).

• Step 4: We define the edge-coloured graph G4(A) that results after con-
tracting every pair of parallel edges in G3(A). The contraction of a pair of
red-green parallel edges gives rise to a pink edge, whereas that related to a
pair of blue-green parallel edges gives rise to an orange edge.

Step 1: Vertex-coloured graph. Step 2: Line graph.

Step 3: Contracted multigraph. Step 4: Mutation graph.

Figure 1.1: Step-by-step construction of the mutation graph related to the bi-
dimensional evolution algebra over F2 of genetic pattern (e1, e2).

Theorem 1. If two evolution algebras over a finite field are isomorphic, then
their mutation graphs are isomorphic.
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(e1, 0) (e1, e1) (e1, e2)

Figure 1.2: Spectrum of non-trivial mutation graphs for two distinct genotypes.
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