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The cocyclic framework
H =

(
ψ(gi ,gj)

)
is a G-cocyclic Hadamard matrix, |G| = 4t .

ψ(gi ,gj) ψ(gigj ,gk )ψ(gi ,gjgk ) ψ(gj ,gk ) = 1, gi ,gj ,gk ∈ G.
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The cocyclic framework

H =
(
ψ(gi ,gj)

)
is a G-cocyclic Hadamard matrix, |G| = 4t ,

ψ(gi ,gj) ψ(gigj ,gk )ψ(gi ,gjgk ) ψ(gj ,gk ) = 1, gi ,gj ,gk ∈ G.

Cocyclic Non cocyclic
Sylvester Zlog2 4t

2
Williamson Z2

2 × Zt
Paley I D4t
Paley II Z2

2 × Zt
Ito D4t

1-circulant core Z4t−1-cocyclic structured
2-circulant core D4t−2-cocyclic structured
Goethals-Seidel always?

Twin prime power always?
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(Dis)advantages
Faster Hadamard test

4t∑
j=1

ψ(gi ,gj) = 0, for 2 ≤ i ≤ 4t .
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(Dis)advantages
Search space is reduced
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(Dis)advantages
The proportion of Hadamard matrices is reduced in turn

order 2 4 8 12 16 20 24 28 32 36
∼H 1 1 1 1 5 3 60 487 13710027 ≥ 3 · 106

∼H+c 1 1 1 1 5 3 16 6 100 35

Ó Catháin, Röder 2011
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What next? Cocycles over quasigroups...

Cocycles ψ over a quasigroup Q (i.e. associativity fails)

∀a,b ∈ Q, ∃!x , y ∈ Q/ ax = b, ya = b.

ψ(gi ,gj) ψ(gigj ,gk )ψ(gi ,gjgk ) ψ(gj ,gk ) = 1, gi ,gj ,gk ∈ Q.
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What next? Cocycles over quasigroups...
Although the usual Hadamard cocyclic test is available ...

4t∑
k=1

ψ(gh,gk )ψ(gj ,gk ) = 0⇔
4t∑

k=1

ψ(gi ,gk ) = 0 (1)

Proposition

...A necessary condition for a Q-cocyclic matrix Mψ being Hadamard is
that Q is actually endowed with a loop structure.
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Example: a Q-cocyclic Hadamard matrix of order 8

Consider the quasigroup Q of given law ((5 · 6) · 7 = 6 6= 5 = 5 · (6 · 7)):

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 8 7 3 4 2 1
6 5 7 8 4 3 1 2
7 8 6 5 1 2 4 3
8 7 5 6 2 1 3 4

∂2, ∂3, ∂4,

BN2 ⊗ 14,


+ + + +
+ − + −
+ + + −
+ − − −

⊗ 12

4 out of 32 are Hadamard: ∂2∂3, ∂2∂3∂4, ∂3, ∂4.
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... Or even pseudo-cocycles over quasigroups!
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... Or even pseudo-cocycles over quasigroups!

Formal coboundaries might not be cocyclic!

Lemma
The elementary map ∂δh actually constitutes a genuine cocycle if and
only if

gi(gjgk ) = gh ⇔ (gigj)gk = gh, gi ,gj ,gk ∈ Q.
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... Or even pseudo-cocycles over quasigroups!
Those maps which are formally coboundaries but not truly cocycles
are called pseudo-coboundaries. It is of interest considering
pseudo-cocyclic matrices Mψ·φ resulting from the product of a genuine
cocycle ψ and a pseudocoboundary φ for which the Hadamard test (1)
still applies, no matter they are not truly cocyclic.
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{H : H = Mψ} ⊂ {H : H = Mψ·φ}

order 2 4 8 12 16 20 24 28 32 36
∼H 1 1 1 1 5 3 60 487 13710027 ≥ 3 · 106

∼H+sc 1 1 1 1 5 3 ?? ?? ?? ??

∼H+c 1 1 1 1 5 3 16 6 100 35

Cocyclic Non cocyclic
Sylvester Zlog2 4t

2
Williamson Z2

2 × Zt
Paley I D4t
Paley II Z2

2 × Zt
Ito D4t

1-circulant core Z4t−1-cocyclic structured
2-circulant core D4t−2-cocyclic structured
Goethals-Seidel GS4t -pseudo-cocyclic

Twin prime power always?
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The Goethals-Seidel arrays


A BR CR DR

BR −A RD −RC
CR −RD −A RB
DR RC −RB −A

 A,B,C,D circulants,
R ←b [0, . . . ,0,1]

It is Hadamard if AAT + BBT + CCT + DDT = 4tIt .
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The Goethals-Seidel arrays

GS4t = 〈a,b, c,d : at = b2 = c2 = d2 = 1, (aix)aj = ai+jx ,

ai(ajy) = aj−iy , (aiy)(ajy) = aj−i , (aiy1)(ajy2) = at−2−j−iy3〉

for x ∈ {1,b, c,d}, y ∈ {b, c,d}, {y1, y2, y3} = {b, c,d}.

1,a, . . . ,at−1,b,ab, . . .at−1b, c,ac, . . . ,at−1c,d ,ad , . . . ,at−1d .
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The Goethals-Seidel arrays are GS4t -pseudo cocyclic
A BR CR DR

BR −A RD −RC
CR −RD −A RB
DR RC −RB −A




bA Bc Cc Dc

bB Ac bD̄ bC̄
bC bD̄ Ac bB̄
bD bC̄ bB̄ Ac


Theorem
The Goethals-Seidel array is pseudo-cocyclic over the loop GS4t .

Range (i , j , k) i(jk)

2 ≤ h ≤ t (t + 1,2t + 1,4t + 2− h) 1 + (h − 3 mod t)
t + 1 ≤ h ≤ 2t (2,2t + 1,5t + 1− h) t + 1 + (h − 3 mod t)
2t + 1 ≤ h ≤ 3t (2, t + 1,6t + 1− h) 2t + 1 + (h − 3 mod t)
3t + 1 ≤ h ≤ 4t (2,2t + 1,7t + 1− h) 3t + 1 + (h − 3 mod t)

(ij)k = h 6= i(jk) and none of the formal coboundaries are cocyclic!
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The Goethals-Seidel arrays are GS4t -pseudo cocyclic


A BR CR DR

BR −A RD −RC
CR −RD −A RB
DR RC −RB −A




bA Bc Cc Dc

bB Ac bD̄ bC̄
bC bD̄ Ac bB̄
bD bC̄ bB̄ Ac


Theorem
The Goethals-Seidel array is pseudo-cocyclic over the loop GS4t .

Mψ = (
∏
h∈H

M∂h )R,R =


+ + + +
+ − + −
+ − − +
+ + − −

⊗ 1t

Permute the pairs of rows (i , t + 2− i), for 2 ≤ i ≤ t+1
2 .
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The Goethals-Seidel arrays are GS4t -pseudo cocyclic

Theorem
The Goethals-Seidel array is Hadamard if and only if the related
GS4t -pseudococyclic matrix satisfies the usual cocyclic test.

〈Rowij ,Rowj〉 =
4t∑

k=1

(∏
h∈H

δh,i(jk)δh,(ij)k

)
ψ(i , j)ψ(i , jk) =

ψ(i , j)
4t∑

k=1

σkψ(i , jk) = ψ(i , j)
4t∑

k=1

ψ(i , k).

Furthermore, it suffices to check rows 2 ≤ i ≤ t+1
2 .
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Counting −1s
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Counting −1s

Mψ = (
∏
h∈H

M∂h )R, ∂h(i , j) = δh,iδh,jδh,ij

Every M∂h contributes two −1s at row k at positions (k ,h) (head,
) and (k , k−1h) (tail, ).
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Counting −1s

Mψ = (
∏
h∈H

M∂h )R, ∂h(i , j) = δh,iδh,jδh,ij

Whenever two different M∂h1
and M∂h1

share a tail and a head at
row k , they constitute a path at row k .

Consequently
∏

h∈H
M∂h contributes twice as many −1s as maximal

paths there exist at row k .
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Counting −1s

Mψ = (
∏
h∈H

M∂h )R, ∂h(i , j) = δh,iδh,jδh,ij

Following the same principle, whenever a head or a tail of a path
is shared by R, an intersection occurs and this tentative −1 is lost.
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Counting −1s

Mψ = (
∏
h∈H

M∂h )R, ∂h(i , j) = δh,iδh,jδh,ij

Consequently, the −1s of Mψ at row h come from heads, tails and
those of R which do not contribute any intersections at all,

2ch + Rh − 2Ih = 2t
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Counting −1s in practise
Exhaustive search: t ≤ 7 (2003).
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Counting −1s in practise
Heuristic search: Fitness = number of Hadamard rows (GA 2006,
ACS 2009), t ≤ 13.
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Counting −1s in practise

Exhaustive search via ingredients and recipes (2011), t ≤ 11,
t ≤ 23.
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Counting −1s in practise

Cocyclic Hadamard ideals (2016), t ≤ 39.
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Counting −1s in practise
Heuristic search (GA 2017) + local search (CSP), t = 47??
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Alternative fitness

F (paths, intersections) = constant (2)

Group F (p, I)
−→
k Rows

Z2
2 × Zt p (t , . . . , t) r ≡ 1 mod t

D4t p − I (t − 1, . . . ,1) 2, . . . , t
GS4t pA + pB + pC + pD t 2, . . . , t+1

2

IDEA:
‖
−→
F (p, I)−

−→
k ‖∞ instead of hamming distance!

Alvarez On cocyclic Hadamard matrices Budapest, July 2017 30 / 39



The case D4·47

Fitness of 10000 random individuals runs on [5,15].
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The case D4·47

Perform a heuristic such that you move to a neighbor as soon as
fitness improves.
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The case D4·47

In case that none of the 4t neighbors works, jump to a random
individual at a prefixed hamming distance (6 seems to work fine).
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The case D4·47

Reaches fitness 2 immediately!
Reaches fitness 1 almost every run, after no more than 1000
iterations!
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The case D4·47

Unfortunately, there are many local minima
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The case D4·47

Second step: local search.

Perform a radial search (radius 4 = 51.512.518 instances).
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The case D4·47

Faster by means of a Constraint Satisfaction Problem
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What to come?
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Thank you Mate and Ferenc!
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