(Pseudo)-cocyclic (structured) Hadamard matrices over (quasi)groups

Alvarez, Armario, Falcón, Frau, Gudiel, Güemes and Kotsireas

University of Seville

5th Workshop on Real and Complex Hadamard Matrices and Applications

Outline

Cocyclic constructions for Hadamard matrices

- 2 (Pseudo)cocyclic Hadamard matrices over quasigroups
- **3** The Goethals-Seidel arrays are pseudo-cocyclic
- Searching for large cocyclic Hadamard matrices

The cocyclic framework

 $H = (\psi(g_i, g_j))$ is a *G*-cocyclic Hadamard matrix, |G| = 4t.

 $\psi(g_i,g_j) \psi(g_ig_j,g_k)\psi(g_i,g_jg_k) \psi(g_j,g_k) = 1, \ g_i,g_j,g_k \in G.$

The cocyclic framework

 $H = (\psi(g_i, g_j))$ is a *G*-cocyclic Hadamard matrix, |G| = 4t,

 $\psi(g_i,g_j) \ \psi(g_ig_j,g_k) \psi(g_i,g_jg_k) \ \psi(g_j,g_k) = 1, \ g_i,g_j,g_k \in G.$

	Cocyclic	Non cocyclic
Sylvester	$\mathbb{Z}_2^{\log_2 4t}$	
Williamson	$\mathbb{Z}_2^2 \times \mathbb{Z}_t$	
Paley I	D _{4t}	
Paley II	$\mathbb{Z}_2^2 \times \mathbb{Z}_t$	
lto	D _{4t}	
1-circulant core	\mathbb{Z}_{4t-1} -COC	yclic structured
2-circulant core	D_{4t-2} -coc	cyclic structured
Goethals-Seidel		always?
Twin prime power		always?

(Dis)advantages

Faster Hadamard test 🗳

$$\sum_{j=1}^{4t}\psi(g_i,g_j)=0, \text{ for } 2\leq i\leq 4t.$$

(Dis)advantages

Search space is reduced 🗳

(Dis)advantages

The proportion of Hadamard matrices is reduced in turn

order	2	4	8	12	16	20	24	28	32	36
\sim_{H}	1	1	1	1	5	3	60	487	13710027	\geq 3 \cdot 10 ⁶
\sim_{H+c}	1	1	1	1	5	3	16	6	100	35

Ó Catháin, Röder 2011

What next? Cocycles over quasigroups...

Cocycles ψ over a *quasigroup* Q (i.e. associativity fails)

$$\forall a, b \in Q, \exists !x, y \in Q / ax = b, ya = b.$$

 $\psi(g_i,g_j) \ \psi(g_ig_j,g_k) \psi(g_i,g_jg_k) \ \psi(g_j,g_k) = 1, \ g_i,g_j,g_k \in Q.$

What next? Cocycles over quasigroups...

Although the usual Hadamard cocyclic test is available 🔍...

$$\sum_{k=1}^{4t} \psi(g_h, g_k) \psi(g_j, g_k) = 0 \Leftrightarrow \sum_{k=1}^{4t} \psi(g_i, g_k) = 0$$
(1)

Proposition

...A necessary condition for a *Q*-cocyclic matrix M_{ψ} being Hadamard is that *Q* is actually endowed with a loop structure.

Example: a Q-cocyclic Hadamard matrix of order 8

Consider the quasigroup Q of given law $((5 \cdot 6) \cdot 7 = 6 \neq 5 = 5 \cdot (6 \cdot 7))$:

1	2	3	4	5	6	7	8	
2	1	4	3	6	5	8	7	2 2 2
3	4	1	2	7	8	5	6	$\partial_2, \partial_3, \partial_4,$
4	3	2	1	8	7	6	5	
5	6	8	7	3	4	2	1	$BN_2 \otimes 1_4, \begin{vmatrix} + & - & + & - \\ + & + & + & - \end{vmatrix} \otimes 1_2$
6	5	7	8	4	3	1	2	
7	8	6	5	1	2	4	3	
8	7	5	6	2	1	3	4	

4 out of 32 are Hadamard: $\partial_2 \partial_3$, $\partial_2 \partial_3 \partial_4$, ∂_3 , ∂_4 .

... Or even pseudo-cocycles over quasigroups!

... Or even pseudo-cocycles over quasigroups!

Formal coboundaries might not be cocyclic!

Lemma

The elementary map $\partial \delta_h$ actually constitutes a genuine cocycle if and only if

$$g_i(g_jg_k)=g_h \Leftrightarrow (g_ig_j)g_k=g_h, \quad g_i,g_j,g_k\in Q.$$

... Or even pseudo-cocycles over quasigroups!

Those maps which are formally coboundaries but not truly cocycles are called *pseudo-coboundaries*. It is of interest considering *pseudo-cocyclic* matrices $M_{\psi \cdot \phi}$ resulting from the product of a genuine cocycle ψ and a pseudocoboundary ϕ for which the Hadamard test (1) still applies, no matter they are not truly cocyclic.

 $\{H: H = M_{\psi}\} \subset \{H: H = M_{\psi \cdot \phi}\}$

order	2	4	8	12	16	20	24	28	32	36
\sim_{H}	1	1	1	1	5	3	60	487	13710027	\geq 3 \cdot 10 ⁶
\sim_{H+sc}	1	1	1	1	5	3	??	??	??	??
\sim_{H+c}	1	1	1	1	5	3	16	6	100	35

	Cocyclic	Non cocyclic			
Sylvester	$\mathbb{Z}_2^{\log_2 4t}$				
Williamson	$\mathbb{Z}_2^2 \times \mathbb{Z}_t$				
Paley I	D _{4t}				
Paley II	$\mathbb{Z}_2^2 \times \mathbb{Z}_t$				
lto	D _{4t}				
1-circulant core	e \mathbb{Z}_{4t-1} -cocyclic structure				
2-circulant core	D_{4t-2} -cocyclic structure				
Goethals-Seidel	GS4t-pseudo-cocyclic				
Twin prime power		always?			

The Goethals-Seidel arrays

$$\begin{pmatrix} A & BR & CR & DR \\ BR & -A & RD & -RC \\ CR & -RD & -A & RB \\ DR & RC & -RB & -A \end{pmatrix} \quad \begin{array}{c} A, B, C, D \text{ circulants,} \\ R \leftarrow^{b} [0, \dots, 0, 1] \\ \end{array}$$

It is Hadamard if $AA^T + BB^T + CC^T + DD^T = 4tI_t$.

The Goethals-Seidel arrays

$$\begin{aligned} GS_{4t} &= \langle a, b, c, d: \ a^t = b^2 = c^2 = d^2 = 1, (a^i x)a^j = a^{i+j}x, \\ a^i(a^j y) &= a^{j-i}y, (a^i y)(a^j y) = a^{j-i}, (a^i y_1)(a^j y_2) = a^{t-2-j-i}y_3 \rangle \\ \text{for } x \in \{1, b, c, d\}, \ y \in \{b, c, d\}, \ \{y_1, y_2, y_3\} = \{b, c, d\}. \end{aligned}$$

$$1, a, \dots, a^{t-1}, b, ab, \dots a^{t-1}b, c, ac, \dots, a^{t-1}c, d, ad, \dots, a^{t-1}d$$

The Goethals-Seidel arrays are *GS*_{4t}-pseudo cocyclic

$$\begin{pmatrix} A & BR & CR & DR \\ BR & -A & RD & -RC \\ CR & -RD & -A & RB \\ DR & RC & -RB & -A \end{pmatrix} \begin{pmatrix} {}^{b}A & B^{c} & C^{c} & D^{c} \\ {}^{b}B & A^{c} & {}^{b}\bar{D} & {}^{b}\bar{C} \\ {}^{b}C & {}^{b}\bar{D} & A^{c} & {}^{b}\bar{B} \\ {}^{b}D & {}^{b}\bar{C} & {}^{b}\bar{B} & A^{c} \end{pmatrix}$$

Theorem

The Goethals-Seidel array is pseudo-cocyclic over the loop GS_{4t} .

Range	(<i>i</i> , <i>j</i> , <i>k</i>)	i(jk)
$2 \le h \le t$	(t+1, 2t+1, 4t+2-h)	$1 + (h - 3 \mod t)$
$t+1 \le h \le 2t$	(2, 2t + 1, 5t + 1 - h)	$t + 1 + (h - 3 \mod t)$
$2t+1 \leq h \leq 3t$	(2, t+1, 6t+1-h)	$2t + 1 + (h - 3 \mod t)$
$3t+1 \le h \le 4t$	(2, 2t+1, 7t+1-h)	$3t + 1 + (h - 3 \mod t)$

 $(ij)k = h \neq i(jk)$ and **none** of the formal coboundaries are cocyclic!

Alvarez

The Goethals-Seidel arrays are *GS*_{4t}-pseudo cocyclic

$$\begin{pmatrix} A & BR & CR & DR \\ BR & -A & RD & -RC \\ CR & -RD & -A & RB \\ DR & RC & -RB & -A \end{pmatrix} \begin{pmatrix} ^{b}A & B^{c} & C^{c} & D^{c} \\ ^{b}B & A^{c} & ^{b}\bar{D} & ^{b}\bar{C} \\ ^{b}C & ^{b}\bar{D} & A^{c} & ^{b}\bar{B} \\ ^{b}D & ^{b}\bar{C} & ^{b}\bar{B} & A^{c} \end{pmatrix}$$

Theorem

The Goethals-Seidel array is pseudo-cocyclic over the loop GS_{4t} .

$$M_{\psi} = (\prod_{h \in H} M_{\partial_h})R, R = \begin{pmatrix} + & + & + & + \\ + & - & + & - \\ + & - & - & + \\ + & + & - & - \end{pmatrix} \otimes \mathbf{1}_t$$

Permute the pairs of rows (i, t + 2 - i), for $2 \le i \le \frac{t+1}{2}$.

The Goethals-Seidel arrays are GS_{4t}-pseudo cocyclic

Theorem

The Goethals-Seidel array is Hadamard if and only if the related GS_{4t} -pseudococyclic matrix satisfies the usual cocyclic test.

$$\langle Row_{ij}, Row_j \rangle = \sum_{k=1}^{4t} \left(\prod_{h \in H} \delta_{h,i(jk)} \delta_{h,(ij)k} \right) \psi(i,j) \psi(i,jk) =$$

$$\psi(i,j)\sum_{k=1}^{4t}\sigma_k\psi(i,jk)=\psi(i,j)\sum_{k=1}^{4t}\psi(i,k).$$

Furthermore, it suffices to check rows $2 \le i \le \frac{t+1}{2}$.

Counting -1s

Counting –1s

$$M_{\psi} = (\prod_{h \in H} M_{\partial_h}) R, \qquad \partial_h(i,j) = \delta_{h,i} \delta_{h,j} \delta_{h,ij}$$

Every M_{∂h} contributes two −1s at row k at positions (k, h) (head,
and (k, k⁻¹h) (tail, ⁽²⁾).

Counting -1s

$$M_{\psi} = (\prod_{h \in H} M_{\partial_h}) R, \qquad \partial_h(i,j) = \delta_{h,i} \delta_{h,j} \delta_{h,ij}$$

• Whenever two different $M_{\partial_{h_1}}$ and $M_{\partial_{h_1}}$ share a tail and a head at row *k*, they constitute a path at row *k*.

• Consequently $\prod_{h \in H} M_{\partial_h}$ contributes twice as many -1s as maximal paths there exist at row k.

Counting -1s

$$M_{\psi} = (\prod_{h \in H} M_{\partial_h}) R, \qquad \partial_h(i,j) = \delta_{h,i} \delta_{h,j} \delta_{h,ij}$$

 Following the same principle, whenever a head or a tail of a path is shared by R, an intersection occurs and this tentative -1 is lost.

Counting –1s

$$M_{\psi} = (\prod_{h \in H} M_{\partial_h}) R, \qquad \partial_h(i,j) = \delta_{h,i} \delta_{h,j} \delta_{h,ij}$$

 Consequently, the -1s of M_ψ at row h come from heads, tails and those of R which do not contribute any intersections at all,

$$2c_h + R_h - 2I_h = 2t$$

• Exhaustive search: $t \leq 7$ (2003).

• Heuristic search: Fitness = number of Hadamard rows (GA 2006, ACS 2009), $t \le 13$.

• Exhaustive search via ingredients and recipes (2011), $t \le 11$, $t \le 23$.

• Cocyclic Hadamard ideals (2016), $t \leq 39$.

• Heuristic search (GA 2017) + local search (CSP), t = 47??

Alternative fitness

F(paths, intersections) = constant

Group	F(p, I)	k	Rows
$\mathbb{Z}_2^2 \times \mathbb{Z}_t$	p	(t,\ldots,t)	$r \equiv 1 \mod t$
<i>D</i> _{4<i>t</i>}	р — I	(t-1,,1)	2,, <i>t</i>
GS_{4t}	$p_A + p_B + p_C + p_D$	t	$2, \ldots, \frac{t+1}{2}$

IDEA: \overrightarrow{F} $\parallel \overrightarrow{F}(p, I) - \overrightarrow{k} \parallel_{\infty}$ instead of hamming distance! (2)

The case $D_{4\cdot47}$

Fitness of 10000 random individuals runs on [5, 15].

The case *D*_{4.47}

Perform a heuristic such that you move to a neighbor as soon as fitness improves.

The case $D_{4\cdot47}$

In case that none of the 4*t* neighbors works, jump to a random individual at a prefixed hamming distance (6 seems to work fine).

The case $D_{4.47}$

Reaches fitness 2 immediately!

Reaches **fitness 1** almost every run, after no more than 1000 iterations!

34/39

The case $D_{4.47}$ Unfortunately, there are many local minima ⁶

The case *D*_{4.47}

Second step: local search.

Perform a radial search (radius 4 = 51.512.518 instances).

Alvarez

On cocyclic Hadamard matrices

The case $D_{4\cdot47}$

Faster by means of a Constraint Satisfaction Problem

What to come?

Thank you Mate and Ferenc!

On cocyclic Hadamard matrices