(Pseudo)-cocyclic (structured) Hadamard matrices over (quasi)groups

Alvarez, Armario, Falcón, Frau, Gudiel, Güemes and Kotsireas

University of Seville

5th Workshop on Real and Complex Hadamard Matrices and Applications

Outline

(1) Cocyclic constructions for Hadamard matrices

2 (Pseudo)cocyclic Hadamard matrices over quasigroups
(3) The Goethals-Seidel arrays are pseudo-cocyclic
(4) Searching for large cocyclic Hadamard matrices
(5) Future work

The cocyclic framework

$H=\left(\psi\left(g_{i}, g_{j}\right)\right)$ is a G-cocyclic Hadamard matrix, $|G|=4 t$.

$$
\psi\left(g_{i}, g_{j}\right) \psi\left(g_{i} g_{j}, g_{k}\right) \psi\left(g_{i}, g_{j} g_{k}\right) \psi\left(g_{j}, g_{k}\right)=1, \quad g_{i}, g_{j}, g_{k} \in G
$$

The cocyclic framework

$H=\left(\psi\left(g_{i}, g_{j}\right)\right)$ is a G-cocyclic Hadamard matrix, $|G|=4 t$,

$$
\psi\left(g_{i}, g_{j}\right) \psi\left(g_{i} g_{j}, g_{k}\right) \psi\left(g_{i}, g_{j} g_{k}\right) \psi\left(g_{j}, g_{k}\right)=1, \quad g_{i}, g_{j}, g_{k} \in G
$$

	Cocyclic	Non cocyclic		
Sylvester	$\mathbb{Z}_{2}^{\log _{2} 4 t}$			
Williamson	$\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{t}$			
Paley I	$D_{4 t}$			
Paley II	$\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{t}$			
Ito	$D_{4 t}$			
1-circulant core	$\mathbb{Z}_{4 t-1 \text {-cocyclic structured }}$			
2-circulant core	$D_{4 t-2}$-cocyclic structured			
Goethals-Seidel	always?			
Twin prime power				always?

(Dis)advantages

- Faster Hadamard test ©

$$
\sum_{j=1}^{4 t} \psi\left(g_{i}, g_{j}\right)=0, \text { for } 2 \leq i \leq 4 t .
$$

(Dis)advantages

- Search space is reduced *

(Dis)advantages

- The proportion of Hadamard matrices is reduced in turn

order	2	4	8	12	16	20	24	28	32
36									
\sim_{H}	1	1	1	1	5	3	60	487	13710027
\sim_{H+C}	1	1	1	1	5	3	$\mathbf{1 6}$	$\mathbf{6}$	$\mathbf{1 0 0}$

Ó Catháin, Röder 2011

What next? Cocycles over quasigroups...

Cocycles ψ over a quasigroup Q (i.e. associativity fails)

$$
\forall a, b \in Q, \exists!x, y \in Q / a x=b, y a=b
$$

$\psi\left(g_{i}, g_{j}\right) \psi\left(g_{i} g_{j}, g_{k}\right) \psi\left(g_{i}, g_{j} g_{k}\right) \psi\left(g_{j}, g_{k}\right)=1, \quad g_{i}, g_{j}, g_{k} \in Q$.

What next? Cocycles over quasigroups...

Although the usual Hadamard cocyclic test is available e...

$$
\begin{equation*}
\sum_{k=1}^{4 t} \psi\left(g_{h}, g_{k}\right) \psi\left(g_{j}, g_{k}\right)=0 \Leftrightarrow \sum_{k=1}^{4 t} \psi\left(g_{i}, g_{k}\right)=0 \tag{1}
\end{equation*}
$$

Proposition

...A necessary condition for a Q-cocyclic matrix M_{ψ} being Hadamard is that Q is actually endowed with a loop structure.

Example: a Q-cocyclic Hadamard matrix of order 8

Consider the quasigroup Q of given law $((5 \cdot 6) \cdot 7=6 \neq 5=5 \cdot(6 \cdot 7))$:

1	2	3	4	5	6	7	8
2	1	4	3	6	5	8	7
3	4	1	2	7	8	5	6
4	3	2	1	8	7	6	5
5	6	8	7	3	4	2	1
6	5	7	8	4	3	1	2
7	8	6	5	1	2	4	3
8	7	5	6	2	1	3	4

$$
B N_{2} \otimes \mathbf{1}_{4},\left(\begin{array}{cccc}
\partial_{2}, \partial_{3}, \partial_{4} \\
+ & + & + & + \\
+ & - & + & - \\
+ & + & + & - \\
+ & - & - & -
\end{array}\right) \otimes \mathbf{1}_{2}
$$

4 out of 32 are Hadamard: $\partial_{2} \partial_{3}, \partial_{2} \partial_{3} \partial_{4}, \partial_{3}, \partial_{4}$.

... Or even pseudo-cocycles over quasigroups!

... Or even pseudo-cocycles over quasigroups!

Formal coboundaries might not be cocyclic!

Lemma

The elementary map $\partial \delta_{h}$ actually constitutes a genuine cocycle if and only if

$$
g_{i}\left(g_{j} g_{k}\right)=g_{h} \Leftrightarrow\left(g_{i} g_{j}\right) g_{k}=g_{h}, \quad g_{i}, g_{j}, g_{k} \in Q
$$

... Or even pseudo-cocycles over quasigroups!

Those maps which are formally coboundaries but not truly cocycles are called pseudo-coboundaries. It is of interest considering pseudo-cocyclic matrices $M_{\psi \cdot \phi}$ resulting from the product of a genuine cocycle ψ and a pseudocoboundary ϕ for which the Hadamard test (1) still applies, no matter they are not truly cocyclic.

$$
\left\{H: H=M_{\psi}\right\} \subset\left\{H: H=M_{\psi \cdot \phi}\right\}
$$

order	2	4	8	12	16	20	24	28	32	36
\sim_{H}	1	1	1	1	5	3	60	487	13710027	$\geq 3 \cdot 10^{6}$
$\sim_{H+S C}$	1	1	1	1	5	3	$? ?$	$? ?$	$? ?$	$? ?$
\sim_{H+C}	1	1	1	1	5	3	$\mathbf{1 6}$	$\mathbf{6}$	$\mathbf{1 0 0}$	$\mathbf{3 5}$

	Cocyclic	Non cocyclic
Sylvester	$\mathbb{Z}_{2}^{\log _{2} 4 t}$	
Williamson	$\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{t}$	
Paley I	$D_{4 t}$	
Paley II	$\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{t}$	
Ito	$D_{4 t}$	
1-circulant core	$\mathbb{Z}_{4 t-1}$-cocyclic structured	
2-circulant core	$D_{4 t-2}$-cocyclic structured	
Goethals-Seidel	$G S_{4 t}$-pseudo-cocyclic	
Twin prime power	always?	

The Goethals-Seidel arrays

$$
\left(\begin{array}{rrrr}
A & B R & C R & D R \\
B R & -A & R D & -R C \\
C R & -R D & -A & R B \\
D R & R C & -R B & -A
\end{array}\right) \quad \begin{aligned}
& \\
& A, B, C, D \text { circulants, } \\
& R \leftarrow^{b}[0, \ldots, 0,1]
\end{aligned}
$$

It is Hadamard if $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 t t_{t}$.

The Goethals-Seidel arrays

$$
\begin{aligned}
& G S_{4 t}=\left\langle a, b, c, d: a^{t}=b^{2}=c^{2}=d^{2}=1,\left(a^{i} x\right) a^{j}=a^{i+j} x,\right. \\
& \left.a^{i}\left(a^{j} y\right)=a^{j-i} y,\left(a^{i} y\right)\left(a^{j} y\right)=a^{j-i},\left(a^{i} y_{1}\right)\left(a^{j} y_{2}\right)=a^{t-2-j-i} y_{3}\right\rangle
\end{aligned}
$$

$$
\text { for } x \in\{1, b, c, d\}, y \in\{b, c, d\},\left\{y_{1}, y_{2}, y_{3}\right\}=\{b, c, d\} .
$$

$$
1, a, \ldots, a^{t-1}, b, a b, \ldots a^{t-1} b, c, a c, \ldots, a^{t-1} c, d, a d, \ldots, a^{t-1} d
$$

The Goethals-Seidel arrays are $G S_{4 t}$-pseudo cocyclic

$$
\left(\begin{array}{rrrr}
A & B R & C R & D R \\
B R & -A & R D & -R C \\
C R & -R D & -A & R B \\
D R & R C & -R B & -A
\end{array}\right)\left(\begin{array}{llll}
{ }^{b} A & B^{c} & C^{c} & D^{c} \\
{ }^{b} B & A^{c} & b^{b} \bar{D} & { }^{b} \bar{C} \\
{ }^{b} C & { }^{b} \bar{D} & A^{c} & b^{b} \bar{B} \\
{ }^{b} D & { }^{b} \bar{C} & b^{b} \bar{B} & A^{c}
\end{array}\right)
$$

Theorem

The Goethals-Seidel array is pseudo-cocyclic over the loop $G S_{4 t}$.

Range	(i, j, k)	$i(j k)$
$2 \leq h \leq t$	$(t+1,2 t+1,4 t+2-h)$	$1+(h-3 \bmod t)$
$t+1 \leq h \leq 2 t$	$(2,2 t+1,5 t+1-h)$	$t+1+(h-3 \bmod t)$
$2 t+1 \leq h \leq 3 t$	$(2, t+1,6 t+1-h)$	$2 t+1+(h-3 \bmod t)$
$3 t+1 \leq h \leq 4 t$	$(2,2 t+1,7 t+1-h)$	$3 t+1+(h-3 \bmod t)$

$(i j) k=h \neq i(j k)$ and none of the formal coboundaries are cocyclic!

The Goethals-Seidel arrays are $G S_{4 t}$-pseudo cocyclic

$$
\left(\begin{array}{rrrr}
A & B R & C R & D R \\
B R & -A & R D & -R C \\
C R & -R D & -A & R B \\
D R & R C & -R B & -A
\end{array}\right)\left(\begin{array}{llll}
{ }^{b} A & B^{c} & C^{c} & D^{c} \\
{ }^{b} B & A^{c} & b^{b} \bar{D} & b \bar{C} \\
{ }^{b} C & { }^{b} \bar{D} & A^{c} & b \bar{B} \\
{ }^{b} D & { }^{b} \bar{C} & b^{b} \bar{B} & A^{c}
\end{array}\right)
$$

Theorem

The Goethals-Seidel array is pseudo-cocyclic over the loop $G S_{4 t}$.

$$
M_{\psi}=\left(\prod_{h \in H} M_{\partial_{h}}\right) R, R=\left(\begin{array}{llll}
+ & + & + & + \\
+ & - & + & - \\
+ & - & - & + \\
+ & + & - & -
\end{array}\right) \otimes \mathbf{1}_{t}
$$

Permute the pairs of rows $(i, t+2-i)$, for $2 \leq i \leq \frac{t+1}{2}$.

The Goethals-Seidel arrays are $G S_{4 t}$-pseudo cocyclic

Theorem

The Goethals-Seidel array is Hadamard if and only if the related $G S_{4 t}$-pseudococyclic matrix satisfies the usual cocyclic test.

$$
\begin{gathered}
\left\langle\operatorname{Row}_{i j}, \text { Row }_{j}\right\rangle=\sum_{k=1}^{4 t}\left(\prod_{h \in H} \delta_{h, i(j k)} \delta_{h,(i j) k}\right) \psi(i, j) \psi(i, j k)= \\
\psi(i, j) \sum_{k=1}^{4 t} \sigma_{k} \psi(i, j k)=\psi(i, j) \sum_{k=1}^{4 t} \psi(i, k) .
\end{gathered}
$$

Furthermore, it suffices to check rows $2 \leq i \leq \frac{t+1}{2}$.

Counting-1s

Counting-1s

$$
M_{\psi}=\left(\prod_{h \in H} M_{\partial_{h}}\right) R, \quad \partial_{h}(i, j)=\delta_{h, i} \delta_{h, j} \delta_{h, i j}
$$

- Every $M_{\partial_{h}}$ contributes two -1s at row k at positions (k, h) (head, d) and ($k, k^{-1} h$) (tail, $)$.

Counting - 1 s

$$
M_{\psi}=\left(\prod_{h \in H} M_{\partial_{h}}\right) R, \quad \partial_{h}(i, j)=\delta_{h, i} \delta_{h, j} \delta_{h, i j}
$$

- Whenever two different $M_{\partial_{h_{1}}}$ and $M_{\partial_{h_{1}}}$ share a tail and a head at row k, they constitute a path at row k.

$$
1 \lll \Delta \gg 1 \rightarrow++
$$

- Consequently $\prod_{h \in H} M_{\partial_{h}}$ contributes twice as many - 1 s as maximal paths there exist at row k.

Counting - 1 s

$$
M_{\psi}=\left(\prod_{h \in H} M_{\partial_{h}}\right) R, \quad \partial_{h}(i, j)=\delta_{h, i} \delta_{h, j} \delta_{n, i j}
$$

- Following the same principle, whenever a head or a tail of a path is shared by R, an intersection occurs and this tentative - 1 is lost.

Counting - 1 s

$$
M_{\psi}=\left(\prod_{h \in H} M_{\partial_{h}}\right) R, \quad \partial_{h}(i, j)=\delta_{h, i} \delta_{h, j} \delta_{h, i j}
$$

- Consequently, the -1 s of M_{ψ} at row h come from heads, tails and those of R which do not contribute any intersections at all,

$$
2 c_{h}+R_{h}-2 I_{h}=2 t
$$

$$
\text { (6) } R_{h}=2
$$

$$
c_{h}=2, I_{h}=1
$$

Counting -1 s in practise

- Exhaustive search: $t \leq 7$ (2003).

Counting - 1 s in practise

- Heuristic search: Fitness = number of Hadamard rows (GA 2006, ACS 2009), $t \leq 13$.

Counting -1s in practise

- Exhaustive search via ingredients and recipes (2011), $t \leq 11$, $t \leq 23$.

Counting -1 s in practise

- Cocyclic Hadamard ideals (2016), $t \leq 39$.

Counting -1 s in practise

- Heuristic search (GA 2017) + local search (CSP), $t=47$??

Alternative fitness

$$
\begin{equation*}
F(\text { paths, intersections })=\text { constant } \tag{2}
\end{equation*}
$$

Group	$F(p, I)$	$\overrightarrow{\mathbf{k}}$	Rows
$\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{t}$	p	(t, \ldots, t)	$r \equiv 1 \bmod t$
$D_{4 t}$	$p-l$	$(t-1, \ldots, 1)$	$2, \ldots, t$
$G S_{4 t}$	$p_{A}+p_{B}+p_{C}+p_{D}$	t	$2, \ldots, \frac{t+1}{2}$

IDEA:
$\|\vec{F}(p, I)-\overrightarrow{\mathbf{k}}\|_{\infty}$ instead of hamming distance!

The case $D_{4.47}$

Fitness of 10000 random individuals runs on $[5,15]$.

The case $D_{4.47}$

Perform a heuristic such that you move to a neighbor as soon as fitness improves.

The case $D_{4.47}$

In case that none of the $4 t$ neighbors works, jump to a random individual at a prefixed hamming distance (6 seems to work fine).

The case $D_{4.47}$

Reaches fitness 2 immediately!
Reaches fitness 1 almost every run, after no more than 1000 iterations! ©

The case $D_{4.47}$
 Unfortunately, there are many local minima ;

Alvarez
On cocyclic Hadamard matrices

The case $D_{4.47}$

Second step: local search.

Perform a radial search (radius $4=51.512 .518$ instances).

The case $D_{4.47}$

Faster by means of a Constraint Satisfaction Problem

What to come?

Thank you Mate and Ferenc!

