
Designing rotating schedules by using Gröbner bases

Raúl Falcón1, David Canca1, Eva Barrena2

1 University of Seville (Spain)

2 CIRRELT and HEC Montréal (Canada)

{rafalgan, dco}@us.es, eva.barrena-algara@hec.ca

Abstract

In the current paper, we deal with the problem of designing rotating schedules from an
algebraic computational approach. Specifically, we determine a set of Boolean polynomials
whose zeros can be uniquely identified with the set of rotating schedules related to a given
workload matrix and with the different constraints which are usually imposed to them. These
polynomials constitute zero-dimensional radical ideals, whose reduced Gröbner bases can be
computed to determine explicitly the set of rotating schedules which satisfy each constraint
and hence, making possible to analyze their influence in the final pattern. Finally, we use this
polynomial method to classify and characterize the set of rotating schedules related to a given
number of shifts and work teams.

Keywords
Rotating schedule, Boolean ideal, Gröbner basis.

1 Introduction

Crew rostering is the last relevant step within the tactical phase of railway planning. Once the
distinct shifts are designed to cover all programmed services, it becomes necessary to proceed with
the individual assignment of the personal. The high complexity of this last task is mainly due to
the differences which exist among shifts (compare the most common: day, evening and night shifts)
from a quantitative as well as from a qualitative point of view. In addition, the individual acquired
rights of the personnel have to be taken into consideration. Shift works have special relevance in
those facilities which provide a service which is available at any time and day of the week. Due to
the mentioned significant differences among shifts, labor schedules in these jobs have to be carefully
designed. A scheduling pattern which is highly recommended for shift works is that of rotating
schedules, where the assignment of shifts per week to n distinct work teams is explicitly exposed
in a schedule of n rows and 7 columns. Specifically, the (i, j) entry of the schedule corresponds to
the shift or rest period which is initially assigned to the ith team, the jth day of the first week.
Once the week finishes, each team moves down to the following row of the schedule (or to the first
row in case of being the last team) to know the shift assignment of the new week.

In order to design a rotating schedule, it is necessary to know in advance its related workload
matrix, that is, the number of shifts of each type which have to be assigned each day of the week.
Besides, several constraints have to be taken into account to preserve equal opportunities among
workers and to prevent health risks like stress, sleep disorder or digestive upsets. In the current
paper, we consider the following six constraints exposed by Laporte [8, 9]:

C.1) Schedules should contain as many full weekends off as possible.

C.2) Weekends off should be well spaced out in the cycle.

C.3) A shift change can only occur after at least one day off.

C.4) The number of consecutive work days must not exceed 6 days and must not be less than 2.

C.5) The number of consecutive rest days must not exceed 6 days and must not be less than 2.

C.6) In consecutive days, forward rotations (day, evening, night) are generally preferred to back-
ward rotations (day, night, evening).

There exist distinct methods and techniques in the literature to design rotating schedules [1]
like manual approach, integer programming, heuristic procedures or network flows. Since the main
goal of designing rotating schedules is minimizing costs and maximizing employee satisfaction,
these methods do not determine in general all the possible rotating schedules verifying certain
conditions, but only those which are on the path of finding the optimal model. However, it would
be interesting to analyze the influence of each kind of constraint on the set of feasible solutions,
that is, to deal with the number of rotating schedules which are eliminated or incorporated every
time that we add or remove a specific condition. As a possible alternative, the combinatorial
structure of any rotating schedule facilitates the use of the polynomial method established by Alon
[2] and Bernasconi et al. [4], which solves enumeration and counting problems in Combinatorics
by computing the reduced Gröbner basis of a zero-dimensional ideal uniquely related to a given
combinatorial object. In this regard, see, for instance, the surveys of De Loera et al. [10, 11] on
possible applications in graph theory. Indeed, graph theory has already been used in the scheduling
problem [7].

The current paper is organized as follows. In Section 2, we identify the rotating schedules of a
given workload matrix and satisfying Constraints C.1-C.6, with the set of zeros of a Boolean ideal,
which can be explicitly determined by computing the corresponding reduced Gröbner basis. Such
a computation has been implemented in a procedure in Singular [6], which is used in Section 3
to study the influence of Constraints C.3-C.6 in the design of rotating schedules related to part
time employers. Finally, since Gröbner bases are extremely sensitive to the number of variables,
we show in Section 4 how the previous method can be improved by considering column generation.

2 Boolean polynomials related to rotating schedules.

Given two positive integers s, t ∈ N, let W = (wij) be a s× 7 array with all column sums equal to
t and let RSW denote the set of rotating schedules of s shift works (including that corresponding
to rest days) and t team works, which have W as workload matrix. That is, wij indicates the
number of team works which have to have the ith shift the jth day. Thus, for instance, Constraint
C.1 implies that any rotating schedule of RSW should have fW = min{ws6, ws7} full weekends off.

Hereafter, [s] = {1, . . . , s} is assumed to represent the set of shift works of RSW in forward
rotation order (thus, for instance, 1, 2 and 3 can represent, respectively, day, evening and night
shifts), where the last symbol s corresponds to a rest day. In particular, the set RSW can be
identified with that of t × 7 arrays R = (rij) based on [s] such that the frequency vector of the
symbols which appear in each column of R is given by the corresponding column of W , that is,
given i ∈ [s] and j ∈ [7], the jth column of R contains wij times the symbol i.

In practice, it is also interesting to have the possibility of imposing some of the entries of
our future rotating schedule. Thus, for instance, according to Constraint C.2, the symbols s
corresponding to the fW full weekends off could be distributed by hand in advance, in a well-
spaced way in the cycle. Indeed, it is the usual way to proceed for designing rotating schedules [9].
In this regard, let E = (eij) be a t× 7 array with entries in the set [s] ∪ {0}, where eij ∈ [s] if the
entry (i, j) is imposed to our rotating schedule, or zero, otherwise. We say that R = (rij) ∈ RSW
contains E if rij = eij , for all i ∈ [t] and j ∈ [7]. Let RSW,E denote the subset of rotating schedules
of RSW containing E. The next result shows how this set can be identified with that of zeros
of a Boolean ideal which is zero-dimensional and radical. Its reduced Gröbner basis can be then
computed to determine explicitly the cardinality of RSW,E .

Theorem 1 The set RSW,E can be identified with that of zeros of the following zero-dimensional
ideal of Q[x111, . . . , xt7s].

IW,E = ⟨ 1− xijeij : i ∈ [t], j ∈ [7], eij ∈ [s] ⟩ + ⟨xijk : i ∈ [t], j ∈ [7], eij ∈ [s], k ∈ [s] \ {eij} ⟩+

⟨xijk · (1− xijk) : i ∈ [t], j ∈ [7], k ∈ [s], eij = 0 ⟩ + ⟨ 1−
∑
k∈[s]

xijk : i ∈ [t], j ∈ [7], eij = 0 ⟩+

⟨xijk : i ∈ [t], j ∈ [7], k ∈ [s], wkj = 0 ⟩+ ⟨wkj −
∑
i∈[t]

xijk : j ∈ [7], k ∈ [s], wkj ̸= 0 ⟩.

Moreover, |RSW,E | = dimQ(Q[x111, . . . , xt7s]/IW,E).

Proof. Any rotating schedule R = (rij) ∈ RSW,E can be uniquely identified with a zero
(x111, . . . , xt7s), where xijk = 1 if rij = k and 0, otherwise. The finiteness of RSW implies IW,E

to be zero-dimensional. Besides, since IW,E ∩ Q[xijk] = ⟨xijk · (1− xijk) ⟩ ⊆ IW,s,t for all i ∈ [t],
j ∈ [7] and k ∈ [s], Proposition 2.7 of [5] assures IW,E to be radical and thus, Theorem 2.10 of [5]
implies that |RW,E | = |V (IW,E)| = dimQ(Q[x111, ..., xt7s]/IW,E). �

Constraints C.3 to C.6 can be imposed to our rotating schedules if we translate them in terms
of Boolean polynomials of Q[x111, . . . , xt7s], which can be incorporated to the ideal IW,E .

C.3) For all k ∈ [s− 1] and l ∈ [s− 1] \ {k}, we add:
xijk · xi(j+1)l, for all i ∈ [t], j ∈ [6],

xi7k · x(i+1)1l, for all i ∈ [t− 1],

xt7k · x11l.

C.4) For a lower bound of 2 work days, we add, for each k ∈ [s− 1]:

(xijk − 1) · xi(j+1)k · (xi(j+2)k − 1), for all i ∈ [t], j ∈ [5],

(xi6k − 1) · xi7k · (x(i+1)1k − 1), for all i ∈ [t− 1],

(xi7k − 1) · x(i+1)1k · (x(i+1)2k − 1), for all i ∈ [t− 1],

(xt6k − 1) · xt7k · (x11k − 1),

(xt7k − 1) · x11k · (x12k − 1).

For an upper bound of 6 work days, we add:{∏7
j=d xijk ·

∏d−1
j=1 x(i+1)jk, for all i ∈ [t− 1], d ∈ [7], k ∈ [s− 1],∏7

j=d xtjk ·
∏d−1

j=1 x1jk, for all d ∈ [7], k ∈ [s− 1].

C.5) Similarly to Constraint C.4, we add:

(xijs − 1) · xi(j+1)s · (xi(j+2)s − 1), for all i ∈ [t], j ∈ [5],

(xi6s − 1) · xi7s · (x(i+1)1s − 1), for all i ∈ [t− 1],

(xi7s − 1) · x(i+1)1s · (x(i+1)2s − 1), for all i ∈ [t− 1]

(xt6s − 1) · xt7s · (x11s − 1),

(xt7s − 1) · x11s · (x12s − 1).{∏7
j=d xijs ·

∏d−1
j=1 x(i+1)js, for all i ∈ [t− 1], d ∈ [7],∏7

j=d xtjs ·
∏d−1

j=1 x1js, for all d ∈ [7].

C.6) For all k ∈ {2, . . . , s− 1}, l ∈ [k − 1], we add:
xijk · xi(j+1)l, for all i ∈ [t], j ∈ [6],

xi7k · x(i+1)1l, for all i ∈ [t− 1],

xt7k · x11l.

3 Implementation of the method.

We have considered all the Boolean polynomials of the previous section in order to implement in
Singular the procedure rotating [3], which determines explicitly the subset of rotating schedules
of RSW,E , which satisfy some of the Constraints C.1-C.6. It is worth highlighting the effectiveness
of this procedure in case of considering rotating schedules related to part time employees for which
the initial workload matrix contains zero entries distributed throughout the week. To test it, we
have considered the following two workload matrices used by Laporte in [8].

W1 =

0 0 1 1 1 1 1
0 0 1 1 1 0 0
0 0 0 2 2 2 2
4 4 2 0 0 1 1

 W2 =

0 0 1 1 1 1 1
0 0 1 1 1 0 0
0 0 0 2 2 2 2
5 5 3 1 1 2 2

According to Constraints C.1 and C.2, we have also imposed that our rotating schedules must
contain the following two respective arrays.

E1 =

0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 E2 =

0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0
0 0 0 0 0 4 4
0 0 0 0 0 0 0

We show in Table 1 the number of rotating schedules related to the previous arrays, according
to the constraints C.3-C.6 which can be imposed. In each case, we also indicate the running
time (r.t.) in seconds which has been necessary in a system with an Intel Core i7-2600, 3.4 GHz
and Ubuntu. The computational cost of those cases marked by an asterisk has turned out to be
excessive for the processing capability of the mentioned computer system.

Constraints |RSW1,E1
| r.t. |RSW2,E2

| r.t.
C.3 C.4 C.5 C.6

15,552 0 648,000 0
x 3 0 360 97

x 36 0 216 8
x 15,552 0 145,152 650

x 81 0 * *
x x 3 1 42 4
x x 3 1 62 14
x x 3 1 71 93

x x 36 1 48 7
x x 9 1 360 13

x x 81 1 * *
x x x 3 1 10 3
x x x 3 1 42 6
x x x 3 1 62 15

x x x 9 1 30 8
x x x x 3 1 10 5

Table 1: Distribution of rotating schedules according to the type of constraints.

The three rotating schedules related to W1 and E1 which satisfies all the constraints are:

4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 1 1 1 1

 ,

4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 1 1 1 1
4 4 4 3 3 3 3

 ,

4 4 1 1 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 3 3 3 3

 .

The ten rotating schedules related to W2 and E2 which satisfy all the constraints are:

4 4 4 4 4 3 3
4 4 4 3 3 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 1 1 1 1 1

 ,

4 4 4 4 4 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 4 3 3 4 4
4 4 1 1 1 1 1

 ,

4 4 4 3 3 3 3
4 4 1 1 4 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 4 1 1 1

 ,

4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 4 1 1 1
4 4 1 1 4 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 1 1 4 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 4 3 3
4 4 2 2 2 4 4
4 4 1 1 1 1 1
4 4 4 3 3 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 4 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3
4 4 1 1 1 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 4 3 3
4 4 4 3 3 4 4
4 4 1 1 1 1 1
4 4 2 2 2 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 4 1 1
4 4 1 1 1 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3

 ,

4 4 4 4 1 1 1
4 4 1 1 4 4 4
4 4 4 3 3 3 3
4 4 2 2 2 4 4
4 4 4 3 3 3 3

 .

The number of possible rotating schedules in Table 1 may also give us information about the
influence of each constraint on the final schedule. Thus, for instance, we can observe how Constraint
C.5 does not have any influence on the design of a rotating schedule of workload matrix W1, i.e.,
it does not diminishes the number of solutions when it is considered alone neither in combination
with other constraints. However, it can be observed that it has influence on the design of rotating
schedules of workload matrix W2.

4 Final remarks and further work.

In the current paper, we have shown how the polynomial method can be used in order to determine
explicitly all the possible rotating schedules which satisfy a given set of constraints and to analyze
their influence on the existence of such schedules. Besides, we have just seen in Table 1 that,
depending on the constraints in which we are interested, the computational cost which is necessary
to obtain a rotating schedule can be excessive even for small orders. A possible alternative to be
considered as further work is to construct such a schedule by using the column generation method
[9], which consists of determining all the shifts of one day, before of obtaining those of the following
day. The number of variables which is necessary to use in such a case is considerably reduced and
hence, the computational cost is improved.

References

[1] H. K. Alfares, Survey, Categorization, and Comparison of Recent Tour Scheduling Literature,
Annals of Operations Research 127 (2004) no. 1-4, 145–175.

[2] N. Alon, Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995).
Combin. Probab. Comput. 8 (1999) no. 1–2, 7–29.

[3] E. Barrena, D. Canca and R. M. Falcón, http://personal.us.es/raufalgan/LS/crew.lib.

[4] A. Bernasconi, B. Codenotti, V. Crespi and G. Resta, Computing Groebner Bases in the
Boolean Setting with Applications to Counting, 1st Workshop on Algorithm Engineering
(WAE). Venice, Italy, 1997, pp. 209–218.

[5] D. A. Cox, J. B. Little and D. O’Shea, Using Algebraic Geometry, Springer-Verlag, New York,
1998.

[6] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-6. A computer algebra
system for polynomial computations, 2013. http://www.singular.uni-kl.de.

[7] M. Gamache, A. Hertz and J. O. Ouellet, A graph coloring model for a feasibility problem in
monthly crew scheduling with preferential bidding, Computers & OR 34 (2007) no. 8, 2384–
2395.

[8] G. Laporte, The art and science of designing rotating schedules, Journal of the Operational
Research Society 50 (1999) no. 10, 1011–1017.

[9] G. Laporte and G. Pesant, A general multi-shift scheduling system, Journal of the Operational
Research Society 55 (2004) no. 11, 1208–1217.

[10] J. A. Loera, J. Lee, S. Margulies and S. Onn, Expressing Combinatorial Problems by Sys-
tems of Polynomial Equations and Hilberts Nullstellensatz, Combinatorics, Probability and
Computing 18 (2009) 551–582.

[11] J. A. De Loera, C. J. Hillar, P. N. Malkin and M. Omar, Recognizing Graph Theoretic
Properties with Polynomial Ideals, Electron. J. Combin. 17 (2010) no. 1, Research Paper 114,
26 pp.

