Counting partial Latin rectangles

Rebecca J. Stones (Nankai University, China) joint work with Raúl Falcón (University of Seville, Spain).

July 7, 2015

Partial Latin rectangles

Here's what I mean by a partial Latin rectangle in this talk:

n symbols:

(and maybe some unused symbols)

Latin squares are the case when $r=s=n$ and $m=n^{2}$.

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are generalized, generalized, generalized

Latin squares.

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are generalized, generalized, generalized

Latin squares.

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are generalized,
generalized,
generalized

Latin squares.

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are

And we're going to count these?!?!

Latin squares are the case when $r=s=n$ and $m=n^{2}$.
Thus the partial Latin rectangles we're looking at are

And we're going to count these?!?!

Challenge accepted

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.
we allow clashes, then include-exclude over the number of clashes

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.
we allow clashes, then include-exclude over the number of clashes
partial Latin rectan-
gles are interpreted as ordered lists of entries

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.
we allow clashes, then include-exclude over the number of clashes partial Latin rectan-
gles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

$$
m!\# \operatorname{PLR}(r, s, n ; m)=\sum_{V}(-1)^{|V|}\left|\mathcal{B}_{V}\right|
$$

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.
we allow clashes, then include-exclude over the number of clashes partial Latin rectan-
gles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

$$
m!\# \operatorname{PLR}(r, s, n ; m)=\sum_{V}(-1)^{|V|}\left|\mathcal{B}_{V}\right|
$$

set of clashes

Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin rectangles.
we allow clashes, then include-exclude over the number of clashes partial Latin rectan-
gles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

$$
\begin{aligned}
& m!\# \operatorname{PLR}(r, s, n ; m)=\sum_{v}(-1)^{|V|}\left|\mathcal{B}_{V}\right| . \\
& \substack{\text { eralized ordered PLRs with } \\
\text { (and maybe more) }}
\end{aligned}
$$ clashes in V (and maybe more)

Example set of clashes V :
e_{1}, e_{2}, same cell
e_{1}, e_{3}, same cell
e_{3}, e_{4}, same cell
e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Example set of clashes V :

e_{1}, e_{2}, same cell
e_{1}, e_{3}, same cell
e_{3}, e_{4}, same cell
e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Example set of clashes V :

e_{1}, e_{2}, same cell
e_{1}, e_{3}, same cell
e_{3}, e_{4}, same cell
e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Computing $\left|\mathcal{B}_{V}\right|$ is now a graph coloring problem.

Example set of clashes V :

e_{1}, e_{2}, same cell
e_{1}, e_{3}, same cell
e_{3}, e_{4}, same cell
e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Computing $\left|\mathcal{B}_{V}\right|$ is now a graph coloring problem.
If we "color" e_{1} with (r_{1}, c_{1}, s_{1}) and e_{2} with $\left(r_{2}, c_{2}, s_{2}\right)$, then we want $r_{1}=r_{2}$ and $c_{1}=c_{2}$ to match the edge coloring.

Example set of clashes V :

```
e}\mp@subsup{e}{1}{},\mp@subsup{e}{2}{}\mathrm{ , same cell
e}\mp@subsup{e}{1}{},\mp@subsup{e}{3}{},\mathrm{ same cell
e},\mp@subsup{e}{4}{},\mathrm{ same cell
```

e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Computing $\left|\mathcal{B}_{V}\right|$ is now a graph coloring problem.
If we "color" e_{1} with (r_{1}, c_{1}, s_{1}) and e_{2} with $\left(r_{2}, c_{2}, s_{2}\right)$, then we want $r_{1}=r_{2}$ and $c_{1}=c_{2}$ to match the edge coloring.

And so on for the other edges.

Example set of clashes V :

```
e}\mp@subsup{e}{1}{},\mp@subsup{e}{2}{}\mathrm{ , same cell
e}\mp@subsup{e}{1}{},\mp@subsup{e}{3}{},\mathrm{ same cell
e},\mp@code{, e}4,\mathrm{ same cell
```

e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Computing $\left|\mathcal{B}_{V}\right|$ is now a graph coloring problem.
If we "color" e_{1} with (r_{1}, c_{1}, s_{1}) and e_{2} with $\left(r_{2}, c_{2}, s_{2}\right)$, then we want $r_{1}=r_{2}$ and $c_{1}=c_{2}$ to match the edge coloring.

And so on for the other edges.
Parallel edges imply $\left(r_{i}, c_{i}, s_{i}\right)=\left(r_{j}, c_{j}, s_{j}\right)$, regardless of the colors of the edges.

Example set of clashes V :

```
e}\mp@subsup{e}{1}{},\mp@subsup{e}{2}{}\mathrm{ , same cell
e}\mp@subsup{e}{1}{},\mp@subsup{e}{3}{},\mathrm{ same cell
e},\mp@code{, e}4,\mathrm{ same cell
```

e_{1}, e_{3}, same symbol and row
e_{1}, e_{4}, same symbol and row
e_{2}, e_{3}, same symbol and column

Computing $\left|\mathcal{B}_{V}\right|$ is now a graph coloring problem.
If we "color" e_{1} with (r_{1}, c_{1}, s_{1}) and e_{2} with $\left(r_{2}, c_{2}, s_{2}\right)$, then we want $r_{1}=r_{2}$ and $c_{1}=c_{2}$ to match the edge coloring.

And so on for the other edges.
Parallel edges imply $\left(r_{i}, c_{i}, s_{i}\right)=\left(r_{j}, c_{j}, s_{j}\right)$, regardless of the colors of the edges. So we replace them with a single black edge.

If we rephrase in terms of these colorings...

For all $m, r, s, n \geq 1$, we have

$$
\begin{aligned}
& m!\# \operatorname{PLR}(r, s, n ; m)= \\
& \quad(r s n)^{m}+\sum_{v \geq 2} \sum_{e \geq 1}(-1)^{e}\binom{m}{v}(r s n)^{m-v+1} \sum_{G \in \Gamma_{e, v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)
\end{aligned}
$$

where

$$
P(G)=P(G ; r, s, n)=\sum_{\delta}(-2)^{\mathbf{b}(\delta)} r^{c\left(H_{3}\right)-1} s^{c\left(H_{2}\right)-1} n^{c\left(H_{1}\right)-1}
$$

where the sum is over all (red, blue, green, black) edge colorings δ of G.

If we rephrase in terms of these colorings...

For all $m, r, s, n \geq 1$, we have

$$
\begin{aligned}
& m!\# \operatorname{PLR}(r, s, n ; m)= \\
& \quad(r s n)^{m}+\sum_{v \geq 2} \sum_{e \geq 1}(-1)^{e}\binom{m}{v}(r s n)^{m-v+1} \sum_{G \in \Gamma_{e, v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)
\end{aligned}
$$

where

$$
P(G)=P(G ; r, s, n)=\sum_{\delta}(-2)^{\mathbf{b}(\delta)} r^{c\left(H_{3}\right)-1} s^{c\left(H_{2}\right)-1} n^{c\left(H_{1}\right)-1}
$$

where the sum is over all (red, blue, green, black) edge colorings δ of G.
What's important here:

If we rephrase in terms of these colorings...

For all $m, r, s, n \geq 1$, we have

$$
\begin{aligned}
& m!\# \operatorname{PLR}(r, s, n ; m)= \\
& \quad(r s n)^{m}+\sum_{v \geq 2} \sum_{e \geq 1}(-1)^{e}\binom{m}{v}(r s n)^{m-v+1} \sum_{G \in \Gamma_{e, v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)
\end{aligned}
$$

where

$$
P(G)=P(G ; r, s, n)=\sum_{\delta}(-2)^{\mathbf{b}(\delta)} r^{c\left(H_{3}\right)-1} s^{c\left(H_{2}\right)-1} n^{c\left(H_{1}\right)-1}
$$

where the sum is over all (red, blue, green, black) edge colorings δ of G.
What's important here:
For arbitrary simple graphs G, there is a graph polynomial $P(G)$.

If we rephrase in terms of these colorings...

For all $m, r, s, n \geq 1$, we have

$$
\begin{aligned}
& m!\# \operatorname{PLR}(r, s, n ; m)= \\
& \quad(r s n)^{m}+\sum_{v \geq 2} \sum_{e \geq 1}(-1)^{e}\binom{m}{v}(r s n)^{m-v+1} \sum_{G \in \Gamma_{e, v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)
\end{aligned}
$$

where

$$
P(G)=P(G ; r, s, n)=\sum_{\delta}(-2)^{\mathbf{b}(\delta)} r^{c\left(H_{3}\right)-1} s^{c\left(H_{2}\right)-1} n^{c\left(H_{1}\right)-1}
$$

where the sum is over all (red, blue, green, black) edge colorings δ of G.
What's important here:
For arbitrary simple graphs G, there is a graph polynomial $P(G)$.
P If we compute $P(G)$ and $|\operatorname{Aut}(G)|$ for small graphs, we find $\# \operatorname{PLR}(r, s, n ; m)$ for small m.

We compute these polynomials and automorphism group sizes:

G	v	e	$c(G)$	$\|\operatorname{Aut}(G)\|$	$P(G)=P(G ; r, s, n)$
\cdots	2	1	1	2	$\overline{100}-2$
\bigcirc	3	2	1	2	$P(\bullet)^{2}$
8	3	3	1	6	$\overline{200}-2$
68	4	2	2	8	$\overline{111} P(\bullet \bullet)^{2}$
\bigcirc	4	3	1	6	$P(\bullet \bullet)^{3}$
\cdots	4	3	1	2	$P(\cdots)^{3}$
0	4	1	1	2	$P\left({ }_{\text {¢ }}\right.$) $P(\bullet)$
8	4	4	1	8	$\overline{300}+6 \overline{110}-12 \overline{100}+16$
8	4	5	1	4	$\overline{300}+2 \overline{110}-4 \overline{100}+4$
8	4	6	1	24	$\overline{300}-2$
06	5	3	2	4	$\overline{111} P(\bullet)^{3}$
80	5	4	2	12	$\overline{111} P(\boldsymbol{\sim}) P(\bullet)$
\%\%	6	3	3	48	$\overline{222} P(\bullet \bullet)^{3}$

...and so on.

We compute these polynomials and automorphism group sizes:

G	v	e	$c(G)$	$\|\operatorname{Aut}(G)\|$	$P(G)=P(G ; r, s, n)$
\cdots	2	1	1	2	$\overline{100}-2$
\bigcirc	3	2	1	2	$P(\bullet \bullet)^{2}$
\bigcirc	3	3	1	6	$\overline{200}-2$
26	4	2	2	8	$\overline{111} P(\bullet)^{2}$
0	4	3	1	6	$P(\bullet)^{3}$
8	4	3	1	2	$P(\bullet)^{3}$
0	4	1	1	2	$P($ - $) P(\bullet)$
8	4	4	1	8	$\overline{300}+6 \overline{110}-12 \overline{100}+16$
2	4	5	1	4	$\overline{300}+2 \overline{110}-4 \overline{100}+4$
8	4	6	1	24	$\overline{300}-2$
80	5	3	2	4	$\overline{111} P(-)^{3}$
\&0.	5	4	2	12	$\overline{111} P\left({ }_{\text {d }}\right.$) $P(\bullet)$
20\%	6	3	3	48	$\overline{222} P\left(\bullet\right.$) ${ }^{3}$

...and so on.
Here, we use this shorthand:

$$
\begin{aligned}
& \overline{210}=r^{2} s+r^{2} n+s^{2} r+s^{2} n+n^{2} r+n^{2} s, \text { and } \\
& 2 \overline{100}=2(r+s+t)
\end{aligned}
$$

The asymptotic number of partial Latin rectangles of fixed weight...

For fixed m, we have

$$
\begin{aligned}
& \mathrm{m}!\# \mathrm{PLR}(\mathrm{r}, \mathrm{~s}, \mathrm{n} ; \mathrm{m})=(r s n)^{m}+\binom{m}{2}(r s n)^{m-1}(2-\overline{100})+\binom{m}{3}(r s n)^{m-2}(14-12 \overline{100}+6 \overline{110}+2 \overline{200})+ \\
& \binom{m}{4}(r s n)^{m-3}(198-228 \overline{100}+198 \overline{110}-84 \overline{111}+72 \overline{200}-36 \overline{210}-12 \overline{211}+6 \overline{221}-6 \overline{300}+3 \overline{311})+ \\
& \binom{m}{5}(r s n)^{m-4}(-6360 \overline{100}+7440 \overline{110}-6080 \overline{111}+2880 \overline{200}-2520 \overline{210}+820 \overline{211}+480 \overline{220}+360 \overline{221}- \\
& 180 \overline{222}-480 \overline{300}+240 \overline{310}+160 \overline{311}-80 \overline{321}+24 \overline{400}-20 \overline{411})+\binom{m}{6}(r s n)^{m-5}(-13170 \overline{211}+17340 \overline{221}- \\
& 15990 \overline{222}+7580 \overline{311}-7050 \overline{321}+3300 \overline{322}+1520 \overline{331}+180 \overline{332}-90 \overline{333}-1740 \overline{411}+870 \overline{421}+90 \overline{422}-45 \overline{432}+ \\
& 130 \overline{511}-15 \overline{522})+\binom{m}{7}(r s n)^{m-6}(-10920 \overline{322}+15540 \overline{332}-15120 \overline{333}+7350 \overline{422}-7140 \overline{432}+3570 \overline{433}+ \\
& 1680 \overline{442}-2100 \overline{522}+1050 \overline{532}+210 \overline{622})+\binom{m}{8}(r s n)^{m-7}(-3360 \overline{433}+5040 \overline{443}-5040 \overline{444}+2520 \overline{533}- \\
& 2520 \overline{543}+1260 \overline{544}+630 \overline{553}-840 \overline{633}+420 \overline{643}+105 \overline{733})+ \text { some polynomial of degree } \leq 3 m-12 .
\end{aligned}
$$

Method 2: Chromatic Polynomials

Any partial Latin rectangle $\operatorname{PLR}(r, s, n ; m)$ can be interpreted as a proper n-coloring of an m-vertex induced subgraph of the $r \times s$ rook's graph.

Method 2: Chromatic Polynomials

Any partial Latin rectangle $\operatorname{PLR}(r, s, n ; m)$ can be interpreted as a proper n-coloring of an m-vertex induced subgraph of the $r \times s$ rook's graph.

If Π denotes the chromatic polynomial, we thus have

$$
\# \operatorname{PLR}(r, s, n ; m)=\sum_{M} \Pi(M ; n)
$$

over all m-vertex induced subgraphs M of the $r \times s$ rook's graph.

Method 2: Chromatic Polynomials

Any partial Latin rectangle $\operatorname{PLR}(r, s, n ; m)$ can be interpreted as a proper n-coloring of an m-vertex induced subgraph of the $r \times s$ rook's graph.

If Π denotes the chromatic polynomial, we thus have

$$
\# \operatorname{PLR}(r, s, n ; m)=\sum_{M} \Pi(M ; n)
$$

over all m-vertex induced subgraphs M of the $r \times s$ rook's graph. Or, equivalently, $(0,1)$-matrices with m ones.

We can permute the rows and columns of a (0,1)-matrix with m ones into a canonical form:

K_{1}	\emptyset	\cdots	\emptyset	\emptyset
\emptyset	K_{2}		\emptyset	\emptyset
\vdots		\ddots		\vdots
\emptyset	\emptyset		K_{k}	\emptyset
\emptyset	\emptyset	\cdots	\emptyset	\emptyset

The blocks $K_{1}, K_{2}, \ldots, K_{k}$ are in some kind of canonical form under row/column permutations.

If we sum over such canonical forms, for fixed m, we get:
$m!\# \operatorname{PLR}(r, s, n ; m)=$

$$
\sum_{\substack{k \geq 0}} \sum_{\substack{\left(K_{1}, K_{2}, \ldots, K_{k}\right) \\ m \text { ones }}} \sum_{\operatorname{good}\left(t_{i}\right)_{i=1}^{k}}[r]_{\text {erow }}[s]_{e_{\text {col }}} \frac{\prod_{i=1}^{k} \Pi\left(K_{i} ; n\right)}{\left(\prod_{i=1}^{k}\left|\operatorname{Aut}\left(G_{K_{i}}\right)\right|\right)\left(\prod_{i=1}^{\ell} k_{i}!\right)}
$$

where...

If we sum over such canonical forms, for fixed m, we get:
$m!\# \operatorname{PLR}(r, s, n ; m)=$

$$
\sum_{\substack{k \geq 0}} \sum_{\substack{\left(K_{1}, K_{2}, \ldots, K_{k}\right) \\ m \text { ones }}} \sum_{\operatorname{good}\left(t_{i}\right)_{i=1}^{k}}[r]_{e_{\mathrm{row}}}[s]_{e_{\mathrm{col}}} \frac{\prod_{i=1}^{k} \Pi\left(K_{i} ; n\right)}{\left(\prod_{i=1}^{k}\left|\operatorname{Aut}\left(G_{K_{i}}\right)\right|\right)\left(\prod_{i=1}^{\ell} k_{i}!\right)}
$$

where...
\rightarrow the t_{i} 's keep track of which matrices are transposed (saves computation),

If we sum over such canonical forms, for fixed m, we get:
$m!\# \operatorname{PLR}(r, s, n ; m)=$

$$
\sum_{\substack{k \geq 0}} \sum_{\substack{\left(K_{1}, K_{2}, \ldots, K_{k}\right) \\ m \text { ones }}} \sum_{\operatorname{good}\left(t_{i}\right)_{i=1}^{k}}[r]_{\text {erow }}[s]_{e_{\mathrm{col}}} \frac{\prod_{i=1}^{k} \Pi\left(K_{i} ; n\right)}{\left(\prod_{i=1}^{k}\left|\operatorname{Aut}\left(G_{K_{i}}\right)\right|\right)\left(\prod_{i=1}^{\ell} k_{i}!\right)}
$$

where...
T the t_{i} 's keep track of which matrices are transposed (saves computation),
$r[r]_{\text {eow }}=r(r-1) \cdots\left(r-e_{\text {row }}+1\right)$ and
$[s]_{e_{\mathrm{col}}}=s(s-1) \cdots\left(s-e_{\mathrm{col}}+1\right)$; $e_{\text {row }}$ and e_{col} denote the number of empty rows and columns

If we sum over such canonical forms, for fixed m, we get:
$m!\# \operatorname{PLR}(r, s, n ; m)=$

$$
\sum_{k \geq 0} \sum_{\substack{\left(K_{1}, K_{2}, \ldots, K_{k}\right) \\ m \text { ones }}} \sum_{\operatorname{good}\left(t_{i}\right)_{i=1}^{k}}[r]_{\text {erow }}[s]_{e_{\text {col }}} \frac{\prod_{i=1}^{k} \Pi\left(K_{i} ; n\right)}{\left(\prod_{i=1}^{k}\left|\operatorname{Aut}\left(G_{K_{i}}\right)\right|\right)\left(\prod_{i=1}^{\ell} k_{i}!\right)}
$$

where...
\rightarrow the t_{i} 's keep track of which matrices are transposed (saves computation),
$P[r]_{\text {erow }}=r(r-1) \cdots\left(r-e_{\text {row }}+1\right)$ and $[s]_{e_{\mathrm{col}}}=s(s-1) \cdots\left(s-e_{\mathrm{col}}+1\right)$; $e_{\text {row }}$ and e_{col} denote the number of empty rows and columns
$\int k_{i}$, for $i \in\{1,2, \ldots, \ell\}$, be the number of copies of the i-th distinct matrix (given ℓ distinct matrices).

So we compute...

block K	$\left\|\operatorname{Aut}\left(G_{K}\right)\right\|$	$\Pi(K ; n)$
1	1	n
11	2	$n^{2}-n$
1 1 1	6	$n^{3}-3 n^{2}+2 n$
1 1 1 0$\|$	1	$n^{3}-2 n^{2}+n$
$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	24	$n^{4}-6 n^{3}+11 n^{2}-6 n$
1 1 1 1 0 0	2	$n^{4}-4 n^{3}+5 n^{2}-2 n$
1 1 0 1 0 1 	2	$n^{4}-3 n^{3}+3 n^{2}-n$
$\left\lvert\, \begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right.$	4	$n^{4}-4 n^{3}+6 n^{2}-3 n$
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$	120	$n^{5}-10 n^{4}+35 n^{3}-50 n^{2}+24 n$
$\left\|\begin{array}{llll\|}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}\right\|$	6	$n^{5}-7 n^{4}+17 n^{3}-17 n^{2}+6 n$
1 1 1 0 1 0 0 1	2	$n^{5}-5 n^{4}+9 n^{3}-7 n^{2}+2 n$
1 1 1 1 1 0 1	2	$n^{5}-6 n^{4}+14 n^{3}-15 n^{2}+6 n$
1 1 1 1 0 0 1 0 0 1 1 1	4	$n^{5}-6 n^{4}+13 n^{3}-12 n^{2}+4 n$
1 1 1 1 0 0 0 1 0 1 1	2	$n^{5}-5 n^{4}+9 n^{3}-7 n^{2}+2 n$
1 1 0 1 0 1 1 0 0 1 1	2	$n^{5}-5 n^{4}+9 n^{3}-7 n^{2}+2 n$
1 1 0 1 0 1 0 1 0	1	$n^{5}-4 n^{4}+6 n^{3}-4 n^{2}+n$

And we get exact formulas for the number of small-weight partial Latin rectangles:

$$
\begin{aligned}
& 1!\# \operatorname{PLR}(r, s, n ; 1)=\overline{111} . \\
& 2!\# \operatorname{PLR}(r, s, n ; 2)=\overline{222}-\overline{211}+2 \overline{111} . \\
& 3!\# \operatorname{PLR}(r, s, n ; 3)= \\
& \overline{333}-3 \overline{322}+6 \overline{222}+2 \overline{311}+6 \overline{221}-12 \overline{211}+14 \overline{111} . \\
& 4!\# \operatorname{PLR}(r, s, n ; 4)= \\
& \overline{444}-6 \overline{433}+12 \overline{333}+11 \overline{422}+30 \overline{332}-60 \overline{322}-6 \overline{411}- \\
& 36 \overline{321}-28 \overline{222}+72 \overline{311}+198 \overline{221}-228 \overline{211}+198 \overline{111} .
\end{aligned}
$$

And we get exact formulas for the number of small-weight partial Latin rectangles:

$$
\begin{aligned}
& 1!\# \operatorname{PLR}(r, s, n ; 1)=\overline{111} . \\
& 2!\# \operatorname{PLR}(r, s, n ; 2)=\overline{222}-\overline{211}+2 \overline{111} . \\
& 3!\# \operatorname{PLR}(r, s, n ; 3)= \\
& \overline{333}-3 \overline{322}+6 \overline{222}+2 \overline{311}+6 \overline{221}-12 \overline{211}+14 \overline{111} . \\
& 4!\# \operatorname{PLR}(r, s, n ; 4)= \\
& \overline{444}-6 \overline{433}+12 \overline{333}+11 \overline{422}+30 \overline{332}-60 \overline{322}-6 \overline{411}- \\
& 36 \overline{321}-28 \overline{222}+72 \overline{311}+198 \overline{221}-228 \overline{211}+198 \overline{111} .
\end{aligned}
$$

In this way, we managed to compute the exact formulas for up to weight $m=14$.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
T They have the same set of symbols in each column.
\int We can permute the columns and/or symbols of one to give the other.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\rightarrow We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\rightarrow We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these. This equivalence relation is called Sade equivalence or template equivalence.

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\int We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these. This equivalence relation is called Sade equivalence or template equivalence.

We implement Sade's method by:

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\rightarrow We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these. This equivalence relation is called Sade equivalence or template equivalence.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative,

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\int We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these. This equivalence relation is called Sade equivalence or template equivalence.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative, (b) extending these representatives to $(r+1) \times n$ Latin rectangles in all possible ways, and

Method 3: Generalizing Sade's Method

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1,2, \ldots, n\}$ have same number of extensions $(r+1) \times n$ Latin rectangles if:
\rightarrow They have the same set of symbols in each column.
\int We can permute the columns and/or symbols of one to give the other.
Or a combination of both of these. This equivalence relation is called Sade equivalence or template equivalence.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative, (b) extending these representatives to $(r+1) \times n$ Latin rectangles in all possible ways, and (c) filtering out Sade equivalent extensions.

Sade's method works almost identically for partial Latin rectangles (unsurprisingly),

Sade's method works almost identically for partial Latin rectangles (unsurprisingly), but there's additional work in keeping track of the weight (number of non-empty cells) as we go along.

Sade's method works almost identically for partial Latin rectangles (unsurprisingly), but there's additional work in keeping track of the weight (number of non-empty cells) as we go along.

There's more partial Latin rectangles than Latin rectangles.

Sade's method works almost identically for partial Latin rectangles (unsurprisingly), but there's additional work in keeping track of the weight (number of non-empty cells) as we go along.

There's more partial Latin rectangles than Latin rectangles.
We're hoping to compute $\# \operatorname{PLR}(r, s, n ; m)$ in this way whenever $r, s, n \leq 7$.

Sade's method works almost identically for partial Latin rectangles (unsurprisingly), but there's additional work in keeping track of the weight (number of non-empty cells) as we go along.

There's more partial Latin rectangles than Latin rectangles.
We're hoping to compute \#PLR $(r, s, n ; m)$ in this way whenever $r, s, n \leq 7$.

My computer is currently up to 5×7 (after about 3 months computation).

Sade's method works almost identically for partial Latin rectangles (unsurprisingly), but there's additional work in keeping track of the weight (number of non-empty cells) as we go along.

There's more partial Latin rectangles than Latin rectangles.
We're hoping to compute $\# \operatorname{PLR}(r, s, n ; m)$ in this way whenever $r, s, n \leq 7$.

My computer is currently up to 5×7 (after about 3 months computation). After getting to 6×7 it'll switch to counting via a backtracking algorithm (which is faster for the last row).

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ correspond to zeros of the ideal

$$
I_{r, s, n}=\langle\text { carefully selected polynomials }\rangle
$$

of $G F(2)\left[x_{111}, \ldots, x_{r s n}\right]$.

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ correspond to zeros of the ideal

$$
I_{r, s, n}=\langle\text { carefully selected polynomials }\rangle
$$

of $G F(2)\left[x_{111}, \ldots, x_{r s n}\right]$.
$\uparrow_{x_{i j k} x_{i^{\prime} j k}}$ for distinct $i, i^{\prime} \in[r]$

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ correspond to zeros of the ideal

$$
I_{r, s, n}=\langle\text { carefully selected polynomials }\rangle
$$

of $G F(2)\left[x_{111}, \ldots, x_{r s n}\right]$.
$\left\{\begin{array}{l}x_{i j k} x_{i^{\prime} j k} \text { for distinct } i, i^{\prime} \in[r] \\ x_{i j k} x_{i j^{\prime} k} \text { for distinct } j, j^{\prime} \in[s]\end{array}\right.$

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ correspond to zeros of the ideal

$$
I_{r, s, n}=\langle\text { carefully selected polynomials }\rangle
$$

of $G F(2)\left[x_{111}, \ldots, x_{r s n}\right]$.

Method 4: Algebraic Geometry

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ correspond to zeros of the ideal

$$
I_{r, s, n}=\langle\text { carefully selected polynomials }\rangle
$$

of $G F(2)\left[x_{111}, \ldots, x_{r s n}\right]$.

For the partial Latin rectangle $P=\left(p_{i j}\right)$ we have $p_{i j}=k$ whenever $x_{i j k}=1$, and $p_{i j}$ is undefined otherwise.

Thus (from algebraic geometry)

$$
\# \operatorname{PLR}(r, s, n)=\operatorname{dim}_{\mathrm{GF}(2)}\left(\mathrm{GF}(2)[\mathbf{x}] / I_{r, s, n}\right)
$$

and

$$
\# \operatorname{PLR}(r, s, n ; m)=\operatorname{HF}_{G F(2)[\mathbf{x}] / r_{r, s, n}}(m)
$$

where HF denotes the Hilbert function and [other things I'm going to skip].

Thus (from algebraic geometry)

$$
\# \operatorname{PLR}(r, s, n)=\operatorname{dim}_{\mathrm{GF}(2)}\left(\mathrm{GF}(2)[\mathbf{x}] / I_{r, s, n}\right)
$$

and

$$
\# \operatorname{PLR}(r, s, n ; m)=\operatorname{HF}_{G F(2)[\mathbf{x}] / r_{r, s, n}}(m)
$$

where HF denotes the Hilbert function and [other things I'm going to skip].

There are algorithms in algebraic geometry to compute this Hilbert function.

Thus (from algebraic geometry)

$$
\# \operatorname{PLR}(r, s, n)=\operatorname{dim}_{\mathrm{GF}(2)}\left(\mathrm{GF}(2)[\mathrm{x}] / I_{r, s, n}\right)
$$

and

$$
\# \operatorname{PLR}(r, s, n ; m)=\operatorname{HF}_{G F(2)[x] / r_{r, s, n}}(m)
$$

where HF denotes the Hilbert function and [other things I'm going to skip].

There are algorithms in algebraic geometry to compute this Hilbert function. In this way, we compute $\# \operatorname{PLR}(r, s, n ; m)$ whenever $r, s, n \leq 6$.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈 carefully selected polynomials 〉

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈 carefully selected polynomials 〉
§ $x_{i j k} x_{i^{\prime} j k}$ for distinct $i, i^{\prime} \in[r]$

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈 carefully selected polynomials 〉
$\left\{\begin{array}{l}x_{i j k} x_{i^{\prime} j k} \text { for distinct } i, i^{\prime} \in[r] \\ x_{i j k} x_{i j^{\prime} k} \text { for distinct } j, j^{\prime} \in[s]\end{array}\right.$

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈 carefully selected polynomials 〉

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈 carefully selected polynomials >

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈carefully selected polynomials >

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ that admit the symmetry (α, β, γ) correspond to zeros of this ideal.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. Isotopism: permute rows/columns/symbols. Paratopism: permute rows/columns/symbols and conjugate. Isomorphism: permute rows/columns/symbols (same permutations; square case only).
E.g. for isotopism equivalence:

〈carefully selected polynomials >

Partial Latin rectangles $\operatorname{PLR}(r, s, n)$ that admit the symmetry (α, β, γ) correspond to zeros of this ideal.

We then use Burnside's Lemma, and sum over possible symmetries to give the number of equivalence classes.

This has been used to find the number of isomorphism and isotopism classes of partial Latin rectangles in small cases.

Concluding remarks

Currently, we are waiting for some computations to finish off.

Concluding remarks

Currently, we are waiting for some computations to finish off.
\rightarrow We are making an effort to ensure the computations are correct:

Concluding remarks

P Currently, we are waiting for some computations to finish off.
T We are making an effort to ensure the computations are correct:
f Cross-checking by using two methods (where possible).

Concluding remarks

P Currently, we are waiting for some computations to finish off.
T We are making an effort to ensure the computations are correct:
Cross-checking by using two methods (where possible).
C Comparing with constructive enumeration.

Concluding remarks

P Currently, we are waiting for some computations to finish off.
T We are making an effort to ensure the computations are correct:
Cross-checking by using two methods (where possible).
\rightarrow Comparing with constructive enumeration. Checking divisors.

Concluding remarks

\rightarrow Currently, we are waiting for some computations to finish off.
Γ We are making an effort to ensure the computations are correct:
P Cross-checking by using two methods (where possible).
P Comparing with constructive enumeration.
Checking divisors.

