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Partial Latin rectangles
Here’s what I mean by a partial Latin rectangle in this talk:

r rows

s columns

n symbols:

(and maybe some unused symbols)

m non-empty cells
(its weight)



Latin squares are the case when r = s = n and m = n2.

Thus the partial Latin rectangles we’re looking at are

generalized,

generalized,

generalized

Latin squares. number of rows
number of symbols

number of non-empty cells

And we’re going to count these?!?!
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Method 1: Inclusion-Exclusion

In this method, we count generalized, ordered partial Latin
rectangles.

we allow clashes, then
include-exclude over the
number of clashes

partial Latin rectan-
gles are interpreted as
ordered lists of entries

Inclusion-Exclusion gives:

m! #PLR(r , s, n;m) =
∑
V

(−1)|V ||BV |.

set of clashes

set of generalized ordered PLRs with
clashes in V (and maybe more)
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Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges.

So we replace them with a single black edge.



Example set of clashes V :

e1, e2, same cell

e1, e3, same cell

e3, e4, same cell

e1, e3, same symbol and row

e1, e4, same symbol and row

e2, e3, same symbol and column

e1 e2

e3 e4

Computing |BV | is now a graph coloring problem.

If we “color” e1 with (r1, c1, s1) and e2 with (r2, c2, s2), then we
want r1 = r2 and c1 = c2 to match the edge coloring.

And so on for the other edges.

Parallel edges imply (ri , ci , si ) = (rj , cj , sj), regardless of the colors
of the edges. So we replace them with a single black edge.



If we rephrase in terms of these colorings...
For all m, r , s, n ≥ 1, we have

m! #PLR(r , s, n;m) =

(rsn)m +
∑
v≥2

∑
e≥1

(−1)e
(
m

v

)
(rsn)m−v+1

∑
G∈Γe,v

v !

|Aut(G )|P(G )

where

P(G ) = P(G ; r , s, n) =
∑
δ

(−2)b(δ)r c(H3)−1sc(H2)−1nc(H1)−1

where the sum is over all (red, blue, green, black) edge colorings δ
of G .

What’s important here:

For arbitrary simple graphs G , there is a graph polynomial
P(G ).

If we compute P(G ) and |Aut(G )| for small graphs, we find
#PLR(r , s, n;m) for small m.
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We compute these polynomials and automorphism group sizes:

G v e c(G) |Aut(G)| P (G) = P (G; r, s, n)
2 1 1 2 100− 2

3 2 1 2 P ( )2

3 3 1 6 200− 2

4 2 2 8 111P ( )2

4 3 1 6 P ( )3

4 3 1 2 P ( )3

4 1 1 2 P ( )P ( )

4 4 1 8 300 + 6 110− 12 100 + 16

4 5 1 4 300 + 2 110− 4 100 + 4

4 6 1 24 300− 2

5 3 2 4 111P ( )3

5 4 2 12 111P ( )P ( )

6 3 3 48 222P ( )3

...and so on.

Here, we use this shorthand:

210 = r2s + r2n + s2r + s2n + n2r + n2s, and

2 100 = 2(r + s + t).
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The asymptotic number of partial Latin rectangles of fixed
weight...

For fixed m, we have

m! #PLR(r, s, n; m) = (rsn)m +

(
m

2

)
(rsn)m−1(2− 100) +

(
m

3

)
(rsn)m−2(14− 12 100 + 6 110 + 2 200) +(

m

4

)
(rsn)m−3(198− 228 100 + 198 110− 84 111 + 72 200− 36 210− 12 211 + 6 221− 6 300 + 3 311) +(

m

5

)
(rsn)m−4(−6360 100 + 7440 110− 6080 111 + 2880 200− 2520 210 + 820 211 + 480 220 + 360 221−

180 222− 480 300 + 240 310 + 160 311− 80 321 + 24 400− 20 411) +

(
m

6

)
(rsn)m−5(−13170 211 + 17340 221−

15990 222+7580 311−7050 321+3300 322+1520 331+180 332−90 333−1740 411+870 421+90 422−45 432+

130 511− 15 522) +

(
m

7

)
(rsn)m−6(−10920 322 + 15540 332− 15120 333 + 7350 422− 7140 432 + 3570 433 +

1680 442− 2100 522 + 1050 532 + 210 622) +

(
m

8

)
(rsn)m−7(−3360 433 + 5040 443− 5040 444 + 2520 533−

2520 543 + 1260 544 + 630 553− 840 633 + 420 643 + 105 733) + some polynomial of degree ≤ 3m− 12.



Method 2: Chromatic Polynomials
Any partial Latin rectangle PLR(r , s, n;m) can be interpreted as a
proper n-coloring of an m-vertex induced subgraph of the r × s
rook’s graph.

1

3 5

3 4

If Π denotes the chromatic polynomial, we thus have

#PLR(r , s, n;m) =
∑
M

Π(M; n)

over all m-vertex induced subgraphs M of the r × s rook’s graph.
Or, equivalently, (0, 1)-matrices with m ones.
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We can permute the rows and columns of a (0, 1)-matrix with m
ones into a canonical form:

K1 ∅ · · · ∅ ∅
∅ K2 ∅ ∅
...

. . .
...

∅ ∅ Kk ∅
∅ ∅ · · · ∅ ∅

.

The blocks K1,K2, . . . ,Kk are in some kind of canonical form
under row/column permutations.



If we sum over such canonical forms, for fixed m, we get:

m! #PLR(r , s, n;m) =∑
k≥0

∑
(K1,K2,...,Kk )

m ones

∑
good (ti )

k
i=1

[r ]erow [s]ecol

∏k
i=1 Π(Ki ; n)(∏k

i=1 |Aut(GKi
)|
)(∏`

i=1 ki !
)

where...

the ti ’s keep track of which matrices are transposed (saves
computation),

[r ]erow = r(r − 1) · · · (r − erow + 1) and
[s]ecol

= s(s − 1) · · · (s − ecol + 1); erow and ecol denote the
number of empty rows and columns

ki , for i ∈ {1, 2, . . . , `}, be the number of copies of the i-th
distinct matrix (given ` distinct matrices).
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So we compute...

block K |Aut(GK)| Π(K;n)

1 1 n

1 1 2 n2 − n

1 1 1 6 n3 − 3n2 + 2n

1 1
1 0

1 n3 − 2n2 + n

1 1 1 1 24 n4 − 6n3 + 11n2 − 6n

1 1 1
1 0 0

2 n4 − 4n3 + 5n2 − 2n

1 1 0
1 0 1

2 n4 − 3n3 + 3n2 − n

1 1
1 1

4 n4 − 4n3 + 6n2 − 3n

1 1 1 1 1 120 n5 − 10n4 + 35n3 − 50n2 + 24n

1 1 1 1
1 0 0 0

6 n5 − 7n4 + 17n3 − 17n2 + 6n

1 1 1 0
1 0 0 1

2 n5 − 5n4 + 9n3 − 7n2 + 2n

1 1 1
1 1 0

2 n5 − 6n4 + 14n3 − 15n2 + 6n

1 1 1
1 0 0
1 0 0

4 n5 − 6n4 + 13n3 − 12n2 + 4n

1 1 1
1 0 0
0 1 0

2 n5 − 5n4 + 9n3 − 7n2 + 2n

1 1 0
1 0 1
1 0 0

2 n5 − 5n4 + 9n3 − 7n2 + 2n

1 1 0
1 0 1
0 1 0

1 n5 − 4n4 + 6n3 − 4n2 + n

...and so on.



And we get exact formulas for the number of small-weight partial
Latin rectangles:

1! #PLR(r , s, n; 1) = 111.

2! #PLR(r , s, n; 2) = 222− 211 + 2 111.

3! #PLR(r , s, n; 3) =
333− 3 322 + 6 222 + 2 311 + 6 221− 12 211 + 14 111.

4! #PLR(r , s, n; 4) =
444− 6 433 + 12 333 + 11 422 + 30 332− 60 322− 6 411−
36 321− 28 222 + 72 311 + 198 221− 228 211 + 198 111.

In this way, we managed to compute the exact formulas for up to
weight m = 14.
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Method 3: Generalizing Sade’s Method

Sade’s method (c. 1948) outstrips all other methods for finding the
number of Latin squares.

Two r × n Latin rectangles on the symbol set {1, 2, . . . , n} have
same number of extensions (r + 1)× n Latin rectangles if:

They have the same set of symbols in each column.

We can permute the columns and/or symbols of one to give
the other.

Or a combination of both of these. This equivalence relation is
called Sade equivalence or template equivalence.

We implement Sade’s method by: (a) maintaining a list of Sade
inequivalent r × n Latin rectangles, and the number of equivalent
Latin rectangles for each representative, (b) extending these
representatives to (r + 1)× n Latin rectangles in all possible ways,
and (c) filtering out Sade equivalent extensions.
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Sade’s method works almost identically for partial Latin rectangles
(unsurprisingly),

but there’s additional work in keeping track of the
weight (number of non-empty cells) as we go along.

There’s more partial Latin rectangles than Latin rectangles.

We’re hoping to compute #PLR(r , s, n;m) in this way whenever
r , s, n ≤ 7.

My computer is currently up to 5× 7 (after about 3 months
computation). After getting to 6× 7 it’ll switch to counting via a
backtracking algorithm (which is faster for the last row).
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Method 4: Algebraic Geometry

I won’t go to far into this: Falcón will talk about this in detail at
EuroComb.

Partial Latin rectangles PLR(r , s, n) correspond to zeros of the
ideal

Ir ,s,n = 〈 carefully selected polynomials 〉

of GF (2)[x111, . . . , xrsn]. xijkxi ′jk for distinct i , i ′ ∈ [r ]
xijkxij ′k for distinct j , j ′ ∈ [s]
xijkxijk ′ for distinct k, k ′ ∈ [n]

For the partial Latin rectangle P = (pij) we have pij = k whenever
xijk = 1, and pij is undefined otherwise.
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Thus (from algebraic geometry)

#PLR(r , s, n) = dimGF(2)

(
GF(2)[x]/Ir ,s,n

)
and

#PLR(r , s, n;m) = HFGF (2)[x]/Ir,s,n(m)

where HF denotes the Hilbert function and [other things I’m going
to skip].

There are algorithms in algebraic geometry to compute this Hilbert
function. In this way, we compute #PLR(r , s, n;m) whenever
r , s, n ≤ 6.
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But we’ll be more interested in using this method for enumerating
partial Latin rectangles up to symmetry.

Isotopism: permute
rows/columns/symbols. Paratopism: permute
rows/columns/symbols and conjugate. Isomorphism: permute
rows/columns/symbols (same permutations; square case only).

E.g. for isotopism equivalence:

〈 carefully selected polynomials 〉

xijkxi ′jk for distinct i , i ′ ∈ [r ]
xijkxij ′k for distinct j , j ′ ∈ [s]
xijkxijk ′ for distinct k, k ′ ∈ [n]

xijk − xα(i)β(j)γ(k) for i , j , k ∈ [n]

Partial Latin rectangles PLR(r , s, n) that admit the symmetry
(α, β, γ) correspond to zeros of this ideal.

We then use Burnside’s Lemma, and sum over possible symmetries
to give the number of equivalence classes.
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This has been used to find the number of isomorphism and
isotopism classes of partial Latin rectangles in small cases.

# isomorphism classes
n

m 1 2 3 4 5 6
0 1 1 1 1 1 1
1 1 4 5 5 5 5
2 10 50 84 93 94
3 4 221 1120 2112 2548
4 1 525 10128 43955 85234
5 651 60092 674957 2508483
6 415 239302 7679384 59110661
7 136 639098 65404265 1103309385
8 20 1148454 422142208 16466869051
9 5 1374447 2080853035 198621450446
10 1082019 7867483199 1953036511736
11 548440 22843744418 15756857221135
12 176137 50867669444 104784604156741
13 35473 86544642569 576125696499417
14 4696 111836743580 2623564948795633
15 403 108882205792 9901507463165937
16 35 79051125332 30959687376379661
17 42275685836 80100291981771263
18 16420711804 171118574787473668
19 4563456676 300957676311237853
20 894429087 434125855232450974
21 122238972 511227919780309083
22 11569016 488771341028032846
23 759296 376957644290919036
24 33736 232788472371575258
25 1411 114149339445885218
26 44033009520708974
27 13227534274721732
28 3061826358557444
29 540473537486248
30 72090555296085
31 7217657260917
32 540810639064
33 30364554576
34 1285684592
35 40649375
36 1130531

Total 2 20 2029 5319934 534759300182 2815323435872410905

# isotopism classes
n

m 1 2 3 4 5 6
0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 4 4 4 4 4
3 1 11 11 11 11
4 1 18 52 52 52
5 23 139 221 221
6 15 507 1158 1396
7 6 1161 6310 9130
8 1 2136 33293 72145
9 1 2429 150964 583339
10 2004 554285 4627607
11 975 1594532 33362634
12 364 3539461 210409407
13 72 6017824 1129335392
14 18 7772366 5091624997
15 2 7568187 19140028219
16 2 5493206 59761963636
17 2939617 154544375137
18 1141472 330108625102
19 317980 580559388329
20 62319 837440466326
21 8676 986167409118
22 823 942850011453
23 69 727157075193
24 6 449054224783
25 2 220195944263
26 84941236104
27 25516234965
28 5906586539
29 1042616896
30 139114631
31 13928529
32 1048656
33 59130
34 2846
35 109
36 22

Total 2 8 81 9878 37202839 5431010366322

# main classes
n

m 1 2 3 4 5
0 1 1 1 1 1
1 1 1 1 1 1
2 2 2 2 2
3 1 5 5 5
4 1 8 18 18
5 9 39 59
6 7 121 256
7 4 253 1224
8 1 442 5997
9 1 495 26188
10 420 94479
11 218 269456
12 96 595649
13 25 1010706
14 8 1304319
15 2 1270356
16 2 923128
17 495565
18 193531
19 54746
20 11052
21 1693
22 192
23 26
24 4
25 2

Total 2 6 39 2148 6239377



Concluding remarks

Currently, we are waiting for some computations to finish off.

We are making an effort to ensure the computations are
correct:

Cross-checking by using two methods (where possible).
Comparing with constructive enumeration.
Checking divisors.
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