Counting partial Latin rectangles

Rebecca J. Stones (Nankai University, China) joint work with Raúl Falcón (University of Seville, Spain).

July 7, 2015

Partial Latin rectangles

Here's what I mean by a partial Latin rectangle in this talk:

Thus the partial Latin rectangles we're looking at are generalized,

generalized,

generalized

Latin squares.

Thus the partial Latin rectangles we're looking at are

Thus the partial Latin rectangles we're looking at are

Thus the partial Latin rectangles we're looking at are

Thus the partial Latin rectangles we're looking at are

And we're going to count these?!?!

Thus the partial Latin rectangles we're looking at are

And we're going to count these?!?!

In this method, we count generalized, ordered partial Latin rectangles.

In this method, we count generalized, ordered partial Latin rectangles. $\$

we allow clashes, then include-exclude over the number of clashes

In this method, we count generalized, ordered partial Latin rectangles.

we allow clashes, then include-exclude over the number of clashes - partial Latin rectangles are interpreted as ordered lists of entries

In this method, we count generalized, ordered partial Latin rectangles.

we allow clashes, then include-exclude over the number of clashes - partial Latin rectangles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

$$m! \, \# \mathrm{PLR}(r, s, n; m) = \sum_{V} (-1)^{|V|} |\mathcal{B}_{V}|.$$

In this method, we count generalized, ordered partial Latin rectangles.

we allow clashes, then include-exclude over the number of clashes - partial Latin rectangles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

$$m! \, \# \mathrm{PLR}(r, s, n; m) = \sum_{V} (-1)^{|V|} |\mathcal{B}_{V}|.$$

set of clashes

In this method, we count generalized, ordered partial Latin rectangles.

we allow clashes, then include-exclude over the number of clashes partial Latin rectangles are interpreted as ordered lists of entries

Inclusion-Exclusion gives:

Example set of clashes V :

 e_1, e_2 , same cell

 e_1, e_3 , same cell

 e_3, e_4 , same cell

 e_1, e_3 , same symbol and row

 e_1, e_4 , same symbol and row

e2, e3, same symbol and column

Example set of clashes V :

 e_1, e_2 , same cell

 e_1, e_3 , same cell

 e_3, e_4 , same cell

 e_1, e_3 , same symbol and row

 e_1, e_4 , same symbol and row

e₂, e₃, same symbol and column

If we "color" e_1 with (r_1, c_1, s_1) and e_2 with (r_2, c_2, s_2) , then we want $r_1 = r_2$ and $c_1 = c_2$ to match the edge coloring.

If we "color" e_1 with (r_1, c_1, s_1) and e_2 with (r_2, c_2, s_2) , then we want $r_1 = r_2$ and $c_1 = c_2$ to match the edge coloring.

And so on for the other edges.

If we "color" e_1 with (r_1, c_1, s_1) and e_2 with (r_2, c_2, s_2) , then we want $r_1 = r_2$ and $c_1 = c_2$ to match the edge coloring.

And so on for the other edges.

Parallel edges imply $(r_i, c_i, s_i) = (r_j, c_j, s_j)$, regardless of the colors of the edges.

If we "color" e_1 with (r_1, c_1, s_1) and e_2 with (r_2, c_2, s_2) , then we want $r_1 = r_2$ and $c_1 = c_2$ to match the edge coloring.

And so on for the other edges.

Parallel edges imply $(r_i, c_i, s_i) = (r_j, c_j, s_j)$, regardless of the colors of the edges. So we replace them with a single black edge.

$$m! \,\#\operatorname{PLR}(r, s, n; m) = (rsn)^m + \sum_{v \ge 2} \sum_{e \ge 1} (-1)^e \binom{m}{v} (rsn)^{m-v+1} \sum_{G \in \Gamma_{e,v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)$$

where

$$P(G) = P(G; r, s, n) = \sum_{\delta} (-2)^{\mathbf{b}(\delta)} r^{c(H_3) - 1} s^{c(H_2) - 1} n^{c(H_1) - 1}$$

where the sum is over all (red, blue, green, black) edge colorings δ of ${\cal G}.$

$$m! \,\#\operatorname{PLR}(r, s, n; m) = (rsn)^m + \sum_{v \ge 2} \sum_{e \ge 1} (-1)^e \binom{m}{v} (rsn)^{m-v+1} \sum_{G \in \Gamma_{e,v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)$$

where

$$P(G) = P(G; r, s, n) = \sum_{\delta} (-2)^{\mathbf{b}(\delta)} r^{c(H_3) - 1} s^{c(H_2) - 1} n^{c(H_1) - 1}$$

where the sum is over all (red, blue, green, black) edge colorings δ of ${\cal G}.$

What's important here:

$$m! \,\#\operatorname{PLR}(r, s, n; m) = (rsn)^m + \sum_{v \ge 2} \sum_{e \ge 1} (-1)^e \binom{m}{v} (rsn)^{m-v+1} \sum_{G \in \Gamma_{e,v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)$$

where

$$P(G) = P(G; r, s, n) = \sum_{\delta} (-2)^{\mathbf{b}(\delta)} r^{c(H_3) - 1} s^{c(H_2) - 1} n^{c(H_1) - 1}$$

where the sum is over all (red, blue, green, black) edge colorings δ of ${\cal G}.$

What's important here:

For arbitrary simple graphs G, there is a graph polynomial P(G).

$$m! \,\#\operatorname{PLR}(r, s, n; m) = (rsn)^m + \sum_{v \ge 2} \sum_{e \ge 1} (-1)^e \binom{m}{v} (rsn)^{m-v+1} \sum_{G \in \Gamma_{e,v}} \frac{v!}{|\operatorname{Aut}(G)|} P(G)$$

where

$$P(G) = P(G; r, s, n) = \sum_{\delta} (-2)^{\mathbf{b}(\delta)} r^{c(H_3) - 1} s^{c(H_2) - 1} n^{c(H_1) - 1}$$

where the sum is over all (red, blue, green, black) edge colorings δ of G.

What's important here:

- For arbitrary simple graphs G, there is a graph polynomial P(G).

We compute these polynomials and automorphism group sizes:

G	v	e	c(G)	$ \operatorname{Aut}(G) $	P(G) = P(G; r, s, n)
••	2	1	1	2	100 - 2
A	3	2	1	2	$P(\bullet \bullet)^2$
4	3	3	1	6	$\overline{200} - 2$
22	4	2	2	8	$\overline{111} P(\bullet \bullet)^2$
	4	3	1	6	$P(\bullet \bullet)^3$
N	4	3	1	2	$P(\bullet \bullet)^3$
4	4	1	1	2	$P(\clubsuit)P(\bullet \bullet)$
	4	4	1	8	$\overline{300}+6\overline{110}-12\overline{100}+16$
2	4	5	1	4	$\overline{300} + 2\overline{110} - 4\overline{100} + 4$
X	4	6	1	24	300 - 2
	5	3	2	4	$\overline{111} P(\bullet \bullet)^3$
4	5	4	2	12	$\overline{111} P(\clubsuit) P(\bullet \bullet)$
	6	3	3	48	$\overline{222} P(\bullet \bullet)^3$

...and so on.

We compute these polynomials and automorphism group sizes:

G	v	e	c(G)	$ \operatorname{Aut}(G) $	P(G) = P(G; r, s, n)
••	2	1	1	2	100 - 2
	3	2	1	2	$P(\bullet \bullet)^2$
4	3	3	1	6	$\overline{200} - 2$
22	4	2	2	8	$\overline{111} P(\bullet \bullet)^2$
	4	3	1	6	$P(\bullet \bullet)^3$
N	4	3	1	2	$P(\bullet \bullet)^3$
4	4	1	1	2	$P(\clubsuit)P(\bullet \bullet)$
	4	4	1	8	$\overline{300}+6\overline{110}-12\overline{100}+16$
	4	5	1	4	$\overline{300} + 2\overline{110} - 4\overline{100} + 4$
	4	6	1	24	300 - 2
	5	3	2	4	$\overline{111} P(\bullet \bullet)^3$
4	5	4	2	12	$\overline{111} P(\clubsuit) P(\bullet \bullet)$
	6	3	3	48	$\overline{222} P(\bullet \bullet)^3$

...and so on.

Here, we use this shorthand:

$$\overline{210} = r^2 s + r^2 n + s^2 r + s^2 n + n^2 r + n^2 s$$
, and
 $2\overline{100} = 2(r + s + t).$

The asymptotic number of partial Latin rectangles of fixed weight...

For fixed *m*, we have

 $\begin{array}{l} \mathsf{m}! \, \# \mathrm{PLR}(\mathsf{r},\mathsf{s},\mathsf{n};\mathsf{m}) = (\mathit{rsn})^m + \binom{m}{2}(\mathit{rsn})^{m-1}(2-\overline{100}) + \binom{m}{3}(\mathit{rsn})^{m-2}(14-12\,\overline{100}+6\,\overline{110}+2\,\overline{200}) + \\ \binom{m}{4}(\mathit{rsn})^{m-3}(198-228\,\overline{100}+198\,\overline{110}-84\,\overline{111}+72\,\overline{200}-36\,\overline{210}-12\,\overline{211}+6\,\overline{221}-6\,\overline{300}+3\,\overline{311}) + \\ \binom{m}{5}(\mathit{rsn})^{m-4}(-6360\,\overline{100}+7440\,\overline{110}-6080\,\overline{111}+2880\,\overline{200}-2520\,\overline{210}+820\,\overline{211}+480\,\overline{220}+360\,\overline{221}-180\,\overline{222}-480\,\overline{300}+240\,\overline{310}+160\,\overline{311}-80\,\overline{321}+24\,\overline{400}-20\,\overline{411}) + \binom{m}{6}(\mathit{rsn})^{m-5}(-13170\,\overline{211}+17340\,\overline{221}-1590\,\overline{222}+7580\,\overline{311}-7050\,\overline{321}+3300\,\overline{322}+1520\,\overline{331}+180\,\overline{332}-90\,\overline{333}-1740\,\overline{411}+870\,\overline{421}+90\,\overline{422}-45\,\overline{432}+130\,\overline{511}-15\,\overline{522}) + \binom{m}{7}(\mathit{rsn})^{m-6}(-10920\,\overline{322}+15540\,\overline{332}-15120\,\overline{333}+7350\,\overline{422}-7140\,\overline{432}+3570\,\overline{433}+1680\,\overline{442}-2100\,\overline{522}+1050\,\overline{532}+210\,\overline{622}) + \binom{m}{8}(\mathit{rsn})^{m-7}(-3360\,\overline{433}+5040\,\overline{443}-5040\,\overline{444}+2520\,\overline{533}-2520\,\overline{543}+1260\,\overline{544}+630\,\overline{553}-840\,\overline{633}+420\,\overline{643}+105\,\overline{733}) + some polynomial of degree \leq 3m-12. \end{array}$

Method 2: Chromatic Polynomials

Any partial Latin rectangle PLR(r, s, n; m) can be interpreted as a proper *n*-coloring of an *m*-vertex induced subgraph of the $r \times s$ rook's graph.

Method 2: Chromatic Polynomials

Any partial Latin rectangle PLR(r, s, n; m) can be interpreted as a proper *n*-coloring of an *m*-vertex induced subgraph of the $r \times s$ rook's graph.

If Π denotes the chromatic polynomial, we thus have

$$\# \mathrm{PLR}(r, s, n; m) = \sum_{M} \Pi(M; n)$$

over all *m*-vertex induced subgraphs M of the $r \times s$ rook's graph.

Method 2: Chromatic Polynomials

Any partial Latin rectangle PLR(r, s, n; m) can be interpreted as a proper *n*-coloring of an *m*-vertex induced subgraph of the $r \times s$ rook's graph.

If Π denotes the chromatic polynomial, we thus have

$$\# \mathrm{PLR}(r, s, n; m) = \sum_{M} \Pi(M; n)$$

over all *m*-vertex induced subgraphs M of the $r \times s$ rook's graph. Or, equivalently, (0, 1)-matrices with *m* ones. We can permute the rows and columns of a (0, 1)-matrix with m ones into a canonical form:

<i>K</i> ₁	Ø		Ø	Ø	
Ø	<i>K</i> ₂		Ø	Ø	
:		·		:	•
Ø	Ø		K _k	Ø	
Ø	Ø	•••	Ø	Ø	

The blocks K_1, K_2, \ldots, K_k are in some kind of canonical form under row/column permutations.

If we sum over such canonical forms, for fixed m, we get:

$$m! \,\# \operatorname{PLR}(r, s, n; m) = \sum_{\substack{k \ge 0}} \sum_{\substack{(K_1, K_2, \dots, K_k) \text{ good } (t_i)_{i=1}^k}} [r]_{e_{row}}[s]_{e_{col}} \frac{\prod_{i=1}^k \Pi(K_i; n)}{\left(\prod_{i=1}^k |\operatorname{Aut}(G_{K_i})|\right) \left(\prod_{i=1}^\ell k_i!\right)}$$

where ...

If we sum over such canonical forms, for fixed m, we get:

$$m! \,\# \operatorname{PLR}(r, s, n; m) = \sum_{\substack{k \ge 0}} \sum_{\substack{(K_1, K_2, \dots, K_k) \text{ good } (t_i)_{i=1}^k}} [r]_{e_{\operatorname{row}}}[s]_{e_{\operatorname{col}}} \frac{\prod_{i=1}^k \Pi(K_i; n)}{\left(\prod_{i=1}^k |\operatorname{Aut}(G_{K_i})|\right) \left(\prod_{i=1}^\ell k_i!\right)}$$

where ...

the t_i's keep track of which matrices are transposed (saves computation),

If we sum over such canonical forms, for fixed m, we get:

$$m! \,\# \operatorname{PLR}(r, s, n; m) = \sum_{\substack{k \ge 0}} \sum_{\substack{(K_1, K_2, \dots, K_k) \text{ good } (t_i)_{i=1}^k}} [r]_{e_{\operatorname{row}}}[s]_{e_{\operatorname{col}}} \frac{\prod_{i=1}^k \Pi(K_i; n)}{\left(\prod_{i=1}^k |\operatorname{Aut}(G_{K_i})|\right) \left(\prod_{i=1}^\ell k_i!\right)}$$

where ...

the t_i's keep track of which matrices are transposed (saves computation),

$$[r]_{e_{\text{row}}} = r(r-1)\cdots(r-e_{\text{row}}+1) \text{ and } \\ [s]_{e_{\text{col}}} = s(s-1)\cdots(s-e_{\text{col}}+1); e_{\text{row}} \text{ and } e_{\text{col}} \text{ denote the } \\ \text{number of empty rows and columns}$$
If we sum over such canonical forms, for fixed *m*, we get:

$$m! \,\# \operatorname{PLR}(r, s, n; m) = \sum_{\substack{k \ge 0}} \sum_{\substack{(K_1, K_2, \dots, K_k) \text{ good } (t_i)_{i=1}^k}} [r]_{e_{\operatorname{row}}}[s]_{e_{\operatorname{col}}} \frac{\prod_{i=1}^k \Pi(K_i; n)}{\left(\prod_{i=1}^k |\operatorname{Aut}(G_{K_i})|\right) \left(\prod_{i=1}^\ell k_i!\right)}$$

where...

 \rightarrow the t_i's keep track of which matrices are transposed (saves computation),

$$[r]_{e_{\text{row}}} = r(r-1)\cdots(r-e_{\text{row}}+1) \text{ and } \\ [s]_{e_{\text{col}}} = s(s-1)\cdots(s-e_{\text{col}}+1); e_{\text{row}} \text{ and } e_{\text{col}} \text{ denote the } \\ \text{number of empty rows and columns}$$

 \nearrow k_i , for $i \in \{1, 2, \dots, \ell\}$, be the number of copies of the *i*-th distinct matrix (given ℓ distinct matrices).

So we compute...

block K	$ Aut(G_K) $	$\Pi(K; n)$
1	1	n
1 1	2	$n^2 - n$
1 1 1	6	$n^3 - 3n^2 + 2n$
	1	$n^3 - 2n^2 + n$
1 1 1 1	24	$n^4 - 6n^3 + 11n^2 - 6n$
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2	$n^4 - 4n^3 + 5n^2 - 2n$
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2	$n^4 - 3n^3 + 3n^2 - n$
$\begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}$	4	$n^4 - 4n^3 + 6n^2 - 3n$
1 1 1 1 1	120	$n^5 - 10n^4 + 35n^3 - 50n^2 + 24n$
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	6	$n^5 - 7n^4 + 17n^3 - 17n^2 + 6n$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$n^5 - 5n^4 + 9n^3 - 7n^2 + 2n$
	2	$n^5 - 6n^4 + 14n^3 - 15n^2 + 6n$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4	$n^5 - 6n^4 + 13n^3 - 12n^2 + 4n$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$n^5 - 5n^4 + 9n^3 - 7n^2 + 2n$
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	2	$n^5 - 5n^4 + 9n^3 - 7n^2 + 2n$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	$n^5 - 4n^4 + 6n^3 - 4n^2 + n$

...and so on.

And we get **exact formulas** for the number of small-weight partial Latin rectangles:

 $1! \, \# \mathrm{PLR}(r, s, n; 1) = \overline{111}.$

 $2! \, \# \mathrm{PLR}(r, s, n; 2) = \overline{222} - \overline{211} + 2 \, \overline{111}.$

 $\frac{3! \,\# \mathrm{PLR}(r, s, n; 3)}{333 - 3\,\overline{322} + 6\,\overline{222} + 2\,\overline{311} + 6\,\overline{221} - 12\,\overline{211} + 14\,\overline{111}.$

 $\begin{array}{l} 4! \, \# \mathrm{PLR}(r, s, n; 4) = \\ \overline{444} - 6 \, \overline{433} + 12 \, \overline{333} + 11 \, \overline{422} + 30 \, \overline{332} - 60 \, \overline{322} - 6 \, \overline{411} - \\ 36 \, \overline{321} - 28 \, \overline{222} + 72 \, \overline{311} + 198 \, \overline{221} - 228 \, \overline{211} + 198 \, \overline{111}. \end{array}$

And we get **exact formulas** for the number of small-weight partial Latin rectangles:

$$1! \# \mathrm{PLR}(r, s, n; 1) = \overline{111}.$$

 $2! \, \# \mathrm{PLR}(r, s, n; 2) = \overline{222} - \overline{211} + 2 \, \overline{111}.$

$$\frac{3! \,\# \mathrm{PLR}(r, s, n; 3)}{333 - 3\,\overline{322} + 6\,\overline{222} + 2\,\overline{311} + 6\,\overline{221} - 12\,\overline{211} + 14\,\overline{111}.$$

$$\begin{array}{l} 4! \ \# \mathrm{PLR}(r, s, n; 4) = \\ \overline{444} - 6 \,\overline{433} + 12 \,\overline{333} + 11 \,\overline{422} + 30 \,\overline{332} - 60 \,\overline{322} - 6 \,\overline{411} - \\ 36 \,\overline{321} - 28 \,\overline{222} + 72 \,\overline{311} + 198 \,\overline{221} - 228 \,\overline{211} + 198 \,\overline{111}. \end{array}$$

In this way, we managed to compute the exact formulas for up to weight m = 14.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1, 2, ..., n\}$ have same number of extensions $(r + 1) \times n$ Latin rectangles if:

They have the same set of symbols in each column.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.
- Or a combination of both of these.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.
- Or a combination of both of these. This equivalence relation is called *Sade equivalence* or *template equivalence*.

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1, 2, ..., n\}$ have same number of extensions $(r + 1) \times n$ Latin rectangles if:

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.

Or a combination of both of these. This equivalence relation is called *Sade equivalence* or *template equivalence*.

We implement Sade's method by:

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1, 2, ..., n\}$ have same number of extensions $(r + 1) \times n$ Latin rectangles if:

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.

Or a combination of both of these. This equivalence relation is called *Sade equivalence* or *template equivalence*.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative,

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1, 2, ..., n\}$ have same number of extensions $(r + 1) \times n$ Latin rectangles if:

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.

Or a combination of both of these. This equivalence relation is called *Sade equivalence* or *template equivalence*.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative, (b) extending these representatives to $(r + 1) \times n$ Latin rectangles in all possible ways, and

Sade's method (c. 1948) outstrips all other methods for finding the number of Latin squares.

Two $r \times n$ Latin rectangles on the symbol set $\{1, 2, ..., n\}$ have same number of extensions $(r + 1) \times n$ Latin rectangles if:

- They have the same set of symbols in each column.
- We can permute the columns and/or symbols of one to give the other.

Or a combination of both of these. This equivalence relation is called *Sade equivalence* or *template equivalence*.

We implement Sade's method by: (a) maintaining a list of Sade inequivalent $r \times n$ Latin rectangles, and the number of equivalent Latin rectangles for each representative, (b) extending these representatives to $(r + 1) \times n$ Latin rectangles in all possible ways, and (c) filtering out Sade equivalent extensions.

Sade's method works almost identically for partial Latin rectangles (unsurprisingly),

There's more partial Latin rectangles than Latin rectangles.

There's more partial Latin rectangles than Latin rectangles.

We're hoping to compute #PLR(r, s, n; m) in this way whenever $r, s, n \leq 7$.

There's more partial Latin rectangles than Latin rectangles.

We're hoping to compute #PLR(r, s, n; m) in this way whenever $r, s, n \leq 7$.

My computer is currently up to 5×7 (after about 3 months computation).

There's more partial Latin rectangles than Latin rectangles.

We're hoping to compute #PLR(r, s, n; m) in this way whenever $r, s, n \leq 7$.

My computer is currently up to 5×7 (after about 3 months computation). After getting to 6×7 it'll switch to counting via a backtracking algorithm (which is faster for the last row).

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles PLR(r, s, n) correspond to zeros of the ideal

 $I_{r,s,n} = \langle$ carefully selected polynomials \rangle

of $GF(2)[x_{111}, \ldots, x_{rsn}]$.

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles PLR(r, s, n) correspond to zeros of the ideal

$$I_{r,s,n} = \langle \text{ carefully selected polynomials } \rangle$$

of $GF(2)[x_{111}, \dots, x_{rsn}]$.
$$\begin{pmatrix} \chi_{ijk} \chi_{i'jk} \text{ for distinct } i, i' \in [r] \end{pmatrix}$$

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles PLR(r, s, n) correspond to zeros of the ideal

 $I_{r,s,n} = \langle$ carefully selected polynomials \rangle

of $GF(2)[x_{111}, ..., x_{rsn}]$.

 $\begin{cases} x_{ijk} x_{i'jk} \text{ for distinct } i, i' \in [r] \\ x_{ijk} x_{ij'k} \text{ for distinct } j, j' \in [s] \end{cases}$

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles PLR(r, s, n) correspond to zeros of the ideal

 $I_{r,s,n} = \langle$ carefully selected polynomials \rangle

of $GF(2)[x_{111}, ..., x_{rsn}]$.

 $\begin{cases} x_{ijk} x_{i'jk} \text{ for distinct } i, i' \in [r] \\ x_{ijk} x_{ij'k} \text{ for distinct } j, j' \in [s] \\ x_{ijk} x_{ijk'} \text{ for distinct } k, k' \in [n] \end{cases}$

I won't go to far into this: Falcón will talk about this in detail at EuroComb.

Partial Latin rectangles PLR(r, s, n) correspond to zeros of the ideal

 $I_{r,s,n} = \langle$ carefully selected polynomials \rangle

of
$$GF(2)[x_{111}, \ldots, x_{rsn}]$$
.
$$\begin{pmatrix} x_{ijk}x_{i'jk} \text{ for distinct } i, i' \in [r] \\ x_{ijk}x_{ij'k} \text{ for distinct } j, j' \in [s] \\ x_{ijk}x_{ijk'} \text{ for distinct } k, k' \in [n] \end{cases}$$

For the partial Latin rectangle $P = (p_{ij})$ we have $p_{ij} = k$ whenever $x_{ijk} = 1$, and p_{ij} is undefined otherwise.

Thus (from algebraic geometry)

$$\text{\#PLR}(r, s, n) = \dim_{\mathrm{GF}(2)}(\mathrm{GF}(2)[\mathbf{x}]/I_{r,s,n})$$

and

$$\# \operatorname{PLR}(r, s, n; m) = \operatorname{HF}_{GF(2)[x]/I_{r,s,n}}(m)$$

where HF denotes the *Hilbert function* and [other things I'm going to skip].

Thus (from algebraic geometry)

$$\# \mathrm{PLR}(r, s, n) = \dim_{\mathrm{GF}(2)} (\mathrm{GF}(2)[\mathbf{x}]/I_{r,s,n})$$

and

$$\# \operatorname{PLR}(r, s, n; m) = \operatorname{HF}_{GF(2)[x]/I_{r,s,n}}(m)$$

where HF denotes the *Hilbert function* and [other things I'm going to skip].

There are algorithms in algebraic geometry to compute this Hilbert function.

Thus (from algebraic geometry)

$$\text{\#PLR}(r, s, n) = \dim_{\mathrm{GF}(2)}(\mathrm{GF}(2)[\mathbf{x}]/I_{r,s,n})$$

and

$$\text{\#PLR}(r, s, n; m) = \text{HF}_{GF(2)[x]/I_{r,s,n}}(m)$$

where HF denotes the *Hilbert function* and [other things I'm going to skip].

There are algorithms in algebraic geometry to compute this Hilbert function. In this way, we compute #PLR(r, s, n; m) whenever $r, s, n \le 6$.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. *Isotopism*: permute rows/columns/symbols.

But we'll be more interested in using this method for enumerating partial Latin rectangles up to symmetry. *Isotopism*: permute rows/columns/symbols. *Paratopism*: permute rows/columns/symbols and conjugate.

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

 $\bigvee_{x_{iik}x_{i'ik}} \text{ for distinct } i, i' \in [r]$

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

$$\bigvee_{\substack{x_{ijk} \times i'jk \\ x_{ijk} \times ij'k}} \text{ for distinct } i, i' \in [r]$$
E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

$$\begin{array}{c} \overbrace{x_{ijk}x_{i'jk}} \text{ for distinct } i, i' \in [r] \\ x_{ijk}x_{ij'k} \text{ for distinct } j, j' \in [s] \\ x_{ijk}x_{ijk'} \text{ for distinct } k, k' \in [n] \end{array}$$

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

$$\begin{array}{c} \overbrace{x_{ijk} x_{i'jk}} \text{ for distinct } i, i' \in [r] \\ \overbrace{x_{ijk} x_{ij'k}} \text{ for distinct } j, j' \in [s] \\ \overbrace{x_{ijk} x_{ijk'}} \text{ for distinct } k, k' \in [n] \\ \overbrace{x_{ijk} - x_{\alpha(i)\beta(j)\gamma(k)}} \text{ for } i, j, k \in [n] \end{array}$$

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

$$\begin{array}{c} \overbrace{x_{ijk}x_{i'jk}} \text{ for distinct } i, i' \in [r] \\ \overbrace{x_{ijk}x_{ij'k}} \text{ for distinct } j, j' \in [s] \\ \overbrace{x_{ijk}x_{ijk'}} \text{ for distinct } k, k' \in [n] \\ \overbrace{x_{ijk}-x_{\alpha(i)\beta(j)\gamma(k)}} \text{ for } i, j, k \in [n] \end{array}$$

Partial Latin rectangles PLR(r, s, n) that admit the symmetry (α, β, γ) correspond to zeros of this ideal.

E.g. for isotopism equivalence:

 \langle carefully selected polynomials \rangle

$$\begin{array}{c} \overbrace{x_{ijk} x_{i'jk}} \text{ for distinct } i, i' \in [r] \\ \overbrace{x_{ijk} x_{ij'k}} \text{ for distinct } j, j' \in [s] \\ \overbrace{x_{ijk} x_{ijk'}} \text{ for distinct } k, k' \in [n] \\ \overbrace{x_{ijk} - x_{\alpha(i)\beta(j)\gamma(k)}} \text{ for } i, j, k \in [n] \end{array}$$

Partial Latin rectangles PLR(r, s, n) that admit the symmetry (α, β, γ) correspond to zeros of this ideal.

We then use Burnside's Lemma, and sum over possible symmetries to give the number of equivalence classes.

This has been used to find the number of isomorphism and isotopism classes of partial Latin rectangles in small cases.

	# isomorphism classes							# isotopism classes										
	n							n										
m	1	2	- 3	4	5	6	<i>m</i>	1 3	2 3	4	5	6						
0	1	1	1	1	1	1	0	1	1 1	1	1	1						
1	1	4	5	5	5	5	1	1	1 1	1	1	1						
2		10	50	84	93	94	2		4 4	4	4	4		-11		in	alaaar	-0
3		4	221	1120	2112	2548	3		1 11	11	11	11		#	ma	un	ciasse	5
4		1	525	10128	43955	85234	4		1 18	52	52	52		1	0	2	4	5
5			651	60092	674957	2508483	5		23	139	221	221		1		1	-1	1
6			415	239302	7679384	59110661	6		15	507	1158	1396	0	1	1	1	1	1
7			136	639098	65404265	1103309385	7		6	1161	6310	9130	1	1	1	1	1	1
8			20	1148454	422142208	16466869051	8		1	2136	33293	72145	2		2	÷	ź	-
9			5	1374447	2080853035	198621450446	9		1	2429	150964	583339	3		1	0	10	10
10				1082019	7867483199	1953036511736	10			2004	554285	4627607	4		1	0	10	18
11				548440	22843744418	15756857221135	11			975	1594532	33362634	0			9	- 39	050
12				176137	50867669444	104784604156741	12			364	3539461	210409407	0 7			4	121	200
13				35473	86544642569	576125696499417	13			72	6017824	1129335392	1			4	200	1224
14				4696	111836743580	2623564948795633	14			18	7772366	5091624997	0			1	442	00100
15				403	108882205792	9901507463165937	15			2	7568187	19140028219	9			1	495	26188
16				35	79051125332	30959687376379661	16			2	5493206	59761963636	10				420	94479
17					42275685836	80100291981771263	17				2939617	154544375137	11				218	209450
18					16420711804	171118574787473668	18				1141472	330108625102	12				90	595649 101070e
19					4563456676	300957676311237853	19				317980	580559388329	13				20	1010700
20					894429087	434125855232450974	20				62319	837440466326	14				0	1004019
21					122238972	511227919780309083	21				8676	986167409118	15				2	12/0356
22					11569016	488771341028032846	22				823	942850011453	10				2	923128
23					759296	376957644290919036	23				69	727157075193	17					495565
24					33736	232788472371575258	24				6	449054224783	18					193531
25					1411	114149339445885218	25				2	220195944263	19					34740
26						44033009520708974	26					84941236104	20					11032
27						13227534274721732	27					25516234965	21					1693
28						3061826358557444	28					5906586539	22					192
29						540473537486248	29					1042616896	23					20
30						72090555296085	30					139114631	24					4
31						7217657260917	31					13928529	20		-			2
32						540810639064	32					1048656	Total	2	6	39	2148	6239377
33						30364554576	33					59130						
34						1285684592	34					2846						
35						40649375	35					109						
36						1130531	36					22						
Total	2	20	2029	5319934	534759300182	2815323435872410905	Total	2	8 81	9878	37202839	5431010366322						

Currently, we are waiting for some computations to finish off.

Currently, we are waiting for some computations to finish off.
 We are making an effort to ensure the computations are correct:

Currently, we are waiting for some computations to finish off.
 We are making an effort to ensure the computations are correct:

Cross-checking by using two methods (where possible).

- Currently, we are waiting for some computations to finish off.
 We are making an effort to ensure the computations are correct:
 - Cross-checking by using two methods (where possible).
 - Comparing with constructive enumeration.

- Currently, we are waiting for some computations to finish off.
 We are making an effort to ensure the computations are
- We are making an effort to ensure the computations are correct:
 - Cross-checking by using two methods (where possible).
 - Comparing with constructive enumeration.
 - Checking divisors.

- Currently, we are waiting for some computations to finish off.
 We are making an effort to ensure the computations are correct:
 - Cross-checking by using two methods (where possible).
 - Comparing with constructive enumeration.
 - Checking divisors.

