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Incidence structures.
I An incidence structure is a triple D = (V,B, I ), where V is a set of v

points, B is a set of b blocks and I ⊆ V × B is an incidence relation.

I D is k-uniform if every block contains exactly k points and it is r-regular
if every point is exactly on r blocks.

I A 1-(v , k, r) design is an incidence structure of v points which is
k-uniform and r -regular → b · k = v · r .

I Two blocks are equivalent if they contain the same set of points. The
multiplicity mult(x) of a block x is the size of its equivalence class.

I The design is simple if all its blocks are distinct. Otherwise, it has multiple
blocks.

I If all the blocks have the same multiplicity, then the design can be
simplified by identifying equivalent blocks: D → D.
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Incidence structures.

I The number of blocks which contain a given pair of distinct points is its
concurrence.

I ΛD = {λ1, . . . , λm} ≡ Set of possible concurrences.

Λ = {1} Λ = {0, 1, 2}

I Two points are i th associates if their concurrence is λi .

I A m-concurrence design is a 1-design with m distinct concurrences
λ1 . . . , λm among its points, for which there exist m values n1, . . . , nm such
that every point has exactly ni i

th associates, for each i ∈ [m].

n1 = 6 n1 = n2 = n3 = 1
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Incidence structures.

I An m-concurrence design is a partially balanced incomplete block design
(PBIBD) if, for any two k th-associated points P and Q, there exist pk

ij

points which are i th-associated to P and j th-associated to Q, where pk
ij

only depends on i , j and k.

p1
11 = 6 pk

ij =

{
1, if i 6= j 6= k 6= i ,

0, otherwise.
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Partial Latin rectangles.

I PLRr,s,n = {r × s partial Latin rectangles based on [n] = {1, 2, ..., n}}.

r × s arrays in which each cell is either empty or contains one symbol of
[n], s.t. each symbol occurs at most once in each row and in each column.

1 3
2 4

5
∈ PLR3,4,5:5 ⊂ PLR3,4,6:5 ⊂ . . .

I Size: Number of non-empty cells. → PLRr,s,n:m.

I r = s = n and m = n2: Latin square.
n ≤ 11: McKay and Wanless, 2005; Hulpke, Kaski and Österg̊ard, 2011.

I r = s = n ≤ 4 and m < n2: Partial Latin square.
n ≤ 4: Falcón, 2012.
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Partial Latin rectangles.

I General case? [Falcón, 2013; Stones, 2013.]

I POLYNOMIAL METHOD: PLRr,s,n.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]

P = (pij )↔ xijk =

{
1, if pij = k,

0, otherwise.

Ir,s,n ≡


xijk · (xijk − 1) = 0,∀i ∈ [r ], j ∈ [s], k ∈ [n],

xijk · xijl = 0,∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [n] \ [k],

xijk · xilk = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [s] \ [j ],

xijk · xljk = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [r ] \ [i ].

PLRr,s,n = V(Ir,s,n) |PLRr,s,n| = dimQ(Q[x111, . . . , xrsn]/Ir,s,n)

PLRr,s,n:m →
∑

i∈[r ],j∈[s],k∈[n] xijk = m.
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Partial Latin rectangles.

|PLRr,s,n|
n

r s 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8 9
2 7 13 21 31 43 57 73
3 34 73 136 229 358 529
4 209 501 1,045 1,961 3,393
5 1,546 4,051 9,276 19,081
6 13,327 37,633 93,289
7 130,922 394,353
8 1,441,729

2 2 35 121 325 731 1,447 2,605 4,361
3 781 3,601 12,781 37,273 93,661 209,761
4 28,353 162,661 720,181 2,599,185 7,985,761
5 1,502,171 10,291,951 54,730,201 236,605,001
6 108,694,843 864,744,637 5,376,213,193
7 10,256,288,925 92,842,518,721
8 1,219,832,671,361

3 3 11,776 116,425 805,366 4,193,269 17,464,756 60,983,761
4 2,423,521 33,199,561 317,651,473 2,263,521,961 12,703,477,825
5 890,442,316 15,916,515,301 199,463,431,546 1,854,072,020,881
6 526,905,708,889 11,785,736,969,413 *

4 4 127,545,137 4,146,833,121 87,136,329,169 1,258,840,124,753 *
5 313,185,347,701 * * *

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.

Max. time of computation: 4,180 seconds (PLR2,9,13).



Partial Latin rectangles.

|PLRr,s,n|
n

r s 9 10 11 12 13

1 1 10 11 12 13 14
2 91 111 133 157 183
3 748 1,021 1,354 1,753 2,224
4 5,509 8,501 12,585 18,001 25,013
5 36,046 63,591 106,096 169,021 259,026
6 207,775 424,051 805,597 1,442,173 2,456,299
7 1047,376 2,501,801 5,470,158 11,109,337 21,204,548
8 4,596,553 12,975,561 32,989,969 76,751,233 165,625,929
9 17,572,114 58,941,091 175,721,140 472,630,861 1,163,391,958
10 234,662,231 824,073,141 258,128,454 7,307,593,151
11 3,405,357,682 12,470,162,233 40,864,292,184
12 53,334,454,417 202,976,401,213
13 896,324,308,634

2 2 6,985 10,411 15,137 21,325 29,251
3 28,941 815,161 1,458,733 2,482,801 4,050,541
4 21,582,613 52,585,221 117,667,441 245,278,945 481,597,221
5 864,742,231 2,756,029,891 7,846,852,421 20,336,594,221 48,689,098,771
6 27,175,825,171 115,690,051,951 426,999,864,193 1,398,636,508,477 4,141,988,637,463
7 661,377,377,305 3,836,955,565,101 18,712,512,041,917 78,819,926,380,945 293,220,109,353,081
8 12,372,136,371,721 99,423,049,782,601 652,303,240,153,313 3,595,671,023,722,081 17,076,864,830,330,761
9 178,156,152,706,483 2,000,246,352,476,311 17,908,872,286,407,301 131,297,226,011,020,765 808,986,548,443,056,751
10 31,296,831,902,738,931 385,203,526,838,449,441 * *
11 * * *

3 3 184,952,170 500,317,981 1,231,810,504 2,803,520,281 5,970,344,446
4 58,737,345,481 231,769,858,321 802,139,572,873 2,487,656,927,521 7,030,865,002,825
5 13,451,823,665,776 * * * *

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.

Max. time of computation: 4,180 seconds (PLR2,9,13).



Partial Latin rectangles.

How can this method be improved?

I Distribute the elements of PLRr,s,n into disjoint subsets for which a set of
boolean polynomials can be related.

I Types (r , s, n ≤ 5 [Falcón, 2013]):
Number of entries per row and column and number of occurrences of each
symbol. [Keedwell, 1994; Bean et al., 2002].

1 3 4 6
2 5 4

4 5 1
2 3

Type: ((4, 3, 3, 2), (2, 0, 4, 2, 4), (2, 2, 2, 3, 2, 1)).

I Consider the set of symmetries (autotopisms) of PLRr,s,n.
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Symmetries of a partial Latin rectangle.
I Sm: Symmetric group on [m].
I Sr × Ss × Sn: Set of isotopisms of PLRr,s,n.

Given P = (pij) ∈ PLRr,s,n:
I Orthogonal representation: O(P)={(i , j , pij) | i ∈ [r ], j ∈ [s], pij ∈ [n]}.

I Isotopism (∼): Θ = (α, β, γ) ∈ Sr × Ss × Sn.

O(PΘ) = {(α(i), β(j), γ(pij)) | (i , j , pij) ∈ O(P)}.

I Isotopism class: In,P= {Q ∈ PLRr,s,n | Q ∼ P}.

I In(P,Q) = {Θ ∈ Sr × Ss × Sn | PΘ = Q}.

I Autotopism group: An(P) = In(P,P).

I PLRΘ = {P ∈ PLRr,s,n | Θ ∈ An(P)}.

I PLRΘ:m = {P ∈ PLRr,s,n:m | Θ ∈ An(P)}.

|An(P)| = |An(Q)|, ∀Q ∈ In(P). |In,P | = r !·s!·n!
|An(P)| .
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Symmetries of a partial Latin rectangle.

P = (pij),Q = (qij) ∈ PLRr,s,n.

POLYNOMIAL METHOD: In(P,Q).

Θ = (α, β, γ)↔ (aij , bij , cij ) such that dij =

{
1, if δ(i) = j

0, otherwise.

In,P,Q ≡



aij · (aij − 1) = 0, ∀i, j ∈ [r ],

bij · (bij − 1) = 0, ∀i, j ∈ [s],

cij · (cij − 1) = 0, ∀i, j ∈ [n],∑
i∈[r ] aij = 1, ∀j ∈ [r ],∑
j∈[r ] aij = 1, ∀i ∈ [r ],∑
i∈[s] bij = 1, ∀j ∈ [s],∑
j∈[s] bij = 1, ∀i ∈ [s],∑
i∈[n] cij = 1, ∀j ∈ [n],∑
j∈[n] cij = 1, ∀i ∈ [n],

aik · bjl · (cpij qkl − 1) = 0, ∀i, k ∈ [r ], j, l ∈ [s], such that pij , qkl ∈ [n],

aik · bjl = 0, ∀i, k ∈ [r ], j, l ∈ [s], such that pij = ∅ or qkl = ∅.

In(P,Q) = V(In,P,Q) |In(P,Q)| = dimQ(Q[a11, . . . , cnn]/In,P,Q)
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Symmetries of a partial Latin rectangle.

P ≡
1 3

2 4
5
∈ PLR3,4,5.

A5(P) =

{
Θ1 = Id3,4,5 = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)),

Θ2 = ((12)(3), (12)(3)(4), (12)(34)(5)).

|I5,P | =
3! · 4! · 5!

2
= 8, 640.

How can we obtain all the 8, 460 partial Latin rectangles?
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POLYNOMIAL METHOD: In,P .
(But Gröbner bases are extremely sensitive to the number of variables!!).
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Symmetries of a partial Latin rectangle.

P = (pij) ∈ PLRr,s,n.

In order to reduce the number variables, we can consider the symmetries of P,
i.e., its autotopism group An(P). It is due to the fact that autotopisms
decompose P into blocks.

P ≡
1 3

2 4
5
∈ PLR3,4,5.

A5(P) =

{
Θ1 = Id3,4,5 = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)),

Θ2 = ((12)(3), (12)(3)(4), (12)(34)(5)).
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Symmetries of a partial Latin rectangle.

Θ = (α, β, γ) ∈ Sr × Ss × Sn.

POLYNOMIAL METHOD: PLRΘ

IΘ ≡



xijk · (xijk − 1) = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n],

xijk = xα(i)β(j)γ(k),

xijk · xijl = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [n] \ [k],

xijk · xilk = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [s] \ [j ],

xijk · xljk = 0, ∀i ∈ [r ], j ∈ [s], k ∈ [n], l ∈ [r ] \ [i ].

PLRΘ = V(IΘ) |PLRΘ| = dimQ(Q[x111, . . . , xrsn]/IΘ).

If Θ = Idr,s,n = (Idr , Ids , Idn), then IΘ = Ir,s,n and PLRΘ = PLRr,s,n.

The number of variables which can be eliminated only depends on the cycle
structure of Θ.
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The number of variables which can be eliminated only depends on the cycle
structure of Θ.
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Symmetries of a partial Latin rectangle.

P ≡
1 3

2 4
5
∈ PLR3,4,5.

A5(P) =

{
Θ1 = Id3,4,5 = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)),

Θ2 = ((12)(3), (12)(3)(4), (12)(34)(5))
.

I Cycle structure of Θ = (α, β, γ) ∈ Sr × Ss × Sn: zΘ=(zα, zβ , zγ), where:

Cycle structure of π: zπ = kλ
π
k . . . 1λ

π
1 , being λπi the number of cycles of

length i in the decomposition of π as a product of disjoint cycles.

zΘ1 = (13, 14, 15), zΘ2 = (21, 212, 221).

I CSn={Cycle structures of Sn}.
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The incidence structure (PLRz:m,Sz).

z ∈ CS r × CSs × CSn

I PLRz:m = {P ∈ PLRr,s,n:m | ∃Θ ∈ An(P) such that zΘ = z}.

I Sz = {Θ ∈ Sr × Ss × Sn | zΘ = z}.
I Incidence relation: P ∈ PLRz:m is on Θ ∈ Sz if Θ ∈ An(P).

I |PLRΘ1:m| = |PLRΘ2:m| = ∆m(z), ∀Θ1,Θ2 ∈ Sz . ⇒ ∆m(z)-uniform.

z = (2, 2, 221)
m = 2

|PLRz:m| = 50
|Sz | = 15

∆m(z) = 10 = 2P + 8Q

Two isotopism classes
P ≡

1

1
→ |I5(P)| = 10

Q ≡
1

2
→ |I5(Q)| = 40
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The incidence structure (PLRz:m,Sz).

z ∈ CS r × CSs × CSn
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Which are the properties of
such incidence structures?

- Multiplicity.
- Regularity.

- Parameters.
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The incidence structure (PLRz:m,Sz).

z ∈ CS r × CSs × CSn

I PLRz:m = {P ∈ PLRr,s,n:m | ∃Θ ∈ An(P) such that zΘ = z}.

I Sz = {Θ ∈ Sr × Ss × Sn | zΘ = z}.
I Incidence relation: P ∈ PLRz:m is on Θ ∈ Sz if Θ ∈ An(P).

I |PLRΘ1:m| = |PLRΘ2:m| = ∆m(z), ∀Θ1,Θ2 ∈ Sz . ⇒ ∆m(z)-uniform.

Which is the cost of computation?



The incidence structure (PLRz:m,Sz).

Lemma
All the blocks of (PLRz:m, Sz) have the same multiplicity.

Lemma
k ≤ |Sz | → The number of points on a given block Θ ∈ Sz which are
contained in exactly k blocks of Sz does not depend on Θ.

Proposition
Θ ∈ Sz → If |Az(P)| = |Az(Q)|, for all P,Q ∈ PLRΘ:m, then (PLRz:m, Sz) is
regular.

Lemma

a) In,P ⊆ PLRz:m, for all P ∈ PLRz:m.

b) |PLRΘ1:m ∩ In,P | = |PLRΘ2:m ∩ In,P | = ∆P(z), for all Θ1,Θ2 ∈ Sz .

Lemma
P ∈ PLRz:m → |Az(Q)| = |Az(P)|, for all Q ∈ In,P .
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The incidence structure (PLRz:m,Sz).

z = (22, 22, 14) ∈ CS4 × CS4 × CS4.

Θ = ((13)(24), (13)(24), Id4) ∈ Sz1 .

P ≡
1 2 4 3
3 1 2 4
4 3 1 2
2 4 3 1

6∼ Q ≡
1 2 4 3
2 1 3 4
4 3 1 2
3 4 2 1

∈ PLRΘ:16.

Az(P) = {Θ}. Az(Q) =


Θ,

((12)(34), (12)(34), Id4),

((14)(23), (14)(23), Id4).

|Az(P)| = 1. |Az(Q)| = 3.

⇓

(PLRz:16,Sz) is not regular.

|PLRz:16| = 576 = 432P + 144Q , |Sz | = 9, ∆16(z) = 96 = 48P + 48Q .
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The 1-design (In,P , Sz).

= +

Proposition
The pair (In,P , Sz) is a 1-(|In,P |,∆P(z), |Az(P)|) design, with the incidence
relation inherited from (PLRz:m, Sz), such that:

I All its blocks have the same multiplicity.

I All its points have the same multiplicity.

I All its connected components are isomorphic.

Proposition
Q ∈ In,P → The number of points which are concurrent with Q on exactly λ
blocks does not depend on the choice of Q.
Θ ∈ Sz → The number of blocks which are incident with Θ on exactly λ
points does not depend on the choice of Θ.

Theorem
The 1-design (In,P ,Sz) and its dual are m-concurrence designs.

I mult(In,P) = maxλ∈Λ{λ}+ 1.
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The 1-design (In,P , Sz).
In general, (In,P , Sz) is not a PBIBD:

z = (1, 21, 221) ∈ CS1 × CS3 × CS5.
P ≡ 1 2

|In,P | = 60,

|Sz | = 45,

∆P(z) = 4,

|Az(P)| = 3,

mult(In,P) = 2,

mult(Sz) = 1,

3 connected components.

{
Λ = {0, 1, 3},
n1 = 52, n2 = 6, n3 = 1.

Θ = (Id, (12)(3), (12)(34)(5)) Θ = (Id, (12)(3), (12)(35)(4))

Θ = (Id, (12)(3), (12)(45)(3))

330000110000111100000000000000000000000000000000000000000000
003300000011110000110000000000000000000000000000000000000000
000000000000000000000033000000000011000000000011001100000000

When a m-concurrence design related to a PLR is a PBIBD?
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I A. Hulpke, P. Kaski and P. R. J. Österg̊ard, The number of Latin squares of
order 11, Math. Comp. 80 (2011) no. 274, 1197–1219.

I R. G. Jarrett, Definitions and properties for m-concurrence designs, J. Roy.
Statist. Soc. Ser. B 45 (1983) no. 1, 1–10.

I B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb. 9
(2005) no. 3, 335–344.

I S. C. Saxena, On simplification of certain types of BIBDs, Indian J. Pure Appl.
Math. 16 (1985) no. 2, 103–106.
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