Concurrence designs based on partial Latin rectangles autotopisms.

Raúl Falcón

Department of Applied Mathematics I University of Seville (Spain) rafalgan@us.es

CanaDAM 2013

June 10 - 13 Memorial University of Newfoundland

Introduction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Incidence structures.
- ► Partial Latin rectangles.

Introduction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Incidence structures.
- ► Partial Latin rectangles.

An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.
- D is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.

- An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.
- D is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- ► A 1-(v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k = v \cdot r$.

- An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.
- D is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- ► A 1-(v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k = v \cdot r$.

Two blocks are equivalent if they contain the same set of points. The multiplicity mult(x) of a block x is the size of its equivalence class.

- An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.
- D is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- ► A 1-(v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k = v \cdot r$.

Two blocks are equivalent if they contain the same set of points. The multiplicity mult(x) of a block x is the size of its equivalence class.

The design is simple if all its blocks are distinct. Otherwise, it has multiple blocks.

- An incidence structure is a triple D = (V, B, I), where V is a set of v points, B is a set of b blocks and I ⊆ V × B is an incidence relation.
- ▶ D is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- A 1-(v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k = v \cdot r$.

Two blocks are equivalent if they contain the same set of points. The multiplicity mult(x) of a block x is the size of its equivalence class.

- The design is simple if all its blocks are distinct. Otherwise, it has multiple blocks.
- ▶ If all the blocks have the same multiplicity, then the design can be simplified by identifying equivalent blocks: $D \rightarrow \overline{D}$.

• The number of blocks which contain a given pair of distinct points is its concurrence.

- > The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}} = \{\lambda_1, \dots, \lambda_m\} \equiv \text{Set of possible concurrences.}$

 $\Lambda = \{0, 1, 2\}$

$$= \{1\}$$

- The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}} = \{\lambda_1, \dots, \lambda_m\} \equiv \text{Set of possible concurrences.}$

• Two points are i^{th} associates if their concurrence is λ_i .

- The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}} = \{\lambda_1, \dots, \lambda_m\} \equiv \text{Set of possible concurrences.}$

- Two points are i^{th} associates if their concurrence is λ_i .
- ▶ A *m*-concurrence design is a 1-design with *m* distinct concurrences $\lambda_1 \ldots, \lambda_m$ among its points, for which there exist *m* values n_1, \ldots, n_m such that every point has exactly n_i *i*th associates, for each $i \in [m]$.

 $n_1 = 6$

 $n_1 = n_2 = n_3 = 1$

An *m*-concurrence design is a partially balanced incomplete block design (PBIBD) if, for any two kth-associated points P and Q, there exist p^k_{ij} points which are ith-associated to P and jth-associated to Q, where p^k_{ij} only depends on i, j and k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Incidence structures.
- ► Partial Latin rectangles.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ Size: Number of non-empty cells. $\rightarrow \mathcal{PLR}_{r,s,n:m}$.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ Size: Number of non-empty cells. $\rightarrow \mathcal{PLR}_{r,s,n:m}$.

• r = s = n and $m = n^2$: Latin square.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ Size: Number of non-empty cells. $\rightarrow \mathcal{PLR}_{r,s,n:m}$.

 r = s = n and m = n²: Latin square. n ≤ 11: McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ Size: Number of non-empty cells. $\rightarrow \mathcal{PLR}_{r,s,n:m}$.

 r = s = n and m = n²: Latin square. n ≤ 11: McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.

▶ $r = s = n \le 4$ and $m < n^2$: Partial Latin square.

▶ $\mathcal{PLR}_{r,s,n} = \{r \times s \text{ partial Latin rectangles based on } [n] = \{1, 2, ..., n\}\}.$

 $r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

▶ Size: Number of non-empty cells. $\rightarrow \mathcal{PLR}_{r,s,n:m}$.

 r = s = n and m = n²: Latin square. n ≤ 11: McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.

r = s = n ≤ 4 and m < n²: Partial Latin square. n ≤ 4: Falcón, 2012.

▶ General case? [Falcón, 2013; Stones, 2013.]

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: *PLR_{r,s,n}*.
 [Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$P = (p_{ij}) \leftrightarrow x_{ijk} = \begin{cases} 1, \text{ if } p_{ij} = k, \\ 0, \text{ otherwise.} \end{cases}$$

$$I_{r,s,n} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{ilk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ljk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i]. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: *PLR_{r,s,n}*.
 [Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$P = (p_{ij}) \leftrightarrow x_{ijk} = \begin{cases} 1, \text{ if } p_{ij} = k, \\ 0, \text{ otherwise.} \end{cases}$$

$$I_{r,s,n} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{ilk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i]. \end{cases}$$

 $\mathcal{PLR}_{r,s,n} = \mathcal{V}(I_{r,s,n})$

 $|\mathcal{PLR}_{r,s,n}| = \dim_{\mathbb{Q}}(\mathbb{Q}[x_{111},\ldots,x_{rsn}]/I_{r,s,n})$

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: *PLR_{r,s,n}*.
 [Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$P = (p_{ij}) \leftrightarrow x_{ijk} = \begin{cases} 1, & \text{if } p_{ij} = k, \\ 0, & \text{otherwise.} \end{cases}$$

$$I_{r,s,n} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{iik} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i]. \end{cases}$$

$$\mathcal{PLR}_{r,s,n} = \mathcal{V}(I_{r,s,n})$$

 $|\mathcal{PLR}_{r,s,n}| = \dim_{\mathbb{Q}}(\mathbb{Q}[x_{111},\ldots,x_{rsn}]/I_{r,s,n})$

$$\mathcal{PLR}_{r,s,n:m} \to \sum_{i \in [r], j \in [s], k \in [n]} x_{ijk} = m.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

		F	$ \mathcal{PLR}_{r,s,n} $						
		п							
r	5	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	9
	2		7	13	21	31	43	57	73
	3			34	73	136	229	358	529
	4				209	501	1,045	1,961	3,393
	5					1,546	4,051	9,276	19,081
	6						13,327	37,633	93,289
	7							130,922	394,353
	8								1,441,729
2	2		35	121	325	731	1,447	2,605	4,361
	3			781	3,601	12,781	37,273	93,661	209,761
	4				28,353	162,661	720,181	2,599,185	7,985,761
	5					1,502,171	10,291,951	54,730,201	236,605,001
	6						108,694,843	864,744,637	5,376,213,193
	7							10,256,288,925	92,842,518,721
	8								1,219,832,671,361
3	3			11,776	116,425	805,366	4,193,269	17,464,756	60,983,761
	4				2,423,521	33,199,561	317,651,473	2,263,521,961	12,703,477,825
	5					890,442,316	15,916,515,301	199,463,431,546	1,854,072,020,881
	6						526,905,708,889	11,785,736,969,413	*
4	4				127,545,137	4,146,833,121	87,136,329,169	1,258,840,124,753	*
	5					313,185,347,701	*	*	*

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.

Max. time of computation: 4,180 seconds ($\mathcal{PLR}_{2,9,13}$).

		$ \mathcal{PLR}_{r,s,n} $				
		n				
r	5	9	10	11	12	13
1	1	10	11	12	13	14
	2	91	111	133	157	183
	3	748	1,021	1,354	1,753	2,224
	4	5,509	8,501	12,585	18,001	25,013
	5	36,046	63,591	106,096	169,021	259,026
	6	207,775	424,051	805,597	1,442,173	2,456,299
	7	1047,376	2,501,801	5,470,158	11,109,337	21,204,548
	8	4,596,553	12,975,561	32,989,969	76,751,233	165,625,929
	9	17,572,114	58,941,091	175,721,140	472,630,861	1,163,391,958
	10		234,662,231	824,073,141	258,128,454	7,307,593,151
	11			3,405,357,682	12,470,162,233	40,864,292,184
	12				53,334,454,417	202,976,401,213
	13					896,324,308,634
2	2	6,985	10,411	15,137	21,325	29,251
	3	28,941	815,161	1,458,733	2,482,801	4,050,541
	4	21,582,613	52,585,221	117,667,441	245,278,945	481,597,221
	5	864,742,231	2,756,029,891	7,846,852,421	20,336,594,221	48,689,098,771
	6	27,175,825,171	115,690,051,951	426,999,864,193	1,398,636,508,477	4,141,988,637,463
	7	661,377,377,305	3,836,955,565,101	18,712,512,041,917	78,819,926,380,945	293,220,109,353,081
	8	12,372,136,371,721	99,423,049,782,601	652,303,240,153,313	3,595,671,023,722,081	17,076,864,830,330,761
	9	178,156,152,706,483	2,000,246,352,476,311	17,908,872,286,407,301	131,297,226,011,020,765	808,986,548,443,056,751
	10		31,296,831,902,738,931	385,203,526,838,449,441	*	*
	11			*	*	*
3	3	184,952,170	500,317,981	1,231,810,504	2,803,520,281	5,970,344,446
	4	58,737,345,481	231,769,858,321	802,139,572,873	2,487,656,927,521	7,030,865,002,825
	5	13,451,823,665,776	*	*	*	*

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.

Max. time of computation: 4,180 seconds ($\mathcal{PLR}_{2,9,13}$).

How can this method be improved?

How can this method be improved?

▶ Distribute the elements of *PLR_{r,s,n}* into disjoint subsets for which a set of boolean polynomials can be related.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How can this method be improved?

- ▶ Distribute the elements of *PLR_{r,s,n}* into disjoint subsets for which a set of boolean polynomials can be related.
 - Types (r, s, n ≤ 5 [Falcón, 2013]): Number of entries per row and column and number of occurrences of each symbol. [Keedwell, 1994; Bean et al., 2002].

1	3	4	6
2	5		4
	4	5	1
	2		3

Type: ((4, 3, 3, 2), (2, 0, 4, 2, 4), (2, 2, 2, 3, 2, 1)).

How can this method be improved?

- ▶ Distribute the elements of *PLR_{r,s,n}* into disjoint subsets for which a set of boolean polynomials can be related.
 - Types (r, s, n ≤ 5 [Falcón, 2013]): Number of entries per row and column and number of occurrences of each symbol. [Keedwell, 1994; Bean et al., 2002].

1	3	4	6
2	5		4
	4	5	1
	2		3

Type: ((4, 3, 3, 2), (2, 0, 4, 2, 4), (2, 2, 2, 3, 2, 1)).

▶ Consider the set of symmetries (autotopisms) of *PLR*_{*r*,*s*,*n*}.

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~): $\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n$. $O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

▶ Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

▶ Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$

►
$$\mathfrak{I}_n(P,Q) = \{\Theta \in S_r \times S_s \times S_n \mid P^\Theta = Q\}.$$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

- ▶ Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$
- ► $\mathfrak{I}_n(P,Q) = \{\Theta \in S_r \times S_s \times S_n \mid P^\Theta = Q\}.$
- Autotopism group: $\mathfrak{A}_n(P) = \mathfrak{I}_n(P, P)$.

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

- ▶ Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$
- ► $\mathfrak{I}_n(P,Q) = \{\Theta \in S_r \times S_s \times S_n \mid P^\Theta = Q\}.$
- Autotopism group: $\mathfrak{A}_n(P) = \mathfrak{I}_n(P, P)$.

$$\blacktriangleright \mathcal{PLR}_{\Theta} = \{ P \in \mathcal{PLR}_{r,s,n} \mid \Theta \in \mathfrak{A}_n(P) \}.$$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

- ► Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$
- ► $\mathfrak{I}_n(P,Q) = \{\Theta \in S_r \times S_s \times S_n \mid P^\Theta = Q\}.$
- Autotopism group: $\mathfrak{A}_n(P) = \mathfrak{I}_n(P, P)$.

►
$$\mathcal{PLR}_{\Theta} = \{ P \in \mathcal{PLR}_{r,s,n} \mid \Theta \in \mathfrak{A}_n(P) \}.$$

► $\mathcal{PLR}_{\Theta:m} = \{ P \in \mathcal{PLR}_{r,s,n:m} \mid \Theta \in \mathfrak{A}_n(P) \}.$

- S_m : Symmetric group on [m].
- $S_r \times S_s \times S_n$: Set of **isotopisms** of $\mathcal{PLR}_{r,s,n}$.

Given $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}$:

▶ Orthogonal representation: $O(P) = \{(i, j, p_{ij}) \mid i \in [r], j \in [s], p_{ij} \in [n]\}.$

► Isotopism (~):
$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

$$O(P^{\Theta}) = \{ (\alpha(i), \beta(j), \gamma(p_{ij})) \mid (i, j, p_{ij}) \in O(P) \}.$$

- ► Isotopism class: $\mathfrak{I}_{n,P} = \{ Q \in \mathcal{PLR}_{r,s,n} \mid Q \sim P \}.$
- ► $\mathfrak{I}_n(P,Q) = \{\Theta \in S_r \times S_s \times S_n \mid P^\Theta = Q\}.$
- Autotopism group: $\mathfrak{A}_n(P) = \mathfrak{I}_n(P, P)$.

►
$$\mathcal{PLR}_{\Theta} = \{ P \in \mathcal{PLR}_{r,s,n} \mid \Theta \in \mathfrak{A}_n(P) \}.$$

► $\mathcal{PLR}_{\Theta:m} = \{ P \in \mathcal{PLR}_{r,s,n:m} \mid \Theta \in \mathfrak{A}_n(P) \}.$

 $|\mathfrak{A}_n(P)| = |\mathfrak{A}_n(Q)|, \forall Q \in \mathfrak{I}_n(P).$

 $P = (p_{ij}), Q = (q_{ij}) \in \mathcal{PLR}_{r,s,n}.$

POLYNOMIAL METHOD: $\mathfrak{I}_n(P, Q)$.

$$\begin{split} \Theta &= \left(\alpha, \beta, \gamma\right) \leftrightarrow \left(a_{ij}, b_{ij}, c_{ij}\right) \text{ such that } d_{ij} = \begin{cases} 1, \text{ if } \delta(i) = j\\ 0, \text{ otherwise.} \end{cases} \\ \begin{cases} a_{ij} \cdot (a_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ij} \cdot (c_{ij} - 1) = 0, \forall i, j \in [n], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ a_{ik} \cdot b_{jl} \cdot (c_{p_{ij}q_{kl}} - 1) = 0, \forall i, k \in [r], j, l \in [s], \text{ such that } p_{ij}, q_{kl} \in [n], \\ a_{ik} \cdot b_{jl} = 0, \forall i, k \in [r], j, l \in [s], \text{ such that } p_{ij} = \emptyset \text{ or } q_{kl} = \emptyset. \end{cases} \end{split}$$

 $P = (p_{ij}), Q = (q_{ij}) \in \mathcal{PLR}_{r,s,n}.$

POLYNOMIAL METHOD: $\mathfrak{I}_n(P, Q)$.

$$\begin{split} \Theta &= (\alpha, \beta, \gamma) \leftrightarrow (a_{ij}, b_{ij}, c_{ij}) \text{ such that } d_{ij} = \begin{cases} 1, \text{ if } \delta(i) = j \\ 0, \text{ otherwise.} \end{cases} \\ \begin{cases} a_{ij} \cdot (a_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ij} \cdot (c_{ij} - 1) = 0, \forall i, j \in [n], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{j \in [r]} b_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ a_{ik} \cdot b_{jl} \cdot (c_{p_{ij}q_{kl}} - 1) = 0, \forall i, k \in [r], j, l \in [s], \text{ such that } p_{ij}, q_{kl} \in [n], \\ a_{ik} \cdot b_{jl} = 0, \forall i, k \in [r], j, l \in [s], \text{ such that } p_{ij} = \emptyset. \end{split}$$

 $\mathfrak{I}_n(P,Q) = \mathcal{V}(I_{n,P,Q})$

 $|\mathfrak{I}_n(P,Q)| = \dim_{\mathbb{Q}}(\mathbb{Q}[a_{11},\ldots,c_{nn}]/I_{n,P,Q})$

・ロト・(中下・(中下・(中下・))

$$P \equiv \boxed{\begin{array}{c|c}1 & 3\\ & 2 & 4\\ \hline & & 5\end{array}} \in \mathcal{PLR}_{3,4,5}.$$

 $\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \end{cases}$

$$|\mathfrak{I}_{5,P}| = \frac{3! \cdot 4! \cdot 5!}{2} = 8,640.$$

$$P \equiv \boxed{\begin{array}{c|c}1 & 3\\ & 2 & 4\\ \hline & & 5\end{array}} \in \mathcal{PLR}_{3,4,5}.$$

$$\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \\ \\ |\mathfrak{I}_{5,P}| = \frac{3! \cdot 4! \cdot 5!}{2} = 8,640. \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

How can we obtain all the 8,460 partial Latin rectangles?

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

POLYNOMIAL METHOD: $\mathfrak{I}_{n,P}$.

$$I_{n,P} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{ilk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i], \\ a_{ij} \cdot (a_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [n], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{j \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall j \in [s], \\ \sum_{i \in [s]} b_{ij} = 1, \forall j \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall j \in [n], \\ \sum_{j \in [n]} c_{ij} = 1, \forall j \in [n], \\ \sum_{j \in [n]} c_{ij} = 1, \forall j \in [n], \\ a_{ik} \cdot b_{jl} \cdot c_{p_{ij}m} \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], p_{ij}, m \in [n], \\ a_{ik} \cdot b_{jl} \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], m \in [n],$$
 such that $p_{ij} = \emptyset$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

POLYNOMIAL METHOD: $\mathfrak{I}_{n,P}$.

 $\mathfrak{I}_{n,P} = \mathcal{V}(I_P)$

$$I_{n,P} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i], \\ a_{ij} \cdot (a_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ii} \cdot (c_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ij} \in [r] a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall j \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall j \in [n], \\ a_{ik} \cdot b_{ji} \cdot c_{pij}m \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], p_{ij}, m \in [n], \\ a_{ik} \cdot b_{ji} \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], m \in [n],$$
 such that $p_{ij} = \emptyset$.

 $|\mathfrak{I}_{n,P}| = \dim_{\mathbb{Q}}(\mathbb{Q}[x_{111},\ldots,c_{nn}]/I_P)$

 $P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$

POLYNOMIAL METHOD: $\mathfrak{I}_{n,P}$.

(But Gröbner bases are extremely sensitive to the number of variables!!).

$$I_{n,P} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{iik} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i], \\ a_{ij} \cdot (a_{ij} - 1) = 0, \forall i, j \in [r], \\ b_{ij} \cdot (b_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ij} \cdot (c_{ij} - 1) = 0, \forall i, j \in [s], \\ c_{ij} \cdot (c_{ij} - 1) = 0, \forall i, j \in [s], \\ \sum_{i \in [r]} a_{ij} = 1, \forall j \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [r], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [s], \\ \sum_{i \in [s]} b_{ij} = 1, \forall i \in [s], \\ \sum_{i \in [n]} c_{ij} = 1, \forall i \in [n], \\ a_{ik} \cdot b_{jl} \cdot c_{p_{ij}m} \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], p_{ij}, m \in [n], \\ a_{ik} \cdot b_{jl} \cdot (x_{klm} - 1) = 0, \forall i, k \in [r], j, l \in [s], m \in [n], \text{ such that } p_{ij} = \emptyset. \end{cases}$$

 $\mathfrak{I}_{n,P} = \mathcal{V}(I_P)$

 $|\mathfrak{I}_{n,P}| = \dim_{\mathbb{Q}}(\mathbb{Q}[x_{111},\ldots,c_{nn}]/I_P)$

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

In order to reduce the number variables, we can consider the **symmetries** of P, i.e., its autotopism group $\mathfrak{A}_n(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$P \equiv \boxed{\begin{array}{c|c}1 & 3\\ 2 & 4\\ \end{array}} \in \mathcal{PLR}_{3,4,5}.$$

 $\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \end{cases}$

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

In order to reduce the number variables, we can consider the **symmetries** of P, i.e., its autotopism group $\mathfrak{A}_n(P)$. It is due to the fact that autotopisms decompose P into blocks.

 $\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \end{cases}$

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

In order to reduce the number variables, we can consider the **symmetries** of P, i.e., its autotopism group $\mathfrak{A}_n(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$P \equiv \begin{array}{c|c} 1 & & 3 \\ \hline & 2 & 4 \\ \hline & 5 \end{array} \in \mathcal{PLR}_{3,4,5}.$$

 $\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \end{cases}$

$$P = (p_{ij}) \in \mathcal{PLR}_{r,s,n}.$$

In order to reduce the number variables, we can consider the **symmetries** of P, i.e., its autotopism group $\mathfrak{A}_n(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$P \equiv \begin{array}{c|c} 1 & & 3 \\ \hline & 2 & 4 \\ \hline & 5 \end{array} \in \mathcal{PLR}_{3,4,5}.$$

 $\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)). \end{cases}$

$$\Theta = (\alpha, \beta, \gamma) \to x_{ijk} = x_{\alpha(i)\beta(j)\gamma(k)}$$

$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

POLYNOMIAL METHOD: \mathcal{PLR}_{Θ}

$$I_{\Theta} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} = x_{\alpha(i)\beta(j)\gamma(k)}, \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{iilk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ijk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i]. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

POLYNOMIAL METHOD: \mathcal{PLR}_{Θ}

$$I_{\Theta} \equiv \begin{cases} x_{ijk} \cdot (x_{ijk} - 1) = 0, \forall i \in [r], j \in [s], k \in [n], \\ x_{ijk} = x_{\alpha(i)\beta(j)\gamma(k)}, \\ x_{ijk} \cdot x_{ijl} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [n] \setminus [k], \\ x_{ijk} \cdot x_{ilk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [s] \setminus [j], \\ x_{ijk} \cdot x_{ljk} = 0, \forall i \in [r], j \in [s], k \in [n], l \in [r] \setminus [i]. \end{cases}$$

 $\mathcal{PLR}_{\Theta} = \mathcal{V}(I_{\Theta}) \qquad \qquad |\mathcal{PLR}_{\Theta}| = \dim_{\mathbb{Q}}(\mathbb{Q}[x_{111}, \dots, x_{rsn}]/I_{\Theta}).$

$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

POLYNOMIAL METHOD: \mathcal{PLR}_{Θ}

If $\Theta = \mathrm{Id}_{r,s,n} = (\mathrm{Id}_r, \mathrm{Id}_s, \mathrm{Id}_n)$, then $I_\Theta = I_{r,s,n}$ and $\mathcal{PLR}_\Theta = \mathcal{PLR}_{r,s,n}$.

$$\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n.$$

POLYNOMIAL METHOD: \mathcal{PLR}_{Θ}

If $\Theta = \mathrm{Id}_{r,s,n} = (\mathrm{Id}_r, \mathrm{Id}_s, \mathrm{Id}_n)$, then $I_\Theta = I_{r,s,n}$ and $\mathcal{PLR}_\Theta = \mathcal{PLR}_{r,s,n}$.

The number of variables which can be eliminated only depends on the **cycle structure** of Θ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathfrak{A}_{5}(P) = \begin{cases} \Theta_{1} = \mathrm{Id}_{3,4,5} = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)), \\ \Theta_{2} = ((12)(3), (12)(3)(4), (12)(34)(5)) \end{cases}$$

• Cycle structure of $\Theta = (\alpha, \beta, \gamma) \in S_r \times S_s \times S_n$: $z_{\Theta} = (z_{\alpha}, z_{\beta}, z_{\gamma})$, where:

Cycle structure of π : $z_{\pi} = k^{\lambda_k^{\pi}} \dots 1^{\lambda_1^{\pi}}$, being λ_i^{π} the number of cycles of length *i* in the decomposition of π as a product of disjoint cycles.

$$z_{\Theta_1} = (1^3, 1^4, 1^5), \qquad z_{\Theta_2} = (21, 21^2, 2^21).$$

• $CS_n = \{ Cycle structures of S_n \}.$

 $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$

▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$

・ロト・日本・モート モー うへぐ

 $\blacktriangleright \ \mathcal{S}_z = \{\Theta \in S_r \times S_s \times S_n \mid z_\Theta = z\}.$

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ▶ $\mathcal{PLR}_{z:m} = \{ P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z \}.$
 - $\triangleright \ \mathcal{S}_{z} = \{ \Theta \in \mathcal{S}_{r} \times \mathcal{S}_{s} \times \mathcal{S}_{n} \mid z_{\Theta} = z \}.$
 - ▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.

・ロト・日本・モート モー うへぐ

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$
 - $\triangleright \ \mathcal{S}_z = \{\Theta \in \mathcal{S}_r \times \mathcal{S}_s \times \mathcal{S}_n \mid z_\Theta = z\}.$
 - ▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.
 - ► $||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. \Rightarrow \Delta_m(z)$ -uniform.

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$
 - $\triangleright \ \mathcal{S}_z = \{\Theta \in \mathcal{S}_r \times \mathcal{S}_s \times \mathcal{S}_n \mid z_\Theta = z\}.$
 - ▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.
 - $\blacktriangleright ||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. | \Rightarrow \Delta_m(z) \text{-uniform.}$

$$z = (2, 2, 2^2 1)$$
$$m = 2$$

$$egin{aligned} |\mathcal{PLR}_{z:m}| &= 50 \ |\mathcal{S}_z| &= 15 \ \Delta_m(z) &= 10 = 2_P + 8_G \end{aligned}$$

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ► $\mathcal{PLR}_{z:m} = \{ P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z \}.$

$$\triangleright \ \mathcal{S}_z = \{\Theta \in S_r \times S_s \times S_n \mid z_\Theta = z\}.$$

- ▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.
- $\blacktriangleright ||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. | \Rightarrow \Delta_m(z) \text{-uniform.}$

Which are the properties of such incidence structures?

- Multiplicity.
- Regularity.
- Parameters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$

► $\mathcal{PLR}_{z:m} = \{ P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z \}.$

$$\triangleright \ \mathcal{S}_z = \{\Theta \in S_r \times S_s \times S_n \mid z_\Theta = z\}.$$

▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.

► $||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. | \Rightarrow \Delta_m(z)$ -uniform.

Which is the minimum number of blocks which are necessary to determine all the points of the incidence structure?

 $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$

▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$

$$\triangleright \ \mathcal{S}_z = \{\Theta \in S_r \times S_s \times S_n \mid z_\Theta = z\}.$$

▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.

► $||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. | \Rightarrow \Delta_m(z)$ -uniform.

Which is the minimum number of blocks which are necessary to determine all the points of the incidence structure?

- $z \in \mathcal{CS}_r \times \mathcal{CS}_s \times \mathcal{CS}_n$
 - ▶ $\mathcal{PLR}_{z:m} = \{P \in \mathcal{PLR}_{r,s,n:m} \mid \exists \Theta \in \mathfrak{A}_n(P) \text{ such that } z_\Theta = z\}.$

$$\triangleright \ \mathcal{S}_z = \{\Theta \in S_r \times S_s \times S_n \mid z_\Theta = z\}.$$

▶ Incidence relation: $P \in \mathcal{PLR}_{z:m}$ is on $\Theta \in S_z$ if $\Theta \in \mathfrak{A}_n(P)$.

 $\blacktriangleright ||\mathcal{PLR}_{\Theta_1:m}| = |\mathcal{PLR}_{\Theta_2:m}| = \Delta_m(z), \forall \Theta_1, \Theta_2 \in S_z. | \Rightarrow \Delta_m(z)\text{-uniform.}$

Which is the cost of computation?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The incidence structure $(\mathcal{PLR}_{z:m}, S_z)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LEMMA All the blocks of $(\mathcal{PLR}_{z:m}, S_z)$ have the same multiplicity.

LEMMA

All the blocks of $(\mathcal{PLR}_{z:m}, S_z)$ have the same multiplicity.

Lemma

 $k \leq |S_z| \rightarrow$ The number of points on a given block $\Theta \in S_z$ which are contained in exactly k blocks of S_z does not depend on Θ .

LEMMA

All the blocks of $(\mathcal{PLR}_{z:m}, S_z)$ have the same multiplicity.

Lemma

 $k \leq |S_z| \rightarrow$ The number of points on a given block $\Theta \in S_z$ which are contained in exactly k blocks of S_z does not depend on Θ .

PROPOSITION

 $\Theta \in S_z \to \text{ If } |\mathfrak{A}_z(P)| = |\mathfrak{A}_z(Q)|$, for all $P, Q \in \mathcal{PLR}_{\Theta:m}$, then $(\mathcal{PLR}_{z:m}, S_z)$ is regular.

LEMMA

All the blocks of $(\mathcal{PLR}_{z:m}, S_z)$ have the same multiplicity.

Lemma

 $k \leq |S_z| \rightarrow$ The number of points on a given block $\Theta \in S_z$ which are contained in exactly k blocks of S_z does not depend on Θ .

PROPOSITION

 $\Theta \in S_z \to |f|\mathfrak{A}_z(P)| = |\mathfrak{A}_z(Q)|$, for all $P, Q \in \mathcal{PLR}_{\Theta:m}$, then $(\mathcal{PLR}_{z:m}, S_z)$ is regular.

Lemma

- a) $\mathfrak{I}_{n,P} \subseteq \mathcal{PLR}_{z:m}$, for all $P \in \mathcal{PLR}_{z:m}$.
- b) $|\mathcal{PLR}_{\Theta_1:m} \cap \mathfrak{I}_{n,P}| = |\mathcal{PLR}_{\Theta_2:m} \cap \mathfrak{I}_{n,P}| = \Delta_P(z)$, for all $\Theta_1, \Theta_2 \in S_z$.

LEMMA

All the blocks of $(\mathcal{PLR}_{z:m}, S_z)$ have the same multiplicity.

Lemma

 $k \leq |S_z| \rightarrow$ The number of points on a given block $\Theta \in S_z$ which are contained in exactly k blocks of S_z does not depend on Θ .

PROPOSITION

 $\Theta \in S_z \rightarrow |f|\mathfrak{A}_z(P)| = |\mathfrak{A}_z(Q)|$, for all $P, Q \in \mathcal{PLR}_{\Theta:m}$, then $(\mathcal{PLR}_{z:m}, S_z)$ is regular.

Lemma

a) $\mathfrak{I}_{n,P} \subseteq \mathcal{PLR}_{z:m}$, for all $P \in \mathcal{PLR}_{z:m}$. b) $|\mathcal{PLR}_{\Theta_1:m} \cap \mathfrak{I}_{n,P}| = |\mathcal{PLR}_{\Theta_2:m} \cap \mathfrak{I}_{n,P}| = \Delta_P(z)$, for all $\Theta_1, \Theta_2 \in S_z$.

Lemma

 $P \in \mathcal{PLR}_{z:m} \rightarrow |\mathfrak{A}_z(Q)| = |\mathfrak{A}_z(P)|, \text{ for all } Q \in \mathfrak{I}_{n,P}.$

 $z = (2^2, 2^2, 1^4) \in \mathcal{CS}_4 \times \mathcal{CS}_4 \times \mathcal{CS}_4.$

 $\Theta = ((13)(24), (13)(24), \mathrm{Id}_4) \in S_{z_1}.$

∜

 $(\mathcal{PLR}_{z:16}, S_z)$ is not regular.

 $|\mathcal{PLR}_{z:16}| = 576 = 432_P + 144_Q, \quad |S_z| = 9, \quad \Delta_{16}(z) = 96 = 48_P + 48_Q.$

 $z = (2^2, 2^2, 1^4) \in \mathcal{CS}_4 \times \mathcal{CS}_4 \times \mathcal{CS}_4.$

 $\Theta = ((13)(24), (13)(24), \mathrm{Id}_4) \in S_{z_1}.$

∜

 $(\mathcal{PLR}_{z:16}, S_z)$ is not regular.

 $|\mathcal{PLR}_{z:16}| = 576 = 432_P + 144_Q, \quad |S_z| = 9, \quad \Delta_{16}(z) = 96 = 48_P + 48_Q.$

<□ > < @ > < E > < E > E のQ @

PROPOSITION

The pair $(\mathfrak{I}_{n,P}, S_z)$ is a 1- $(|\mathfrak{I}_{n,P}|, \Delta_P(z), |\mathfrak{A}_z(P)|)$ design, with the incidence relation inherited from $(\mathcal{PLR}_{z:m}, S_z)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

PROPOSITION

The pair $(\mathfrak{I}_{n,P}, S_z)$ is a 1- $(|\mathfrak{I}_{n,P}|, \Delta_P(z), |\mathfrak{A}_z(P)|)$ design, with the incidence relation inherited from $(\mathcal{PLR}_{z:m}, S_z)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

PROPOSITION

 $Q \in \mathfrak{I}_{n,P} \to$ The number of points which are *concurrent* with Q on exactly λ blocks does not depend on the choice of Q. $\Theta \in S_z \to$ The number of blocks which are *incident* with Θ on exactly λ points does not depend on the choice of Θ .

PROPOSITION

The pair $(\mathfrak{I}_{n,P}, S_z)$ is a 1- $(|\mathfrak{I}_{n,P}|, \Delta_P(z), |\mathfrak{A}_z(P)|)$ design, with the incidence relation inherited from $(\mathcal{PLR}_{z:m}, S_z)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

PROPOSITION

 $Q \in \mathfrak{I}_{n,P} \to$ The number of points which are *concurrent* with Q on exactly λ blocks does not depend on the choice of Q. $\Theta \in S_z \to$ The number of blocks which are *incident* with Θ on exactly λ points does not depend on the choice of Θ .

Theorem

The 1-design $(\mathcal{I}_{n,P}, S_z)$ and its dual are *m*-concurrence designs.

PROPOSITION

The pair $(\mathfrak{I}_{n,P}, S_z)$ is a 1- $(|\mathfrak{I}_{n,P}|, \Delta_P(z), |\mathfrak{A}_z(P)|)$ design, with the incidence relation inherited from $(\mathcal{PLR}_{z:m}, S_z)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

PROPOSITION

 $Q \in \mathfrak{I}_{n,P} \to$ The number of points which are *concurrent* with Q on exactly λ blocks does not depend on the choice of Q. $\Theta \in S_z \to$ The number of blocks which are *incident* with Θ on exactly λ

points does not depend on the choice of Θ .

Theorem

The 1-design $(\mathcal{I}_{n,P}, S_z)$ and its dual are *m*-concurrence designs.

•
$$mult(\mathfrak{I}_{n,P}) = \max_{\lambda \in \Lambda} \{\lambda\} + 1.$$

The 1-design $(\mathfrak{I}_{n,P}, S_z)$.

rsr	m	Ρ	z1	z2	23	InF	Sz	DP	Z AI	۲P	mult	NNt	NtN	Spectrum C	PBIBD
1 1		1	1	1	1	1		1	1	1	1	1	1	0	1
	2 1	1	1	1	11	2		1	2	1	1	1^2	2	1	1
	3 1	1	1	1	21	3		3	1	1	1	1	1	0	2
					111	3		1	3	1	1	1^3	3	1^2	1
	4 1	1	1	1	31				1	2		2	1^2	0	2
					1111	4		1	4	1	1	1^4	4	1^3	1
	5 1	1	1	1	41		31	0	1	6	6	6	1^6	0	2
					221	5	12	5	1	3		3	1^3	0	2
					11111	5		1	5	1	1	1^5	5	1^4	1
2	2 1	10	1	11	11				4	1		1^4	4	1^3	1
	2	12	1		2	2			2	1	1	1^2	2	1	1
	1			11	11	2			2	1		1^2	2	1	1
	3 1	10	1	11	21				2	1		1^2	2	1^3	2
					111				6	1		1^6	6	1^5	1
	2	12	1	2	21				2	1		1^2	2	1^3	2
	1 î		-	11	111				6	1		1^6	6	1^5	1
	4 1	10	1	11	31				2	2		2^2	2^2	2^4	2
	11	10	1	-1	1111				8	1		1^8	8	1^7	1
	2	12	1	2	22				4	1		1^6	4	1^9	2
	Ľ	12	1	11	1111				4	1			4		1
		10	1						2			1^(12) 6^2	12 2^6	1^(11) 6^5	2
	5 1	10	1	11	41					6					
	$\left \right $						1		2	3		3^2	2^3	3^5	2
	1.				11111				10	1		1^(10)	10	1^9	1
	2	12	1	2	32		21		2	2		2^2	2^2	2^(10)	2
					221		1		4	3		3^21^6	42^4	1^5, 2.5^4, 3^(1	
-					11111				20	1		1^(20)	20	1^(19)	1
3	3 1	100	1	21	21				1	1		1	1	0	2
					111				3	1		1^3	3	1^6	2
				111	111	. 9			9	1		1^9	9	1^8	1
	2	120	1	21	21			9	2	1	1	1^2	2	1^9	2
				111	111	18		1 1	18	1	1	1^{18}	18	1^(17)	1
	3	123	1	3	3	6		4	3	2	- 2	2^3	3^2	2^4	2
				21	21	6		9	2	3	1	31^3	21^4	(3/2)^4 3^1	3
				111	111				6	1	1	1^6	6	1^5	1
	4 1	100	1	21	31	12	2	4	1	2		2	1^2	0	2
					211		1		2	3		31^3	21^4	2^9	3
					1111				4	1		1^4	4	1^9	2
				111	31				3	2		2^3	3^2	2^8	2
					211				6	3		3^31^9	63^4	3^82^3	2
					1111				12	1		1^(12)	12	1^(11)	1
	2	120	1	21	22				4	1		1^4	4	1^(27)	2
	1 1	110	-	- 11	211		1		2	1		1^2	2	1^(18)	2
				111	211				6	1		1^6	6	1^(10)	2
				111						1		1^(36)		1^(35)	1
					1111				36				36		
	3	123	T		31		1		3	2		2^3	3^2	2^{16}	2
				21	211		1		4	3		31^9	41^8	3^(10)2^9(3/2)	
				111					24	1		1^(24)	{24}	1^(23)	1
	5 1	100	1	21	41		91		1	6		6	1^6	0	2
					311		61		2	8		82^4	2^21^{12}		3
					221		4		1	3		3	1^3	0	2
					2111	15	31	3	3	6	1	63^4	32^61^3	5^(12)	3
	_		_				_		-		_				

THE 1-DESIGN $(\mathfrak{I}_{n,P}, S_z)$.

In general, $(\mathfrak{I}_{n,P}, S_z)$ is not a PBIBD:

$$z = (1, 21, 2^{2}1) \in CS_{1} \times CS_{3} \times CS_{5}.$$

$$P \equiv \boxed{1 \ 2}$$

$$|\Im_{n,P}| = 60,$$

$$|S_{z}| = 45,$$

$$\Delta_{P}(z) = 4,$$

$$|\Im_{z}(P)| = 3,$$

$$\operatorname{mult}(\Im_{n,P}) = 2,$$

$$\operatorname{mult}(S_{z}) = 1,$$

$$3 \text{ connected components.}$$

 $\Theta = (\mathrm{Id}, (12)(3), (12)(34)(5))$ $\Theta = (\mathrm{Id}, (12)(3), (12)(35)(4))$

 $\Theta = (\mathrm{Id}, (12)(3), (12)(45)(3))$

In general, $(\mathfrak{I}_{n,P}, S_z)$ is not a PBIBD:

$$z = (1, 21, 2^{2}1) \in CS_{1} \times CS_{3} \times CS_{5}.$$

$$P \equiv \boxed{1 \ 2}$$

$$|\Im_{n,P}| = 60,$$

$$|S_{z}| = 45,$$

$$\Delta_{P}(z) = 4,$$

$$|\Im_{z}(P)| = 3,$$

$$\operatorname{mult}(\Im_{n,P}) = 2,$$

$$\operatorname{mult}(S_{z}) = 1,$$

$$3 \text{ connected components.}$$

 $\Theta = (\mathrm{Id}, (12)(3), (12)(34)(5))$ $\Theta = (\mathrm{Id}, (12)(3), (12)(35)(4))$

 $\Theta = (\mathrm{Id}, (12)(3), (12)(45)(3))$

References.

- N. Alon, Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999) no. 1–2, 7–29.
- A. Bernasconi, B. Codenotti, V. Crespi and G. Resta, Computing Groebner Bases in the Boolean Setting with Applications to Counting, 1st Workshop on Algorithm Engineering (WAE). Venice, Italy, 1997, pp. 209–218.
- D. A. Bayer, The division algorithm and the Hilbert scheme. PhD thesis, Harvard University, 1982.
- R. M. Falcón, Clasificación de cuadrados latinos parciales de orden menor o igual a 4. Avances en Matemática Discreta en Andalucía, vol. 2 (2011) 5–12.
- R. M. Falcón, Classification of 5-compressible partial Latin rectangles (2013). Submitted.
- A. Hedayat and E. Seiden, F-square and orthogonal F-squares design: A generalization of Latin square and orthogonal Latin squares design, Ann. Math. Statist. (1970) no. 41, 2035–2044.
- A. Hulpke, P. Kaski and P. R. J. Östergård, The number of Latin squares of order 11, Math. Comp. 80 (2011) no. 274, 1197–1219.
- R. G. Jarrett, Definitions and properties for *m*-concurrence designs, J. Roy. Statist. Soc. Ser. B 45 (1983) no. 1, 1–10.
- B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005) no. 3, 335–344.
- S. C. Saxena, On simplification of certain types of BIBDs, Indian J. Pure Appl. Math. 16 (1985) no. 2, 103–106.
- D. S. Stones, Petr Vojtěchovský and I. M. Wanless, Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des. 20 (2012) no. 20, 227–263.

THANK YOU!!

CanaDAM 2013

June 10 - 13 Memorial University of Newfoundland

