Concurrence designs based on partial Latin RECTANGLES AUTOTOPISMS.

Raúl Falcón

Department of Applied Mathematics I
University of Seville (Spain) rafalgan@us.es

CanaDAM 2013

June 10-13
Memorial University of Newfoundland

Introduction.

- Incidence structures.
- Partial Latin rectangles.

Introduction.

- Incidence structures.
- Partial Latin rectangles.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.
- \mathcal{D} is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.
- \mathcal{D} is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- A 1-($v, k, r)$ design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k=v \cdot r$.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.
- \mathcal{D} is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- A 1- (v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k=v \cdot r$.

- Two blocks are equivalent if they contain the same set of points. The multiplicity mult (x) of a block x is the size of its equivalence class.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.
- \mathcal{D} is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- A 1- (v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k=v \cdot r$.

- Two blocks are equivalent if they contain the same set of points. The multiplicity mult (x) of a block x is the size of its equivalence class.

- The design is simple if all its blocks are distinct. Otherwise, it has multiple blocks.

Incidence structures.

- An incidence structure is a triple $\mathcal{D}=(\mathcal{V}, \mathcal{B}, I)$, where \mathcal{V} is a set of v points, \mathcal{B} is a set of b blocks and $I \subseteq \mathcal{V} \times \mathcal{B}$ is an incidence relation.
- \mathcal{D} is k-uniform if every block contains exactly k points and it is r-regular if every point is exactly on r blocks.
- A 1- (v, k, r) design is an incidence structure of v points which is k-uniform and r-regular $\rightarrow b \cdot k=v \cdot r$.

- Two blocks are equivalent if they contain the same set of points. The multiplicity mult(x) of a block x is the size of its equivalence class.

- The design is simple if all its blocks are distinct. Otherwise, it has multiple blocks.
- If all the blocks have the same multiplicity, then the design can be simplified by identifying equivalent blocks: $\mathcal{D} \rightarrow \overline{\mathcal{D}}$.

Incidence structures.

- The number of blocks which contain a given pair of distinct points is its concurrence.

Incidence structures.

- The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}}=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\} \equiv$ Set of possible concurrences.

$\Lambda=\{1\}$

$\Lambda=\{0,1,2\}$

Incidence structures.

- The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}}=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\} \equiv$ Set of possible concurrences.

$\Lambda=\{1\}$

$\Lambda=\{0,1,2\}$
- Two points are $i^{\text {th }}$ associates if their concurrence is λ_{i}.

Incidence structures.

- The number of blocks which contain a given pair of distinct points is its concurrence.
- $\Lambda_{\mathcal{D}}=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\} \equiv$ Set of possible concurrences.

$\Lambda=\{1\}$

$\Lambda=\{0,1,2\}$
- Two points are $i^{t h}$ associates if their concurrence is λ_{i}.
- A m-concurrence design is a 1 -design with m distinct concurrences $\lambda_{1} \ldots, \lambda_{m}$ among its points, for which there exist m values n_{1}, \ldots, n_{m} such that every point has exactly $n_{i} i^{\text {th }}$ associates, for each $i \in[m]$.

$n_{1}=6$
$n_{1}=n_{2}=n_{3}=1$

Incidence structures.

- An m-concurrence design is a partially balanced incomplete block design (PBIBD) if, for any two $k^{t h}$-associated points P and Q, there exist $p_{i j}^{k}$ points which are $i^{t h}$-associated to P and $j^{t h}$-associated to Q, where $p_{i j}^{k}$ only depends on i, j and k.

$$
p_{11}^{1}=6 \quad p_{i j}^{k}=\left\{\begin{array}{l}
1, \text { if } i \neq j \neq k \neq i \\
0, \text { otherwise }
\end{array}\right.
$$

Introduction.

- Incidence structures.
- Partial Latin rectangles.

Partial Latin rectangles.

- $\mathcal{P L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

1		3	
	2	4	
			5

$\in \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,5: 5} \subset \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,6: 5} \subset \ldots$

Partial Latin Rectangles.

- $\mathcal{P} \mathcal{L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

1		3	
	2	4	
			5

$\in \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,5: 5} \subset \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,6: 5} \subset \ldots$

- Size: Number of non-empty cells. $\rightarrow \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n: m}$.

Partial Latin Rectangles.

- $\mathcal{P} \mathcal{L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

1		3	
	2	4	
			5

$\in \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,5: 5} \subset \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,6: 5} \subset \ldots$

- Size: Number of non-empty cells. $\rightarrow \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n: m}$.
- $r=s=n$ and $m=n^{2}$: Latin square.

Partial Latin rectangles.

- $\mathcal{P} \mathcal{L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

- Size: Number of non-empty cells. $\rightarrow \mathcal{\mathcal { L }} \mathcal{R}_{r, s, n: m}$.
- $r=s=n$ and $m=n^{2}$: Latin square.
$n \leq 11$: McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.

Partial Latin rectangles.

- $\mathcal{P} \mathcal{L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

- Size: Number of non-empty cells. $\rightarrow \mathcal{\mathcal { L }} \mathcal{R}_{r, s, n: m}$.
- $r=s=n$ and $m=n^{2}$: Latin square.
$n \leq 11$: McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.
- $r=s=n \leq 4$ and $m<n^{2}$: Partial Latin square.

Partial Latin rectangles.

- $\mathcal{P} \mathcal{L R}_{r, s, n}=\{r \times s$ partial Latin rectangles based on $[n]=\{1,2, \ldots, n\}\}$.
$r \times s$ arrays in which each cell is either empty or contains one symbol of [n], s.t. each symbol occurs at most once in each row and in each column.

- Size: Number of non-empty cells. $\rightarrow \mathcal{P} \mathcal{L R}_{r, s, n: m}$.
- $r=s=n$ and $m=n^{2}$: Latin square.
$n \leq 11:$ McKay and Wanless, 2005; Hulpke, Kaski and Östergård, 2011.
- $r=s=n \leq 4$ and $m<n^{2}$: Partial Latin square.
$n \leq 4$: Falcón, 2012.

Partial Latin Rectangles.

- General case? [Falcón, 2013; Stones, 2013.]

Partial Latin rectangles.

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: $\mathcal{P L R}_{r, s, n}$. [Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$
\begin{gathered}
P=\left(p_{i j}\right) \leftrightarrow x_{i j k}=\left\{\begin{array}{l}
1, \text { if } p_{i j}=k, \\
0, \text { otherwise. }
\end{array}\right. \\
I_{r, s, n} \equiv\left\{\begin{array}{l}
x_{j j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right.
\end{gathered}
$$

Partial Latin rectangles.

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: $\mathcal{P L R}_{r, s, n}$.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$
\begin{gathered}
P=\left(p_{i j}\right) \leftrightarrow x_{i j k}=\left\{\begin{array}{l}
1, \text { if } p_{i j}=k, \\
0, \text { otherwise. }
\end{array}\right. \\
I_{r, s, n} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right.
\end{gathered}
$$

$$
\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}=\mathcal{V}\left(I_{r, s, n}\right)
$$

$$
\left|\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{111}, \ldots, x_{r s n}\right] / I_{r, s, n}\right)
$$

Partial Latin rectangles.

- General case? [Falcón, 2013; Stones, 2013.]
- POLYNOMIAL METHOD: $\mathcal{P L R}_{r, s, n}$.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]

$$
\begin{gathered}
P=\left(p_{i j}\right) \leftrightarrow x_{i j k}=\left\{\begin{array}{l}
1, \text { if } p_{i j}=k, \\
0, \text { otherwise. }
\end{array}\right. \\
I_{r, s, n} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{j j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right. \\
\qquad \mathcal{P L \mathcal { L R }}_{r, s, n}=\mathcal{V}\left(I_{r, s, n}\right) \\
\mathcal{P} \mathcal{L R}_{r, s, n} \mid=\operatorname{dim}\left(\mathbb { Q } \left(\mathbb{Q}\left[x_{111}, \ldots, x_{r s, s, n: m} \rightarrow I_{r, s, n}\right)\right.\right. \\
\rightarrow \sum_{i \in[r], j \in[s], k \in[n]} x_{j j k}=m .
\end{gathered}
$$

Partial Latin rectangles.

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.
Max. time of computation: 4,180 seconds ($\mathcal{P} \mathcal{L} \mathcal{R}_{2,9,13}$).

Partial Latin rectangles.

r	s	$\left\|\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}\right\|$				
		n				
		9	10	11	12	13
1	1	10	11	12	13	14
	2	91	111	133	157	183
	3	748	1,021	1,354	1,753	2,224
	4	5,509	8,501	12,585	18,001	25,013
	5	36,046	63,591	106,096	169,021	259,026
	6	207,775	424,051	805,597	1,442,173	2,456,299
	7	1047,376	2,501,801	5,470,158	11,109,337	21,204,548
	8	4,596,553	12,975,561	32,989,969	76,751,233	165,625,929
	9	17,572,114	58,941,091	175,721,140	472,630,861	1,163,391,958
	10		234,662,231	824,073,141	258,128,454	7,307,593,151
	11			3,405,357,682	12,470,162,233	40,864,292,184
	12				53,334,454,417	202,976,401,213
	13					896,324,308,634
2	2	6,985	10,411	15,137	21,325	29,251
	3	28,941	815,161	1,458,733	2,482,801	4,050,541
	4	21,582,613	52,585,221	117,667,441	245,278,945	481,597,221
	5	864,742,231	2,756,029,891	7,846,852,421	20,336,594,221	48,689,098,771
	6	27,175,825,171	115,690,051,951	426,999,864,193	1,398,636,508,477	4,141,988,637,463
	7	661,377,377,305	3,836,955,565,101	18,712,512,041,917	78,819,926,380,945	293,220,109,353,081
	8	12,372,136,371,721	99,423,049,782,601	652,303,240,153,313	3,595,671,023,722,081	17,076,864,830,330,761
	9	178,156,152,706,483	2,000,246,352,476,311	17,908,872,286,407,301	131,297,226,011,020,765	808,986,548,443,056,751
	10		31,296,831,902,738,931	385,203,526,838,449,441	*	*
	11			*	*	*
3	3	184,952,170	500,317,981	1,231,810,504	2,803,520,281	5,970,344,446
	4	58,737,345,481	231,769,858,321	802,139,572,873	2,487,656,927,521	7,030,865,002,825
	5	13,451,823,665,776	*	*	*	*

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.
Max. time of computation: 4,180 seconds ($\mathcal{P} \mathcal{L} \mathcal{R}_{2,9,13}$).

Partial Latin Rectangles.

How can this method be improved?

Partial Latin Rectangles.

How can this method be improved?

- Distribute the elements of $\mathcal{P} \mathcal{L R}_{r, s, n}$ into disjoint subsets for which a set of boolean polynomials can be related.

Partial Latin Rectangles.

How can this method be improved?

- Distribute the elements of $\mathcal{P} \mathcal{L R}_{r, s, n}$ into disjoint subsets for which a set of boolean polynomials can be related.
- Types ($r, s, n \leq 5$ [Falcón, 2013]):

Number of entries per row and column and number of occurrences of each symbol. [Keedwell, 1994; Bean et al., 2002].

1		3	4	6
2		5		4
		4	5	1
		2		3

Type: $((4,3,3,2),(2,0,4,2,4),(2,2,2,3,2,1))$.

Partial Latin Rectangles.

How can this method be improved?

- Distribute the elements of $\mathcal{P} \mathcal{L R}_{r, s, n}$ into disjoint subsets for which a set of boolean polynomials can be related.
- Types ($r, s, n \leq 5$ [Falcón, 2013]):

Number of entries per row and column and number of occurrences of each symbol. [Keedwell, 1994; Bean et al., 2002].

1		3	4	6
2		5		4
		4	5	1
		2		3

Type: $((4,3,3,2),(2,0,4,2,4),(2,2,2,3,2,1))$.

- Consider the set of symmetries (autotopisms) of $\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}$.

Symmetries of a partial Latin rectangle.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on $[m]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on $[m]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n}$:

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.
- $\mathfrak{I}_{n}(P, Q)=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid P^{\Theta}=Q\right\}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.
- $\mathfrak{I}_{n}(P, Q)=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid P^{\Theta}=Q\right\}$.
- Autotopism group: $\mathfrak{A}_{n}(P)=\mathfrak{I}_{n}(P, P)$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.
- $\mathfrak{I}_{n}(P, Q)=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid P^{\Theta}=Q\right\}$.
- Autotopism group: $\mathfrak{A}_{n}(P)=\mathfrak{I}_{n}(P, P)$.
- $\mathcal{P L R}_{\Theta}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n} \mid \Theta \in \mathfrak{A}_{n}(P)\right\}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.
- $\mathfrak{I}_{n}(P, Q)=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid P^{\Theta}=Q\right\}$.
- Autotopism group: $\mathfrak{A}_{n}(P)=\mathfrak{I}_{n}(P, P)$.
- $\mathcal{P L R}_{\Theta}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n} \mid \Theta \in \mathfrak{A}_{n}(P)\right\}$.
- $\mathcal{P L R}_{\Theta: m}=\left\{P \in \mathcal{P L R}_{r, s, n: m} \mid \Theta \in \mathfrak{A}_{n}(P)\right\}$.

Symmetries of a partial Latin rectangle.

- S_{m} : Symmetric group on [m$]$.
- $S_{r} \times S_{s} \times S_{n}$: Set of isotopisms of $\mathcal{P} \mathcal{L R}_{r, s, n}$.

Given $P=\left(p_{i j}\right) \in \mathcal{P L R}_{r, s, n}$:

- Orthogonal representation: $O(P)=\left\{\left(i, j, p_{i j}\right) \mid i \in[r], j \in[s], p_{i j} \in[n]\right\}$.
- Isotopism (\sim): $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.

$$
O\left(P^{\ominus}\right)=\left\{\left(\alpha(i), \beta(j), \gamma\left(p_{i j}\right)\right) \mid\left(i, j, p_{i j}\right) \in O(P)\right\} .
$$

- Isotopism class: $\mathfrak{I}_{n, P}=\left\{Q \in \mathcal{P L R}_{r, s, n} \mid Q \sim P\right\}$.
- $\mathfrak{I}_{n}(P, Q)=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid P^{\Theta}=Q\right\}$.
- Autotopism group: $\mathfrak{A}_{n}(P)=\mathfrak{I}_{n}(P, P)$.
- $\mathcal{P L R}_{\Theta}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n} \mid \Theta \in \mathfrak{A}_{n}(P)\right\}$.
- $\mathcal{P L R}_{\Theta: m}=\left\{P \in \mathcal{P L R}_{r, s, n: m} \mid \Theta \in \mathfrak{A}_{n}(P)\right\}$.

$$
\begin{array}{|l|}
\hline\left|\mathfrak{A}_{n}(P)\right|=\left|\mathfrak{A}_{n}(Q)\right|, \forall Q \in \mathfrak{I}_{n}(P) . \\
\left|\mathfrak{I}_{n, P}\right|=\frac{r!\cdot \cdot!\cdot n!n!}{\left|\mathscr{A _ { n }}(P)\right|} .
\end{array}
$$

Symmetries of a partial Latin rectangle.

$P=\left(p_{i j}\right), Q=\left(q_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n}$.
POLYNOMIAL METHOD: $\Im_{n}(P, Q)$.

$$
\begin{aligned}
& \Theta=(\alpha, \beta, \gamma) \leftrightarrow\left(a_{i j}, b_{i j}, c_{i j}\right) \text { such that } d_{i j}=\left\{\begin{array}{l}
1, \text { if } \delta(i)=j \\
0, \text { otherwise. }
\end{array}\right. \\
& I_{n, P, Q} \equiv\left\{\begin{array}{l}
a_{i j} \cdot\left(a_{i j}-1\right)=0, \forall i, j \in[r], \\
b_{i j} \cdot\left(b_{i j}-1\right)=0, \forall i, j \in[s], \\
c_{i j} \cdot\left(c_{i j}-1\right)=0, \forall i, j \in[n], \\
\sum_{i \in[r]} a_{i j}=1, \forall j \in[r], \\
\sum_{j \in[r]} a_{i j}=1, \forall i \in[r], \\
\sum_{i \in[s]} b_{i j}=1, \forall j \in[s], \\
\sum_{j \in[s]} b_{i j}=1, \forall i \in[s], \\
\sum_{i \in[n]} c_{i j}=1, \forall j \in[n], \\
\sum_{j \in[n]} c_{i j}=1, \forall i \in[n], \\
a_{i k} \cdot b_{j l} \cdot\left(c_{p_{i j}} a_{k l}-1\right)=0, \forall i, k \in[r], j, I \in[s], \text { such that } p_{i j}, q_{k l} \in[n], \\
a_{i k} \cdot b_{j l}=0, \forall i, k \in[r], j, I \in[s], \text { such that } p_{i j}=\emptyset \text { or } q_{k l}=\emptyset .
\end{array}\right.
\end{aligned}
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right), Q=\left(q_{i j}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n} .
$$

POLYNOMIAL METHOD: $\Im_{n}(P, Q)$.

$$
\begin{gathered}
\Theta=(\alpha, \beta, \gamma) \leftrightarrow\left(a_{i j}, b_{i j}, c_{i j}\right) \text { such that } d_{i j}=\left\{\begin{array}{l}
1, \text { if } \delta(i)=j \\
0, \text { otherwise. }
\end{array}\right. \\
I_{n, P, Q} \equiv\left\{\begin{array}{l}
a_{i j} \cdot\left(a_{i j}-1\right)=0, \forall i, j \in[r], \\
b_{i j} \cdot\left(b_{i j}-1\right)=0, \forall i, j \in[s], \\
c_{i j} \cdot\left(c_{i j}-1\right)=0, \forall i, j \in[n], \\
\sum_{i \in[r]}=1, \forall j \in[r], \\
\sum_{j \in[r]} a_{i j}=1, \forall i \in[r], \\
\sum_{i \in[s]} b_{i j}=1, \forall j \in[s], \\
\sum_{j \in[s]} b_{i j}=1, \forall i \in[s], \\
\sum_{i \in[n]} c_{i j}=1, \forall j \in[n], \\
\sum_{j \in[n]} c_{i j}=1, \forall i \in[n], \\
a_{i k} \cdot b_{j l} \cdot\left(c_{\left.p_{i j} q_{k l}-1\right)=0, \forall i, k \in[r], j, I \in[s], \text { such that } p_{i j}, q_{k l} \in[n],}^{a_{i k} \cdot b_{j l}=0, \forall i, k \in[r], j, I \in[s], \text { such that } p_{i j}=\emptyset \text { or } q_{k l}=\emptyset .}\right.
\end{array}\right. \\
\qquad \quad\left|\Im_{n}(P, Q)\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[a_{11}, \ldots, c_{n n}\right] / I_{n, P, Q}\right)
\end{gathered}
$$

Symmetries of a partial Latin rectangle.

$P \equiv$| 1 | | 3 | |
| :--- | :--- | :--- | :--- |
| | 2 | 4 | |
| | | | 5 |$\in \mathcal{P} \mathcal{L} \mathcal{R}_{3,4,5}$.

$$
\begin{aligned}
& \mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right. \\
& \left|\widetilde{I}_{5, P}\right|=\frac{3!\cdot 4!\cdot 5!}{2}=8,640 .
\end{aligned}
$$

Symmetries of a partial Latin rectangle.

$$
\begin{aligned}
& \mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right. \\
& \left|\widetilde{J}_{5, P}\right|=\frac{3!\cdot 4!\cdot 5!}{2}=8,640 .
\end{aligned}
$$

How can we obtain all the 8,460 partial Latin rectangles?

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n} .
$$

POLYNOMIAL METHOD: $\Im_{n, p}$.

$$
I_{n, P} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i], \\
a_{i j} \cdot\left(x_{i j}-1\right)=0, \forall i, j \in[r], \\
b_{i j} \cdot\left(b_{i j}-1\right)=0, \forall i, j \in[s], \\
c_{i j} \cdot\left(c_{i j}-1\right)=0, \forall i, j \in[n], \\
\sum_{i \in[r]} a_{i j}=1, \forall j \in[r], \\
\sum_{j \in[r]} a_{i j}=1, \forall i \in[r], \\
\sum_{i[[s]} b_{i j}=1, \forall j \in[s], \\
\sum_{j \in[s]} b_{i j}=1, \forall i \in[s], \\
\sum_{i \in[n]} c_{i j}=1, \forall j \in[n], \\
\sum_{j \in[n]} c_{i j}=1, \forall i \in[n], \\
a_{i k} \cdot b_{j l} \cdot c_{p_{i j} m} \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], p_{i j}, m \in[n], \\
a_{i k} \cdot b_{j l} \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], m \in[n], \text { such that } p_{i j}=\emptyset .
\end{array}\right.
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n} .
$$

POLYNOMIAL METHOD: $\mathfrak{I}_{n, p}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i], \\
a_{i j} \cdot\left(a_{i j}-1\right)=0, \forall i, j \in[r], \\
b_{i j} \cdot\left(b_{i j}-1\right)=0, \forall i, j \in[s], \\
c_{i j} \cdot\left(c_{i j}-1\right)=0, \forall i, j \in[n], \\
\sum_{i \in[r]} a_{i j}=1, \forall j \in[r], \\
\sum_{j \in[r]} a_{i j}=1, \forall i \in[r], \\
\sum_{i \in[s]} b_{i j}=1, \forall j \in[s], \\
\sum_{j \in[s]} b_{i j}=1, \forall i \in[s], \\
\sum_{i \in[n]} c_{i j}=1, \forall j \in[n], \\
\sum_{j \in[n]} c_{i j}=1, \forall i \in[n], \\
a_{i k} \cdot b_{j l} \cdot c_{p i j} m \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], p_{i j}, m \in[n], \\
a_{i k} \cdot b_{j l} \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], m \in[n], \text { such that } p_{i j}=\emptyset . \\
\\
\\
I_{n, P}=\mathcal{V}\left(I_{P}\right) \quad\left|\Im_{n, P}\right|=\operatorname{dim} \mathbb{Q}\left(\mathbb{Q}\left[x_{111}, \ldots, c_{n n}\right] / I_{P}\right)
\end{array}\right.
\end{aligned}
$$

Symmetries of a partial Latin rectangle.

$P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n}$.
POLYNOMIAL METHOD: $\mathfrak{I}_{n, p}$.
(But Gröbner bases are extremely sensitive to the number of variables!!).

$$
\begin{aligned}
& I_{n, P} \equiv \begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k} \cdot x_{i j}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i], \\
a_{i j} \cdot\left(a_{i j}-1\right)=0, \forall i, j \in[r], \\
b_{i j} \cdot\left(b_{i j}-1\right)=0, \forall i, j \in[s], \\
c_{i j} \cdot\left(c_{i j}-1\right)=0, \forall i, j \in[n], \\
\sum_{i \in[r]} a_{i j}=1, \forall j \in[r], \\
\sum_{j \in[r]} a_{i j}=1, \forall i \in[r], \\
\sum_{i \in[s]} b_{i j}=1, \forall j \in[s], \\
\sum_{j \in[s]} b_{i j}=1, \forall i \in[s], \\
\sum_{i \in[n]} c_{i j}=1, \forall j \in[n], \\
\sum_{j \in[n]} c_{i j}=1, \forall i \in[n], \\
a_{i k} \cdot b_{j l} \cdot c_{p_{i j} m} \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], p_{i j}, m \in[n], \\
a_{i k} \cdot b_{j l} \cdot\left(x_{k l m}-1\right)=0, \forall i, k \in[r], j, I \in[s], m \in[n], \text { such that } p_{i j}=\emptyset . \\
\\
\\
\Im_{n, P}=\mathcal{V}\left(I_{P}\right) \quad\left|\Im_{n, P}\right|=\operatorname{dim}\left(\mathbb{Q}\left[x_{111}, \ldots, c_{n n}\right] / I_{P}\right)
\end{array}
\end{aligned}
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n} .
$$

In order to reduce the number variables, we can consider the symmetries of P, i.e., its autotopism group $\mathfrak{A}_{n}(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$
\mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right.
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n} .
$$

In order to reduce the number variables, we can consider the symmetries of P, i.e., its autotopism group $\mathfrak{A}_{n}(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$
\begin{gathered}
\left.P \equiv \begin{array}{llll}
1 & & 3 \\
& 2 & 4
\end{array}\right] \in \mathcal{P L R}_{3,4,5} . \\
\mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right.
\end{gathered}
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n} .
$$

In order to reduce the number variables, we can consider the symmetries of P, i.e., its autotopism group $\mathfrak{A}_{n}(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$
\mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right.
$$

Symmetries of a partial Latin rectangle.

$$
P=\left(p_{i j}\right) \in \mathcal{P} \mathcal{L R}_{r, s, n} .
$$

In order to reduce the number variables, we can consider the symmetries of P, i.e., its autotopism group $\mathfrak{A}_{n}(P)$. It is due to the fact that autotopisms decompose P into blocks.

$$
\mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5)) .
\end{array}\right.
$$

$$
\Theta=(\alpha, \beta, \gamma) \rightarrow x_{i j k}=x_{\alpha(i) \beta(j) \gamma(k)}
$$

Symmetries of a partial Latin Rectangle.

$$
\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}
$$

POLYNOMIAL METHOD: $\mathcal{P L R} \mathcal{R}_{\ominus}$

$$
I_{\ominus} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k}=x_{\alpha(i) \beta(j) \gamma(k)}, \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], l \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{l j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i]
\end{array}\right.
$$

Symmetries of a partial Latin rectangle.

$$
\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}
$$

POLYNOMIAL METHOD: $\mathcal{P L \mathcal { L }}{ }_{\ominus}$

$$
I_{\Theta} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k}=x_{\alpha(i) \beta(j) \gamma(k)}, \\
x_{i j k} \cdot x_{i j l}=0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{i j k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right.
$$

$$
\mathcal{P L R}_{\ominus}=\mathcal{V}\left(l_{\Theta}\right)
$$

$$
\left|\mathcal{P} \mathcal{L} \mathcal{R}_{\ominus}\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{111}, \ldots, x_{\text {rsn }}\right] / l_{\ominus}\right) .
$$

Symmetries of a partial Latin rectangle.

$$
\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}
$$

POLYNOMIAL METHOD: $\mathcal{P L \mathcal { L }}{ }_{\ominus}$

$$
\begin{aligned}
& I_{\Theta} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k}=x_{\alpha(i) \beta(j) \gamma(k)}, \\
\left.x_{i j k} \cdot x_{i j l}\right) 0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{j j k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{i j k} \cdot x_{j k k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right. \\
& \mathcal{P} \mathcal{L} \mathcal{R}_{\ominus}=\mathcal{V}\left(l_{\Theta}\right) \\
& \left|\mathcal{P} \mathcal{L} \mathcal{R}_{\ominus}\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{111}, \ldots, x_{\text {rsn }}\right] / l_{\Theta}\right) .
\end{aligned}
$$

If $\Theta=\mathrm{Id}_{r, s, n}=\left(\mathrm{Id}_{r}, \mathrm{Id}_{s}, \mathrm{Id}_{n}\right)$, then $I_{\Theta}=I_{r, s, n}$ and $\mathcal{P} \mathcal{L} \mathcal{R}_{\Theta}=\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}$.

Symmetries of a partial Latin rectangle.

$\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}$.
POLYNOMIAL METHOD: $\mathcal{P} \mathcal{L R}{ }_{\ominus}$

$$
\begin{aligned}
& I_{\ominus} \equiv\left\{\begin{array}{l}
x_{i j k} \cdot\left(x_{i j k}-1\right)=0, \forall i \in[r], j \in[s], k \in[n], \\
x_{i j k}=x_{\alpha(i) \beta(j) \gamma(k)}, \\
\left.x_{i j k} \cdot x_{i j l}\right) 0, \forall i \in[r], j \in[s], k \in[n], I \in[n] \backslash[k], \\
x_{j k k} \cdot x_{i l k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[s] \backslash[j], \\
x_{j j k} \cdot x_{j j k}=0, \forall i \in[r], j \in[s], k \in[n], I \in[r] \backslash[i] .
\end{array}\right. \\
& \mathcal{P} \mathcal{L R}{ }_{\ominus}=\mathcal{V}\left(l_{\Theta}\right) \\
& \left|\mathcal{P} \mathcal{L R}_{\ominus}\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{111}, \ldots, x_{\text {rs }}\right] / l_{\ominus}\right) .
\end{aligned}
$$

If $\Theta=\mathrm{Id}_{r, s, n}=\left(\mathrm{Id}_{r}, \mathrm{Id}_{s}, \mathrm{Id}_{n}\right)$, then $I_{\Theta}=I_{r, s, n}$ and $\mathcal{P} \mathcal{L} \mathcal{R}_{\Theta}=\mathcal{P} \mathcal{L} \mathcal{R}_{r, s, n}$.
The number of variables which can be eliminated only depends on the cycle structure of Θ.

Symmetries of a partial Latin rectangle.

$$
\mathfrak{A}_{5}(P)=\left\{\begin{array}{l}
\Theta_{1}=\operatorname{Id}_{3,4,5}=((1)(2)(3),(1)(2)(3)(4),(1)(2)(3)(4)(5)), \\
\Theta_{2}=((12)(3),(12)(3)(4),(12)(34)(5))
\end{array}\right.
$$

- Cycle structure of $\Theta=(\alpha, \beta, \gamma) \in S_{r} \times S_{s} \times S_{n}: z_{\Theta}=\left(z_{\alpha}, z_{\beta}, z_{\gamma}\right)$, where: Cycle structure of $\pi: z_{\pi}=k^{\lambda_{k}^{\pi}} \ldots 1^{\lambda_{1}^{\pi}}$, being λ_{i}^{π} the number of cycles of length i in the decomposition of π as a product of disjoint cycles.

$$
z_{\Theta_{1}}=\left(1^{3}, 1^{4}, 1^{5}\right), \quad z_{\Theta_{2}}=\left(21,21^{2}, 2^{2} 1\right) .
$$

- $\mathcal{C} S_{n}=\left\{\right.$ Cycle structures of $\left.S_{n}\right\}$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.
$z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}{ }_{n}$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$$
z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C} \mathcal{S}_{s} \times \mathcal{C} \mathcal{S}_{n}
$$

- $\mathcal{P L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$z \in \mathcal{C S} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}_{n}$

- $\mathcal{P L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P} \mathcal{L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$$
z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C} \mathcal{S}_{s} \times \mathcal{C} \mathcal{S}_{n}
$$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P} \mathcal{L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R}_{\Theta_{1}: m}\right|=\left|\mathcal{P} \mathcal{L R}_{\Theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z} . \Rightarrow \Delta_{m}(z)$-uniform.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.
$z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}_{n}$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R} \mathcal{R}_{\Theta_{1}: m}\right|=\left|\mathcal{P} \mathcal{L R}_{\Theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z} . \Rightarrow \Delta_{m}(z)$-uniform.

$$
\left.\begin{array}{c}
z=\left(2,2,2^{2} 1\right) \\
m=2 \\
\left|\mathcal{P} \mathcal{L R}_{z: m}\right|=50 \\
\left|\mathcal{S}_{z}\right|=15
\end{array}\right\} \begin{gathered}
\Delta_{m}(z)=10=2 P+8_{Q} \\
\begin{cases}P \equiv \rightarrow\left|\Im_{5}(P)\right|=10 \\
Q \equiv \begin{array}{|l|l}
\hline 1 & 2 \\
\hline
\end{array}\left|I_{5}(Q)\right|=40\end{cases}
\end{gathered}
$$

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.
$z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C} \mathcal{S}_{n}$

- $\mathcal{P L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P} \mathcal{L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R} \operatorname{\theta }_{1: m}\right|=\left|\mathcal{P} \mathcal{L} \mathcal{R}_{\theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z .} \Rightarrow \Delta_{m}(z)$-uniform.

Which are the properties of such incidence structures?

- Multiplicity.
- Regularity.
- Parameters.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}_{n}$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P} \mathcal{L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R} \operatorname{\theta }_{1: m}\right|=\left|\mathcal{P} \mathcal{L} \mathcal{R}_{\theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z .} \Rightarrow \Delta_{m}(z)$-uniform.

Which is the minimum number of blocks which are necessary to determine all the points of the incidence structure?

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$z \in \mathcal{C} \mathcal{S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}_{n}$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P} \mathcal{L R}_{z: m}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R} \mathcal{\theta}_{1: m}\right|=\left|\mathcal{P L R}_{\Theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z .} \Rightarrow \Delta_{m}(z)$-uniform.

Which is the minimum number of blocks which are necessary to determine all the points of the incidence structure?

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.
$z \in \mathcal{C S}_{r} \times \mathcal{C S}_{s} \times \mathcal{C S}_{n}$

- $\mathcal{P} \mathcal{L R}_{z: m}=\left\{P \in \mathcal{P} \mathcal{L R}_{r, s, n: m} \mid \exists \Theta \in \mathfrak{A}_{n}(P)\right.$ such that $\left.z_{\Theta}=z\right\}$.
- $\mathcal{S}_{z}=\left\{\Theta \in S_{r} \times S_{s} \times S_{n} \mid z_{\Theta}=z\right\}$.
- Incidence relation: $P \in \mathcal{P L R _ { z : m }}$ is on $\Theta \in \mathcal{S}_{z}$ if $\Theta \in \mathfrak{A}_{n}(P)$.
$-\left|\mathcal{P L R} \mathcal{\theta}_{1: m}\right|=\left|\mathcal{P L R}_{\Theta_{2}: m}\right|=\Delta_{m}(z), \forall \Theta_{1}, \Theta_{2} \in S_{z .} \Rightarrow \Delta_{m}(z)$-uniform.

Which is the cost of computation?

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

Lemma

All the blocks of ($\left.\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ have the same multiplicity.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

Lemma

All the blocks of $\left(\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ have the same multiplicity.
Lemma
$k \leq\left|S_{z}\right| \rightarrow$ The number of points on a given block $\Theta \in S_{z}$ which are contained in exactly k blocks of S_{z} does not depend on Θ.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

Lemma

All the blocks of $\left(\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ have the same multiplicity.
Lemma
$k \leq\left|S_{z}\right| \rightarrow$ The number of points on a given block $\Theta \in S_{z}$ which are contained in exactly k blocks of S_{z} does not depend on Θ.

Proposition
$\Theta \in S_{z} \rightarrow$ If $\left|\mathfrak{A}_{z}(P)\right|=\left|\mathfrak{A}_{z}(Q)\right|$, for all $P, Q \in \mathcal{P} \mathcal{L R}_{\Theta: m}$, then $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$ is regular.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

Lemma

All the blocks of ($\left.\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ have the same multiplicity.
Lemma
$k \leq\left|S_{z}\right| \rightarrow$ The number of points on a given block $\Theta \in S_{z}$ which are contained in exactly k blocks of S_{z} does not depend on Θ.

Proposition
$\Theta \in S_{z} \rightarrow$ If $\left|\mathfrak{A}_{z}(P)\right|=\left|\mathfrak{A}_{z}(Q)\right|$, for all $P, Q \in \mathcal{P} \mathcal{L R}_{\Theta: m}$, then $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$ is regular.

Lemma
a) $\mathfrak{I}_{n, P} \subseteq \mathcal{P} \mathcal{L R}_{z: m}$, for all $P \in \mathcal{P} \mathcal{L R}_{z: m}$.
b) $\left|\mathcal{P} \mathcal{L} \mathcal{R}_{\Theta_{1}: m} \cap \Im_{n, P}\right|=\left|\mathcal{P} \mathcal{L R} \Theta_{\Theta_{2}: m} \cap \Im_{n, P}\right|=\Delta_{P}(z)$, for all $\Theta_{1}, \Theta_{2} \in S_{z}$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

Lemma

All the blocks of $\left(\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ have the same multiplicity.
Lemma
$k \leq\left|S_{z}\right| \rightarrow$ The number of points on a given block $\Theta \in S_{z}$ which are contained in exactly k blocks of S_{z} does not depend on Θ.

Proposition
$\Theta \in S_{z} \rightarrow$ If $\left|\mathfrak{A}_{z}(P)\right|=\left|\mathfrak{A}_{z}(Q)\right|$, for all $P, Q \in \mathcal{P} \mathcal{L} \mathcal{R}_{\Theta: m}$, then $\left(\mathcal{P} \mathcal{L} \mathcal{R}_{z: m}, S_{z}\right)$ is regular.

Lemma
a) $\mathfrak{I}_{n, P} \subseteq \mathcal{P} \mathcal{L R}_{z: m}$, for all $P \in \mathcal{P} \mathcal{L R}_{z: m}$.
b) $\left|\mathcal{P} \mathcal{L} \mathcal{R}_{\Theta_{1}: m} \cap \Im_{n, P}\right|=\left|\mathcal{P} \mathcal{L R} \Theta_{\Theta_{2}: m} \cap \Im_{n, P}\right|=\Delta_{P}(z)$, for all $\Theta_{1}, \Theta_{2} \in S_{z}$.

LEMMA
$P \in \mathcal{P} \mathcal{L R}_{z: m} \rightarrow\left|\mathfrak{A}_{z}(Q)\right|=\left|\mathfrak{A}_{z}(P)\right|$, for all $Q \in \mathfrak{I}_{n, P}$.

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$$
\begin{gathered}
z=\left(2^{2}, 2^{2}, 1^{4}\right) \in \mathcal{C} \mathcal{S}_{4} \times \mathcal{C S}_{4} \times \mathcal{C S}_{4} . \\
\Theta=\left((13)(24),(13)(24), \mathrm{Id}_{4}\right) \in S_{z_{1}} . \\
P \equiv \begin{array}{|l|l|l|l}
\hline 1 & 2 & 4 & 3 \\
\hline 3 & 1 & 2 & 4 \\
\hline 4 & 3 & 1 & 2 \\
\hline 2 & 4 & 3 & 1 \\
\hline
\end{array} \nsim Q \equiv \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 3 \\
\hline & 1 & 3 & 4 \\
\hline 4 & 3 & 1 & 2 \\
\hline 3 & 4 & 2 & 1 \\
\hline
\end{array} \in \mathcal{P} \mathcal{L} \mathcal{R}_{\Theta: 16} . \\
\mathfrak{A}_{z}(P)=\{\Theta\} . \quad \mathfrak{A}_{z}(Q)=\left\{\begin{array}{l}
\Theta, \\
\left((12)(34),(12)(34), \operatorname{Id}_{4}\right), \\
\left((14)(23),(14)(23), \mathrm{Id}_{4}\right) .
\end{array}\right. \\
\left|\mathfrak{A}_{z}(P)\right|=1 . \quad\left|\mathfrak{A}_{z}(Q)\right|=3 .
\end{gathered}
$$

$$
\Downarrow
$$

$\left(\mathcal{P} \mathcal{L R}_{z: 16}, S_{z}\right)$ is not regular.

$$
\left|\mathcal{P} \mathcal{L} \mathcal{R}_{z: 16}\right|=576=432_{P}+144_{Q}, \quad\left|S_{z}\right|=9, \quad \Delta_{16}(z)=96=48_{P}+48_{Q} .
$$

The incidence structure $\left(\mathcal{P} \mathcal{L R}_{z: m}, S_{z}\right)$.

$$
\begin{gathered}
z=\left(2^{2}, 2^{2}, 1^{4}\right) \in \mathcal{C} S_{4} \times \mathcal{C S}_{4} \times \mathcal{C S}_{4} . \\
\Theta=\left((13)(24),(13)(24), \mathrm{Id}_{4}\right) \in S_{z_{1}} . \\
P \equiv \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 3 \\
\hline 3 & 1 & 2 & 4 \\
\hline 4 & 3 & 1 & 2 \\
\hline 2 & 4 & 3 & 1 \\
\hline
\end{array} \chi Q \equiv \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 3 \\
\hline & 1 & 3 & 4 \\
\hline 4 & 3 & 1 & 2 \\
\hline 3 & 4 & 2 & 1 \\
\hline
\end{array} \in \mathcal{P} \mathcal{L} \mathcal{R} \Theta: 16 . \\
\mathfrak{A}_{z}(P)=\{\Theta\} . \quad \mathfrak{A}_{z}(Q)=\left\{\begin{array}{l}
\Theta, \\
\left((12)(34),(12)(34), \operatorname{Id}_{4}\right), \\
\left((14)(23),(14)(23), I d_{4}\right) . \\
\left|\mathfrak{A}_{z}(P)\right|=1 . \quad\left|\mathfrak{A}_{z}(Q)\right|=3 .
\end{array}\right.
\end{gathered}
$$

$$
\Downarrow
$$

$\left(\mathcal{P} \mathcal{L R}_{z: 16}, S_{z}\right)$ is not regular.

$$
\left|\mathcal{P L R}_{z: 16}\right|=576=432_{P}+144_{Q}, \quad\left|S_{z}\right|=9, \quad \Delta_{16}(z)=96=48_{P}+48_{Q} .
$$

The 1-design $\left(\Im_{n, P}, S_{z}\right)$.

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

Proposition

The pair $\left(\mathfrak{I}_{n, P}, S_{z}\right)$ is a $1-\left(\left|\Im_{n, P}\right|, \Delta_{P}(z),\left|\mathfrak{A}_{z}(P)\right|\right)$ design, with the incidence relation inherited from $\left(\mathcal{P}_{\mathcal{L}} \mathcal{R}_{z: m}, S_{z}\right)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

Proposition

The pair $\left(\mathfrak{I}_{n, P}, S_{z}\right)$ is a $1-\left(\left|\mathfrak{I}_{n, P}\right|, \Delta_{P}(z),\left|\mathfrak{A}_{z}(P)\right|\right)$ design, with the incidence relation inherited from $\left(\mathcal{P}_{\mathcal{L}}^{z: m}\right.$,,$\left.S_{z}\right)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

Proposition

$Q \in \mathfrak{I}_{n, P} \rightarrow$ The number of points which are concurrent with Q on exactly λ blocks does not depend on the choice of Q.
$\Theta \in S_{z} \rightarrow$ The number of blocks which are incident with Θ on exactly λ points does not depend on the choice of Θ.

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

Proposition

The pair $\left(\mathfrak{I}_{n, P}, S_{z}\right)$ is a $1-\left(\left|\mathfrak{I}_{n, P}\right|, \Delta_{P}(z),\left|\mathfrak{A}_{z}(P)\right|\right)$ design, with the incidence relation inherited from $\left(\mathcal{P L R}_{z: m}, S_{z}\right)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

Proposition

$Q \in \mathfrak{I}_{n, P} \rightarrow$ The number of points which are concurrent with Q on exactly λ blocks does not depend on the choice of Q.
$\Theta \in S_{z} \rightarrow$ The number of blocks which are incident with Θ on exactly λ points does not depend on the choice of Θ.

Theorem

The 1-design ($\Im_{n, P}, S_{z}$) and its dual are m-concurrence designs.

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

Proposition

The pair $\left(\mathfrak{I}_{n, P}, S_{z}\right)$ is a $1-\left(\left|\mathfrak{I}_{n, P}\right|, \Delta_{P}(z),\left|\mathfrak{A}_{z}(P)\right|\right)$ design, with the incidence relation inherited from $\left(\mathcal{P}_{\mathcal{L}} \mathcal{R}_{z: m}, S_{z}\right)$, such that:

- All its blocks have the same multiplicity.
- All its points have the same multiplicity.
- All its connected components are isomorphic.

Proposition

$Q \in \mathfrak{I}_{n, P} \rightarrow$ The number of points which are concurrent with Q on exactly λ blocks does not depend on the choice of Q.
$\Theta \in S_{z} \rightarrow$ The number of blocks which are incident with Θ on exactly λ points does not depend on the choice of Θ.

Theorem

The 1-design ($\mathfrak{I}_{n, P}, S_{z}$) and its dual are m-concurrence designs.

- mult $\left(\Im_{n, P}\right)=\max _{\lambda \in \Lambda}\{\lambda\}+1$.

The 1-design $\left(\Im_{n, P}, S_{z}\right)$.

	5 n	m	P	21 22	23	1 lnP 5 Sz	OP		AzP		mult	NMN	Pit N	Spectrum C	PEIBD
1	11	1	1	1	1	1	1	1		1	1	1	1	0	1
	2	1	1	1	11	2	1	1		1	1	1*2	2	1	1
	3	1	1	1	121	3	3	1		1	1	1	1	0	2
					111	3	1	3		1	1	1*3	3	$1^{1 / 2}$	1
	4	1	1	1	$1 \quad 31$	4	8	1		2		2	$1 * 2$	0	2
					1111		1	4		1		1*4	4	$1{ }^{3}$	1
	5	1	1	1	141	53	0	1		5		6	$1^{*} 6$	0	2
					221	515	5	1		3		3	1*3	0	2
					11111		1	5		1		1*5	5	$1{ }^{1 / 4}$	1
	22	1	10	1	111	4	1	4		-	1	$1 * 4$	4	1×3	1
		2	12	1	2		1	2		1		1*2	2	1	1
					111		1	2		1	1	1*2	2	1	1
	3	1	10	1 11	121		3	2		1	1	1*2	2	1×3	2
					111		1	6		1	1	1*6	6	105	1
		2	12	1	221		3	2		1	1	1*2	2	1×3	2
					1111		1	6		1	1	1*5	6	$1 \sim 5$	1
	4	1	10	1	$1 \quad 31$		8	2		2	2	2*2	$2^{* 2}$	$2^{n} 4$	2
					1111	8	1	8		1	1	1*8	8	$1^{\wedge 7}$	1
		2	12	1	222	12	3	4		1	1	1*4	4	1*9	2
					11111	12	1	2				$1^{\wedge}(12)$	12	$1^{\wedge}(11)$	1
	5	1	10	1	141	1030	0	2		6		6×2	$2^{*} 6$	$6^{\wedge} 5$	2
					221	1015	5	2				3*2	$2^{* 3}$	$3^{3} 5$	2
					11111		1	0				1^(10)	10	149	1
		2	12	1	32	202	0	2		2		2×2	2*2	$2^{n}(10)$	2
					221	2015	5	4			1	3*21^6	$42^{* 4}$	$1^{n} 5,2.5{ }^{\wedge} 4,3^{n}(1)$	3
					111111	20	1	0		1		1*(20)	20	$1^{\wedge}(19)$	1
	33	1	100	1	121	9	9	1		1	1	1	1	0	2
					111		3	3		1		1*3	3	$1^{14} 6$	2
					1111		1	9		1		1×9	9	1×8	1
		2	120		2121	18	9	2		1		1*2	2	1/9	2
					11111		1	8		1		1* ${ }^{\text {c }} 8$)	18	$1^{\wedge}\{17\}$	1
		3	123		3		4	3		2		2×3	3×2	$2^{\wedge} 4$	2
					1121		9	2				31×3	21*4	$(3 / 2)^{\times 4} 43^{\text {a }}$	3
					1111		1	6		-		1*6	6	1×5	1
	4	1	100	1	131	122	4	1		2	2	2	1*2	0	2
					211	121	8	2			1	31×3	21*4	249	3
					1111	12	3	4		1	1	$1 * 4$	4	149	2
					1131	12	8	3		2		2*3	$3^{*} 2$	$2^{n 8}$	2
					211		6	6		3	1	3*31^9	$63^{\wedge} 4$	$3^{\wedge} 82^{\wedge} 3$	2
					1111		1	2		1		$1 \times[12\}$	12	$1^{n}\{11\}$	1
		2	120	1	$21 \quad 22$		9	4		1		1×4	4	$1^{\wedge}\{27\}$	2
					211	361	8	2		1		1*2	2	$1^{\wedge}\{18\}$	2
					11211		6	6		1		1*5	6	$1^{n}\{30\}$	2
					1111		1	6		1		1^{\wedge} [36]	36	1^{\wedge} \{35\}	1
-		3	123	1	$3 \quad 31$	241		3		2		2*3	3×2	$2^{n}\{16\}$	2
					21.211	241		4				31^9	41×8	$3^{\wedge}\{10\} 2^{\wedge} 9(3 / 2)$	0
					111111	24	1	24		1		1* [24]	[24]	$1^{\wedge}\{23\}$	1
-	5	1	100	1	$21 \quad 41$	159		1		5		6	$1^{* 6}$	0	2
					311	156		2		8		$82^{\wedge} 4$	$2^{\wedge} 21^{\wedge}\{12\}$	(12) ${ }^{\circ} 5$	3
					221	154		1				3	1*3	0	2
					2111	153	30	3		6		$63^{\circ} 4$	$32^{*} 61^{\wedge 3}$	$5^{\wedge}\{12\}$	3

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.

In general, $\left(\Im_{n, P}, S_{z}\right)$ is not a PBIBD:

$$
\begin{aligned}
& \quad z=\left(1,21,2^{2} 1\right) \in \mathcal{C} \mathcal{S}_{1} \times \mathcal{C} \mathcal{S}_{3} \times \mathcal{C} \mathcal{S}_{5} . \\
& \left\{\begin{array}{l}
\left|\mathfrak{I}_{n, P}\right|=60, \\
\left|S_{z}\right|=45, \\
\Delta_{P}(z)=4, \\
\left|\mathfrak{A}_{z}(P)\right|=3, \\
\operatorname{mult}\left(\mathfrak{I}_{n, P}\right)=2, \\
\operatorname{mult}\left(S_{z}\right)=1, \\
3 \text { connected components. }
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\Theta=(\operatorname{Id},(12)(3),(12)(34)(5)) \quad \Theta=(\operatorname{Id},(12)(3),(12)(35)(4)) \\
\Theta=(\mathrm{Id},(12)(3),(12)(45)(3))
\end{gathered}
$$

330000110000111100 0033000000111100001100 000000000000000000000033000000000011000000000011001100000000

The 1-Design $\left(\Im_{n, P}, S_{z}\right)$.
In general, $\left(\Im_{n, P}, S_{z}\right)$ is not a PBIBD:

$$
\begin{aligned}
& z=\left(1,21,2^{2} 1\right) \in \mathcal{C} \mathcal{S}_{1} \times \mathcal{C} S_{3} \times \mathcal{C S} S_{5} . \\
& \left\{\begin{array}{l}
\left|\Im_{n, P}\right|=60, \\
\left|S_{z}\right|=45, \\
\Delta_{P}(z)=4, \\
\left|\mathfrak{A}_{z}(P)\right|=3, \\
\text { mult }\left(\Im_{n, P}\right)=2, \\
\text { mult }\left(S_{z}\right)=1, \\
3 \text { connected components. }
\end{array}\right. \\
& \quad \Theta=(\operatorname{Id},(12)(3),(12)(34)(5)) \\
& \quad \Theta=(\operatorname{Id},(12)(3),(12)(45)(3))
\end{aligned}
$$

330000110000111100 0033000000111100001100 000000000000000000000033000000000011000000000011001100000000

References.

- N. Alon, Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999) no. 1-2, 7-29.
- A. Bernasconi, B. Codenotti, V. Crespi and G. Resta, Computing Groebner Bases in the Boolean Setting with Applications to Counting, 1st Workshop on Algorithm Engineering (WAE). Venice, Italy, 1997, pp. 209-218.
- D. A. Bayer, The division algorithm and the Hilbert scheme. PhD thesis, Harvard University, 1982.
- R. M. Falcón, Clasificación de cuadrados latinos parciales de orden menor o igual a 4. Avances en Matemática Discreta en Andalucía, vol. 2 (2011) 5-12.
- R. M. Falcón, Classification of 5-compressible partial Latin rectangles (2013). Submitted.
- A. Hedayat and E. Seiden, F-square and orthogonal F-squares design: A generalization of Latin square and orthogonal Latin squares design, Ann. Math. Statist. (1970) no. 41, 2035-2044.
- A. Hulpke, P. Kaski and P. R. J. Östergård, The number of Latin squares of order 11, Math. Comp. 80 (2011) no. 274, 1197-1219.
- R. G. Jarrett, Definitions and properties for m-concurrence designs, J. Roy. Statist. Soc. Ser. B 45 (1983) no. 1, 1-10.
- B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005) no. 3, 335-344.
- S. C. Saxena, On simplification of certain types of BIBDs, Indian J. Pure Appl. Math. 16 (1985) no. 2, 103-106.
- D. S. Stones, Petr Vojtěchovský and I. M. Wanless, Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des. 20 (2012) no. 20, 227-263.

Thank you!!

CanaDAM 2013

June 10-13
Memorial University of Newfoundland

