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>

An incidence structure is a triple D = (V, B, 1), where V is a set of v
points, BB is a set of b blocks and | CV x B is an incidence relation.

D is k-uniform if every block contains exactly k points and it is r-regular
if every point is exactly on r blocks.

A 1-(v, k, r) design is an incidence structure of v points which is
k-uniform and r-regular — b-k = v - r.

Two blocks are equivalent if they contain the same set of points. The
multiplicity mult(x) of a block x is the size of its equivalence class.

==

The design is simple if all its blocks are distinct. Otherwise, it has multiple
blocks.

If all the blocks have the same multiplicity, then the design can be
simplified by identifying equivalent blocks: D — D.

=
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INCIDENCE STRUCTURES.

» The number of blocks which contain a given pair of distinct points is its

concurrence.
» Ap = {A1,...,Am} = Set of possible concurrences.
A={1} A=1{0,1,2}

» Two points are i associates if their concurrence is \;.

> A m-concurrence design is a 1-design with m distinct concurrences
A1...,Am among its points, for which there exist m values ni, ..., ny, such
that every point has exactly n; i" associates, for each i € [m].

A =

I‘I1:6 n1:n2=n3:1



INCIDENCE STRUCTURES.

» An m-concurrence design is a partially balanced incomplete block design
(PBIBD) if, for any two k'-associated points P and Q, there exist pj;

points which are i*-associated to P and j*-associated to @, where pfj
only depends on i,/ and k.

A =

1, ifi£j £k,
oL =6 5:{ #J#k#

0, otherwise.
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PARTIAL LATIN RECTANGLES.

> PLR,sn={r x s partial Latin rectangles based on [n] = {1,2,...,n}}.

r X s arrays in which each cell is either empty or contains one symbol of
[n], s.t. each symbol occurs at most once in each row and in each column.

N

€ PLR34,55 C PLR3 465 C - ..

o

> Size: Number of non-empty cells. = PLR, s n:m.

» r=s=nand m= n?: Latin square. ;
n < 11: McKay and Wanless, 2005; Hulpke, Kaski and Ostergérd, 2011.

» r=s=n<4and m< n? Partial Latin square.
n < 4: Falcén, 2012.
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» General case? [Falcén, 2013; Stones, 2013.]

» POLYNOMIAL METHOD: PLR; s,n.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]

Xijk

Xijk

lr,s,n
Xijk

Xijk

1, if pj = k,

P = (p: -
(Pij) > Xijk {0, otherwise.

(X — 1) =0,Vi € [r],j € [s], k € [n],

-xj = 0,Vi € [r],j €[s],k €[n],] €[n]\ [K],
-xi = 0,Vi € [r],j € [s], k € [n], ] € [s]\ /],
cxj = 0,Vi €[r],j €[s],k €[n],] €[r]\[{]
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» POLYNOMIAL METHOD: PLR; s n.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]
o o 1, i]“p,y:k7
P = (py) & ik = {0, otherwise.
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» General case? [Falcén, 2013; Stones, 2013.]

» POLYNOMIAL METHOD: PLR; s n.
[Bayern, 1982; Alon, 1995; Bernasconi, 1997]
o o 1, i]“p,y:k7
P = (py) & ik = {0, otherwise.
Xijk - (xj — 1) = 0,Vi € [r],j € [s], k € [n],
Xijk * XijI = O»Vl € [r]7j € [5],/( € [n]7l € [n] \ [k]7
Xk - Xi = 0,Vi € [r],j € [s], k € [n],] € [s]\ [J]],
X - X = 0,Vi € [r],j € [s], k € [n],] € [r]\ [i].

lr,s,n

PﬁRr,sﬁn = V(Ir,s,n) ‘ ‘PﬁRr,sﬁn‘ = dim@(@[xlll-, e ,ern]/lns,n)

P['Rr,sﬁn;m — Zie[r],je[s],ke[n] Xjjk = m.



PARTIAL LATIN RECTANGLES.

[PLRr.sml
G

r s 1 2 3 4 5 6 7 8
11 2 3 4 5 6 7 8 9
2 7 13 21 31 43 57 73
3 34 73 136 229 358 529
4 209 501 1,045 1,961 3,393
5 1,546 4,051 9,276 19,081
6 13,327 37,633 93,289
7 130,922 394,353
8 1,441,729
2 2 35 121 325 731 1,447 2,605 4,361
3 781 3,601 12,781 37,273 93,661 209,761
4 28,353 162,661 720,181 2,599,185 7,985,761
5 1,502,171 10,291,951 54,730,201 236,605,001
6 108,694,843 864,744,637 5,376,213,193
7 10,256,288,925 92,842,518,721
8 1,219,832,671,361
3 3 11,776 116,425 805,366 4,193,269 17,464,756 60,983,761
4 2,423,521 33,199,561 317,651,473 2,263,521,961 12,703,477,825
5 890,442,316 15,916,515,301 199,463,431,546 1,854,072,020,881
6 526,905,708,889 11,785,736,969,413 *
4 4 127,545,137 4,146,833,121 87,136,329,169 1,258,840,124,753 *
5 313,185,347,701 * * *

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.
Max. time of computation: 4,180 seconds (PL7R2,9,13)-
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[ PLRrs,nl
n
r.s 9 10 11 12 13
11 10 11 12 13 14
2 91 111 133 157 183
3 748 1,021 1,354 1,753 2,224
4 5,509 8,501 12,585 18,001 25,013
5 36,046 63,591 106,096 169,021 259,026
6 207,775 424,051 805,597 1,442,173 2,456,299
7 1047,376 2,501,801 5,470,158 11,109,337 21,204,548
8 4,596,553 12,975,561 32,989,969 76,751,233 165,625,929
9 17,572,114 58,941,091 175,721,140 472,630,861 1,163,391,958
10 234,662,231 824,073,141 258,128,454 7,307,593,151
11 3,405,357,682 12,470,162,233 40,864,292,184
12 53,334,454,417 202,976,401,213
13 896,324,308,634
2 2 6,985 10,411 15,137 21,325 29,251
3 28,941 815,161 1,458,733 2,482,801 4,050,541
4 21,582,613 52,585,221 117,667,441 245,278,945 481,597,221
5 864,742,231 2,756,029,891 7,846,852,421 20,336,594,221 48,689,098,771
6 27,175,825,171 115,690,051,951 426,999,864,193 1,398,636,508,477 4,141,988,637,463
7 661,377,377,305 3,836,955,565,101 18,712,512,041,917 78,819,926,380,945 293,220,109,353,081
8 12,372,136,371,721 99,423,049,782,601 652,303,240,153,313 3,595,671,023,722,081 17,076,864,830,330,761
9 178,156,152,706,483 2,000,246,352,476,311 17,908,872,286,407,301  131,297,226,011,020,765 808,986,548,443,056,751
10 31,296,831,902,738,931 385,203,526,838,449,441 * *
11 * * *
3 3 184,952,170 500,317,981 1,231,810,504 2,803,520,281 5,970,344,446
4 58,737,345,481 231,769,858,321 802,139,572,873 2,487,656,927,521 7,030,865,002,825
5 13,451,823,665,776 * * * *

*Excessive cost of computation for a computer system i7-2600, 3.4 GHz.
Max. time of computation: 4,180 seconds (PL7R2,9,13)-
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How can this method be improved?

> Distribute the elements of PLR, s » into disjoint subsets for which a set of
boolean polynomials can be related.
> Types (r,s,n <5 [Falcén, 2013]):
Number of entries per row and column and number of occurrences of each
symbol. [Keedwell, 1994; Bean et al., 2002].

1
2

4

5

N| B O W
[SE R K

Type: ((4,3,3,2),(2,0,4,2,4),(2,2,2,3,2,1)).

> Consider the set of symmetries (autotopisms) of PLR, s n.
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v

Sm: Symmetric group on [m].
Sr X S5 X Sp: Set of isotopisms of PLR, s,n.

v

Given P = (pjj) € PLR;s.n:
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v

v
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> Sn: Symmetric group on [m].
> S X S x Syt Set of isotopisms of PLR, s n.

Given P = (pjj) € PLR;s.n:
» Orthogonal representation: O(P)={(i,j,pi) | i € [r],j € [s], pi € [n]}-

> lIsotopism (~): © = («, B,7) € S X Ss X Sp.
O(P®) = {(ali), BU), ¥(Py)) | (i, pi) € O(P)}.
> lIsotopism class: J,p={Q € PLRrsn| Q ~ P}.
» 7,(P,Q)={0€S x5 xS, | PP =Q}.
» Autotopism group: ,(P) = Ja(P, P).
> PLRe ={P € PLR,sn | © € An(P)}.

> PLRo:m ={P € PLRrsnm | © € An(P)}.

[RL(P) = RL(Q)L. ¥Q € 3,(P) [9n.p] = Py




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P= (plj)7 Q = (qu) S pERr,s,n-
POLYNOMIAL METHOD: J,(P, Q).

© = (a, B,7) + (ajj, bjj, ¢jj) such that dj; = {é: :tiilr?/visej.
aj - (aj —1)=0,vi,j €[],

bj - (bj —1) =0,Vi,j € [s],

cj - (cg —1) =0,Vi,j € [n],

Yiemai =1,V €r],

Zje[r] aj = 1,Vi e [r],

In.p.o = § 2ie bi =1, Vi € [s],

e bi =1, Vi € [s],

Eie[n] cj =1,V € [n],

et G =1, Vi € [n],

ajk - by - (Cpjqy — 1) =0,Vi, k € [r],j, ] € [s], such that pj, qu € [n],
aj - by =0,Vi, k € [r],j, ! € [s], such that pj = 0 or gy = 0.




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P= (plj)7 Q = (qu) S pERr,s,n-
POLYNOMIAL METHOD: J,(P, Q).

© = (a, B,7) + (ajj, bjj, ¢jj) such that dj; = {é: :tiilr?/visej.
aj - (aj —1)=0,vi,j €[],

bj - (bj —1) =0,Vi,j € [s],

cj - (cg —1) =0,Vi,j € [n],

Yiemai =1,V €r],

Zje[r] aj = 1,Vi e [r],

In.p.o = § 2ie bi =1, Vi € [s],

> e by =1, Vi € [s],

Eie[n] cj =1,V € [n],

et G =1, Vi € [n],

ajk - by - (Cpjqy — 1) =0,Vi, k € [r],j, ] € [s], such that pj, qu € [n],
aj - by =0,Vi, k € [r],j, ! € [s], such that pj = 0 or gy = 0.

[3(P.Q) = V(hhpo)|  |13a(P, Q)] = dimo(Qlan, -, cml/Inr.0) |
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Ry
il

N
~

S p£R3_’415.

%(P){elld345(( )(2)(3

)(3)
@2 = ((12)(3), (12)(3)(4), (12)(34)(5)).-

1.41.5]
S 5':8,640‘

|Js,p| =

» (1)(2)(3)(4), (1)(2)(3)(4)(5)),
(



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

3
P= 2 4 € 'PACR3_4‘5.
5
A (P) _ ©1 =1Ids34,5 = ((1)(2)(3), (1)(2)(3)
) ©2 = ((12)(3), (12)(3)(4), (12)(34)(

How can we obtain all the 8,460 partial Latin rectangles?



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P = (pj) € PLRr 5.

POLYNOMIAL METHOD: J,,p.

Xijk - (Xijk - 1) =0,Vie [r]7j € [5]7,( S [n],

Xk - X = 0,¥i € [r],j € [s], k € [n], ] € [n] \ [K],

Xiji - Xie = 0, Vi € [r],j € [s], k € [n], ] € [s]\ []],

Xijk + X = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ []],

ajj - (a,-j — 1) =0,Vi,j € [r],

b,'j . (bU — 1) =0,Vi,j € [S]7

cj - (cj —1) =0,Vi,j € [n],

In,p = Zie[r] aj =1,Vj € [r],

Zje[r] aj=1,Vie [r],

i bi =1, Vi € [s],

Sjep bi = LV €[],

et G =1,V € [n],

et S =1, Vi € [n],

ik * bﬂ : CPijm : (Xk/m - 1) =0,Vi,k € [r]vjvl € [S],pg,l‘n S [n]v
ajk - bji + (xm — 1) = 0,Vi, k € [r],j, ! € [s], m € [n], such that p; = 0.
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P = (pj) € PLRr 5.

POLYNOMIAL METHOD: J,,p.

Xijk - (Xijk - 1) =0,Vie [r]7j € [5]7,( S [n],

Xk - X = 0,¥i € [r],j € [s], k € [n], ] € [n] \ [K],

Xijk - Xk = 0, Vi € [r],j € [s], k € [n], | € [s] \ [j],

Xijk + X = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ []],

ajj - (a,-j — 1) =0,Vi,j € [r],

b,'j . (bU — 1) =0,Vi,j € [S]7

cj - (cj —1) =0,Vi,j € [n],

Inp = Zie[r] aj =1,Vj € [r],

Zje[r] aj=1,Vie [r],

i bi =1, Vi € [s],

Sjep bi = LV €[],

et G =1,V € [n],

et S =1, Vi € [n],

ik * bﬂ : CPijm : (Xk/m - 1) =0,Vi,k € [r]vjvl € [S],pg,l‘n S [n]v
ajk - bji + (xm — 1) = 0,Vi, k € [r],j, ! € [s], m € [n], such that p; = 0.

Jop = V(Ip) \ 3n.p| = dimg(Qxi1, - . -, can)/Ip) \




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P= (p,-j) [S PﬁRyys}n.

POLYNOMIAL METHOD: J, p.
(But Grobner bases are extremely sensitive to the number of variables!!).

Xijk * (Xr'jk — 1) =0,Vi e [r]7j (S [S],k S [n],

ik - xj = 0,Vi € [r],j € [s], k € [n], ] € [n] \ [K],

Xijk - X = 0,Vi € [r],j € [s], k € [n], ] € [s]\ [/],

Xijk - X = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ [1],

ajj - (a,-j — 1) =0,Vi,j€e [r],

b,'j . (b,J — 1) =0,Vi,j€ [S]7

cj - (cj —1)=0,Vi,j € [n],

Inp =13 2ie @i =L.Vi€lr],

e 2 = LVi € [r],

>ier by =1,V € [s],

>jets bi = L. Vi € [s],

e G =1,V € [n],

et S =1, Vi € [n],

ajk bj/ . cpij’" . (Xklm — 1) =0,Vi,k € [r],j,/ c [S],p,'j, m e [n],
aj - by - (xm — 1) =0,Vi, k € [r],j, ! € [s], m € [n], such that p; = 0.

Jnp = V(Ip) [ 130 = dima(Qlars, -, canl /Ip) |




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P= (pU) S 'P,C'R,,s,,,.

In order to reduce the number variables, we can consider the symmetries of P,
i.e., its autotopism group 2,(P). It is due to the fact that autotopisms
decompose P into blocks.

P = 214 € PLR345.




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

P= (pU) S 'Pﬁ'Rnsyn.

In order to reduce the number variables, we can consider the symmetries of P,
i.e., its autotopism group 2,(P). It is due to the fact that autotopisms
decompose P into blocks.

| = B
L[5

e {61 = z.05 = (DR)(3), (HR)3)(4), (DR)B)A)E)).
©: = ((12)(3), (12)(3)(4), (12)(34)(5)).



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.
P= (pU) € PLRrs,n.
In order to reduce the number variables, we can consider the symmetries of P,

i.e., its autotopism group 2,(P). It is due to the fact that autotopisms
decompose P into blocks.




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.
P= (pU) € PLRrs,n.
In order to reduce the number variables, we can consider the symmetries of P,

e., its autotopism group 2,(P). It is due to the fact that autotopisms
decompose P into blocks.

m.
P = IR < PR
.

= ((1)(2)(3), (1)
©2 = ((1 )( ) (12)(3)(4), (12)(34)(5))-

%5 (P) = {@1 = Ids.15 (DG, (HEG)E)E).

\ © = (e, 8,7) = Xik = Xa(i)BG)v(k) \




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

O = (a,B,7) € 5 x S x S,.

POLYNOMIAL METHOD: PLRe

Xijk - (xj — 1) = 0,Vi € [r],j € [s], k € [n],
Xijk = Xa()B(j)v(k)>

lo = < Xji - xiy = 0,Vi € [r],j € [s], k € [n],] € [n] \ [K],
Xijk + xie = 0,Vi € [r],j € [s], k € [n],] € [s]\ [],
Xijk - xje = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ [1]-



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

O = (a,B,7) € 5 x S x S,.

POLYNOMIAL METHOD: PLRe

Xijk - (xj — 1) = 0,Vi € [r],j € [s], k € [n],
Xijk = Xa()B(j)v(k)>

lo = < Xji - xiy = 0,Vi € [r],j € [s], k € [n],] € [n] \ [K],
Xijk + xie = 0,Vi € [r],j € [s], k € [n],] € [s]\ [],
Xijk - xje = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ [1]-

PLRo = V(lo) |IPLRo| = dimg(Qlxt, - ., xnl /o). |




SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

O = (a,B,7) € 5 x S x S,.

POLYNOMIAL METHOD: PLRe

Xijk - (xj — 1) = 0,Vi € [r],j € [s], k € [n],
Xijk = Xa()B(j)v(k)>

lo = < Xji - xiy = 0,Vi € [r],j € [s], k € [n],] € [n] \ [K],
Xijk + xie = 0,Vi € [r],j € [s], k € [n],] € [s]\ [],
Xijk - xje = 0,Vi € [r],j € [s], k € [n], 1 € [r]\ [1]-

PLRo = V(lo) |IPLRo| = dimg(Qlxt, - ., xnl /o). |

If © =1d, s, = (Id,,1ds,1d,), then lo = I, and PLRo = PLR.s 0.



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

O = (a,B,7) € 5 x S x S,.

POLYNOMIAL METHOD: PLRe

s - O — 1) = 0, € [r].j € [s], k € [n],
Xijk = Xa()B(j)v(k)>

le = X,'J'k~X,'J'/=0,Vi€[r],jE[S],kE[n],/e[n]\[k],
Xijk * Xitk = 0,Vi e [I‘],j S [S],k S [n],l c [S] \ [/],
Xk - Xk = 0, Vi € [I’],j € [S],k € [n],le [r] \ [I]

PLRo = V(lo) ] IPLRo| = dimg(Qx1s, - - -, xsn] /o). \

If © =1d, s, = (Id,,1ds,1d,), then lo = I, and PLRo = PLR.s 0.

The number of variables which can be eliminated only depends on the cycle
structure of ©.



SYMMETRIES OF A PARTIAL LATIN RECTANGLE.

vl
Il

N
IS

€ PLR345.

s(P) = {@1 = Ids,a,5 = ((1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4)(5)),
©2 = ((12)(3), (12)(3)(4), (12)(34)(5))
> Cycle structure of © = (a, 3,7) € Sr X Ss X Sp: z6=(2a, 23, zy), where:

Cycle structure of m: z; = KN being \] the number of cycles of
length / in the decomposition of 7 as a product of disjoint cycles.

Zo, = (137 14- 15)7 Zo, = (2172127221)‘

» CS,={Cycle structures of S,}.



The incidence structure (PLR;.m, Sz).



THE INCIDENCE STRUCTURE (PLRz.m, S;).

z€CS, xC8s x CS,,
> PLRzm ={P € PLRrs,n:m | 3© € An(P) such that ze = z}.



THE INCIDENCE STRUCTURE (PLRz.m, S;).

z€CS, xC8s x CS,,
> PLRzm ={P € PLRrs,n:m | 3© € An(P) such that ze = z}.

>» S, ={0€S x5 x5, ze = z}.



THE INCIDENCE STRUCTURE (PLRz.m, S;).

z€CS, xCSs xCS,
> PLRzm ={P € PLRrs,nm | 3O € An(P) such that zo = z}.

>» S, ={0€S x5 x5, ze = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).



THE INCIDENCE STRUCTURE (PLRz.m, S;).

z€CS, xCSs xCS,
> PLRzm ={P € PLRrs,nm | 3O € An(P) such that zo = z}.

>» S, ={0€S x5 x5, ze = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

> \ IPLRo,:m| = |PLRoym| = Am(z), ¥O1,0; € S,.

= Ap(z)-uniform.




THE INCIDENCE STRUCTURE (PLRz.m, S;).
ze€(CS, xCSs xCS,
> PLRzm ={P € PLRrs,nmm | 3O € An(P) such that ze = z}.

>» S, ={0 €5 x5 xS5,| zo = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

> \ IPLRoym| = [PLRoym| = Am(2), ¥O1,0 € S..

= Ap(z)-uniform.

z=(2,2,2°1)
m=2

|PLR.m| = 50
|S.| = 15
Am(z) =10 = 2p + 8¢

Two isotopism classes

©




THE INCIDENCE STRUCTURE (PLRz.m, S;).

ze€C(CS, xC8s xCS,

> PLRzm ={P € PLRsnm | 3O € An(P) such that zg = z}.

» S, ={0€S5 x5 x5,| zo = z}.

> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

> \ IPLRo,:m| = [PLRoym| = Am(z), ¥O1,0, € S..

= Apn(z)-uniform.
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Which are the properties of
such incidence structures?
- Multiplicity.

- Regularity.

- Parameters.



THE INCIDENCE STRUCTURE (PLRz.m, S;).

z€(CS, xCS8s xCS,
> PLRzm ={P € PLRrs,nm | 3O € An(P) such that zo = z}.

>» S, ={0€S x5 x5, ze = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

> \ IPLRoym| = [PLRoym| = Am(2), ¥O1,0 € S,.

= Ap(z)-uniform.

/ =N Which is the minimum number of blocks
\ s o o % which are necessary to determine all
the points of the incidence structure?




THE INCIDENCE STRUCTURE (PLRz.m, S;).

ze€(CS, xCS8s xCS,
> PLRzm ={P € PLRrs,nm | 3O € An(P) such that zo = z}.

>» S, ={0€S x5 xS, ze = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

= Ap(z)-uniform.

> \ IPLRoym| = [PLRoym| = Am(2), ¥O1,0 € S,.

X X [ 3}
x X e 0o o e e o o0
o0 oo
o0 0 o oo oo Which is the minimum number of blocks

which are necessary to determine all
the points of the incidence structure?




THE INCIDENCE STRUCTURE (PLRz.m, S;).

ze€(CS, xCS8s xCS,
> PLRzm ={P € PLRrs,nm | 3O € An(P) such that zo = z}.

>» S, ={0€S x5 xS, ze = z}.
> Incidence relation: P € PLR,.mis on © € S, if © € A,(P).

= Ap(z)-uniform.

> \ IPLRoym| = [PLRoym| = Am(2), ¥O1,0 € S,.

Which is the cost of computation?




THE INCIDENCE STRUCTURE (PLRz.m, S;).
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THE INCIDENCE STRUCTURE (PLRz.m, S;). j%\ L

LEMMA
All the blocks of (PLR.:m, S;) have the same muiltiplicity.




THE INCIDENCE STRUCTURE (PLRz.m, S;). j;\ " cree

LEMMA
All the blocks of (PLR.:m, S;) have the same muiltiplicity.

LEMMA
k <|S;| = The number of points on a given block © € S, which are
contained in exactly k blocks of S, does not depend on ©.




THE INCIDENCE STRUCTURE (PLRz.m, S;). j;\\ " cree

LEMMA
All the blocks of (PLR.:m, S;) have the same muiltiplicity.

LEMMA
k <|S;| = The number of points on a given block © € S, which are
contained in exactly k blocks of S, does not depend on ©.

PROPOSITION
€S, = If|A(P)] = |A(Q)], for all P, Q € PLRe:m, then (PLR,.m, S;) is
regular.



THE INCIDENCE STRUCTURE (PLRz.m, S;). j;\\ " cree

LEMMA
All the blocks of (PLR.:m, S;) have the same muiltiplicity.

LEMMA
k <|S;| = The number of points on a given block © € S, which are
contained in exactly k blocks of S, does not depend on ©.

PROPOSITION
€S, = If|A(P)] = |A(Q)], for all P, Q € PLRe:m, then (PLR,.m, S;) is
regular.

LEMMA

a) Jnp CPLRm, forall P € PLR.m.
b) |PLRe,;:m NTnp| = |PLReym NTnp| = Ap(z), for all ©1,0; € S,.



THE INCIDENCE STRUCTURE (PLRz.m, S;). L s

LEMMA
All the blocks of (PLR;:m, S;) have the same multiplicity.

LEMMA
k <|S;| = The number of points on a given block © € S, which are
contained in exactly k blocks of S, does not depend on ©.

PROPOSITION
€S, = If|A(P)] = |A(Q)], for all P, Q € PLRe:m, then (PLR,.m, S;) is
regular.
LEMMA
a) Jnp CPLRm, forall P € PLR.m.
b) |PLRe,;:m NTnp| = |PLReym NTnp| = Ap(z), for all ©1,0; € S,.

LEMMA
P € PLRzm — |A(Q)| = [A(P)

, forall Q € J,,.p.



THE INCIDENCE STRUCTURE (PLRz:m, Sz).

zZ = (22,22, 14) € CS4 x CS4 x CSy4.

© = ((13)(24), (13)(24),1ds) € S.,.

112|413 112|413
_ 3|11 |2]4 _|211]13]|4
P= 13112 * Q= 7131112 € PLRo:16-
214131 31421
o,

A,(P)={0}. A, (Q)= 12)(34), (12)(34), 1d4),

((
((14)(23), (14)(23), 1da).
(P) =1 |2(Q)| =3

4
(PLR 16, S-) is not regular.

|P£Rz:16| =576 = 432p + ].4-4(\)7 |SZ| = 97 A16(Z) =06 = 48p + 48Q.
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THE INCIDENCE STRUCTURE (PLRz:m, Sz).

zZ = (22,227 14) S CS4 X C84 X C54

© = ((13)(24), (13)(24),1ds) € S.,.

T[2]4]3 1[2[4]3
_[3[1][2][2 _[2[1[3]
P12 Q=rars 11z € PEReus.
2431 3421
o,

(PLR 16, S-) is not regular.

|PLR 16| =576 = 432p + 1444, [S:| =9, Ais(z) =96 = 48p + 48¢.
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The 1-design (J,.p, S;).



THE 1-DESIGN (J,p, S;).




THE 1-DESIGN (J,p, S;).
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PROPOSITION

The pair (Jn,p, S;) is a 1-(|Tn.p|, Ap(2),|A-(P)|) design, with the incidence
relation inherited from (PLR.m, S;), such that:

> All its blocks have the same multiplicity.
> All its points have the same multiplicity.

» All its connected components are isomorphic.



THE 1-DESIGN (J,p, S;).
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PROPOSITION

The pair (Jn,p, S;) is a 1-(|Tn.p|, Ap(2),|A-(P)|) design, with the incidence
relation inherited from (PLR.m, S;), such that:

> All its blocks have the same multiplicity.

> All its points have the same multiplicity.

» All its connected components are isomorphic.

PROPOSITION

Q € J,p — The number of points which are concurrent with Q on exactly A
blocks does not depend on the choice of Q.

© € 5, — The number of blocks which are incident with © on exactly A
points does not depend on the choice of ©.



THE 1-DESIGN (J,p, S;).
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PROPOSITION
The pair (Jn,p, S;) is a 1-(|Tn.p|, Ap(2),|A-(P)|) design, with the incidence
relation inherited from (PLR.m, S;), such that:

> All its blocks have the same multiplicity.

> All its points have the same multiplicity.

» All its connected components are isomorphic.

PROPOSITION

Q € J,p — The number of points which are concurrent with Q on exactly A
blocks does not depend on the choice of Q.

© € 5, — The number of blocks which are incident with © on exactly A
points does not depend on the choice of ©.

THEOREM
The 1-design (J,,p, S;) and its dual are m-concurrence designs.



THE 1-DESIGN (J,p, S;).

J— " _WAA . e e

I oo e \ /e
s = 0 + L\
Tx—/'” H

PROPOSITION
The pair (Jn,p, S;) is a 1-(|Tn.p|, Ap(2),|A-(P)|) design, with the incidence
relation inherited from (PLR.m, S;), such that:

> All its blocks have the same multiplicity.
> All its points have the same multiplicity.

» All its connected components are isomorphic.

PROPOSITION

Q € J,p — The number of points which are concurrent with Q on exactly A
blocks does not depend on the choice of Q.

© € 5, — The number of blocks which are incident with © on exactly A
points does not depend on the choice of ©.

THEOREM
The 1-design (J,,p, S;) and its dual are m-concurrence designs.

> mult(Jnp) = maxyea{A} + 1.



THE 1-DESIGN (J,p, S;).

Peieo|

rsnmlp a2 23 |nPsz opz Az NN spectrum C
R E N 1
2a of1 1 w21 2 1 2 1
sy of1 1 sz o1 1 0
mls 1 3 1 3 1%
Al of 1 af a8 1 2 12 0
ml a1 4 1 n 18
slaf af1 1 alsa o1 o6 16 ]
2| 515 1 3 13 0
i s 1 5 1 s 14
29[ w[1 m uf 41 a4 1 @ 1
{1 2 921 2 1 2 1
u oul21 2 1 2 1
slafaofr ez 2 o1 2
m|l 1 5 1 5
d1 2 afs 3 2 1 2
n om|s 1 5 1 5
daf1 1 wlee 2 2 2 274
mul s 1 8 1 8 17
2 2f1 2 2|12z a1 4 179
ol 112 1 12 10011
slafaof1 1 el 2 s 6 605
115 2 3 23 35
a0 110 1 10 17
2 1] 1 2w 2 2 2 2:(10)
2|15 4 3 2 105,254,310
| 1w 31 20 1(13)
33 w01 2 21| 5 5 1 1, 1 [
m|ls 3z 3 1 3 1%
m ol s 19 1 3 178
Qazmf 1 2 z|ie s 2 1 2 19
11 1118 1 18 1 18 117
sazsf1 3 3l 6 a4 3 2 302 4
2 zuls s 2 3 2% (3/2)a3
m s 1 6 1 5 15
Aafioof 1 2 mliz2a 1 2 12 0
ml1218 2 3 2% 209
m|1z 3 4 1 . 179
m a8 3 2 302 28
ml1z 6 5 3 630 30823
mf12 1 12 1 12 1711}
i) 1 2 22fs s 4 1 a 1027
21136 18 2 1 2 118}
11 2113 6 6 1 6 130}
uuls 1 o3 1 36 11(35)
312301 3 31f2816 3 2 382 216}
n w1 a3 ave 30029(3/2)
m ouufaa 1o 1 Q8 1e
slafwof 1 21 alise 1 s 16 0
aul1s60 2 8 2021012} 423
mf1s a5 1 3 13 ]
1530 3 6 3206143 512}

2111




THE 1-DESIGN (J,p, S;).
In general, (Jn,p, S;) is not a PBIBD:

450

540

z=(1,21,2%1) € CS1 x CS3 x CSs.

P=[1]2] |

‘jn.P‘ - 60

|S.| = 45,

A =4,

lz) =4, A=1{0,1,3},
[2(,(P)| = 3,
- n1:52, n2:6, n3 = 1.

mult(J,p) = 2,

mult(S;) =1,
3 connected components.
© = (Id, (12)(3), (12)(34)(5)) © = (Id, (12)(3), (12)(35)(4))
© = (Id, (12)(3), (12)(45)(3))
340 === 430

120 == 210
330000110000111100000000000000000000000000000000000000000000
350 === 530 003300000011110000110000000000000000000000000000000000000000
000000000000000000000033000000000011000000000011001100000000



THE 1-DESIGN (J,p, S;).
In general, (Jn,p, S;) is not a PBIBD:

z=(1,21,21) € CS1 x CS3 x CSs.
P=[1T2] ]

Jn,p| = 60,
‘SZ‘ - 45
A =4,

p(2) A = {0,1,3},
[2(,(P)| = 3,

~ n =52 nm=6, n3=1.

mult(J,p) = 2,
mult(S;) = 1,

3 connected components.

© = (Id, (12)(3), (12)(34)(5)) © = (Id, (12)(3), (12)(35)(4))
© = (1d, (12)(3), (12)(45)(3))
340 == 430
450
||| 120 == 210
330000110000111100000000000000000000000000000000000000000000
540 350 === 530 003300000011110000110000000000000000000000000000000000000000
000000000000000000000033000000000011000000000011001100000000
230

When a m-concurrence design related to a PLR is a PBIBD?
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