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Latin squares associated to principal autotopisms of long
cycles. Application in Cryptography

Raul M. Faleén Ganfornina

Abstract
Fixed a principal isotopism © = (a, 3,¢) € S3, where S, is the symmetric group of
theset N = {0,1,...,n—1}, we are going to study in this paper the number A(©) of Latin
squares which have © as a principal autotopism. As an application in Cryptography,
we use it in the construction of secret sharing schemes based in F-critical sets of Latin
squares.
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1 Introduction

A quasigroup [1] is a nonempty set G endowed with a product -, such that if any two of
the three symbols a, b, ¢ in the equation a - b = ¢ are given as elements of G, the third is
uniquely determined as an element of G. It is equivalent to say that G is endowed with left
/ and right \ division. Two quasigroups (G, -) and (H, o) are isotopic [4] if there are three
bijections «, 3,7 from H to G, such that:

v(aob) =ala)-B(b), for all a,b e H.

The triple © = («, 3,7) is called an isotopism from (G, -) to (H,0). f G = Hand o = = 7,
the isotopism is indeed an isomorphism. If v = €, the identity map on G, © is called a
principal isotopism. If G = H and - = o, © is called an autotopism. Finally, © = (¢, €,¢€) is
called the trivial autotopism.

If we consider the multiplication table of a quasigroup, we obtain a Latin square. A
Latin square, L, of order n, is a n X n array with elements chosen from a set of n symbols
N = {x1,...,z,}, such that each symbol occurs precisely once in each row and each column.
A Latin subrectangle of L is a rectangular subarray R of L such that exactly the same
symbols occur in each row of R. The set of Latin squares of order n is denoted by LS(n).
A partial Latin square, P, of order n, is a n x n array with elements chosen from a set of
n symbols, such that each symbol occurs at most once in each row and in each column.
The set of partial Latin squares of order n is denoted as PLS(n). It is said that a fixed
P € PLS(n) can be uniquely completed to a Latin square L € LS(n) if L is the unique
Latin square such that P C L and it is denoted P € UC(L). If besides any proper subset
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of P can be completed to two distinct Latin squares it is said that P is a critical set of
L and it is denoted P € CS(L). A critical set of L is said minimal if it has the smallest
size of all possible critical sets of L. Critical sets were introduced in the last 70’s of the
past century [15], [6]. Applications of them in Cryptography were obtained by Seberry [18]
in 1990. Later on, it has been proved that critical sets allow to construct secret sharing
schemes [5]. In [10] it can be observed some of these applications to Cryptography.

The cardinality of LS(n) for all n € N, N(n,n), is still an open problem, although it
is known that this cardinality grows exponentially. Studies of N(n,n) with n < 11 can be
found in [20], [2] or [14]. We will consider from now on N = {0,1,...,n—1}. So, if L = ({;;),
the orthogonal array representation of L is the set of n? triples {(i,7,0;): 0 <1i,j <n—1}.
An isotopism of a Latin square L is a triple © = (o, 3,7) € Z, = S, X Sy X S, where
Sy is the symmetric group on N and so, «, 8 and +y are respectively, permutations of rows,
columns and symbols of L. The resulting square L is also a Latin square and it is said to be
isotopic to L. In particular, if L = (l;;), then L® = {(i,j,v ! (la(i)ﬁ(j)) :0<i,5<n—1}
The set of all Latin squares isotopic to L is called its isotopy class. An isotopism which
maps L to itself is an autotopism. The stabilizer subgroup of L in Z, is its autotopism
group, U(L) = {© € Z,, : L® = L}. Given P € PLS(n), contained in L, and § C U(L), it
is defined the extended autotopy PS = Ueez P® € PLS(n).

Cardinalities of isotopy classes and autotopism groups have been already studied, for
example in [17], [7] or, more recently, in [13] and [14]. In these two last papers, authors
have used autotopism group sizes (computed by B.D. McKay’s nauty [11]) to give counts of
Latin squares of order up to 11. Indeed, as a first step to obtain it, they have studied the
possible autotopisms of a given Latin square. To do it, they have defined the cycle structure
of a permutation vy as the sequence (ny,ng, ...), where n; is the number of cycles of length i
in 7. So, they have proved the following:

Theorem 1.1. (McKay, Meynert and Myrvold [13]) Let L € LS(n). Every non-
trivial © = (o, B,7) € U(L) verifies one of the following assertions:

a) o, 3,7y have the same cycle structure with at least one and at most |n/2] fixed points,

b) One of a, B,y has at least one fixed point and the other two have the same cycle
structure without fized points,

c) None of a, 3,7 has fixed points. O

Also in these papers, they have studied the reciprocal question. That is, given an
isotopism © = (a,3,7) € Z,, how many Latin squares there exist such that © is an
autotopism of all of them. However, they are not interested in the number of Latin squares
but in the number of isotopy classes. Besides, they only study [13] some concrete cases of
autotopisms:

a) For some prime p, o, 3 and v have order p with the same number m of fixed points,
where 1 <m < |n/2].
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b) For some prime p dividing n, « and  have order p and no fixed points, and 7 has
order 1 or p. If p =2 and n =2 (mod 4), v has at least two fixed points.

To obtain the previous number, they use computer programs which incorporate two
methods of approach to generation: the orderly approach method [9], [16] and the canonical
construction path method [12]. In particular, this last one allows to construct a Latin square
one row block at a time, where a row block consists of the rows which correspond to a cycle
of a.

Nevertheless, a study of the number of Latin squares associated to any autotopism is even
necessary. Indeed, this question will allow to study better the problem of the smallest size of
§-critical sets [8]: Fixed L € LS(n), P € PLS(n) contained in L and § C U(L), it is defined
F(P) = P<3>, where < § > is the subgroup of U(L) generated by §. Then, P is uniquely
§-completable to L, which is denoted as P € UC3(L), if §(P) € UC(L). Furthermore, P is
a §-critical set if P € UC3(L) and Q ¢ UC%(L) for all Q C P. Analogous to critical sets,
it is expected that §-critical sets will have applications in Cryptography, specially as secret
sharing schemes.

In this paper we will start this study with a particular case of autotopisms, the principal
ones, which have been partially studied in [13], although only to get the number of isotopy
class. The paper is structured as follows. In the next section, fixed a principal isotopism
© = (a,B,€) € I, we will study the number A(O) of Latin squares which have © as a
principal autotopism. First, we will prove that e and 8 must have the same cycle structure
with all their cycles of the same length and without fixed points. Then, we will study the
cases in which this length is 7, with k € {1,2,3,4}. We will use the canonical construction
path to generate the associated Latin squares. So, in the general case, we will see that:

A(©) =n! - (%!)k(kfl) .Q(0),

where Q(©) is the number of different ways in which we can choose a determined set of row
blocks. Finally, the paper finishes in the third section with a study in Cryptography about
the possible use of a set § of autotopisms of a Latin square L as shares of a secret sharing
scheme. To get it, we will keep in mind the concept of F-critical set of L.

2 Principal autotopisms of Latin squares

Fixed n € N and © € Z,, we will denote by A(©) the number of Latin squares of order n
such that © is an autotopism of all of them, and by LS(©) the set of such Latin squares.
That is, A(©) = |LS(©)| and L € LS(O©) if and only if © € U(L). In this paper, we are
interested in the value of A(©) if © is a principal isotopism, that is, if © = (a, 3, €), where €
is the identity map in N = {0,1,...,n—1}. It is clear that (e,¢,€) € U(L) for all L € LS(n).
So, A((e,€,€)) = N(n,n), the number of Latin squares of orden n. Therefore, we must
study when © is a non-trivial principal autotopism of a Latin square.

Let us see a result which allows to fix the structure of © in the more general case in
which ¢ is one of the permutations of ©:
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Proposition 2.1. Let © = (o, 8,7) € Z,, be a non-trivial isotopism. If one of the permu-
tations a, B or 7y is equal to €, then A(©) > 0 only if the other two permutations have the
same cycle structure with all their cycles of the same length and without fixed points.

Proof.

We are in the case (b) of Theorem 1.1. So, if the other two permutations have not
the same cycle structure or have fixed points, then A(©) = 0. Let us study the different
possibilities:

a) If a = ¢, let us consider that # and 7 have the same cycle structure without fixed
points. Let us take b,c € N = {0,1,...,n — 1} such that b appears in a cycle of length
Ag of B, (bzaxs..wy,), and ¢ appears in a cycle of length A, of 7, (cyays...yx,). We
can suppose that Ag > \,. If L = (l;;) € LS(n) is such that © € U(L), there must
exist @ € N such that I, = ¢. So, Iy, = c =1 which is a contradiction with
being L € LS(n).

am)\,erl I

b) If B = ¢, we reason analogously to (a).

c) If v = ¢, let us consider that a and § have the same cycle structure without fixed
points. Let us take a,b € N such that a appears in a cycle of length A, of a,
(azezs...w),), and b appears in a cycle of length Ag of B, (byays...yr,). We can
suppose that Ao < Ag. If L = (I;;) € LS(n) is such that © € U(L), then lyp = lay, .,
which is a contradiction with being L € LS(n). 0O

Keeping in mind the previous proposition, we will be interested from now on in principal
autotopisms © = («, 3, €), such that a and ( have the same cycle structure with all their
cycles of the same length and without fixed points. Given such a ©, we are interested in
the exact value of A(©). To see it, we start with cycles of length n and later on, we will
decrease this length.

2.1 Cycles of length n

If o and 3 are both cycles of length n, we obtain the following result:

Proposition 2.2. Let © = (o, B,€) € Z,, be such that o and 3 are both cycles of length n.
Then, A(©) = nl.

Proof.

Let a« = (apaj...an—1) and B = (bob;...b,—1) be two cycles of length n of N. We can
obtain a Latin square L = (I;;) such that © € U(L). To do it, for all ¢ € N, let us take
loi € N, such that lo; # loi, for all j # k. We can supppose that ag = 0. Now, fixed 7 € N,
we take ¢; € N such that b;, = ¢. So, lajbtiﬂ- (mod ) = loi, for all 7 € N. In this way, we can
define the Latin square L. Furthermore, by swapping the elements ly; in N, we can obtain
n! distinct Latin squares and it cannot exist other one such that has © as an autotopism.

O

Let us see an example:
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Example 2.3. Let us consider n = 3 and N = {0,1,2}. There are 36 elements of Z3 with
the form («, 3, €). However, from Proposition 2.1, only five of them are autotopisms of some
Latin square of order 3. They are:

01 = (e,e,€), Oy =((012),(012),¢), O3 = ((012),(021), )
04 = ((021),(012),¢),  Os = ((021), (021),€)

Besides, it can be seen that:

LS(©,) = LS(3)

a b c
LS5(©y) = LS(05) = c a b|eLSB3):abceN
b c
a b c
LS5(©3) = LS(04) = b ¢ a|e€LSB3):a,bceN
c a b
So, A(©1) =12and A(©;) = 6, ifi € {2,3,4,5}. Let us observe that LS(©2)NLS(03) =
) and that LS(©2) ULS(03) = LS(3). <

2.2 Cycles of length 7

Now, if n > 2 is even and if a and 3 are both cycles of length 5, we obtain the following
result:

Proposition 2.4. Let © = (o, B,¢€) € Z,,, where n > 2 is even, be such that o and 3 are
both the composition of two cycles of length %. Then, A(©) = n!- (%!)2.

Proof.
Let us suppose that:

a = (agay...an_1)(azaniy...an-1), B = (bobi...bn_1)(bnbz 1..bn1).

By using the canonical construction path [12], we can obtain a Latin square L = ({;;) such
that © € U(L). To do it, similarly to Proposition 2.2, we take l,; € N for all i € N,
such that ly,; # lgox for all j # k. Now, fixed i € N, we take t; € N such that b;, = 7.
So, lajbti+j (mod §) = lagi, for all j € {0,1,...,5 — 1}. In this way, we can define a Latin
subrectangle R of L of § rows and n columns. Indeed, R is a row block, because its rows
correspond to the cycle (agal...a%_l). Besides, by swapping the elements ly; in IV, we can
obtain n! different Latin subrectangles of L, all of them associated by construction to the
same rows.

Now, we do the same process with an in the place of ag, although when we choose the
elements la%i € N, we must keep in mind R, as L must be a Latin square. That is, it must be

la%i S {laO%Jao(%—i-l)’ --wlaon} for all 7 € {0, 1,..., % — l} and la%i S {la017la027 ""lao(%—l)}
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for all i € {%,% +1,...,n}. Therefore, in this way we can obtain finally n!- (%! ) different

Latin squares which have © as an autotopism. O
Let us see an example:

Example 2.5. Let us consider n = 4 and N = {0,1,2,3}. If © = («a,08,¢) € Z, is a
principal isotopy such that « and § are both products of two cycles of length 2, © must be
one of the followings:

©1 = ((01)(23),(01)(23),€);  ©2 = ((01)(23), (02)(13), €);
©3 = ((01)(23), (03)(12),€);  ©4 = ((02)(13), (01)(23), €);
©5 = ((02)(13), (02)(13),¢);  ©6 = ((02)(13), (03)(12), €);
©7 = ((03)(12), (01)(23),¢);  ©s = ((03)(12), (02)(13), €);
Oy = ((03)(12), (03)(12), €).
By swapping the values of a,b,c,d, e, f,g in N, we have that:
a b ¢ d a b c d
Ls@) =1 |° : j “lerswy | Ls@)=1 | ? ’ 7| e s
/ e h g g h e f
a b c d a b c d
Ls(©;) =4 | ‘ Z “eLs@y | Ls@={|¢ T 9" eLsw
h g [ e (\f e h g )
a b c d a b ¢ d
LS(05) = i 2 ‘Z Z € LS(4) b | LS(0g) = 2 ’Cc g Z e LS(4)
L\g h e f L\ g [ e J
a b ¢ d a b c d
e [ g h e f g h
LS(©7) = Feh g € LS(4) LS(©g) = g hoe f e L5(4)
L\b a d c ) L\¢ d a b
a b c d
LS(00) — Zg ‘ "| e s
d ¢ b a

So, |LS(6;)| = A(6;) = 4! - (2!)? = 96. By the other way, let us observe that LS(©;) N
LS(©;) =0, except for:
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(4, 9) L5(©;) N LS(©;) (4,5) L5(8;) N LS(©;)
a b c d a b c d
(1,5) b a d c (1,6) b a d c
(1,9) € L5(4) (1,8) e L5(4)
(5,9) c d a b (6,8) d ¢ b a
’ d c b a ) ’ c d a b J
s (e e [
(2,9) b a d c € LS(4) (2,7) dec b a e L5(4)
(4,9) d ¢ b a (6,7) b a d c J
s (G0 ) N
(3,8) b a d ¢ € LS(4) (3,7) c dab € LS(4)
(4,8) c dab J (5.7) L \b a d ¢

Where a, b, ¢, d € N. Therefore, as all the previous intersection contains 4! Latin squares
and A(©;) = 4-4! for all i € {0,1,...,9}, it can be seen that || J}_, LS(0;)| = 6-41+9-2-4! =
24 - 41 = 576 = |LS(4)|. q

2.3 Cycles of length %

Let us suppose now that o and 3 are both cycles of length

w3

Proposition 2.6. Let © = («,3,€) € Z,,, where n > 3 is a multiple of 3, be such that «
and 3 are both the composition of three cycles of length 5. So:

n/3

H( n£3 >3_

A(©) =n! - (g!)G-Z

Proof.
Let us suppose that:

o= (a0a1...ag,l)(a%agﬂ...a%_l)(a%a%nﬂ...an,l),

B = (bob.-ba 1)(baba 1. ban ) (banban by 1).

To obtain a Latin square L = (l;;) such that © € U(L), it is useful to consider the

sets S = {ly b u,l lo. wbriiim - +yand S; = |J.S%, where 4,5 € {0,1,2}.
3703 i 30 +1)- -1 J

Let us observe that, analogously to the previous results, if, fixed ¢ € {0, 1,2}, we know the

g elements of S;, we can define a Latin subrectangle R; of L of 5§ rows and n columns.

Indeed, each R; is the conveniently ordered (that is, unless principal isotopism) following

ai,%bj,%Jrlv LRLS)
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7 X n array:
Lo, y b0 laogb o laggba
lai.%+1bo lai.%+1b1 tt lai.%+1bn—1
la ; n_1b la . n_1b s la ; n_1bn—
(i+1)-% -1 0 (i+1)-§ -1 1 (i+1)-§—19n 1

Therefore, if we exactly know the elements of Sy, S1 and Sy, we will obtain L. Indeed,
the product of the different ways in which we can fix these three sets is the number of
different Latin squares which have © as a principal autotopism.

We can start with Sy, which can be fixed of n! different ways. Now, to obtain S7, we fix
in a first step the elements of S™Y. This set will contain k elements of S%! and 7 —k elements

k

ways. Besides, for each of the previous ways, the k elements of $%2 which have not been
chosen for S™% must be in S™! and the 7 — k elements of 591 which have not been chosen
for S™Y must be in S12. To complete these sets we must choose k elements of S°° which
will correspond to SU!, corresponding the rest of the elements of S%° to S12. So, S; can

n/3 s
be chosen of (%!)3~ Zfo I

Finally, to obtain So, let us observe that according to the previous process, we know
which elements correspond to each 5?7 and we only must assign each of them to the
corresponding l% anby- S0, we can fix Sy of (%!)3 different ways. Therefore, we finally

3

obtain that:

o= (5 S () ()= £ ()

k=0 k=0

2
. 3
of 892, where k can vary between 0 and 7. That is, we can fix S0 of 3t Zf’o (n/ )

different ways.

Let us see an example:

Example 2.7. Let us consider n = 6 and N = {0,1,2,3,4,5}. There are 152 = 225
principal isotopisms (o, 3,€) € Zg, with a and [ being a composition of three cycles of
length 2. We will work, for example, with the following principal isotopisms:

01 = {((01)(23)(45), (02)(35)(14), )},
6, = {((02)(14)(35), (01)(23)(45), ) }.

So:
a b ¢ d e f
c e a f b d
Ls@) =419 " o ' Jl € L.5(6) ,
m o p q r 8
p r m s o ¢

a,b,...,r,seN
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a b ¢ d e f
g h i j k 1
b a d ¢ e
LS(©9) = m o p g i 5 € LS(6)
h g 5 1 1| k
o m q p s r

a,b,...,r,s€N

3
From Proposition 2.6, A(©1) = A(63) = 6! (215 . 22:0 (i) = 460800. Besides:

a b ¢ d e f
c e a f b d
- b a d ¢ f e

LS(©1)NLS(©2) = ¢ | 4 Fboeac|E LS(6) :
e ¢ f a d b

fd e b c a ab,....klEN

being |LS(0;1) N LS(O3)| = 6! = 720. <

2.4 Cycles of length 7

Let us now suppose that a and 3 are both the composition of four cycles of length 7:
o= (a0a1...a%_l)(a%a%ﬂ...a%_l)(a%a%ﬂ...a%_l)(a%a%+l...an,1),

8= (bobl...b%,l)(b%b%+1...bQTn_l)(b%nb%n_H...b%_l)(b%b%+1...bn_1).

To obtain A(O), we will now indicate a possible algorithm to follow. So, to get a
Latin square L € LS(n) which has © as a principal autotopism, we can define, fixed
i,j € {0,1,2,3} and analogously to the proof of Proposition 2.6, the sets S*/ = {l,. nbins

i.nb;n

Gy gy lai~%b(j+1)-%—1} and S; = |J; 5%, Fixed the elements I corresponding to each
S;, we can obtain a subrectangle R; of L, in a similar way as we have just done it in the
mentioned proof. Therefore, to get L, we must fix all the sets S; and to do it, we can follow
the next algorithm: first, we fix Sp, which can be obtained of n! different ways. Then, we
are going to fix the sets S; with ¢ from 1 to 3, in this order. To obtain each S; we must fix
the sets S%J, with j from 0 to 3, also in this order.

Let us observe that, once we have fixed the elements of S%/ for all j € {0,1,2,3},
whenever we want to fix the elements of a set S/, with ¢ # 0, we must choose x; elements
of S% with ¢t € {0,1,2,3} \ {j}, in such a way that > .7y = 7. Besides, all these elements
must be adequately chosen to obtain finally a Latin square. So, to simplify the notation,
we are going to define for each i € {1,2,3} and j € {0,1,2,3}:

00 — B BT gl
b ,(30,31,32,83)6{0,1,...,1} ,

such that:
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i) s ’]*O for all ¢ € {1,2,3} and j € {0,1,2,3},

i) S0 gsi7 =12, forall i € {1,2,3} and j € {0,1,2,3},
iif) Y27 _osi? =2, forall i € {1,2,3} and t € {0,1,2,3},
iv) 327 s =1 forall j €{0,1,2,3} and ¢ € {0,1,2,3} \ {5}.

Then, fixed a subset A C Sy, we will say that we choose s/ = (so’],s1 ,82 , ’] )
elements of Sy \ A to fix the elements which belong to S, if we choose sg’ ones of S 0\A,

547 ones of SO\ A, s57 ones of §%2\ A and s4’ ones of SO 3\ A. Let us observe that the

previous conditions (¢) to (iv) are therefore necessary to get a Latin square starting from
all the so fixed S%/.

Therefore, the canonical construction path method in this case follows the next algo-
rithm:

Algorithm 2.8.

i) Sy can be fixed of n! different ways.

. . 1,0 1,0 10 _ (10
ii) To determine S we must choose (0,s;",s,",% — s, — s5) elements of Sy, where
0, 10 _n
+ 52 S 1
. 1,0 1,0,
Fixed s;" and s,
. L1 o 11 11 11
iii) To determine S'! we must choose (s5™,0,8,",2 — sy — s, ) elements of Sp \ S,
1,1 1,0 10  10_ 11, 11 _n
where 5,7 < 7 — sy and § — 577 — sy <85 +5y < 7.

. : 2,0 2,0 20 20
iv) To determine S*° we must choose (0,s7", 55", % — 57" — s5) elements of Sp\ S,

20 _ n 1,0 20 _ p 1,0 i 1,0 2,0 , 20 _ p
where 577 < 7 — 877, 850 <7 —sy and T —s — 8y <87 +sy < 7.

. 1,1 1,1
Fixed s;" and sy

v) The rest of the si’o + 55’0 syt sy — 2 elements of S%* which we have not yet

. ) 1,2
used to fix S10 and S must be in SH2. Be51des we must choose s, elements

Gh0 _ (L0 11 1l

of §%0\ L1 and 2 i 1 — 8y — Sy — 8y _30 elements of SOl\S1 0 where
n_ 10 1,1 11 n L1 1,0 n n
TS — S —8) < sy <75 and s +82 + 557 —|—82 _Z+50 <7

. 2,0 2,0,
Fixed s and s5:

. : 21 o 2.1 2,1 21
vi) To determine S*! we must choose (sy ", 0,55, % — sy — 5" ) elements of Sp \ {S11 U
2.0 2,1 L1210 o L1 20 20 20 1,1 11
S=P%, where 57 < § — 55, 850 < B =8y — sy and § — 57 — 8, — 5 — 5y <

1 2,1
+ 85 < 7. Besides:
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a) As to fix ! and S»?, we would have used sg’l + 3[1)’2 elements of S%°, to exist

. 2,1, 1,2
522 we must also impose that sy + 557 < T

4
2,0 10 10 11 11 12
b) As to fix $*° and S'2, we would have used s7" +% — 57" — 85" — sy — 5y — 5’
. . 2,0 1,0~ 10
elements of S%!, to exist 5% we must also impose that s7" + % — 57" — s5" —

1,1 1,1 12 _ n
Sy — 8y — 8 gz.

20, 20, 21, 21
c) As to fix 520, %! and §'2, we would have used 2 — (s7" + 85" + 55" + 83" —

1,0 10 11 1,1 : .
s;" — 8y — 8y — sy ) elements of S%3 to exist $*? we must impose that

207, 20, 21, 21 10 _ 10 _ 11 _ 11 _n
0<s7" +s +s5 +83 —s7 —8 —85 —8y <7

Finally, fixed 5(2)71 and 33’1:

. 20, .20, 21, .21 10 10 11 11 .
vii) The rest of the 57" +85" +585 +85 —87" —8y — 8y —8y elements of $%3 which we

. . 2,2
have not yet used to fix S*Y, S*! and S2 must be in S*2. Besides, we must choose Er
0,0 1,2 2,1 n 2,0 2,0 2.1 2,1 1,0 1,0 1,1 1,1 2,2
elements of S®Y\{SH*US*'} and § —s] _283 —25? —321 JrﬁlQ +322 2+50 +3122—381
0,1 2,0, ql,2 n_ 20_ 21 21 _ 1, ; n_ L2 _ 2
eleme;r(c)s of ;9’0 \{251 U2S1 },1vxghe1re120 3211 3011 5222 I I e T
) ) ) ) k] k) ) ) ) n
and 577 + 85 + 85 + 8y — sy — 8y — sy — 8y +sy” < 7.

After this process, the elements of the sets S13,623, 630 631 632 and §33 are all
determined. So, we can obtain a Latin square L which has © as a principal autotopism.
To get it, we must only fix in each S’ the elements which correspond with each I, 5. »

T j~2—+t

with ¢ € {0,1,...,n — 1}. It can be done, once we know which elements are in S/, of 2!
different ways.

So, if we denote by 2(©) the number of different ways in which we can choose the
elements that are included in all the subsets S* with i € {1,2,3} and j € {0,1,2,3}, by
following the previous algorithm, we obtain finally the following:

Proposition 2.9. Let © = («,3,¢€) € Z,,, where n > 4 is a multiple of 4, be such that «
and 3 are both the composition of four cycles of length . So:

A(©) =n!- (%1)12 -Q(0)

O

In the next table, we can see some values of (©), obtained by computing the previous
algorithm with Maple®:

n 8 12 16 20 24 28
Q(O) || 535 | 60582 | 10144679 | 1829667628 | 362014297870 | 75689842399097

Let us see an example:
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Example 2.10. Let us consider n = 8 and N = {0,1,2,3,4,5,6,7} and let us take the
following principal isotopisms:

©1 = {((01)(23)(45)(67), (01)(24)(35)(67), €)},

O, = {((02)(13)(46)(57), (02)(14)(36)(57), )},
O3 = {((04)(15)(26)(37), (03)(15)(26)(47), €) }.

So:
a b ¢ d e f g h
b a e f ¢ d h g
i 3 kK I m o p q
_ 7 ¢« m o k Ll q p
LS(©,) = P st ou v ow oz oy € LS5(8) ,
s r v w t u Yy <z
z A B C D E F G
A 2 D E B CGF abyoy2,AB,...,F,GEN
a b ¢ d e f g h
it jJ k I m o p ¢
c e a g b h d f
B k m 4+ p 7 q 1 o
L5(0,) = ros tou v ow Ty e LS(8) ,
z A B C D FE F G
t v r x S Y u w
B D 2 F A G CFE a,b,...,y,z,A,B,....F,GEN
a b ¢ d e f g h
i jJ k I m o p ¢q
r s t uwu v w T Yy
z A B C D E F G
LS(©3) = d f g a h b c e € LS(8)
Il o p i+ q 7 k m
v w o x r y s t w
¢ E F z G ABD abyeyz,AB,...,F,GEN
From Proposition 2.9, A(©1) = A(0y) = A(O3) = 8! (41)!?2 . 535 = 88355635200.
Besides:
a b ¢ d e f g h
b a e f ¢ d h g
c e a g b h d f
- e ¢ b h a g f d
LS(©1)NLS(©2) N LS(O3) = d f g ahbc e € LS(8) ,
fd h b g a e c
g h d ¢ f e a b
h 9 f e d c b a a,b,c,d,e,f,g,h€ N
being |LS(0©1) N LS(©3) N LS(O3)| = 8! = 40320. <
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2.5 Cycles of length 7

Let us finally study the general case. So, fixed n € N and N = {0,1,...,n — 1}, let us
suppose that a and 3 are both the composition of k cycles of length 7:

o= (a0a1...a%,l)(a%a%ﬂ...a%_l)...(a(kfkl)na(kfkl)nﬂ...an_l),

B = (bobr..by—1)(bg by 41.-bzn ). (b bt y-bun).

To obtain A(©), we can follow a similar algorithm to the previously indicated. So, to
get a Latin square L € LS(n) which has © as a principkallautotopism, we can define:

S = {la,yby g laspby gy o by gbiny g o i Si= |J %, forall i,j € {0,1,.... k—1}.
=0
Then, it is easy to prove the following:

Theorem 2.11. Fized k € N, let © = (o, B,€) € I,,, where n > k is a multiple of k, be
such that o and 3 are both the composition of k cycles of length 7. Then:

n A\ k(k—1)
A(@):n!-(E!) .Q(0),
where Q(O) is 1, if k = 1, and the number of different ways in which we can choose the
elements that are included in the corresponding subsets S, if k > 1. O
In the next table we can see the values of Q(0) and A(©),if2<n<9:
(n] k2@ [ A®) | N(n.n) |
2 1 1 2 2
3 1 6 12 12
1 1 24
4 9 1 96 576
5 1 1 120 161280
1 1 720
6 2 1 25920 812851200
3 10 460800
7 1 1 5040 61479419904000
1 1 40320
8 2 1 23224320 108776032459082956800
4 535 88355635200
1 1 362880
9 3 56 948109639630 5524751496156892842531225600

2.6 Concluding remarks

Although we have studied in this section the case in which © is a principal autotopism,
an analogous study can be done with the other two possibilities given in Proposition 2.1,
that is, © = (¢, 8,7) or © = (a,€,7), although in the first one, the canonical construction
path must be done with columns blocks in place of row blocks. So, this algorithm and as a
consequence, Theorem 2.11, proves indeed that the necessary condition of Proposition 2.1
is also sufficient.
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3 Application in Cryptography: §-critical sets

A secret sharing scheme [3], [19] is a method of sharing a secret key K, by giving n pieces
of information called shares to n participants, in such a way that K can be reconstructed
from certain authorized groups of shares and it cannot be done from unauthorized groups
of them. The access structure I' is the set of all the previous authorized groups. A key
management scheme consists of a number of secret sharing schemes, all of them with a
common participant, which can have more than one share. In a multilevel scheme the
participants are ranked in m ranks, in such a way that [; of them are in the rank r; for
i €{1,...,m}, where >, l; = n and the secret key can be recovered from the shares of the
l; participants of rank r;.

There are different mathematical models of secret sharing schemes: geometric configu-
rations, polynomial interpolation, block designs, matroids, vector spaces, graphs, etc. One
of this model uses critical sets in Latin squares: We fix a Latin square L = ({;;) € LS(n)
which will be the secret key, although its order n is made public. Each share is then a triple
(4,4,lij) € L and the set of all the used triples is denoted by S. So, if some participants
get a critical set of L by sharing its corresponding triples, they will obtain as consequence
the secret key L. The access structure is then I' = {P € PLS(n) : P C {Jg(4, 4, lj;) <
L and 3C € CS(L) such that C C P}. In this model all the participants have shares of
the same “weight”. By the other way, a multilevel scheme can also be analogously given,
by placing all the participants in different levels, in such a way that it exists only a critical
set in each level. If one participant is in more than one level, then we have an example of
a key management scheme.

There are models in which shares are not of the same weight, that is, models in which
some shares can offer more information than other ones. It is useful for example in hierar-
chical models in which there exists some need to provide different levels of confidentiality
for data. So, in the previous example, we can obtain a hierarchical model if we give to
each participant a different number of triples as share. An other possibility would be to
consider different types of shares. In this sense, we can study the use of autotopisms of a
Latin square as shares of a secret sharing scheme. To do it, let us observe that, as we have
seen in previous sections, each autotopism can be associated to a different number of Latin
squares. So, the information about L which gives each autotopism is not the same. To give
a possible measure of this difference, we give the following:

Definition 3.1. Let © € Z,,. We define the weight of © in LS(n) as:

w(e){o,ifA(G)—O,

x(oy » if A(®) #0.

By the other way, a set of autotopisms can never define an unique Latin square, because
autotopisms are associated to symmetries of Latin squares and so, given a Latin square L
associated to a set § of autotopisms, every Latin square L’ isotopic to L by an isotopism
of type (Id,Id,~) is also associated to §. So, if we want to define a secret sharing scheme
by using autotopisms as shares, we must also use one or more triples of the corresponding
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Latin square to finally get the secret key. Indeed, fixed a subgroup § of U(L) it will be
necessary to use the triples of a §-critical set of L. In this sense, it is interesting to extend
in a similar way the previous concept of weight to these triples. To do it, as, fixed a triple
T = (i,j,k) € N 3 there are w Latin squares of order n which contain T, it is enough
to define the weight of T in LS(n) as w(T) = Noo):

It can be interesting to extend these concepts to sets of isotopisms and partial Latin
squares (as sets of triples), because, in this way, it could be studied the possible relations
of interest to cooperate among participants in such a model. Leaving it for a future study,
we have therefore interested in the following protocol:

e We fix a Latin square L of order n. The number n is made public, but L is kept secret
as the key.

e A set S which is the union of a number of triples and autotopisms of L is defined.
e Each element of S is privately distributed to an unique participant.

e When a group of participants whose shares constitute a subset § of U(L) and a §-
critical set come together, they can reconstruct L and hence, the secret key.

To finish this paper, let us see an example of this protocol:

01 2 3 4 5
1 2 0 4 5 3
. 2 01 5 3 4
Example 3.2. Let us consider L = 34501 2|F€ LS5(6), and the shares:
4 5 3 1 2 0
5 3 4 2 0 1
©1 = ((012)(345), Id, (021)(354)), ©y = (Id, (012)(345), (021)(354)),
O3 = ((03)(14)(25), (03)(14)(25), Id), ©4 = (1d, (03)(14)(25), (03)(14)(25)),
Tl :(074a4)7 T2:(17172)a TS :(1a573)7 T4:(272a 1)7
T5 == (2345 3)7 TG = (37 174)7 T7 == (3727 5)7 T8 == (37 3a 0)7
Ty = (4,0,4), Tio = (5,3,2), Ty = (5,5,1).
So, we have that:
(61) = w(©2) = = (65) = w(©1) = —
WD = @A) = 95920° wAEs) = @B = 460800
6 1 .
w(T;) = for all 4 € {1,2,...,11}.

812851200 135475200’
We can therefore see that ©1 and ©y are the shares which give more information about
L. By the other way, there are a lot of possible combinations to reconstruct L, by taking
together a subset A of § = {©1,0,,03,0,} and a subset B of T' = {T1,T5, ..., T11 }. So, for
example, if m is the total number of shared shares, we have the following minimal subsets
of the corresponding access structure I' of this secret sharing scheme:
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(m | A | B [ m | A | B |

11 — T 6 O, U 06O, {T17T2,T67T8}
11 @4 T\{Tg} 6 @1 U@4 {T27T37T77T9}
10 O3 T\{T\,T11} 6 O, U O3 {T3,T6,Ts, T1o}
10 | ©3U 04 T\{Tl,Tg,Tn} 6 O, UB3UB, {TQ,T4,T8}
9 @1 T\{T5,T7,T10} 5 @1 U@QU@g {Tl,TQ}
9 (S T \ {Tl, T7,T10} 5 O, UB3U0By {Tl, TQ}
710,003 | {15, T3,Ty,Ts,To} || 5 | ©1UO U0, {Tp, Ty}
710,00y | {T1,T5, 1Ty, Ts, To} || 5 S {T1}
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