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Abstract

Triples of a Latin square L and isotopisms of its autotopism group U(L) can be used
to get a secret sharing scheme in Cryptography. Although the weight of information
given by the latter is usually greater than that given by the former, the size of an
isotopism is generally much larger than that of a triple. As this problem rises with n, it
is necessary to identify an isotopism with a set of shares of a smaller size. In this paper
we give an algorithm to decompose any non-trivial principal autotopism into triples of
a Latin square.

Introduction

A Latin square L of order n is a n×n array with elements chosen from a set N = {x1, ..., xn},
such that each symbol occurs precisely once in each row and each column. In other words,
a Latin square is the multiplication table of a quasigroup in abstract algebra. The set of
Latin squares of order n is denoted by LS(n).

In this paper we will consider N = {0, 1, ..., n− 1}. So, if L = (lij), the orthogonal array
representation of L is the set of n2 triples {(i, j, lij) : i, j ∈ N}. An isotopism of a Latin
square L is a triple Θ = (α, β, γ) ∈ In = Sn×Sn×Sn, where Sn is the symmetric group on
N and α, β and γ are respectively, permutations of rows, columns and symbols of L. The
resulting square LΘ is also a Latin square and it is said to be isotopic to L. If γ = ϵ, the
identity map on N , Θ is called a principal isotopism. An isotopism which maps L to itself
is an autotopism. (ϵ, ϵ, ϵ) is called the trivial autotopism. The stabilizer subgroup of L in
In is its autotopism group, U(L) = {Θ ∈ In : LΘ = L}. Fixed Θ ∈ In, the set of all Latin
squares L such that Θ ∈ U(L) is denoted by LS(Θ).

A partial Latin square P of order n is a n× n array with elements chosen from a set of
n symbols, such that each symbol occurs at most once in each row and in each column. It
is therefore the multiplication table of a partial quasigroup in abstract algebra. The size
of P is the number of its filled cells, that is, the number of triples (i, j, k) ∈ P such that
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k ̸= ∅. The set of partial Latin squares of order n is denoted by PLS(n). Isotopisms of
partial Latin squares are defined in a similar way than that of Latin squares, although now
γ(∅) = ∅. In particular, the sets U(P ) and PLS(Θ) are similarly defined. It is said that a
fixed P ∈ PLS(n) can be uniquely completed to a Latin square L ∈ LS(n) if L is the unique
Latin square such that P ⊆ L and it is denoted P ∈ UC(L). Besides, if any proper subset
of P can be completed to two distinct Latin squares, it is said that P is a critical set of L
and it is denoted P ∈ CS(L). Fixed L ∈ LS(n), scs(L) denotes the size of the smallest
critical set of L and scs(n) denotes the minimum of scs(L) for all L ∈ LS(n).

A secret sharing scheme is a method of sharing a secret key K, by giving n pieces of
information called shares to n participants, in such a way that K can be reconstructed from
certain authorized groups of shares and it cannot be done from unauthorized groups of
them. The access structure Γ is the set of all the previous authorized groups. An example
of this by using Latin squares is the following [1, 4]: Fixed a Latin square L = (lij) ∈ LS(n)
as the secret key and made public its order n, each share is then a triple (i, j, lij) ∈ L and
the set of all the used triples is denoted by S. So, if some participants get a critical set
of L by sharing its corresponding triples, they will obtain as consequence the secret key
L. The access structure is then Γ = {P ∈ PLS(n) : P ⊆

∪

S{(i, j, lij)} ⊆ L and ∃C ∈
CS(L) such that C ⊆ P}.

Given P ∈ PLS(n), contained in L, and F ⊆ U(L), it is defined the extended autotopy
P F =

∪

Θ∈F P
Θ ∈ PLS(n). Fixed L ∈ LS(n), P ∈ PLS(n) contained in L and F ⊆ U(L),

it is defined F(P ) = P<F>, where < F > is the subgroup of U(L) generated by F. Then,
P is uniquely F-completable to L, which is denoted as P ∈ UCF(L), if F(P ) ∈ UC(L).
Furthermore, P is a F-critical set if P ∈ UCF(L) and Q ̸∈ UCF(L) for all Q ⊂ P . The
study of the size scsF(L) of the smallest F-critical set of L is then an open problem [2].
Besides, analogously to critical sets, it is expected that F-critical sets will have applications
in Cryptography. In this way, in [3], fixed a Latin square L ∈ LS(n) as the secret key
and made public its order n, it is allowed to consider triples of L and a set ̥ of principal
autotopisms of L as shares of a secret sharing scheme. So, if some participants get a F-critical
set of L, being F ⊆ ̥, by sharing its corresponding triples and principal autotopisms, they
will obtain L. Besides, the participants can get information about the symmetry of L by
obtaining the set LS(Θ), which is easily computable by following the canonical construction
path method (CCPM) [5]. Finally, although the weight of information given by Θ is usually
greater than that given by the triples of L, the size of an isotopism is, however, much larger
than that of a triple. As this problem rises with n, it is necessary to identify any autotopism
with a set of shares of a smaller size. In this way, we give in this paper an algorithm to
decompose any non-trivial principal autotopism into triples of a Latin square. It will allow
us in the near future to tackle the calculus of the number scs{Θ}(L) and so, that of scsF(L).

1 The canonical construction path method.

From now on, Θ = (α, β, ϵ) ∈ In will be a non-trivial principal isotopism, such that
|LS(Θ)| > 0. From [3], this is equivalent to say that α and β have all their cycles
of the same length and without fixed points, that is, α = Cα

0
◦ Cα

1
◦ ... ◦ Cα

k−1
and

2



β = Cβ
0
◦ Cβ

1
◦ ... ◦ Cβ

k−1
, where Cδ

i =
(

cδi,0 cδi,1 ... cδi,n
k
−1

)

is a cycle of length n
k
̸= 1 for all

δ ∈ {α, β} and i ∈ {0, 1, ..., k − 1}, being cδi,j ∈ N , for all j ∈ {0, 1, ..., n
k
− 1}. Moreover, it

must be cδi,j ̸= cδk,l, for all (i, j) ̸= (k, l). Besides, we will impose that cα
0,0 = cβ

0,0 = 0. Finally,

fixed i ∈ {0, 1, ..., k−1} and δ ∈ {α, β}, we will define the set Sδ
i = {cδi,j : j ∈ {0, 1, ..., n

k
−1}}.

If we want to find a Latin square L = (lij) ∈ LS(Θ), then we can use the CCPM. This

algorithm allows to decompose L in the subsquares Ri,j
L = {(cαi,s, c

β
j,t, lcαi,s c

β
j,t

) : s, t ∈ {0,

1, ..., n
k
− 1}}, for all i, j ∈ {0, 1, ..., k − 1}. These subsquares can be considered either as

partial Latin squares contained in L or as Latin squares of order n
k
. In this way, to find L,

it is enough to determine n
k
triples of each subsquare Ri,j

L , because of the following:

Lemma 1.1. Let
(

cαi,s, c
β
j,t, lcαi,s c

β
j,t

)

be a triple of Ri,j
L . Then, the n

k
cells (u, v, luv) of Ri,j

L

such that luv = l
cαi,s c

β
j,t

are known.

Now, fixed δ ∈ Sn, we will define the sets PLS1(δ) = {P ∈ PLS(n) : ∃γ ∈ Sn such that
P ∈ PLS((δ, γ, ϵ))} and PLS2(δ) = {P ∈ PLS(n) : ∃γ ∈ Sn such that P ∈ PLS((γ, δ, ϵ))}.
Let us observe that, given L ∈ LS(n), we can extend the previous definitions to any Latin
subsquare S of L by identifying it with the partial Latin square of order n such that its
unique filled cells are those corresponding to S. In this way, keeping in mind the CCPM,
the following result is immediate:

Lemma 1.2. Ri,j
L ∈ PLS1(C

α
i ) ∩ PLS2(C

β
j ), for all i, j ∈ {0, 1, ..., k − 1}.

2 Partial Latin squares related to principal isotopisms

We will consider a particular case of Latin square included in LS(Θ). Specifically, we are
interested in a Latin square LΘ = (lij) ∈ LS(n) such that l0j = j for all j ∈ N . Besides,

fixed i ̸∈ Sα
0
∪Sβ

0
, we impose li0 = i. Then, we put in the natural order the elements of Sα

0
\Sβ

0

and we assign them consecutively to the elements li0 (also in the natural order) which are
still without an assigned value. In this way, keeping in mind Lemma 1.1 and the previous
conditions, we can define the partial Latin square PΘ =

∪

iR
i,0
LΘ

∪
∪

j R
0,j
LΘ

∈ PLS(n).
Then, we can consider the equivalence relation in the set of principal isotopisms given by:
Θ1 ∼ Θ2 ⇔ PΘ1

= PΘ2
. The equivalence class of each principal isotopism Θ will be denoted

by [Θ].

Lemma 2.1. If Θ1 ∼ Θ2 then LS(Θ1) = LS(Θ2).

The main result to prove in this paper is then the following:

Theorem 2.2. There exists a bijection between the set of equivalence classes of non-trivial
principal isotopisms Θ such that |LS(Θ)| > 0 and the set of partial Latin squares P = (pij)

of order n and size (2k − 1) ·
(

n
k

)2
, such that:

i) In P , all the cells of its first row and column are filled. Besides, p0j = j ∀j ∈ N .

ii) Indeed, there exist n
k
rows and n

k
columns in P such that all its cells are filled.
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iii) There is an unique way of decomposing P in 2k − 1 disjoint blocks B0, B
r
1
, ..., Br

k−1
,

Bc
1
, ..., Bc

k−1
, where the blocks corresponding to the filled rows (columns) of P are

denoted with the r (c) index. B0 denotes the intersection of filled rows and columns.
iv) There exist two n

k
-cycles C1 and C2, such that B0 ∈ PLS((C1, C2, ϵ)). Besides, for

all i ∈ {1, 2, ..., k − 1}, Br
i ∈ PLS1(C1) and Bc

i ∈ PLS2(C2).

Proof. It is enough to consider the map Θ → PΘ. Specifically, keeping in mind the CCPM,
it is immediate that PΘ is a partial Latin square which verifies all the properties of the
theorem. Now, fixed a partial Latin square P verifying these properties, we can find a
principal isotopism Θ = (α, β, ϵ) such that PΘ = P . To obtain it, let (N, ·) be the partial
quasigroup having P as its multiplication table. Now, we follow the next:

Algorithm 2.3.

i) We take Cα
0
= C1 and Cβ

0
= C2, in such a way that cα

0,0 = cβ
0,0 = 0.

ii) For i from 1 to k−1, let cαi,0 be the minimum in the natural order of N \
∪i−1

j=0
Sα
j . So,

Cα
i = (cαi,0 pcαi,00/c

β
0,1 pcαi,00/c

β
0,2 ... pcαi,00/c

β
0,n

k
−1

), where / denotes the right division

on (N, ·).
iii) For j from 1 to k − 1, let cβj,0 be the minimum in the natural order of N \

∪j−1

i=0
Sβ
i .

So, Cβ
j = (cβj,0 cα

0,1\c
β
j,0 cα

0,2\c
β
j,0 ... cα

0,n
k
−1

\cβj,0), where \ denotes the left division on

(N, ·).

3 Final remarks

Keeping in mind Theorem 2.2, we have found a way to identify any non-trivial principal
isotopism Θ such that |LS(Θ)| > 0 with a set of triples: those corresponding to the filled
cells of PΘ. However, we can study the possibility of identifying Θ with a smaller set of
triples. In this way, Algorithm 2.3 give us un upper bound of the size of the smallest set of
triples equivalent to Θ. Indeed, if we denotes this last size as scs(Θ), we have the following:

Corollary 3.1. scs(Θ) ≤ 2n− n
k
− k.

The study of the previous bound is related to that of the access structure of any secret
sharing scheme using Latin squares and principal isotopisms.
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