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Abstract

Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-
commutative and non-associative algebraic structures. The number of Latin squares having a
fixed isotopism in their autotopism group is at the moment an open problem. In this paper,
we use Gröbner bases to describe an algorithm that allow one to obtain the previous number.
Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares
related to any autotopism of Latin squares of order up to 7.
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1. Introduction

A quasigroup (Albert, 1943) is a nonempty set G endowed with a product ·, such that
if any two of the three symbols a, b, c in the equation a · b = c are given as elements
of G, the third one is uniquely determined as an element of G. It is equivalent to say
that G is endowed with left and right division. Specifically, quasigroups are, in general,
non-commutative and non-associative algebraic structures. Two quasigroups (G, ·) and
(H, ◦) are isotopic (Bruck, 1944) if there are three bijections α, β, γ from H to G, such
that γ(a ◦ b) = α(a) · β(b), for all a, b ∈ H. The triple Θ = (α, β, γ) is called an isotopism
from (G, ·) to (H, ◦).
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The multiplication table of a quasigroup is a Latin square. A Latin square L of order
n is an n × n array with elements chosen from a set of n distinct symbols {x1, ..., xn},
such that each symbol occurs precisely once in each row and each column. The set of
Latin squares of order n is denoted by LS(n). The number of Latin squares of order n
is denoted by Nn. A partial Latin square, P , of order n, is a n × n array with elements
chosen from a set of n symbols, such that each symbol occurs at most once in each row
and in each column. The set of partial Latin squares of order n is denoted as PLS(n).
An exhaustive study about Latin squares and their applications is given by Laywine and
Mullen (1998).

n 2 3 4 5 6 7

Nn 2 12 576 161280 812851200 61479419904000

Table 1. Number of Latin squares of order 2 ≤ n ≤ 7.

In this paper, for any given n ∈ N, we denote by [n] the set {1, 2, ..., n}. Specifically, we
assume that the set of symbols of any Latin square of order n is [n]. The symmetric group
on [n] is denoted by Sn. Given a permutation δ ∈ Sn, it is defined the set of its fixed points
Fix(δ) = {i ∈ [n] | δ(i) = i}. The cycle structure of δ is the sequence lδ = (lδ1, l

δ
2, ..., l

δ
n),

where lδi is the number of cycles of length i in δ, for all i ∈ {1, 2, ..., n}. On the other
hand, given L = (li,j) ∈ LS(n), the orthogonal array representation of L is the set of n2

triples {(i, j, li,j) | i, j ∈ [n]}. The previous set is identified with L and then, it is written
(i, j, li,j) ∈ L, for all i, j ∈ [n]. Analogosly, any P ∈ PLS(n) will be identified with the
set {(i, j, li,j) | i, j ∈ [n], li,j ̸= ∅}. Given σ ∈ S3, one defines the conjugate Latin square
Lσ ∈ LS(n) of L, such that if T = (i, j, li,j) ∈ L, then (πσ(1)(T ), πσ(2)(T ), πσ(3)(T )) ∈ Lσ,

where πi gives the i
th coordinate of T , for all i ∈ [3]. In this way, each Latin square L has

six conjugate Latin squares associated with it: LId = L, L(12) = Lt, L(13), L(23), L(123)

and L(132).

Since a Latin square is the multiplication table of a quasigroup, an isotopism of a
Latin square L ∈ LS(n) is therefore a triple Θ = (α, β, γ) ∈ In = Sn × Sn × Sn. In
this way, α, β and γ are permutations of rows, columns and symbols of L, respectively.
The resulting square LΘ is also a Latin square and it is said to be isotopic to L. In
particular, if L = (li,j), then LΘ = {(i, j, γ

(
lα−1(i),β−1(j)

)
| i, j ∈ [n]}. If γ = ϵ, the

identity map on [n], Θ is called a principal isotopism. The cycle structure of an isotopism
Θ = (α, β, γ) ∈ In is the triple (lα, lβ , lγ), where lδ is the cycle structure of δ, for all
δ ∈ {α, β, γ}. The set of isotopisms of Latin squares of order n having (lα, lβ , lγ) as their
cycle structures is denoted by In(lα, lβ , lγ).


L1 =

 1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1


Θ = ((12)(34), (23), ϵ) ∈ I4((0, 2, 0, 0), (2, 1, 0, 0), (4, 0, 0, 0))

⇒ LΘ
1 =


2 4 1 3

1 3 2 4

4 2 3 1

3 1 4 2



Figure 1. Isotopism permuting 1st with 2nd and 3rd with 4th rows and 2nd with 3rd columns.
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An isotopism which maps L to itself is an autotopism. (ϵ, ϵ, ϵ) is called the trivial
autotopism. The possible cycle structures of the set of non-trivial autotopisms of Latin
squares of order up to 11 have been obtained by Falcón (2007). The stabilizer subgroup
of L in In is its autotopism group, U(L) = {Θ ∈ In | LΘ = L}. Given L ∈ LS(n),
Θ = (α, β, γ) ∈ U(L) and σ ∈ S3, it is verified that Θσ = (πσ(1)(Θ), πσ(2)(Θ), πσ(3)(Θ)) ∈
U(Lσ), where πi gives the i

th component of Θ, for all i ∈ [3]. Given Θ ∈ In, the set of all
Latin squares L such that Θ ∈ U(L) is denoted by LS(Θ) and the cardinality of LS(Θ) is
denoted by ∆(Θ). The computation of ∆(Θ) for any isotopism Θ ∈ In is at the moment
an open problem having relevance in secret sharing schemes related to Latin squares and
only studied in some cases where Θ is a principal autotopism (Falcón, 2006).

Although ∆(Θ) can be studied in a combinatorial way, in this paper we see that
Gröbner bases turn out to be useful to obtain this number. Specifically, given a Θ =
(α, β, γ) ∈ In, we see that, if kα ≤ n is the number of cycles of α, then LS(Θ) can be
obtained starting from a set of Latin rectangles of order kα · n, that is to say, a set of
kα × n arrays, with elements chosen from [n], such that each symbol occurs precisely
once in each row. This set of Latin rectangles can be seen as the vector space associated
with the solution of an algebraic system of polynomial equations related to the isotopism
Θ, which can be solved using Gröbner bases. We follow the ideas implemented by Bayer
(1982) (see also Adams and Loustaunau, 1994) to solve the problem of n-colouring a
graph, since every Latin square of order n is equivalent to an n-coloured bipartite graph
Kn,n (Laywine and Mullen, 1998). A similar argument has been used by Gago et al.
(2006) (see also Mart́ın-Morales, 2006) to give an algorithm to solve Sudokus, which are
indeed a particular case of Latin squares.

The structure of the paper is as follows. In Section 2, we study the set of Latin squares
having an isotopism with a given cycle structure in their autotopism group. Specifically,
we prove that ∆(Θ) only depends on the cycle structure of Θ. In Section 3, we use
Gröbner bases to define an algorithm that allow one to obtain ∆(Θ). Finally, in Section
4, this algorithm is implemented in Singular (Greuel, Pfister and Schönemann, 2005)
to get the number of Latin squares of order ≤ 7 related to any autotopism.

2. Cycle structures of Latin square autotopisms

Every permutation of Sn can be written as the composition of pairwise disjoint cycles.
So, from now on, given Θ = (α, β, γ) ∈ In, we will assume that, for all δ ∈ {α, β, γ}:

δ = Cδ
1 ◦ Cδ

2 ◦ ... ◦ Cδ
kδ
, (1)

where:

i) For all i ∈ [kδ], one has C
δ
i =

(
cδi,1 cδi,2 ... cδ

i, λδ
i

)
, with λδ

i ≤ n and cδi,1 = minj{cδi,j}.
If λδ

i = 1, then Cδ
i is a cycle of lenght 1 and so, cδi,1 ∈ Fix(δ).

ii)
∑

i λ
δ
i = n.

iii) For all i, j ∈ [kδ], one has λδ
i ≥ λδ

j , whenever i ≤ j.

iv) Given i, j ∈ [kδ], with i < j and λδ
i = λδ

j , one has cδi,1 < cδj,1.

From now on, for a given δ ∈ {α, β, γ} and i ∈ [kδ], we will write a ∈ Cδ
i if there exists

j ∈ [λδ
i ] such that a = cδi,j . The following results hold:
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Proposition 1 Let Θ = (α, β, γ) ∈ In be such that ∆(Θ) > 0. Let L = (li,j) ∈ LS(Θ)
be such that all the triples of one of the following two Latin subrectangles of L are known:

i) RL =

{
(cαr,1, c

β
s,v, lcαr,1,c

β
s,v

) | r ∈ [kα], s ∈ [kβ ] and v ∈

{
[λβ

s ], if λα
r > 1,

[1], if λα
r = 1.

}
.

ii) R′
L =

{
(cαr,u, c

β
s,1, lcαr,u,c

β
s,1

) | r ∈ [kα], s ∈ [kβ ] and u ∈

{
[λα

r ], if λβ
s > 1,

[1], if λβ
s = 1.

}
.

Then, all the triples of L are known.

Proof. We will prove the result in case are known the elements of RL, the other case
follows analogously. Let (i, j, li,j) ∈ L be such that i ̸∈ Fix(α) and let r0 ∈ [kα], u0 ∈
[λα

r0 ], s0 ∈ [kβ ] and v0 ∈ [λβ
s0 ] be such that cαr0,u0

= i and cβs0,v0 = j. From the hypothesis,

the triple (cαr0,1, β1−u0(cβs0,v0), lcαr0,1,β
1−u0 (cβs0,v0

)) is known. Thus, li,j = lcαr0,u0
,cβs0,v0

=

γu0−1(lcαr0,1,β
1−u0 (cβs0,v0

)) and therefore, the triple (i, j, li,j) is known.

By the other way, let (i, j, li,j) ∈ L be such that i ∈ Fix(α) and let r0 ∈ [kα],
s0 ∈ [kβ ] and v0 ∈ [λβ

s0 ] be such that cαr0,1 = i and cβs0,v0 = j. From the hypothesis, the

triple (cαr0,1, cβs0,1, lcαr0,1,c
β
s0,1

) is known. Thus, li,j = lcαr0,1,c
β
s0,v0

= γv0−1(lcαr0,1,c
β
s0,1

) and

therefore, the triple (i, j, li,j) is known. 2

Proposition 2 Let (lα, lβ , lγ) be the cycle structure of a Latin square isotopism and let
us consider Θ1 = (α1, β1, γ1),Θ2 = (α2, β2, γ2) ∈ In(lα, lβ , lγ). Then, ∆(Θ1) = ∆(Θ2).

Proof. Since Θ1 and Θ2 have the same cycle structure, we can consider the isotopism
Θ = (σ1, σ2, σ3) ∈ In, where:

i) σ1(c
α1
i,j) = cα2

i,j , for all i ∈ [kα1 ] and j ∈ [λα1
i ],

ii) σ2(c
β1

i,j) = cβ2

i,j , for all i ∈ [kβ1 ] and j ∈ [λβ1

i ],
iii) σ3(c

γ1

i,j) = cγ2

i,j , for all i ∈ [kγ1 ] and j ∈ [λγ1

i ].

Now, let us see that ∆(Θ1) ≤ ∆(Θ2). If ∆(Θ1) = 0, the result is immediate. Otherwise,
let L1 = (li,j) ∈ LS(Θ1) and let us see that LΘ

1 = (l′i,j) ∈ LS(Θ2). Specifically, we

must prove that (α2(i), β2(j), γ2(l
′
i,j)) ∈ LΘ

1 , for all (i, j, l′i,j) ∈ LΘ
1 . So, let us consider

(i0, j0, l
′
i0,j0

) ∈ LΘ
1 and let r0 ∈ [kα2 ], u0 ∈ [λα2

r0 ], s0 ∈ [kβ2 ], v0 ∈ [λβ2
s0 ], t0 ∈ [kγ2 ] and

w0 ∈ [λγ2

t0 ] be such that cα2
r0,u0

= i0, c
β2
s0,v0

= j0, and cγ2

t0,w0
= l′i0,j0 . Thus:

(cα1
r0,u0

, cβ1
s0,v0 , c

γ1

t0,w0
) = (σ−1

1 (i0), σ
−1
2 (j0), σ

−1
3 (l′i0,j0)) ∈ L1.

Next, since L1 ∈ LS(Θ), we have that (α1(c
α1
r0,u0

), β1(c
β1
s0,v0), γ1(c

γ1

t0,w0
)) ∈ L1. Therefore:

(α2(i0), β2(j0), γ2(l
′
i0,j0)) = (α2(c

α2
r0,u0

), β2(c
β2
s0,v0

), γ2(c
γ2

t0,w0
)) =

= (σ1(α1(c
α1
r0,u0

)), σ2(β1(c
β1
s0,v0

)), σ3(γ1(c
γ1

t0,w0
)) ∈ LΘ

1 .

Analogously, it is verified that L
(σ−1

1 ,σ−1
2 ,σ−1

3 )
2 ∈ LS(Θ1), for all L2 ∈ LS(Θ2), and

hence, the result follows. 2
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From Proposition 2, the number of Latin squares having a fixed isotopism Θ ∈ In
in its autotopism group only depends on the cycle structure of Θ. Hence, from now on,
∆(lα, lβ , lγ) will denote the number of Latin squares having a fixed autotopism Θ ∈
In(lα, lβ , lγ) in its autotopism group. Specifically, the following results are verified:

Proposition 3 Let (lα, lβ , lγ) be the cycle structure of a Latin square autotopism Θ =
(α, β, γ) and let us consider σ ∈ S3. Then, ∆(lα, lβ , lγ) = ∆(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)),

where πi gives the ith component of Θ, for all i ∈ [3].

Proof. Since Θ is a Latin square autotopism, it must be ∆(Θ) > 0. Let L ∈ LS(Θ) and
consider the isotopism Θσ = (πσ(1)(Θ), πσ(2)(Θ), πσ(3)(Θ)), then it is verified that Θσ ∈
In(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) and Lσ ∈ LS(Θσ). Thus, ∆(Θ) ≤ ∆(Θσ). Moreover, if

L′ ∈ LS(Θσ), then L′σ−1 ∈ LS(Θ). Therefore, ∆(Θ) = ∆(Θσ) and thus, from Proposition
2, ∆(lα, lβ , lγ) = ∆(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)). 2

Corollary 4 (lα, lβ , lγ) is the cycle structure of a Latin square autotopism if and only
if there exists a permutation σ ∈ S3 such that (lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) is the cycle
structure of a Latin square autotopism, such that kπσ(1)(Θ) ≤ kπσ(2)(Θ) ≤ kπσ(3)(Θ).

Proof. Since (lα, lβ , lγ) is the cycle structure of a Latin square autotopism if and only
if ∆(lα, lβ , lγ) > 0, the result is an immediate consequence of Proposition 3. 2

Remark 5 From Proposition 2 and Corollary 4, if we want to obtain the number ∆(Θ)
related to an autotopism Θ = (α, β, γ) ∈ In, we can suppose that kα ≤ kβ ≤ kγ . Other-
wise, we would find a permutation σ ∈ S3 such that (lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) is the
cycle structure of a Latin square autotopism, such that kπσ(1)(Θ) ≤ kπσ(2)(Θ) ≤ kπσ(3)(Θ)

and we would work with the autotopism Θσ. Moreover, from Proposition 2, we can sup-
pose that the autotopism Θ is such that cδr,1 = r, for all r ∈ [kα] and for all δ ∈ {α, β, γ}.

To simplify the calculus of ∆(Θ), it is useful to study previously the symmetry of the
autotopism Θ. Specifically, we can find a partial Latin square P ∈ PLS(n) such that
there exists cP > 0 verifying that ∆(Θ) = cP · |LSP (Θ)|, where LSP (Θ) = {L ∈ LS(Θ) |
P ⊆ L}. The number cP will be called P -coefficient of symmetry of Θ. The following
result is immediate:

Lemma 6 Let Θ ∈ In. Given i, j ∈ [n], it is verified that:

LS(Θ) =
⊔

k∈[n]

LS{(i,j,k)}(Θ) =
⊔

k∈[n]

LS{(i,k,j)}(Θ) =
⊔

k∈[n]

LS{(k,i,j)}(Θ).

∆(Θ) =
∑
k∈[n]

|LS{(i,j,k)}(Θ)| =
∑
k∈[n]

|LS{(i,k,j)}(Θ)| =
∑
k∈[n]

|LS{(k,i,j)}(Θ)|.

2

The following results will be useful in our study:
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Proposition 7 Let Θ = (α, β, γ) ∈ In be such that ∆(Θ) > 0 and lα1 · l
β
1 > 0 and let us

consider L0 = (li,j) ∈ LS(Θ). Let i ∈ Fix(α) and j ∈ Fix(β). Then, li,j ∈ Fix(γ). As a
consequence, ∆(Θ) is a multiple of the number of Latin squares of order lα1 .

Proof. It is enough to observe that γ(li,j) = lα(i),β(j) = li,j . To prove the consequence,
let us observe that, from Theorem 1 of McKay, Meynert and Myrvold (2007), since

lα1 · l
β
1 > 0, it must be lα = lβ = lγ . Specifically, l

α
1 = lβ1 = lγ1 is the number of fixed

points of α, β and γ. Therefore, the subsquare R0 = (ri,j) of L0 verifying that its row
indices are fixed points of α and its column indices are fixed points of β must be a Latin
subsquare of L0 with elements chosen from the set Fix(γ) of fixed points of γ. Moreover,
if we interchange in L0 the subsquare R0 with any Latin subsquare R1 ∈ LS(lα1 ) of
the same order with elements chosen from Fix(γ), we obtain a different Latin square of
LS(Θ). Indeed, it must be |LSR0(Θ)| = |LSR1(Θ)| and, therefore, we finally obtain that
∆(Θ) = Nlα1

· |LSR0(Θ)|. 2

Theorem 8 Let Θ = (α, β, γ) ∈ In be a non-trivial autotopism verifying the conditions
of Remark 5 such that ∆(Θ) > 0. Given δ ∈ {α, β, γ}, let hδ be the cardinality of the set
{i ∈ [n] | lδi > 0}. The following asserts are verified:

a) If hα = hβ = 1, then ∆(Θ) = n · |LS{(1,1,1)}(Θ)|.
b) Let us suppose that there exists i0 ∈ [n] \ {1} such that lαi0 = lβi0 ̸= 0. If lα1 = lβ1 > 0

and hα = hβ = 2, then:

∆(Θ) =

lαi0−1∏
k=0

(n− lα1 − k · i0)2 · |LS{(i,i,kα),(kα,i,i) | i∈[kα−lα1 ]}(Θ)|.

∆(Θ) =

lαi0−1∏
k=0

(n− lα1 − k · i0)2 · |LS{(i,i,kα),(i,kα,i) | i∈[kα−lα1 ]}(Θ)|.

Proof. Let L = (li,j) ∈ LS(Θ). The first assert is immediate because, in this case,
|LS{(1,i,1)}(Θ)| = |LS{(1,j,1)}(Θ)|, for all i, j ∈ [n]. Let us see the second assert. We will

prove the first expression, the other one follows analogously. Since lα1 · l
β
1 > 0 and Θ

verifies the conditions of Remark 5, it must be kα ∈ Fix(α) = Fix(β) = Fix(γ). Now,
from Proposition 7 and the symmetry of Θ, |LS{(1,i,kα)}(Θ)| = 0, for all i ∈ Fix(β) and
|LS{(1,i,kα)}(Θ)| = |LS{(1,j,kα)}(Θ)|, for all i, j ̸∈ Fix(β). Thus, from Lemma 6, ∆(Θ) =
(n−lα1 )·|LS{(1,1,kα)}(Θ)|. Now, it must be |LS{(1,1,kα),(2,i,kα)}(Θ)| = 0, for all i ∈ Fix(β)∪
Cβ

1 and |LS{(1,1,kα),(2,i,kα)}(Θ)| = |LS{(1,1,kα),(2,j,kα)}(Θ)|, for all i, j ̸∈ Fix(β)∪Cβ
1 . So,

∆(Θ) = (n − lα1 ) · (n − lα1 − i0) · |LS{(1,1,kα),(2,2,kα)}(Θ)|. Analogously, it can be proven

that ∆(Θ) =
∏lαi0−1

k=0 (n − lα1 − k · i0) · |LS{(i,i,kα) | i∈[kα−lα1 ]}(Θ)|. Let P = {(i, i, kα) |
i ∈ [kα − lα1 ]} ∈ PLS(n). Next, it must be lkα,1 ̸∈ Fix(γ) and |LSP∪{(kα,1,i)}(Θ)| =
|LSP∪{(kα,1,j)}(Θ)|, for all i, j ̸∈ Fix(γ). So, ∆(Θ) = (n − lα1 ) ·

∏lαi0−1

k=0 (n − lα1 − k · i0) ·
|LSP∪{(kα,1,1)}(Θ)|. Now, it must be lkα,2 ̸∈ Fix(γ)∩Cγ

1 and |LSP∪{(kα,1,1),(kα,2,i)}(Θ)| =
|LSP∪{(kα,1,1),(kα,2,j)}(Θ)|, for all i, j ̸∈ Fix(γ)∩Cγ

1 . So, ∆(Θ) = (n− lα1 ) · (n− lα1 − i0) ·∏lαi0−1

k=0 (n− lα1 − k · i0) · |LSP∪{(kα,1,1),(kα,2,2)}(Θ)|. Analogously, it can be finally proven

that ∆(Θ) =
∏lαi0−1

k=0 (n− lα1 − k · i0)2 · |LSP∪{(kα,i,i) | i∈[kα−lα1 ]}(Θ)|. 2
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3. Gröbner bases and Latin square autotopisms

Gröbner bases can be used to obtain the set LS(n) of Latin squares of order n by
following the ideas of Bayer (1982) (see also Adams and Loustaunau, 1994), since every
Latin square of order n is equivalent to an n-coloured bipartite graph Kn,n (Laywine
and Mullen, 1998). In particular, given a generic Latin square L = (li,j) ∈ LS(n), we can
consider the set of n2 variables {xi,j | i, j ∈ [n]}, where xi,j corresponds to the triple
(i, j, li,j) ∈ L, for all i, j ∈ [n]. Then, we define:

F (x) =

n∏
m=1

(x−m), G(x, y) =
F (x)− F (y)

x− y
.

Thus, given i, i′, j, j′ ∈ [n] such that i ̸= i′ and j ̸= j′, it must follow that F (li,j) =
0 = G(li,j , li′,j) = G(li,j , li,j′), because L ∈ LS(n). Thus, if we define the following ideal
of Q[x] = Q[x1,1, ..., xn,n]:

I = ⟨F (xi,j), G(xi,j , xi′,j), G(xi,j , xi,j′) | i, i′, j, j′ ∈ [n], i ̸= i′ and j ̸= j′ ⟩

generated by n2 +
∑

(i,j)∈[n]×[n]((n− i) + (n− j)) polynomials, it is verified that the set

of zeros of I, noted by V (I), corresponds to the set LS(n).

Remark 9 Once we know that the polynomial F (x1,1) ∈ I, it is easy to see that the rest
of the polynomials F (xi,j), (i, j) ̸= (1, 1), are redundant so we can delete them. The ideal
I can be generated by 1 +

∑
(i,j)∈[n]×[n]((n− i) + (n− j)) polynomials.

Remark 10 It is well know that, as ideals I produced by Latin squares are radical (Cox
et al., 1997, Ch. 2, Prop. 2.7.), the number of elements in V (I) is equal to the dimension
of the Q-vector space Q[x]/I, and this number can be computed with any Gröbner basis
with respect to any term ordering.

Now, let Θ = (α, β, γ) ∈ In(lα, lβ , lγ) be a Latin square autotopism verifying the
conditions of Remark 5. In this section, we are interested in obtaining the number ∆(Θ).
The following set will be useful:

SΘ =

{
(i, j) | i ∈ [kα], j ∈

{
[n], if i ̸∈ Fix(α),

[kβ ], if i ∈ Fix(α).

}
.

Remark 11 From Proposition 1, we can eliminate some of the polynomials defining the
above-defined ideal I to obtain the Latin squares of LS(Θ). In particular, if we consider
the first case of that result, we can restrict our study to those polynomials in which only
appear some of the (kα − lα1 ) · n+ lα1 · kβ variables xi,j, where (i, j) ∈ SΘ. Hence, we are
interested in the following ideal of Q[xi,j | (i, j) ∈ SΘ]:

I ′ = ⟨F (x1,1), G(xi,j , xi′,j), G(xi,j , xi,j′) | i, i′ ∈ [kα], j, j′ ∈ [n], i ̸= i′and j ̸= j′ ⟩+

⟨G(xi,j , xi′,j), G(xi,j , xi,j′) | i ∈ Fix(α), i′ ∈ [n], j, j′ ∈ [kβ ], i ̸= i′and j ̸= j′ ⟩ .

Next, let P = (pi,j) ∈ PLS(n) be such that pi,j = ∅, for all (i, j) ̸∈ SΘ and let cP
be the P -coefficient of symmetry of Θ. Thus, we know that ∆(Θ) = cP · |LSP (Θ)| and
we will calculate |LSP (Θ)| starting from the set of solutions of an algebraic system of
polynomial equations related to Θ and P . Specifically, we obtain the following algorithm:
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Algorithm 1 Lst (computing the number of Latin squares having a fixed isotopism)

Input: Θ = (α, β, γ) ∈ In, an isotopism verifying the conditions of Remark 5;
kα, the number of cycles of α;

v =
(
v1, v2, ..., v(kα−lα1 )·n+lα1 ·kβ

)
corresponding to triples of a partial

Latin square P ∈ PLS(n) such that pi,j = ∅, for all (i, j) ̸∈ SΘ;
c, the P -coefficient of symmetry of Θ.

Output: ∆(Θ), the number of Latin squares having Θ as an autotopism;

I ′ := ⟨F (x1,1), G(xi,j , xi′,j), G(xi,j , xi,j′) | i, i′ ∈ [kα], j, j′ ∈ [n], i ̸= i′and j ̸= j′ ⟩+
⟨G(xi,j , xi′,j), G(xi,j , xi,j′) | i ∈ Fix(α), i′ ∈ [n], j, j′ ∈ [kβ ], i ̸= i′and j ̸= j′ ⟩ ;

I ′ := I ′ + ⟨xi,j − vi,j | (i, j) ∈ SΘ, vi,j ̸= 0 ⟩ ;
GI ′ := Gröbner basis of I ′ with respect to any term ordering;
t := dimQ(Q[x]/I); ◃ t is the cardinality of V (I ′)
SOL := V (I ′); ◃ list of all elements in V (I ′)
Delta := 0; ◃ the output is c ·Delta
for l = 1 to t do
L := the n× n array associated with SOL[ l ]; ◃ see Proposition 1
if L is a Latin square then
Delta← Delta+1;

end if
end for
return c ·Delta;

Proof. (Correctness of the algorithm).

i) Given a partial Latin square P ∈ PLS(n) such that pi,j = ∅, for all (i, j) ̸∈ SΘ, we
will consider the vector v such that:

v(i−1)·n+j =

{
pi,j , if pi,j ̸= ∅,
0, if pi,j = ∅,

and i ̸∈ Fix(α), j ∈ [n]

v(kα−lα1 )·n+(i−kα+lα1 −1)·kβ+j =

{
pi,j , if pi,j ̸= ∅,
0, if pi,j = ∅,

and i ∈ Fix(α), j ∈ [kβ ]

ii) The first definition of I ′ corresponds to the ideal defined in Remark 11. The second
one is obtained by adding the polynomials associated to the filled cells of P .

iii) From Proposition 1, we are not interested in V (I ′), but in the subset {RL | L ∈
LSP (Θ)} ⊆ V (I ′), because its cardinality is equal to |LSP (Θ)|. Thus, finally, once
we have obtained V (I ′), we must check how many of its elements are in the previous
subset. Specifically:
iii.1) Given an element of V (I ′), we follow the proof of Proposition 1 to define the

n× n array associated with it.
iii.2) Then, the obtained array belongs to the set LSP (Θ) if and only if it is a Latin

square.
iv) The final output is therefore ∆(Θ) = cP · |LSP (Θ)|.

2
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Let us see some examples:
Example 12 Let Θ = ((1234), (1234), (12)) ∈ I4((0, 0, 0, 1), (0, 0, 0, 1), (2, 1, 0, 0)). Then:

F (x) =
4∏

m=1

(x−m), G(x, y) =
F (x)− F (y)

x− y
.

Let us consider the ideal of Q[x11, x12, x13, x14]:

I ′ = ⟨F (x11), G(x11, x12), G(x11, x13), G(x11, x14), G(x12, x13), G(x12, x14), G(x13, x14)⟩,

which Gröbner basis with respect to the degree reverse lexicographical ordering is:

{ x3
13 + x2

13x14 + x13x
2
14 + x3

14 − 10x2
13 − 10x13x14 − 10x2

14 + 35x13 + 35x14 − 50,

x2
12 + x12x13 + x2

13 + x12x14 + x13x14 + x2
14 − 10x12 − 10x13 − 10x14 + 35,

x4
14 − 10x3

14 + 35x2
14 − 50x14 + 24, x11 + x12 + x13 + x14 − 10 }.

It can be proven that the algebraic system of polynomial equations given by the previous
Gröbner basis has 24 solutions. However, only 8 of them correspond to a Latin square by
following the proof of Proposition 1. Therefore, ∆(Θ) = 8. Moreover:

∆((0, 0, 0, 1), (0, 0, 0, 1), (2, 1, 0, 0)) = 8.

Example 13 Let Θ = (ϵ, (12345), (12345)) ∈ I5((5, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 0, 1)). In
this case, kα = 5 > 1 = kβ = kγ . Let us consider, for example, the permutation
(13) ∈ S3 and let us define the principal isotopism Θ′ = Θ(13) = ((12345), (12345), ϵ) ∈
I5((0, 0, 0, 0, 1), (0, 0, 0, 0, 1), (5, 0, 0, 0, 0)). From Proposition 3, ∆(Θ) = ∆(Θ′). Now:

F (x) =
5∏

m=1

(x−m), G(x, y) =
F (x)− F (y)

x− y
.

Then, let us consider the ideal of Q[x11, x12, x13, x14, x15]:

I ′ = ⟨F (x11), G(x11, x12), G(x11, x13), G(x11, x14), G(x11, x15), G(x12, x13),

G(x12, x14), G(x12, x15), G(x13, x14), G(x13, x15), G(x14, x15)⟩.

which Gröbner basis with respect to the degree reverse lexicographical ordering is:

{ x3
13 + x2

13x14 + x13x
2
14 + x3

14 + x2
13x15 + x13x14x15 + x2

14x15 + x13x
2
15 + x14x

2
15 + x3

15−

−15x2
13 − 15x13x14 − 15x2

14 − 15x13x15 − 15x14x15 − 15x2
15 + 85x13 + 85x14 + 85x15 − 225,

x2
12 + x12x13 + x2

13 + x12x14 + x13x14 + x2
14 + x12x15 + x13x15 + x14x15 + x2

15 − 15x12−

−15x13 − 15x14 − 15x15 + 85, x5
15 − 15x4

15 + 85x3
15 − 225x2

15 + 274x15 − 120,

x4
14 + x3

14x15 + x2
14x

2
15 + x14x

3
15 + x4

15 − 15x3
14 − 15x2

14x15 − 15x14x
2
15 − 15x3

15 + 85x2
14+

+85x14x15 + 85x2
15 − 225x14 − 225x15 + 274, x11 + x12 + x13 + x14 + x15 − 15 }.

It can be proven that the algebraic system of polynomial equations given by the previous
Gröbner basis has 120 solutions. Indeed, each one of them corresponds to a Latin square
by following the proof of Proposition 1. Therefore, ∆(Θ) = ∆(Θ′) = 120. Moreover:

∆((5, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 0, 1)) = ∆((0, 0, 0, 0, 1), (0, 0, 0, 0, 1), (5, 0, 0, 0, 0)) = 120.

9



Remark 14 In the previous examples, the Gröbner basis obtained has the same number
of elements as variables. However, it does not happen in general. So, for example, the
Gröbner basis we obtained corresponding to the autotopism Θ = ((134), (134), (134)) ∈
I4((1, 0, 1, 0), (1, 0, 1, 0), (1, 0, 1, 0)) with respect to the degree reverse lexicographical has
9 elements, but there are only 6 variables.

4. Number of Latin squares related to a cycle structure of order ≤ 7

Let Θ = (α, β, γ) ∈ In be a Latin square autotopism of order up to 7 verifying the
conditions of Remark 5. Algorithm 1 has been implemented to obtain the number ∆(Θ)
in a procedure for the computer algebra system for polynomial computations Singu-
lar 3-0-2. Specifically, the library containing this procedure has been posted on the
website http://www.personal.us.es/raufalgan/LS/LST.lib. In this library, the following
procedures are used:

a) fixedPoints: Returns the number of fixed points lδ1 of a permutation δ ∈ Sn.
b) TLS: Returns an ideal corresponding to triples of all partial Latin squares of

PLS(n) containing P and having Θ as an autotopism. Specifically, if (i, j, k) ∈ P
and L ∈ LS(Θ) contains P , then (αm(i), βm(j), γm(k)) ∈ L, for all m ∈ N.

c) isLS: Returns 1 if the array L is a Latin square, 0 otherwise.
d) LST: It is the main procedure. Specifically, LST depends on the permutations

α, β and γ, given respectively by the n-vectors A = [α(1), α(2), . . . , α(n)], B =
[β(1), β(2), . . . , β(n)], and C = [γ(1), γ(2), . . . , γ(n)]. LST also depends on the num-
ber kα of cycles of α, denoted by kA, on a vector v corresponding to a partial Latin
square P ∈ PLS(n) and on the P -coefficient of symmetry, denoted by c. From

(Falcón, 2007), kα ≤ 5 and if lα1 · l
β
1 > 0, then kα = kβ and lα1 = lβ1 ≤ 3.

Let us see in the following example how to use these procedures in Singular:

Example 15 To compute, ∆((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1), (4, 1, 0, 0, 0, 0)), let us con-
sider the autotopism Θ((123456), (123456), (16)) ∈ I6((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1), (4, 1,
0, 0, 0, 0)) and the partial Latin square P = {(1, 1, 1)} ∈ PLS(6). We have done:

intvec A = 2,3,4,5,6,1; intvec B = 2,3,4,5,6,1; intvec C = 6,2,3,4,5,1;

int kA = 1;

intvec v = 1,0,0,0,0,0;

int c = 6;

LST(A,B,C,kA,v,c);

//-> 288

Therefore, ∆((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1), (4, 1, 0, 0, 0, 0)) = ∆(Θ) = 288. By the other
way, to compute ∆((2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0)), we have done:

intvec A = 6,5,3,4,2,1; intvec B = 6,5,3,4,2,1; intvec C = 6,5,3,4,2,1;

int kA = 4;

intvec v;

int c = 128;

int i,j,a;

for (i=2; i<=6; i++)

{

for (j=1; j<=6; j++)

{
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if (i!=4 and j!=4 and j!=2)

{

v = 4,0,0,1,i,0,0,4,0,2,0,j,0,0,4,3,0,0,3,4;

a = a + LST(A,B,C,kA,v,c);

}

}

}

print(a);

//-> 20480

Therefore, ∆((2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0)) = 20480.

To finish this section, we have used the previous library and the results of Section 2 to
obtain, in Tables 2, 3 and 4, the number of Latin squares of order up to 7 having a given
autotopism in their autotopism groups. For each case, we show the used autotopism,
partial Latin squares and coefficient of symmetry. The running time (r. t.) is measured
in seconds and has been taken from an Intel Core 2 Duo Processor T5500, 1.66 GHz with
Windows Vista operating system. We follow the classification given by Falcón (2007).

n lα lβ lγ Θ ∈ In(lα, lβ , lγ) P cP ∆
r.t.

(s)

2 (0,1) (0,1) (2,0) ((12), (12), ϵ) - 1 2 0

3
(0,0,1) (0,0,1)

(0,0,1) ((123),(123),(123)) - 1 3 0

(3,0,0) ((123),(123),ϵ) - 1 6 0

(1,1,0) (1,1,0) (1,1,0) ((13),(13),(13)) - 1 4 0

4 (0,2,0,0) ((1234),(1234),(12)(34)) - 1 8 0

(0,0,0,1) (0,0,0,1) (2,1,0,0) ((1234),(1234),(14)) - 1 8 0

(4,0,0,0) ((1234),(1234),ϵ) - 1 24 0

(0,2,0,0) ((13)(24),(13)(24),(13)(24)) {(1, 1, 1)} 4 32 0

(0,2,0,0) (0,2,0,0) (2,1,0,0) ((13)(24),(13)(24),(14)) {(1, 1, 1)} 4 32 0

(4,0,0,0) ((13)(24),(13)(24),ϵ) {(1, 1, 1)} 4 96 0

(1,0,1,0) (1,0,1,0) (1,0,1,0) ((134),(134),(134)) {(2, 2, 2)} 1 9 0

(2,1,0,0) (2,1,0,0) (2,1,0,0) ((14),(14),(14))
{(2, 2, 2),

(2, 3, 3)}
2 16 0

5
(0,0,0,0,1) (0,0,0,0,1)

(0,0,0,0,1) ((12345),(12345),(12345)) {(1, 1, 1)} 5 15 0

(5,0,0,0,0) ((12345),(12345),ϵ) {(1, 1, 1)} 5 120 0

(1,0,0,1,0) (1,0,0,1,0) (1,0,0,1,0) ((1345),(1345),(1345))
{(1, 1, 2),

(2, 2, 2)}
4 32 1

(1,2,0,0,0) (1,2,0,0,0) (1,2,0,0,0) ((15)(24),(15)(24),(15)(24))

{(1, 1, 3),

(1, 3, 1),

(2, 2, 3),

(2, 3, 2),

(3, 3, 3)}

64 256 2

(2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) ((145),(145),(145))

{(1, 1, 3),

(1, 3, 1),

(2, 2, 2),

(2, 3, 3),

(3, 2, 3),

(3, 3, 2)}

18 144 0

Table 2. Number of Latin squares related to autotopisms of I5, for 2 ≤ n ≤ 4..
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Θ ∈ I6((0, 0, 0, 0, 0, 1), (0, 0, 2, 0, 0, 0), (0, 3, 0, 0, 0, 0)) P cP ∆
r.t.

(s)

((123456),(156)(234),(16)(25)(34)) {(1, 1, 1)} 6 288 2

lα = lβ lγ Θ ∈ In(lα, lβ , lγ) P cP ∆
r.t.

(s)

(0,0,0,0,0,1)

(0,0,2,0,0,0) ((123456),(123456),(156)(234)) {(1, 1, 1)} 6 72 2

(1,1,1,0,0,0) ((123456),(123456),(156)(24)) {(1, 1, 1)} 6 72 2

(2,2,0,0,0,0) ((123456),(123456),(15)(26)) {(1, 1, 1)} 6 144 2

(3,0,1,0,0,0) ((123456),(123456),(156)) {(1, 1, 1)} 6 144 2

(4,1,0,0,0,0) ((123456),(123456),(16)) {(1, 1, 1)} 6 288 2

(6,0,0,0,0,0) ((123456),(123456),ϵ) {(1, 1, 1)} 6 720 3

(0,0,2,0,0,0)

(0,0,2,0,0,0) ((156)(234),(156)(234),(156)(234))

{(1, 1, 1), (1, 2, 2),

(2, 3, j), (2, 5, i)}

(i ̸= 2; j ̸= 5)

54 1296 55

(3,0,1,0,0,0) ((156)(234),(156)(234),(156))
{(1, i, i), (1, 5, j),

(2, 1, 2)}i∈[n];j=3,4,6

162 5184 28

(6,0,0,0,0,0) ((156)(234),(156)(234),ϵ) {(1, i, i)}i∈[n] 720 25920 9

(1,0,0,0,1,0) (1,0,0,0,1,0) ((13456),(13456),(13456)) {(i, i, 2))}i=1,2 5 75 7

(2,2,0,0,0,0) ((16)(25)(34),(16)(25)(34),(16)(25))

(
1 6 ∗ ∗ ∗ ∗

6 ∗ i ∗ j ∗

∗ ∗ ∗ k ∗ l

)
(i, j ̸= 6; k, l ∈ [n])

96 36864 252

(0,3,0,0,0,0) (4,1,0,0,0,0) ((16)(25)(34),(16)(25)(34),(16))

(
1 6 3 4 5 2

6 ∗ ∗ ∗ ∗ 4

3 ∗ ∗ ∗ ∗ 5

)
13824 110592 2

(6,0,0,0,0,0) ((16)(25)(34),(16)(25)(34),ϵ)

(
1 2 3 4 5 6

2 ∗ i ∗ ∗ ∗

∗ ∗ ∗ ∗ j ∗

)
(i ̸= 2, 3; j ̸= 2, 5)

2880 460800 92

(2,0,0,1,0,0) (2,0,0,1,0,0) ((1456),(1456),(1456))

(
3 ∗ 1 ∗ ∗ ∗

∗ 2 3 ∗ ∗ ∗

∗ 3 2 ∗ ∗ ∗

)
32 768 2

(2,2,0,0,0,0) (2,2,0,0,0,0) ((16)(25),(16)(25),(16)(25))

 4 ∗ ∗ 1 i ∗

∗ 4 ∗ 2 ∗ j

∗ ∗ 4 3 ∗ ∗

∗ ∗ 3 4 ∗ ∗


(i ̸= 1, 4; j ̸= 2, 4)

128 20480 137

(3,0,1,0,0,0) (3,0,1,0,0,0) ((156),(156),(156))

 2 ∗ ∗ ∗ ∗ ∗

∗ 2 3 4 ∗ ∗

∗ 3 4 2 ∗ ∗

∗ 4 2 3 ∗ ∗

 36 2592 1

Table 3. Number of Latin squares related to autotopisms of I6.
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Θ ∈ I7((0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1), (7, 0, 0, 0, 0, 0, 0)) P cP ∆
r.t.

(s)

((1234567),(1234567),ϵ) {(1, 1, 1)} 7 5040 17

lα = lβ = lγ Θ ∈ In(lα, lβ , lγ) P cP ∆
r.t.

(s)

(0,0,0,0,0,0,1) ((1234567),(1234567),(1234567)) {(1, 1, 1)} 7 133 5

(1,0,0,0,0,1,0) ((134567),(134567),(134567))
{(1, 1, 2), (1, 2, 1),

(2, 2, 2)}
36 288 4

(1,0,2,0,0,0,0) ((167)(245),(167)(245),(167)(245))

(
3 ∗ ∗ ∗ i ∗ j

∗ 3 ∗ k ∗ l ∗

1 2 3 ∗ ∗ ∗ ∗

)
(i, j, k, l ∈ [n] \ {3})

324 42768 253

(1,1,0,1,0,0,0) ((1456)(27),(1456)(27),(1456)(27))

(
3 ∗ ∗ 2 ∗ 7 ∗

∗ 3 2 ∗ ∗ ∗ 7

1 7 3 ∗ ∗ ∗ ∗

)
128 512 3

(2,0,0,0,1,0,0) ((14567),(14567),(14567))

{(1, 1, 3), (2, 2, 2),

(2, 3, 3), (3, 1, 1),

(3, 2, 3), (3, 3, 2)}

50 4000 16

(1,3,0,0,0,0,0) ((17)(26)(35),(17)(26)(35),(17)(26)(35))

 4 i ∗ j ∗ k ∗

∗ 4 l ∗ p ∗ q

r ∗ 4 ∗ ∗ ∗ ∗

1 2 3 4 ∗ ∗ ∗


(i ̸= 2, 4;

j, k, p, q ̸= 4, 6;

l ̸= 3, 4; r ̸= 1, 4)

2304 6045696 4512

(3,0,0,1,0,0,0) ((1567),(1567),(1567))

 2 ∗ ∗ ∗ ∗ ∗ ∗

∗ 2 3 4 ∗ ∗ ∗

∗ 3 4 2 ∗ ∗ ∗

∗ 4 2 3 ∗ ∗ ∗

 36 41472 53

(3,2,0,0,0,0,0) ((17)(26),(17)(26),(17)(26))


5 4 1 2 6 7 3

∗ ∗ 2 1 7 ∗ j

i ∗ 5 4 3 ∗ ∗

∗ ∗ 3 5 4 ∗ ∗

∗ ∗ 4 3 5 ∗ ∗


(i ̸= 3, 4, 5; j = 4, 5, 6)

27648 1327104 40

Table 4. Number of Latin squares related to autotopisms of I7.

5. Final remarks

The algorithm given in Section 3 can be used to obtain the number of Latin squares
related to autotopisms of Latin squares of any order. However, after applying it to the
36 possible cases of autotopisms of Latin squares of order 8 or to the 22 possible ones of
order 9, we have seen that, in order to improve the time of computation, it is convenient
to combine Gröbner bases with some combinatorial tools improving the results of Section
2, specifically, with autotopisms Θ = (α, β, γ) in which kα > 3. So, for example, the com-
putation corresponding to cycle structures (lα, lβ , lγ), where lα = lβ = (0, 4, 0, 0, 0, 0, 0, 0)
would resulte too expensive by using this method.
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