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Abstract

In this paper, given an isotopism © € Z,,, we study some properties of the
set SAPLS(O) of those partial Latin squares being the multiplication
table of an associative partial quasigroup having © as a Santilli’s
autotopism.

MSC 2000: 05B15, 20N05.
Keywords: Latin Square, Santilli’s isotopism.

International Conference on Dynamical systems ICDS 2007, 24-40. International Academic Press. ISBN:1-57485-065-2 .



1 INTRODUCTION

A quasigroup is a nonempty set G' endowed with a product -, such that
if any two of the three symbols a, b, ¢ in the equation a - b = ¢ are given as
elements of GG, the third one is uniquely determined as an element of G. It is
equivalent to say that G is endowed with left and right division. Specifically,
quasigroups are, in general, non-commutative and non-associative algebraic
structures. Two quasigroups (G, -) and (H, o) are isotopic if there are three
bijections «, 3, from H to G, such that y(aob) = a(a)-5(b), forall a,b € H.
The triple © = («, 3, ) is called an isotopism from (G, -) to (H, o).

The multiplication table of a quasigroup is a Latin square. A Latin
square L of order n is an n X n array with elements chosen from a set of n
distinct symbols {z1, ..., 2, }, such that each symbol occurs precisely once in
each row and each column. The set of Latin squares of order n is denoted
by LS(n). An exhaustive study about Latin squares and their applications
is given by [3].

In this paper, for any given n € N, we denote by [n] the set {1,2,....,n}.
Specifically, we assume that the set of symbols of any Latin square of order
n is [n]. The symmetric group on [n] is denoted by S,,. Every permutation
of S, can be written as the composition of pairwise disjoint cycles § =

C?o(Cfo0..0 C’,‘gé, where:
i) For all i € [kg], one has C? = <cf_1 Sy & /\5), with A2 < n and

¢ = min;{c);}. If A} = 1, then C? is a cycle of lenght 1 and so,
&), € Fix(6).

i) . =n.
iii) For all i,j € [ks], one has X) > X0, whenever ¢ < j.
iv) Given 4,j € [ks], with i < j and \} = )\?, one has cf}l < c?}l.

Given a permutation 0 € 5,, it is defined the set of its fixed points
Fiz(6) = {i € [n] : 6(i) = i}. The cycle structure of § is the sequence
l; = (13,15,...,12), where I¢ is the number of cycles of length 4 in 4, for
all ¢ € [n]. On the other hand, given L = (I, ;) € LS(n), the orthogonal
array representation of L is the set of n? triples {(i,j,1;;) : 4,7 € [n]}. The
previous set is identified with L and then, it is written (¢, 7,1, ;) € L, for all



i,7 € [n]. Given o € S3, one defines the conjugate Latin square L” € LS(n)
of L, such that if T = (i, j, l; ;) € L, then (m,1)(T), 7o2)(T), mo(3)(T')) € L7,
where m; gives the i'" coordinate of T', for all i € [3]. In this way, each
Latin square L has six conjugate Latin squares associated with it: LY = L,
L(12) — Lt7 L(13)’ L(23)7 L(123) and L(132).

Since a Latin square is the multiplication table of a quasigroup, an uso-
topism of a Latin square L € LS(n) is therefore a triple © = (o, 3,7) €
Z, = S, xS, xS, In this way, «, and 7 are permutations of rows,
columns and symbols of L, respectively. The resulting square L® is also a
Latin square and it is said to be isotopic to L. In particular, if L = (1),
then L® = {(4, 4, (la—l(i)”@—l(j)) :1,J € [n]}. If v = ¢, the identity map on
[n], © is called a principal isotopism. The cycle structure of an isotopism
© = (a, 8,7) € I, is the triple (1,,13,1,), where 15 is the cycle structure of
J, for all § € {a,3,7}. The set of isotopisms of Latin squares of order n
having (l.,13,1,) as their cycle structures is denoted by Z, (14,1, 1,).

An isotopism which maps L to itself is an autotopism. (e, €, €) is called
the trivial autotopism. The possible cycle structures of the set of non-trivial
autotopisms of Latin squares of order up to 11 have been obtained by [2].
The stabilizer subgroup of L in Z, is its autotopism group, U(L) = {© €
Z,: L°® = L}. Given L € LS(n), © = (a,,7) € U(L) and o € S, it
is verified that ©7 = (7,(1)(0), T(2)(O), Tr3)(O)) € U(L?), where 7; gives
the i component of ©, for all i € [3]. Given © € T,,, the set of all Latin
squares L such that © € U(L) is denoted by LS(O).

A partial Latin square P = (p; ;) of order n is a n xn array with elements
chosen from a set of n symbols, such that each symbol occurs at most once
in each row and in each column. In this way, P is the multiplication table
of a partial quasigroup. The size of P is the number of its filled cells, that
is, the number of triples (i, ,k) € P such that k # (). The set of partial
Latin squares of order n is denoted by PLS(n). Isotopisms of partial Latin
squares are defined in a similar way as those of Latin squares, although now
(@) = 0. In particular, the sets U(P) and PLS(©) are similarly defined.
It is said that an isotopism © = (a, 3,7) € Z, is a Santilli’s autotopism of
P = (p;j) € PLS(©) if © € U(P) and there exist j,,js,)4 € [n] such that
(i) = pij,, B(i) = pij, and (i) = pij,, for all @ € [n]. The triple (ja,is, i)
is denoted by S(O, P). By the other way, SPLS(©) denotes the set of all
partial Latin squares having © as a Santilli’s autotopism and SZ,, denotes



the set of all © € Z,, such that SPLS(©) # 0.

Several properties of those partial Latin squares of order up to 5 having
in their autotopism groups a Santilli’s isotopism fixing at least one symbol
have been studied in [1]. However, an exhaustive study of these isotopisms is
still open. In this way, we prove in this paper some more properties of these
Santilli’s isotopisms, being interested in those ones related to associative
partial quasigroups. Specifically, the structure of the paper is the following:
In Section 2, some general properties of the set SZ,, of Santilli’s autotopisms
are studied. In Section 3, we study the concrete case in which © is a Santilli’s
autotopism of a partial Latin square corresponding to an associative partial
quasigroup. Finally, in Section 4, a classification of all these autotopisms of
partial Latin squares of order up to 5 is given.

2 SANTILLI’'S AUTOTOPISMS

In this section, we are interested in studying some general properties of
SZ,. In this way, the following results are verified:

Lemma 2.1. Let © = («o,03,7) € SZ,, P = (pi;) € SPLS(©) and
Gasig.iy) = S(O, P). It must be j, = 5(ja)-
Proof. Given h € [n], let ¢ € [n] be such that «(i) = h. It is verified

that v(h) = y(a(i)) = Y(Dij.) = Pa(i),3Ga) = Ph,aGa)- Since h is arbitrary, it
must be j, = B(ja). O

Proposition 2.2. Let © = (a,3,7) € SZ,,, P = (pi;) € SPLS(©) and
(asig.iy) = S(6,P). If a = and 1 = 1, then Fiz(B) = {ia}.

Proof. Since o = v, from Lemma 2.1, it must be j, = j, € Fiz(f).
Since 17 = 1, it must be Fiz(5) = {ja}- O

Lemma 2.3. Let © = (o, 8,7) € SZ,,. If there ezist 6,0' € {«a, 5,7} and
ip € [n] such that 0(ig) = §'(i0), then, it must be § = 0'.

Proof. Let P = (p;;) € SPLS(©). There must exist js, jo € [n] such
that p; j; = (i) and p; ;, = &'(i), for all i € [n]. Specifically, p, ;; = d(io) =
0'(i0) = Pigjy- Since P is a partial Latin square, it must be j; = jy and
therefore, 6(i) = pij; = pij, = 0'(i), for all i € [n]. O



Proposition 2.4. Let © = (a, 3,7) € SZI, be such that lf = 0. Then,
a(i) # (i), for all i € [n].

Proof. Let i € [n] be such that a(i) = v(i). From Lemma 2.3, it must
be o = . Thus, from Lemma 2.1, j, = j, = B(ja). So, jo € Fiz(3) = 0,
which is a contradiction. O

Lemma 2.5. Let © = («o,83,7) € SZ,, P = (pi;) € SPLS(©) and
(asig.iy) = S(O, P). If there existm € N and iy € [n] such that v™(B3(ip)) =
B(a™(ip)), thenjz € Fiz(G™). As a consequence, if there exists m € N such

that 17" = 0, then v™(3(i)) # B(a™(i)), for all i € [n)].

Proof. We have that pun iy 5m 5,) = 7" (Piaga) = 7" (8(i0)) = B(a™ (i)
= Pam(ig),z- Since P € PLS(n), it must be jg € Fiz(4™). The consequence
is immediate. l

Lemma 2.6. Let © = (a, 8,7) € ST, be such that 1917 .17 > 0. Let P =
(pij) € SPLS(O). If there exist iy € Fiz(a), ko € Fiz(y) and 6 € {, 3,7}
such that §(iy) = ko, then js € Fix(B). Moreover, if jz € Fiz(B), then
B(i) € Fix(y), for alli € Fiz(a).

Proof. Since p;, ;; = 0(io) = ko € Fixz(y), we have that p;, ;; = ko =
V(o) = Y(Pio.js) = Paio),8(s) = Pio,s(s)- SO, it must be js € Fiz(B).

Now, let us suppose that jg € Fiz(f) and let i € Fixz(a). Then, it
is verified that 3(i) = pij, = Pa@)s6s) = Y(Pijs) = V(B(i)). Therefore,
B(i) € Fix(y). O

3 SANTILLI'S AUTOTOPISMS OF
ASSOCIATIVE PARTIAL
QUASIGROUPS

In this Section, we will work with partial Latin squares corresponding
to associative partial quasigroups. Thus, given © € SZ,,, SAPLS(0) will
denote the set of partial Latin squares being the multiplication table of
an associative partial quasigroup having © as a Santilli’s autotopism. The
following results are verified:



Lemma 3.1. Let © = (o, 3,7) € SZ,,, P € SAPLS(©) and (ja,ig, jy) =
S(©, P). If P is the multiplication table of an associative partial quasigroup
([n).-), then v = Boa.

Proof. Let 4,7 € [n]. It is verified that:
V(i) = (04) 3y = (2-3) - Ba) = (i-7) - Ga-is) = ((2-7) o) -Jp = Blali-j)).
B(a(h)), for all h € [n]. Therefore, v = foa. O

Specifically, v(h)

Proposition 3.2. Let © = (o, 8,7) € SZ,,, P € SAPLS(©) and (Ja,js,jy)
= S(0, P). If P is the multiplication table of an associative partial quasi-
group ([n],-) and Fiz(a) # 0, then = ~. Moreover, it must be o = e.

Proof. Let i € Fiz(a) and let us consider j € [n]. It is verified that:
i) =al)-BG) =~-j)=(-7) )y =1i-(-Jy) =i-70).

So, B(j) = ~(j) and, therefore, 5 = v because of the arbitrariness in
the choice of j. As an immediate consequence, from Lemma 3.1, it must be
a =€ 0

Lemma 3.3. Let © = (a.f,7) € SI,,, P € SAPLS(©) and (ja,ig,jy) =
S(©, P). If P is the multiplication table of an associative partial quasigroup
([n),-), then ©' = (o, 3',7") € ST, for all t € N.

Proof. Let ¢t € N. Since P € PLS(©), it is verified that P € PLS(0").
Besides, since ([n],-) is associative, then §'(:) = i - j§, for all 0 € {a, 5,7}
and for all i € [n]. So, S(©, P) = (il,,ij3,}",)- O
Definition 3.4. Let © € SZ,,. We will define the orbit of © as the set:

0(0) ={0" € 87, : It € N such that ©' = ©'}.

Given ©1,05 € S8T,,, we will define the equivalence relation © ~ Oy if

and only if they have the same orbit. The equivalence class of © € ST,, will
be denoted by [O].

The following result is verified:



Proposition 3.5. Given ©1,0, € SZ,, such that ©1 ~ O, itis SAPLS(©)
= SAPLS(0,).

Proof. Let P € SAPLS(0;). Since 0(01) = 0(0O5), it must be Oy €
0(01), because Oy € 0(03). So, there exists ¢ € N such that O, = ©%.
From the proof of Lemma 3.3, it must be P € SAPLS(©;). Therefore,
SAPLS(©1) C SAPLS(0,), being analogous the reciprocal. O

Definition 3.6. Given [0,],[0s] € SZ,,/ ~, we will define the equivalence
relation [©1] ~' [Oq] if and only if SAPLS(©,) = SAPLS(0,).

4 CLASSIFICATION OF ASSOCIATIVE
PARTIAL QUASIGROUPS OF ORDER
UP TO 5.

By following the classification given by Falcon [2], we have been imple-
mented in a computer program all the results of the previous sections to
generate all the possible cycle structures of the set of non-trivial Santilli’s
autotopisms of partial Latin squares of order up to 5, corresponding to as-
sociative partial quasigroups. For each cycle structure of a Latin square of
order n, we show all the equivalence classes [©] of §Z,,/ ~, a partial Latin
square P € SAPLS(O) and the corresponding triple S(©, P). Finally, we
show in the last column the set SAPLS(©), which is denoted by the capital
letters A, By, Cp, ... (described in Tables 11 and 12), for each order n € N.
In this way, we can use this last column to show those equivalence classes
of 8T,/ ~ corresponding to the same equivalence class of (S§Z,,/ ~)/ ~'.

(Lo, 15,1,) [©] P S(0,P) [ SAPLS(©)
(0.1),0.1),2,0) | (12,1207 | (3 2 )] @20] 4
((0,1,2,0,0,0)) [ (12, a2 [ (3 1) | @12 4
((2,0),0,1),0,1) [ [(e.(12), 020 | (2 2 )] (.22 4

Table 1: Autotopisms of SZ, of associative partial quasigroups.



(low lﬂ’ 17)

©]

S(©,P)

SAPLS(O)

((0,0,1),
(0,0,1),
(0,0,1))

[((123), (123), (132))]

2
3
1

(1,1,2)

As

((0,0,1),
(0,0,1),
(3,0,0))

[((123), (132), €)]

2
3
1

(1,2,3)

Aj

((0,0,1),
(3,0,0),
(0,0,1))

[((123), ¢, (123))]

(
(
(

2
3
1

(1,3,1)

As

((3,0,0),
(0,0,1),
(0,0,1))

[(e, (123), (123))]

1

2
3
1

- W

(3,1,1)

As

Table 2: Autotopisms of SZ3 of associative partial quasigroups.

(la,lg,l,y) (O] P S(©,P) | SAPLS(©)
[((1234)7 2 3 4 1
(1234), < 11z s ) (1,1,2) Ay
(13)(24))] e
((0,0,0,1), [((1243), 2 4 1 3
(0, 0,(),1), (1243), < 13 g i ) (1,1,2) By
(0,2,0,0)) || (14)(23))] Lot
[((1324), 3 4 2 1
(1324), < 3 o i ) (1,1,3) Cy
(12)(34))] L
[((1234), 2 3 4 1
(13)(24), < i1 2 3 ) (1,2,3) Ay
(1432))] ro2 3 4
((0,0,0,1), [((1243), 2 4 1 3
(0’27070)’ (14)(23)7 < ;1 g § 411 ) (1’274) By
(0,0,0,1)) (1342))] 31 42
[((1324), 3 4 2 1
(12)(34), < g 8 }1 § ) (1,3.2) Cy
(1423))] oz s 4

Table 3: Autotopisms of SZ, of associative partial quasigroups.




(o, 13,1,) [©] 5(©,P) | SAPLS(©)
[((13)(24), 54 1 2
(1234), < 12 5 i > (1,4,2) Ay
(1432))] 2 08 41
((0,2,0,0), | [((14)(23), 4 s o2 1
(07070v1)v (1243)’ ( ; }1 ‘11 g > (1a372) By
(0,0,0,1)) (1342))] toz 8 4
[((12)(34), > 1 4 3
(1324), ( :1 i 113 ‘2‘ > (1,4,3) Cy
(1423))] 3421
[((1234), 2 3 a4 1
(1432), ( R > (1,3,4) A
6)] 1 2 3 4
((0,0,0,1), [((1243), > 4 1 s
(0,0,0,1), (1342), ( 13 g i > (1,4,3) By
(4,0,0,0)) €)] 31 42
[((1324), 5 4 2 1
(1423), ( ‘21 i’ 411 g > (1,2,4) Cy
6)] 1 2 3 4
[((1234), 2 5 a4 1
€, ( i 1 ; i > (1,4,1) Ay
(1234))] toz 3 4
((0707071)a [((1243)7 2 4 1 3
(4,0,0,0), 6 < 15 3 4 ) (1,3,1) By
(0,0,0,1)) (1243))] 31 42
[((1324)7 3 4 2 1
‘ (3 - ) Lay | o
(1324))] tozos 4
(e, 1 2 3 4
(1234)’ ( i Z 11 é ) (1a272) A4
(1234))] 4 1t 23
((47070’0)’ [(6v 1 2 3 4
(0,0,0,1), (1243), ( i ‘11 i g > (1,2,2) By
(0,0,0,1)) (1243))] 4 8 2 1
(e, 1 2 3 4
(1324), ( § Los ol > (1,3,3) Cy
(1324))] 4 8 12

Table 4: Autotopisms of SZ, of associative partial quasigroups.




(Ia,1,1,)

[©]

S(©,P)

SAPLS(0)

((0,2,0,0),
(0,2,0,0),
(0,2.0,0))

[((12)(34),
(13)(24),

(14)(23))]

W =N

= wN =

=N W

N oW

(1,4,3)

Dy

[((12)(34),
(14)(23),

(13)(24))]

W =N

W N =

=N W

N oW

(1,3,4)

Dy

[((13)(24),
(12)(34),

(14)(23))]

N =R W

N W

W=

Wk =N

(1,4,2)

Dy

[((13)(24),
(14)(23),

(12)(34))]

[SRENt)

=N W

W N

W =N

(1,2,4)

Dy

[((14)(23),
(12)(34),

(13)(24))]

=N Wk

N =W

[

=W N =

(1,3,2)

Dy

[((14)(23),
(13)(24),

(12)(34))]

=N W

N =W

Wk =N

S W N -

(1,2,3)

Dy

((0,2,0,0),
(0,2,0,0),
(4,0,0,0))

[((12)(34),
(12)(34),

€)]

WA =N

- wN =

(1,1,2)

[((13)(24),
(13)(24),

)]

N =R W

W

(1,1,3)

[((14)(23),
(14)(23),

‘)]

=N W

W=

(1,1,4)

Gy

((07 27 07 0)7
(4,0,0,0),
(0,2.0,0))

[((12)(34),

€

(12)(34))]

W =

W N =

(1,2,1)

E,4

[((13)(24),

€

(13)(24))]

— N | N N | N N N/

N =W

BW N =

* ¥ % X% * Kk % X% ¥ % % % LR

(1,3,1)

Fy

[((14)(23),

€,

(14)(23))]

VR

=N W

W=

N——

(1,4,1)

Gy

Table 5: Autotopisms of SZ, of associative partial quasigroups.
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(o, 151) O] P S(0, P) | SAPLS(0)
. A
(12)(34), < Loz ) (1,2,1) E,
azEy] [\ G-
((4,0,0,0), (e, R
(0,2,0,0), (13)(24), < F ) (1,3.1) Fy
(0,2,0,0)) (13)[((24))] 2 4
(14)(23), < D ) G| G
aney) [\ 70T

Table 6: Autotopisms of SZ, of associative partial quasigroups.

(I 15.1,) [©] P 5(0,P) [ SAPLS(O)

[((12345), 2 3 4 5 1
(12345), P05 1 o2 3 (1,1,2) As
(13524))] 12 3 4 s
[((12345), 2 3 4 5 1
(13524), iP5 1 o2 3 (1,2,3) As
(14253))] 12 03 4 s
((12345), ) [2 a0y
(14253), A (1,3,4) As
(15432))] Tz 3 4 s

((0,0,0,0,1), [((12354), 2 3 5 1 4

(0,0,0,0,1), (12354), 5 04 1 3 2 (1,1,2) Bs

(0,0,0,0,1)) || (13425))] i 13 s 3
[((12354), 2 3 5 1 4
(13425), 531 a2 (1,2,3) Bs
(15243))] R -
[((12354), 2 3 5 1 4
(15243), % g g E é (1,3,5) Bs
(14532))] 4 1 2 5 3
[((12453), > 4 1 5 3
(12453), 12 3 o4 s (1,1,2) Cs
(14325))] 5 1 5 2 4

Table 7: Autotopisms of SZ5 of associative partial quasigroups.
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(o, 15.1,) 0] S(©, P) [ SAPLS(0)

[((12453),
(14325),
(15234))]

(17274) C5

[((12453),
(15234),
(13542))]

(15475) C’5

[((12435),
(12435),
(14523))]

(13172) D5

I O [ IO IS PSSO CRN "U

[((12435),
(13254),
(15342))]

(15473) D5

[((12435),
(14523),
(13254))]

(1a274) D5

((0,0,0,0,1), | [((12543),
(0,0,0,0,1), (12543),
(0,0,0,0,1)) (15324))]

(17172) E5

W= NG N O W N UL O OO = W =W N O =W N O

[((12543),
(14235),
(13452))]

(1a574) E5

[((12543),
(15324),
(14235))]

(17275) E5

[((12534),
(12534),
(15423))]

(17172) F5

[((12534),
(13245),
(14352))]

(1a573) F5

=N = WO BN~ WO W= NG W= N R G

[((12534),
(15423),
(13245))]

(1a275) F5

[PE G N Q= Ot N SN N V] =W = ot =W ot =W = ot WOtk =W otk N =W ok N W Ut = N W Ut =N
AW |[ARWNR [UARWNR [NOA—RW |[NUORAF®R [NAARW [ARNOW [ ARNOW [ARNDGW [ NFEAWT | NDHB WD
=OUN R W = UT N R W TN e W N O W o N O W N O W (S Tk W N U W= BN O =W [N G )

[ SRVCRGIIETN W W O e N WUt CUks W= [SLEEVER SR U W N = WK =0 WN s =G

BN WO

Table 8: Autotopisms of SZ5 of associative partial quasigroups.
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(o, 15.1,) [©] 5(©,P) [ SAPLS(0)

[((12345),
(15432),

€]

(17475) A5

[((12354),
(14532),

‘)]

(1a574) B5

GUB W N - | W o

((0,0,0,0,1), | [((12453),
(0,0,0,0,1), (13542),
(5,0,0,0,0)) o)]

(1a573) C5

[((12435),
(15234),

€]

(1a375) D5

[((12543),
(13452),

‘)]

(1a473) E5

[((12534),
(14352),

€)]

(17374) F5

[((12345),

(12345))]

(1757 1) A5

[((12354),

(12354))]

(1147 1) BS

((0,0,0,0,1), [((12453),
(5,0,0,0,0), €,
(0,0,0,0,1)) (12453))]

(1a37 1) C5

U W N N W= s Ot W N = O [ SRVVRG N [SUE VA W= o TR W N [ SRVCEEENNe WK = O "U

[((12435),

) (1’571) D5
(12435))]

[((12543),

) (1a37 1) E5
(12543))]

((12534),

, (1,4,1) F;
(12534))]

W = O N B W= ot =W otk N WUt =N EE S VER V) [l ANV ) W= s ot W= o =W otk N WUt = e N Fo S VN V) [l ANV V)

=N = W ot W N RO N O =W N Ut =N 0w N~ Ot W =N =W o W N RO N O W =W N Ot =N R W N o= Uk W
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Table 9: Autotopisms of SZ5 of associative partial quasigroups.
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Table 10: Autotopisms of ST5 of associative partial quasigroups.
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Table 11: Sets of partial Latin squares of order 2 < n < 4 corresponding to

associative partial quasigroups related to Santilli’s autotopisms.
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Table 12: Sets of partial Latin squares of order 5 corresponding to associa-

tive partial quasigroups related to Santilli’s autotopisms.
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5 FINAL REMARKS

Although in Section 4 we give all the cycle structures of Santilli’s auto-
topisms of the Latin squares of order up to 5 corresponding to associative
partial quasigroups, let us remark that the properties of Sections 2 and 3
can be implemented in an algorithm to obtain all the cycle structures of
Santilli’s autotopisms of the Latin squares of greater orders.
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