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1 Introduction

The origin of the networks of evolutionary processors (NEPs for short) is twofold.
In [4] we consider a computing model inspired by the evolution of cell populations,
which might model some properties of evolving cell communities at the syntactical
level. Cells are represented by strings which describe their DNA sequences. Infor-
mally, at any moment of time, the evolutionary system is described by a collection of
strings, where each string represents one cell. Cells belong to species and their com-
munity evolves according to mutations and division which are defined by operations
on strings. Only those cells are accepted as surviving (correct) ones which are repre-
sented by a string in a given set of strings, called the genotype space of the species.
This feature parallels with the natural process of evolution.

On the other hand, a basic architecture for parallel and distributed symbolic
processing, related to the Connection Machine [11] as well as the Logic Flow par-
adigm [7], consists of several processors, each of them being placed in a node of a
virtual complete graph, which are able to handle data associated with the respective
node. Each node processor acts on the local data in accordance with some predefined
rules, and then local data becomes a mobile agent which can navigate in the network
following a given protocol. Only that data which is able to pass a filtering process
can be communicated. This filtering process may require to satisfy some conditions
imposed by the sending processor, by the receiving processor or by both of them. All
the nodes send simultaneously their data and the receiving nodes handle also simul-
taneously all the arriving messages, according to some strategies, see [8, 11].

In [2] we modify this concept (considered from a formal language theory point of
view in [6]) in the following way inspired from cell biology. Each processor placed
in a node is a very simple processor, an evolutionary processor. By an evolution-
ary processor we mean a processor which is able to perform very simple operations,
namely point mutations in a DNA sequence (insertion, deletion or substitution of
a pair of nucleotides). More generally, each node may be viewed as a cell having
genetic information encoded in DNA sequences which may evolve by local evolu-
tionary events, that is point mutations. Each node is specialized just for one of these
evolutionary operations. Furthermore, the data in each node is organized in the form
of multisets of strings (each string appears in an arbitrarily large number of copies),
and all copies are processed in parallel such that all the possible events that can take
place do actually take place. The computational process described here is not ex-
actly an evolutionary process in the Darwinian sense. But the rewriting operations
we have considered might be interpreted as mutations and the filtering process might
be viewed as a selection process. Recombination is missing but it was asserted that
evolutionary and functional relationships between genes can be captured by taking
only local mutations into consideration [15]. Consequently, hybrid networks of evo-
lutionary processors might be viewed as bio-inspired computing models. We want
to stress from the very beginning that we are not concerned here with a possible bi-
ological implementation, though a matter of great importance. We are aware of the
fact that modeling genetic evolutionary steps in this simple form is a demanding task
requiring more than the system described in this paper.

The computational power of the device proposed in [2], viewed as a language gen-
erating device (Generating Hybrid Networks of Evolutionary Processors—GHNEP



for short), has been further investigated in the papers [3] and [5]; it turned out to
be computationally complete. In a series of papers, we present linear time solutions
to some NP-complete problems using these rather simple mechanisms. Such solu-
tions are presented for the Bounded Post Correspondence Problem [2], for the 3-
colorability problem [3], and for the Common Algorithmic Problem [14]. It is worth
mentioning that the GHNEPs solving the aforementioned problems have all resources
(size, number of rules and symbols) linearly bounded by the size of the given in-
stance. Work in [1] is devoted to the study of a descriptional complexity measure of
these networks, namely the size.

In [12], we propose two linear time solutions for two much celebrated NP-
complete problems, namely the 3CNF-SAT and the HPP (Hamiltonian Path Prob-
lem), based on Accepting Networks of Evolutionary Processors (AHNEPs for short)
having all the resources (size, number of rules and symbols) linearly bounded by the
size of the given instance of the problems. This paper presented for the first time such
solutions based on AHNEPs, and not GHNEPs as [3], and more important, one rig-
orously defined problem solvers based on AHNEPs. By the definition of this model,
one can evaluate the descriptional (number of nodes, rules, symbols) and compu-
tational (time and space) complexity of these AHNEPs with respect to their input
string, which is actually the given instance of the problem. Furthermore, an universal
AHNEP has been reported in [13].

In this paper, we consider three complexity classes defined on AHNEPs similarly
to the classical time and space complexity classes defined on the standard computing
model of Turing machine. By definition, AHNEPs are deterministic. We prove that
the classical complexity class NP equals the family of languages decided by AHNEPs
in polynomial time. A language is in P if and only if it is decided by an AHNEP in
polynomial time and space. We also show that PSPACE equals the family of lan-
guages decided by AHNEPs in polynomial length. It is questionable whether this
approach gives something back to the evolutionary genetics studies, but we believe
that it gives a little to the complexity theory. Characterizing NP, P, and PSPACE is
not sufficient but this work is just a first step in this direction. It is worth mentioning
that the general idea of the model is to show that very simple processors (based on
pretty simple replacements) working synchronously in parallel and exchanging data
to each other under a simple control mechanism (filters based on the symbol pres-
ence and absence) are able to efficiently simulate Turing machines and characterize
complexity classes.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is a fi-
nite and nonempty set of symbols. The cardinality of a finite set A is written card(A).
Any sequence of symbols from an alphabet V is called string (word) over V . The set
of all strings over V is denoted by V ∗ and the empty string is denoted by ε. The
length of a string x is denoted by |x| while alph(x) denotes the minimal alphabet W

such that x ∈ W ∗.
A nondeterministic Turing machine is a construct T = (Q, V, U, δ, q0, B, F ),

where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,



V ⊂ U , q0 is the initial state, B ∈ U \ V is the “blank” symbol, F ⊆ Q is the set
of final states, and δ is the transition mapping, δ : (Q \ F) × U −→ 2Q×U×{R,L}.
Moreover, if (s,B,X) ∈ δ(q, a) for some s, q ∈ Q and X ∈ {R,L}, then a = B; that
is T never writes B over a symbol different than B . The variant of a Turing machine
we use in this paper can be described intuitively as follows: it has a tape divided
into cells that may store symbols from U (each cell may store exactly one symbol
from U ). The tape is semi-infinite, namely it is bounded to the left (there is a leftmost
cell) and unbounded (arbitrarily long) to the right. The machine has a central unit
which can be in a state from a finite set of states, and a reading/writing tape head
which can scan in turn the tape cells. This head never goes the left-hand end of the
tape. The input string is a string over V and is stored on the tape starting with the
leftmost cell and all the other tape cells containing the symbol B .

An instantaneous description (ID for short) of a Turing machine T as above is a
string in (U \{B})∗Q(U \{B})∗. Given an ID αqβ , this means that the tape contents is
αβ followed by an infinite number of cells containing the blank symbol B , the current
state is q , and the symbol currently scanned by the tape head is the first symbol of β ,
provided that β �= ε, or B , otherwise.

Initially, the tape head scans the leftmost cell and the central unit is in the state
q0. This is called the initial ID. The machine performs moves. A move depends on
the contents of the cell currently scanned by the tape head and the current state of
the central unit. A move consists of: change the state, write a symbol from U on the
current cell and move the tape head one cell either to the left (provided that the cell
scanned was not the leftmost one) or to the right. If no move is possible for the current
state and contents of the scanned cell, then we say that the machine is in a halting ID.
Note that any ID with a final state is halting. A computation of this machine is any
finite or infinite sequence of IDs, starting with the initial ID, each ID being reached
from the previous one by one move. We say that a Turing machine always halts if
all computations on every input eventually reach a halting ID. An input string is
accepted by a Turing machine if there exists a computation that eventually reaches a
final state. A language L is decided by a Turing machine M if M always halts and
accepts exactly all words of L.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both a and
b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule if a = ε and
b �= ε. The set of all substitution, deletion, and insertion rules over an alphabet V are
denoted by SubV , DelV , and InsV , respectively.

Given a rule σ as above and a string w ∈ V ∗, we define the following actions of σ

on w:

– If σ ≡ a → b ∈ SubV , then

σ ∗(w) =
{ {ubv : ∃u,v ∈ V ∗ (w = uav)},

{w}, otherwise.

Note that a rule as above is applied to all occurrences of the letter a in different
copies of the word w. An implicit assumption is that arbitrarily many copies of w

are available.



– If σ ≡ a → ε ∈ DelV , then

σ ∗(w) =
{ {uv : ∃u,v ∈ V ∗ (w = uav)},

{w}, otherwise,

σ r(w) =
{ {u : w = ua},

{w}, otherwise,
σ l(w) =

{ {v : w = av},
{w}, otherwise.

– If σ ≡ ε → a ∈ InsV , then

σ ∗(w) = {uav : ∃u,v ∈ V ∗ (w = uv)}, σ r (w) = {wa},
σ l(w) = {aw}.

α ∈ {∗, l, r} expresses the way of applying a deletion or insertion rule to a string,
namely at any position (α = ∗), in the left (α = l), or in the right (α = r) end of the
string, respectively. The note for the substitution operation mentioned above remains
valid for insertion and deletion at any position. For every rule σ , action α ∈ {∗, l, r},
and L ⊆ V ∗, we define the α-action of σ on L by σα(L) = ⋃

w∈L σα(w). Given a
finite set of rules M , we define the α-action of M on the string w and the language L

by:

Mα(w) =
⋃
σ∈M

σα(w) and Mα(L) =
⋃
w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined above
as evolutionary operations since they may be viewed as linguistic formulations of
local gene mutations. For two disjoint and nonempty subsets P and F of an alphabet
V and a string w over V , we define the following two predicates

rcs(w;P,F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅,

rcw(w;P,F ) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on context conditions defined by
the two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols).
Informally, both conditions requires that no forbidding symbol is present in w; fur-
thermore the first condition requires all permitting symbols to appear in w, while the
second one requires at least one permitting symbol to appear in w. It is plain that the
first condition is stronger than the second one.

For every language L ⊆ V ∗ and β ∈ {s,w}, we define:

rcβ(L,P,F ) = {w ∈ L | rcβ(w;P,F )}.
An evolutionary processor over V is a 5-tuple (M,PI,FI,PO,FO), where:

– Either (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ). The set M represents the set
of evolutionary rules of the processor. As one can see, a processor is “specialized”
in one evolutionary operation, only.



– PI,FI ⊆ V are the input permitting/forbidding contexts of the processor, while
PO,FO ⊆ V are the output permitting/forbidding contexts of the processor (with
PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of evolutionary processors over V by EPV . Clearly, the evo-
lutionary processor described here is a mathematical concept similar to that of an
evolutionary algorithm, both being inspired from the Darwinian evolution. As we
mentioned in the Introduction, the rewriting operations we have considered might be
interpreted as mutations and the filtering process described above might be viewed
as a selection process. Recombination is missing but it was asserted that evolution-
ary and functional relationships between genes can be captured by taking only local
mutations into consideration [15].

An accepting hybrid network of evolutionary processors (AHNEP for short) is a
8-tuple Γ = (V ,U,G,N,α,β, xI , xO), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG,EG) is an undirected graph without loops with the set of vertices XG

and the set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPU is a mapping which associates with each node x ∈ XG the evo-

lutionary processor N(x) = (Mx,PIx,FIx,POx,FOx).
– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the

strings existing in that node.
– β : XG −→ {s,w} defines the type of the input/output filters of a node. More pre-

cisely, for every node, x ∈ XG, the following filters are defined:

input filter : ρx(·) = rcβ(x)(·;PIx,FIx),

output filter : τx(·) = rcβ(x)(·;POx,FOx).

That is, ρx(w) (resp. τx ) indicates whether or not the string w can pass the input
(resp. output) filter of x. Moreover, ρx(L) (resp. τx(L)) is the set of strings of L

that can pass the input (resp. output) filter of x.
– xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . If α and β are constant functions, then the net-
work is said to be homogeneous. In the theory of networks some types of underlying
graphs are common like rings, stars, grids, etc. Networks of evolutionary processors,
seen as language generating devices, with underlying graphs having these special
forms have been considered in several papers [1–3, 14]. We focus here on complete
AHNEPs (hence accepting devices and not generating ones as those considered in
the papers cited above), i.e., AHNEPs having a complete underlying graph denoted
by Kn, where n is the number of vertices.

A configuration of an AHNEP Γ as above is a mapping C : XG −→ 2V ∗
which

associates a set of strings with every node of the graph. A configuration may be
understood as the sets of strings which are present in any node at a given moment.
Given a string w ∈ V ∗, the initial configuration of Γ on w is defined by C

(w)
0 (xI ) =

{w} and C
(w)
0 (x) = ∅ for all x ∈ XG − {xI }.



A configuration can change either by an evolutionary step or by a communication
step. When changing by an evolutionary step, each component C(x) of the configura-
tion C is changed in accordance with the set of evolutionary rules Mx associated with
the node x and the way of applying these rules α(x). Formally, we say that the con-
figuration C′ is obtained in one evolutionary step from the configuration C, written
as C �⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends one
copy of each string it has, which is able to pass the output filter of x, to all the node
processors connected to x and receives all the strings sent by any node processor
connected with x providing that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication step
from configuration C, written as C � C′, iff

C′(x) = (C(x) − τx(C(x)))

∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Let Γ be an AHNEP, the computation of Γ on the input string w ∈ V ∗ is a sequence
of configurations C

(w)
0 ,C

(w)
1 ,C

(w)
2 , . . . , where C

(w)
0 is the initial configuration of Γ

on w, C
(w)
2i �⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0. Note that the configurations

are changed by alternative steps. By the previous definitions, each configuration C
(w)
i

is uniquely determined by the configuration C
(w)
i−1. Otherwise stated, each computa-

tion in an AHNEP is deterministic. A computation halts (and it is said to be halting)
if one of the following two conditions holds:

(i) There exists a configuration in which the set of strings existing in the output
node xO is non-empty. In this case, the computation is said to be an accepting
computation.

(ii) There exist two identical configurations obtained either in consecutive evolution-
ary steps or in consecutive communication steps.

The language accepted by Γ is

La(Γ ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

We say that an AHNEP Γ decides the language L ⊆ V ∗, and write L(Γ ) = L iff
La(Γ ) = L and the computation of Γ on every x ∈ V ∗ halts.

3 Complexity Classes

The reader is referred to [9, 10] for the classical time and space complexity classes
defined on the standard computing model of Turing machine.



We define some computational complexity measures by using AHNEP as the
computing model. To this aim we consider a AHNEP Γ with the input alpha-
bet V that halts on every input. The time complexity of the halting computation
C

(x)
0 ,C

(x)
1 ,C

(x)
2 , . . . ,C

(x)
m of Γ on x ∈ V ∗ is denoted by TimeΓ (x) and equals m.

The time complexity of Γ is the function from N to N,

TimeΓ (n) = max{TimeΓ (x) | x ∈ V ∗, |x| = n}.
For a function f : N −→ N we define

TimeAHNEP(f (n)) = {L | there exists an AHNEP Γ which decides L

and n0 such that ∀n ≥ n0(TimeΓ (n) ≤ f (n))}.
Moreover, we write

PTimeAHNEP =
⋃
k≥0

TimeAHNEP(nk).

The space complexity of the halting computation C
(x)
0 ,C

(x)
1 ,C

(x)
2 , . . . ,C

(x)
m of Γ

on x ∈ V ∗ is denoted by SpaceΓ (x) and is defined by the relation:

SpaceΓ (x) = max
i∈{1,...,m}

(
max
z∈XG

|C(x)
i (z)|

)
.

The space complexity of Γ is the function from N to N,

SpaceΓ (n) = max{SpaceΓ (x) | x ∈ V ∗, |x| = n}.
For a function f : N −→ N we define

SpaceAHNEP(f (n)) = {L | there exists an AHNEP Γ which decides L

and n0 such that ∀n ≥ n0(SpaceΓ (n) ≤ f (n))}.
Moreover, we write

PSpaceAHNEP =
⋃
k≥0

SpaceAHNEP(nk).

The length complexity of the halting computation C
(x)
0 ,C

(x)
1 ,C

(x)
2 , . . . ,C

(x)
m of Γ

on x ∈ L is denoted by LengthΓ (x) and is defined by the relation:

LengthΓ (x) = max
w∈C

(x)
i (z),i∈{1,...,m},z∈XG

|w|.

The length complexity of Γ is the function from N to N,

LengthΓ (n) = max{LengthΓ (x) | x ∈ V ∗, |x| = n}.



For a function f : N −→ N we define

LengthAHNEP(f (n)) = {L | there exists an AHNEP Γ which decides L

and n0 such that ∀n ≥ n0(LengthΓ (n)≤f (n))}.
Moreover, we write

PLengthAHNEP =
⋃
k≥0

LengthAHNEP(nk).

4 Relationships Between the Complexity Classes Defined on Turing Machines
and AHNEPs

Now we prove a first result which will eventually show a strong connection between
the complexity classes defined on Turing machines and those defined on AHNEPs.
It is worth emphasizing that the next result states the computational completeness
of AHNEPs; a similar result is presented in [5] for GHNEPs but the proof in [5],
based on a simulation of a phrase-structure grammar in the Geffert normal form, is
completely different than the proof given here.

Proposition 1 For every nondeterministic Turing machine M deciding a language
L, there exists an AHNEP Γ deciding the same language L. Moreover, if M works
within f (n) time, then TimeΓ (n) ∈ O(f (n)).

Proof Let M = (Q,V1,V2, δ, q0,B,F ) be an arbitrary Turing machine. We intend
to construct an AHNEP Γ that, for every input string w, simulates the computation
of M on w. First, we define the new alphabets:

U
(K)
1 = {〈s, b,K,a〉 | (s, b,K) ∈ δ(q, a), s, q ∈ Q,a,b ∈ V2 \ {B}}, K ∈ {R,L},
U2 = {[a, b] | a, b ∈ V2 \ {B}}, U3 = {Xa | a ∈ V2 \ {B}},
U4 = {Y (b)

a | a, b ∈ V2 \ {B}}, U5 = {Za | a ∈ V2 \ {B}},
U6 = {Wa | a ∈ V2 \ {B}}, U7 = {sa | s ∈ Q,a ∈ V2 \ {B}},
U8 = {Ya | a ∈ V2 \ {B}}, U10 = {s̃a | s ∈ Q,a ∈ V2 \ {B}},

U
(K)
9 = {〈〈s, a,K,q〉〉 | (s, a,K) ∈ δ(q,B), s, q ∈ Q,a ∈ V2 \ {B}}, K ∈ {R,L}.
Furthermore, for an alphabet T we denote by T ′ the alphabet consisting of the

primed copies of all symbols in T . Now, we set:

U = U
(R)
1 ∪ U

(L)
1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 ∪ U7 ∪ U8 ∪ U

(R)
9 ∪ U

(L)
9

∪ U10 ∪ V2 ∪ Q ∪ U ′
3 ∪ U ′

5 ∪ U ′
6 ∪ U ′

8 ∪ (V2 \ {B})′.
We define the AHNEP Γ = (V1,U,Kp,N,α,β, xI , xO), where p = 15 +
7(card(V2) − 1) + card(Q) + 2(card(V2) − 1)2 + 2card(Q)(card(V2) − 1) nodes.



Table 1 Simulation of a non-B-reading move of M to the right

Node M,PI,FI,PO,FO, α,β

x
(�=B)
1 M = {q → 〈s, b,K,a〉 | (s, b,K) ∈ δ(q, a)}

PI = ∅, FI = U \ (V2 ∪ Q)

PO = ∅ , FO = ∅
α = ∗ , β = s

x
(�=B)
1 (a, b) M = {ε → Y

(a)
b

}
PI = {〈s, b,R,a〉}, FI = U \ (V2 ∪ U

(R)
1 ∪U4)

PO = ∅, FO = ∅
α = r , β = s

x
(�=B)
1 (a) M = {a → Xa}

PI = {Y (a)
b

}, FI = U \ (V2 ∪ U
(R)
1 ∪U3 ∪ U4)

PO = U3, FO = ∅
α = ∗, β = w

x
(�=B)
2 M = {〈s, b,R,a〉 → s, Y

(a)
b

→ b}
PI = U3, FI = U \ (V2 ∪ U

(R)
1 ∪ U3 ∪ U4)

PO = U \ (U
(R)
1 ∪U4), FO = U

(R)
1 ∪ U4

α = ∗, β = w

x
(�=B)
3 M = {Xa → ε}

PI = U3, FI = U \ (V2 ∪ U3)

PO = U \ U3, FO = U3

α = l, β = w

To begin with, the evolutionary processor placed in the input node xI is defined as
follows: MxI

= {ε → q0}, PIxI
= ∅, FIxI

= U , POxI
= ∅, FOxI

= ∅, α(xI ) = r ,
β(xI ) = s.

The definitions of the evolutionary processors placed in the rest of the nodes are
presented in the following way: we group these definitions in 4 tables, according to
the role they play in the simulation of the Turing Machine M . Each table is accom-
panied by some explanations which emphasize this role.

The nodes described in Table 1 are used for simulating a move of M which consists
in reading a symbol different from B , possibly changing the state as well as the read
symbol, and moving the tape head to the right. In this table, s, q ∈ Q, a, b ∈ V2 \ {B}
and K ∈ {R,L}.

By the definition of the input node xI , for any input string w ∈ V ∗
1 , C

(w)
1 (xI ) =

{wq0}. In the next communication step both nodes x
(�=B)

1 and x
(=B)
1 (which will be

defined later) receive a copy of wq0. Note that the initial ID of a computation of M

on w is q0w.
Let us consider now an ID αqβ , which can be obtained by a computation in

M starting with q0w. By induction, we may assume that βqα ∈ C
(w)
m (x

(�=B)

1 ) ∩
C

(w)
m (x

(=B)
1 ) for some m ≥ 1. Let us suppose that β = aβ ′, a ∈ V2 \ {B}, β ′ ∈



(V2 \ {B})∗. Clearly,

C
(w)
m+1(x

(�=B)

1 ) ⊇ {β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q,b, c ∈ V2 \ {B},
K ∈ {R,L}}.

It is clear that only those strings with c = a from the above ones are useful for our
simulating process. Now, let us follow what happens with a string β〈s, b,R,a〉α
for some fixed s ∈ Q,b ∈ V2 \ {B} in the following steps. This string is accepted
by x

(�=B)

1 (a, b) only, where Y
(a)
b is appended to its right-hand end. The resulting

string β〈s, b,R,a〉αY
(a)
b is sent out by x

(�=B)

1 (a, b) and x
(�=B)

1 (a) is the unique
node which can receive it. Here, exactly one occurrence of a in different copies of
β〈s, b,R,a〉αY

(a)
b is replaced by Xa and all the obtained strings leave x

(�=B)

1 (a). (We
shall see later that only those strings starting with a in which this first occurrence of
a is replaced by Xa can further navigate through the network; the others remain in
x

(�=B)

3 forever.) Then, all of them enter the node x
(�=B)

2 where 〈s, b,R,a〉 and Y
(a)
b are

replaced by s and b, respectively. Both symbols must be replaced in two consecutive
evolutionary steps since the output filter of x

(�=B)

2 prevents leaving of this node by the

strings containing symbols from U
(R)
1 or U4. All the strings leaving x

(�=B)

2 arrive in

x
(�=B)

3 where those starting with Xa can leave x
(�=B)

3 after having removed Xa from

their left-hand end, while the others remain in x
(�=B)

3 forever. In this way, we check
whether or not the first letter of β is indeed a. By the above explanations, we infer
that:

C
(w)
m+14(x

(�=B)

1 ) ⊇ {β ′sαb | (s, b,R) ∈ δ(q, a), s ∈ Q,b ∈ V2 \ {B}}.

The nodes described in Table 2, together with x
(�=B)

1 are used for simulating a move
of M which consists in reading a symbol different from B , possibly changing the
state as well as the read symbol, and moving the tape head to the left, provided that
this is possible. In this table, s, q ∈ Q and a, b ∈ V2 \ {B}.

We continue our explanation by returning to the configuration

C
(w)
m+1(x

(�=B)

1 ) ⊇ {β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q,b, c ∈ V2 \ {B},
K ∈ {R,L}}.

In the sequel, we follow a string β〈s, b,L,a〉α for some fixed s ∈ Q,b ∈ V2 \ {B}.
This string enters x

(�=B)

2 (a, b) where, similarly to the situation described above when

the followed string reached x
(�=B)

1 (a), exactly one occurrence of a in different copies

of β〈s, b,L,a〉α is replaced by [a, b]. As we shall see later, the node x
(�=B)

5 blocks all

the strings obtained in x
(�=B)

2 (a, b) which do not start with [a, b] for further navigation
through the network. Until that moment, we continue our explanations. The strings
obtained in x

(�=B)

2 (a, b) enter x
(�=B)

2 (b), where Wb is appended to their right-hand

end. Now, all these strings enter x
(�=B)

4 , where exactly one occurrence of the letter
c ∈ V2 \ {B} in different copies of each of these strings is replaced by Zc . As we shall



Table 2 Simulation of a non-B-reading move of M to the left

Node M,PI,FI,PO,FO, α,β

x
(�=B)
2 (a, b) M = {a → [a, b]}

PI = {〈s, b,L,a〉}, FI = U \ (V2 ∪ U
(L)
1 )

PO = U2, FO = ∅
α = ∗, β = w

x
(�=B)
2 (b) M = {ε → Wb}

PI = {[a, b]}, FI = U \ (V2 ∪ U
(L)
1 ∪ U2)

PO = ∅, FO = ∅
α = r , β = s

x
(�=B)
4 M = {a → Za}

PI = U6 , FI = U \ (V2 ∪ U
(L)
1 ∪ U2 ∪ U6)

PO = U5, FO = ∅
α = ∗ , β = w

x
(�=B)
5 M = {[a, b] → ε}

PI = U5, FI = U \ (V2 ∪ U
(L)
1 ∪ U2 ∪ U5 ∪ U6)

PO = U \ U2, FO = U2

α = l, β = w

x
(�=B)
3 (a) M = {ε → W ′

a}
PI = {Wa} , FI = U \ (V2 ∪ U

(L)
1 ∪ U5 ∪ U6)

PO = U \ U3, FO = U3

α = l, β = w

x
(�=B)
6 M = {Wa → ε}

PI = U ′
6, FI = U \ (V2 ∪ U

(L)
1 ∪ U5 ∪ U6 ∪ U ′

6)

PO = U \ U6, FO = U6

α = r , β = w

x
(�=B)
4 (a) M = {ε → Z′

a}
PI = {Za}, FI = U \ (V2 ∪ U

(L)
1 )

PO = U \ U3, FO = U3

α = l, β = w

x
(�=B)
7 M = {Za → ε}

PI = U ′
5, FI = U \ (V2 ∪ U

(L)
1 ∪ U5 ∪ U ′

5 ∪ U ′
6)

PO = U \ U5, FO = U5

α = r , β = w

x
(�=B)
8 M = {W ′

a → a} ∪ {Z′
a → a} ∪ {〈s, b,L,a〉 → s}

PI = U ′
5, FI = U \ (V2 ∪ U

(L)
1 ∪ U ′

5 ∪ U ′
6)

PO = U \ (U
(L)
1 ∪ U ′

5 ∪ U ′
6), FO = U

(L)
1 ∪ U ′

5 ∪ U ′
6

α = ∗, β = w

see later, only those words in which the rightmost occurrence of c is replaced by Zc

can be further processed. The role of this node is to check whether or not α = ε since



Table 3 Simulation of a B-reading move of M to the right

Node M,PI,FI,PO,FO, α,β

x
(=B)
1 M = {ε → 〈〈s, a,K,q〉〉 | (s, a,K) ∈ δ(q,B)}

PI = ∅, FI = U \ (V2 ∪ Q)

PO = ∅, FO = ∅
α = r , β = s

x
(=B)
1 (q) M = {q → ε}

PI = {〈〈s, a,K,q〉〉}, FI = U \ (V2 ∪ U9 ∪ Q)

PO = U , FO = ∅
α = l, β = w

x
(=B)
1 (s, a) M = {ε → sa}

PI = {〈〈s, a,R,q〉〉}, FI = U \ (V2 ∪ U
(R)
9 )

PO = ∅, FO = ∅
α = l, β = s

x
(=B)
1 (a) M = {ε → Ya}

PI = {sa}, FI = U \ (V2 ∪ U
(R)
9 ∪ U7)

PO = U , FO = ∅
α = r , β = w

x
(=B)
2 M = {〈〈s, a,R,q〉〉 → ε}

PI = U8, FI = U \ (V2 ∪ U
(R)
9 ∪ U7 ∪ U8)

PO = ∅, FO = U
(R)
9

α = ∗, β = s

x
(=B)
3 M = {Ya → a} ∪ {sa → s}

PI = U8, FI = U \ (V2 ∪ U8 ∪ U7)

PO = U \ (U8 ∪ U7), FO = U8 ∪ U7

α = ∗, β = w

a move of the tape head to the left in the ID αqβ is possible provided that α �= ε. More
clearly, C

(w)
m+5(x

(�=B)

4 ) has just received all strings of the form β1〈s, b,L,a〉αWb and
β〈s, b,L,a〉α1Wb, where β1 and α1 differ from β and α, respectively, on exactly one
position where a in β or α is replaced by [a, b].

Later, it will turn out that only the strings [a, b]β ′〈s, b,L,a〉α′ZcWb are useful
for the rest of computation. Indeed, the strings which do not start with a symbol
in U2 remain blocked in x

(�=B)

5 . The others leave x
(�=B)

5 and enter x
(�=B)

3 (a) where
they receive W ′

a in their left-hand end, provided that they have Wa in their right-
hand end. After that, Wa is deleted. This is actually the way of rotating a symbol
from the right-hand end to the left-hand end of a string. The role of x

(�=B)

4 (a) and

x
(�=B)
7 is the same and now we can easily notice that only the strings proceeding

from [a, b]β ′〈s, b,L,a〉α′ZcWb can continue the computation. Finally, we deduce
that

C
(w)
m+22(x

(�=B)

1 ) ⊇ {cbβ ′sα′ | α = cα′, (s, b,L) ∈ δ(q, a), s ∈ Q,b, c ∈ V2 \ {B}}.



The nodes described in Table 3 are used for simulating a move of M which consists
in reading B and changing it into a symbol from V2 \ {B}, possibly changing the
current state, and moving the tape head to the right. In this table, s, q ∈ Q, a ∈ V2 \
{B} and K ∈ {R,L}.

We consider a string βqα ∈ C
(w)
m (x

(=B)
1 ) and (s, a,R) ∈ δ(q,B) a transi-

tion which the move of M we want to simulate is based on. First, the string
βqα〈〈s, a,R,q〉〉 is produced in x

(=B)
1 and then sent out. The string enters x

(=B)
1 (q)

where one checks whether or not β = ε. Only qα〈〈s, a,R,q〉〉, after deleting q , is
able to leave x

(=B)
1 (q), the others being blocked in this node. Now, α〈〈s, a,R,q〉〉

enters x
(=B)
1 (s, a), where the symbol sa is appended to its left-hand end, and the

resulting string enters x
(=B)
1 (a), where Ya is appended to its right-hand end. Then,

〈〈s, a,R,q〉〉 is removed and Ya , as well as sa, are replaced by a and s, respectively.
Hence

C
(w)
m+14(x

(=B)
1 ) ⊇ {sαa | (s, a,R) ∈ δ(q,B), s ∈ Q,a ∈ V2 \ {B}}.

The nodes described in Table 4 are used, together with the nodes x
(=B)
1 and

x
(=B)
1 (q), q ∈ Q, for simulating a move of M which consists in reading B and chang-

ing it into a symbol from V2 \ {B}, possibly changing the current state, and moving
the tape head to the left. In this table, s, q ∈ Q and a ∈ V2 \ {B}.

We consider again a string βqα ∈ C
(w)
m (x

(=B)
1 ) and (s, a,L) ∈ δ(q,B) a transition

which the move of M we want to simulate is based on. As above, after producing
βqα〈〈s, a,L,q〉〉 in x

(=B)
1 , this string enters x

(=B)
1 (q), where one checks whether

or not β = ε and q is removed. Then, α〈〈s, a,L,q〉〉 enters x
(=B)
2 (s, a), where s̃a

is appended to its left-hand end. The new string, after having removed 〈〈s, a,L,q〉〉
receives X′

a in its left-hand end resulting in X′
a ˜saα. Now, the last symbol of α, say

b, is shifted as b′ before X′
a by means of the nodes x

(=B)
5 , x

(=B)
6 , and x

(=B)
3 (b). The

obtained string is now b′X′
a ˜saα′, with α = α′b. Therefore,

C
(w)
m+22(x

(=B)
1 ) ⊇ {basα′ | (s, a,L) ∈ δ(q,B), s ∈ Q,a ∈ V2 \ {B}, α = α′b}.

The construction of Γ is completed with the output node xO defined by MxO
= ∅,

PIxO
= F , FIxO

= U \ (V2 ∪ F), POxO
= ∅, FOxO

= U , α(xO) = ∗, β(xO) = w.
By the aforementioned explanations we infer that L(M) = L(Γ ). On the other hand,
if M halts on w without accepting, namely all computations of M on w eventually
reach deadlock states, then the computation of Γ on w is halting but not accepting.
Further, if M works in f (n) time, then TimeΓ (n) ≤ 22f (n). �

Recall that the underlying graph of the network Γ is the complete graph Kp , with

p = 15+7(card(V2)−1)+ card(Q)+2(card(V2)−1)2 +2card(Q)(card(V2)−1).

That is, the number of nodes of Γ is bounded by a quadratic function depending on
the number of states and symbols of M . Also, the total number of symbols used by



Table 4 Simulation of a B-reading move of M to the left

Node M,PI,FI,PO,FO, α,β

x
(=B)
2 (s, a) M = {ε → s̃a}

PI = {〈〈s, a,L,q〉〉}, FI = U \ (V2 ∪ U
(L)
9 )

PO = U , FO = ∅
α = l, β = w

x
(=B)
4 M = {〈〈s, a,L,q〉〉 → ε}

PI = U7, FI = U \ (V2 ∪ U
(L)
9 ∪ U10)

PO = U \ U
(L)
9 , FO = U

(L)
9

α = ∗, β = w

x
(=B)
2 (a) M = {ε → X′

a}
PI = {s̃a}, FI = U \ (V2 ∪ U10)

PO = U , FO = ∅
α = l, β = w

x
(=B)
5 M = {a → Y ′

a}
PI = U ′

3, FI = U \ (V2 ∪ U10 ∪ U ′
3)

PO = U ′
8, FO = ∅

α = ∗, β = w

x
(=B)
3 (a) M = {ε → a′}

PI = {Y ′
a}, FI = U \ (V2 ∪ U10 ∪ U ′

3 ∪ U ′
8)

PO = ∅, FO = ∅
α = l, β = s

x
(=B)
6 M = {Y ′

a → ε}
PI = V ′

2, FI = U \ (V2 ∪ U10 ∪ U ′
3 ∪ U ′

8 ∪ V ′
2)

PO = U \ U ′
8, FO = U ′

8
α = r , β = w

x
(=B)
7 M = {X′

a → a} ∪ {s̃a → s} ∪ {a′ → a}
PI = U ′

3, FI = U \ (V2 ∪ U10 ∪ U ′
3 ∪ V ′

2)

POU \ (V ′
2 ∪ U ′

3 ∪ U10), FO = V ′
2 ∪ U ′

3 ∪ U10

α = ∗, β = w

Γ is the above simulation is bounded by a cubic function depending on the number
of states and symbols of M . More precisely,

card(U) = 4card(Q)(card(V2) − 1)2 + 2(card(V2) − 1)2 + Card(V2)

+ 2card(Q)(card(V2) − 1) + 9(card(V2) − 1) + card(Q).

Theorem 1

1. NP ⊆ PTimeAHNEP.
2. PSPACE ⊆ PLengthAHNEP.



Proof Let L be a language decided by a nondeterministic Turing machine M with k

tapes such that for each x ∈ L, |x| = n, M can accept x in no more than p(n) moves.
We write this as TM(n) ≤ p(n). Clearly, we can construct a Turing machine M ′ such
that TM ′(n) ≤ p(n)/

√
22. By the well-known results regarding tape compression, we

can construct a Turing machine M ′′ with one tape only, such that TM ′′(n) ≤ p2(n)/22.

Now, by the previous proof, we construct an AHNEP Γ such that L(M ′′) = L(Γ ) and
TimeΓ (n) ≤ 22TM ′′ ≤ p2(n), which concludes the proof of NP ⊆ PTimeAHNEP.

As NPSPACE = PSPACE, the second statement follows immediately. �

Theorem 2

1. PTimeAHNEP ⊆ NP.

2. PLengthAHNEP ⊆ PSPACE.

Proof 1. Let L be a language decided by an AHNEP Γ in polynomial time p(n). It
is sufficient to construct a nondeterministic Turing machine that does not necessarily
halt on every input but accepts L in polynomial time. Such a machine M may be
constructed as follows:

1. M has a finite set of states associated with each node of Γ . This set is divided
into disjoint subsets such that each filter (input or output) and each rule has an asso-
ciated subset of states.

2. M chooses nondeterministically a copy of the input string from those existing
in the initial node of Γ (this string is actually on the tape of M in its initial ID) and
follows its itinerary through the underlying network of Γ . Let us suppose that the
contents of the tape of M is α; M works according to the following strategy labeled
by (∗):

(i) When M enters a state from the subset of states associated to a rule a → b, it
applies this rule to an occurrence of a in α, if any, nondeterministically chosen.
If α does not contain any occurrence of a, M blocks the computation.

(ii) When M enters a state from the subset of states associated to a filter, it checks
whether α can pass that filter. If α does not pass it, M blocks the computation.
Clearly, M checks first the condition of the current node (sending node) output
filter and then the condition of the receiving node input filter (which becomes
the current node).

(iii) As soon as M has checked the input filter condition of the output node of Γ , it
accepts its input string.

It is rather plain that M accepts L. If the input string w in the initial node of Γ is
in L, then there exists a computation in Γ of time complexity O(p(|w|)). Since in
any evolutionary step one inserts at most one letter, the length of α in (∗) is at most
p(|w|)+|w|. Clearly, each step (i) and (ii) of (∗) can be accomplished in time O(|α|).
Therefore, w is accepted by M in O(p2(|w|)) time which concludes the proof of the
first statement.

2. From this reasoning it also follows that the working space of M on every input
string of length n is bounded by LengthΓ (n).

Now, the main result of this paper follows.



Theorem 3

1. PTimeAHNEP = NP.

2. PLengthAHNEP = PSPACE.

Before going on, we want to say a few words about the last result. It may be
viewed a bit unfair if one considers that a computation of a nondeterministic Turing
machine could be defined as a sequence of sets of IDs. In this setting, the machine
may be viewed as computing deterministically. However, this is not a natural defin-
ition comparing to our approach: it is considered to be biologically feasible to have
sufficiently many identical copies of a molecule. By techniques of genetic engineer-
ing, in a polynomial number of lab operations one can get an exponential number of
identical molecules.

In the sequel we propose a characterization of the class P of languages that are
recognized by Turing machines in polynomial time in terms AHNEPs working in
polynomial time and space.

Theorem 4 A language L ∈ P iff L is decided by an AHNEP Γ such that there exist
two polynomials P,Q with SpaceΓ (n) ≤ P(n) and TimeΓ (n) ≤ Q(n).

Proof “if” Let Γ = (V ,U,G,N,α,β, xI , xO) with G = (XG,EG). We describe
an algorithm for deciding whether or not a given string is in L. We use two tables
(C(x))x∈XG

and (D(x))x∈XG
, with the following interpretation: C(x) represents the

set of strings that are contained in the node x after a communication step, and D(x)

represents the set of strings that are contained in the node x after an evolutionary step.
The algorithm works as follows:

Algorithm 1
INPUT: w ∈ V ∗
OUTPUT: accept iff w ∈ L

begin

for every x ∈ XG \ {xI } do

D(x) := ∅; C(x) := ∅;
endfor;
D(xI ) := ∅; C(xI ) := {w};
i := 0;
while i ≤ Q(|w|)

for every x ∈ XG

D(x) := M
α(x)
x (C(x));

endfor;
if C(xO) �= ∅ then accept; halt;
i := i + 1;
for every x ∈ XG

C(x) := (D(x) − τx(D(x))) ∪ ⋃
y∈EG

(τy(D(y)) ∩ ρx(D(y))), x∈ XG;
endfor;
if C(xO) �= ∅ then accept; halt;
i := i + 1;



endwhile;
reject;
end.

The working space of this algorithm is polynomial because the number of strings
contained in

⋃
x∈XG

C(x) and
⋃

x∈XG
D(x) is bounded by P(n) in any step of the al-

gorithm. Moreover, every string in these sets is of a length bounded by |w|+Q(|w|),
since in any step of the algorithm a string can become longer with at most one symbol.

The time needed to compute M
α(x)
x (C(x)), x ∈ XG, is at most K(|w| + Q(|w|)) ·

P(|w|), where K is the maximum number of rules in a node. This assertion holds
because, in the most time consuming case, in every node all the evolutionary rules
can be applied on any occurrence of a symbol (in the case of deletion or substitution)
or any position in the string (in the case of insertion). Note that this computation can
produce at most P(|w|) valid strings that are stored in the table D. Note also that
checking whether a string from D(x), x ∈ XG, can pass a filter takes O(T (|w| +
Q(|w|))) time, where T is the maximal cardinality of a set filter. It follows that,
in every iteration of the while loop, C(x) and D(x) can be computed in O((n +
Q(n))P (n)) time provided that |w| = n. The soundness of the algorithm is easy to
be observed. Concluding, it is not hard to deduce that the total time needed by the
algorithm presented above is: O((n + Q(n))P (n)Q(n)).

Also it is important to note that the algorithm can be implemented on a Turing
Machine, with 4 tapes: on the first tape there are encoded the filters and rules of each
node separated by some marker. Tables C and D are stored on the second and third
tape, respectively. Finally the value of variable i is stored on the forth tape together
with the value of Q(n). The computing strategy follows the facts presented above, D

being computed by rewriting the third tape according to the strings present on the first
and second tapes; C is computed in a similar manner, but according to the strings on
the first and third tapes. The computational time needed for such a Turing Machine
is a polynomial, hence L ∈ P.

For the “only if” part we make the following considerations concerning the proof
of Proposition 1. Assume that the Turing machine M is deterministic and decides L

in time p(n), where p is a polynomial. Further let m = card(V2)− 1. We start noting
that in any computational step of Γ there is exactly one node containing a single
string that is useful for the computation all the other strings, if any, being useless
for the computation. Clearly, Γ works in time O(p(n)). We have to calculate the
number of useless strings that can be accumulated in different nodes. As M works in
time p(n), all strings in the nodes of Γ at any moment are of length O(p(n)). The
nodes of Γ that can collect useless strings are:

– x
�=B

3 : it can receive O(m · p(n)) strings in any step, therefore a total amount of
O(m · p2(n)) strings during the whole computation.

– x
�=B

5 : it can receive O(m3 · p2(n)) strings in any step, therefore a total amount of
O(m3 · p3(n)) strings during the whole computation.

– x
�=B
7 : it can receive O(m · p(n)) strings in any step, therefore a total amount of

O(m · p2(n)) strings during the whole computation.
– x=B

1 (q), q ∈ Q: it can receive O(p(n)) strings in any step, therefore a total amount
of O(p2(n)) strings during the whole computation.



– x=B
6 : it can receive O(m · p(n)) strings in any step, therefore a total amount of

O(m · p2(n)) strings during the whole computation.
�

It is worth mentioning that the last theorem does not say that the inclusion
PSpaceAHNEP ∩ PTimeAHNEP ⊆ P holds. The following facts are not hard to follow:
we proved in Theorem 3 that every NP language, hence the NP-complete language
3-CNF-SAT, is in PTimeAHNEP; but, it is easy to see that 3-CNF-SAT can be decided
also by a deterministic Turing Machine, working in exponential time and polynomial
space. By Proposition 1, such a machine can be simulated by an AHENP that uses
polynomial space (but exponential time as well). This shows that 3-CNF-SAT is in
PTimeAHNEP ∩ PSpaceAHNEP, but it is not in P, unless P = NP.

Acknowledgements We thank to an anonymous reviewer whose comments improved the presentation.
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