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 36 
ABSTRACT 37 

 38 
Hydrogen sulfide (H2S) is a highly reactive molecule that is currently accepted as a 39 

signaling compound. This molecule is as important as carbon monoxide in mammals and 40 
hydrogen peroxide in plants, as well as nitric oxide in both eukaryotic systems. Although 41 
many studies have been conducted on the physiological effects of H2S, the underlying 42 
mechanisms are poorly understood. One of the proposed mechanisms involves the 43 
posttranslational modification of protein cysteine residues, a process called S-sulfhydration. 44 
In this work, a modified biotin switch method was used for the detection of Arabidopsis 45 
thaliana proteins modified by S-sulfhydration under physiological conditions. The presence 46 
of an S-sulfhydration-modified cysteine residue on cytosolic ascorbate peroxidase (APX) 47 
was demonstrated using LC-MS/MS analysis, and a total of 106 S-sulfhydrated proteins 48 
were identified. This constitutes the first report of S-sulfhydration as a posttranslational 49 
modification in plants. Immunoblot and enzyme activity analyses of some of these proteins 50 
showed that the sulfide added through S-sulfhydration reversibly regulates the functions of 51 
plant proteins in a manner similar to that described in mammalian systems.  52 

 53 
 54 

  55 
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INTRODUCTION 56 
 57 
Hydrogen sulfide (H2S) is a highly reactive and toxic molecule that has recently 58 

emerged as an important signaling compound with many physiological functions in both 59 
health and disease (Li et al., 2011; Kolluru et al., 2013). The possible role of H2S as an 60 
endogenous neuromodulator was first described in 1996, and the molecule is now accepted 61 
as the third most prevalent gasotransmitter after nitric oxide (NO) and carbon monoxide 62 
(CO) (Abe and Kimura, 1996; Vandiver and Snyder, 2012). In animal systems, the 63 
biosynthesis of H2S occurs through the action of three enzymes that are involved in the 64 
metabolism of sulfur-containing amino acids: cystathionine gamma-lyase (CGL), 65 
cystathionine beta-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MTS). 66 
These enzymes are typically localized either to specific organs or to subcellular 67 
components such as the mitochondria and cytosol (Wang, 2012).  68 

In plant systems, emerging data in recent years also suggest that H2S may function as an 69 
important signaling molecule, similar to NO or H2O2. With regard to certain stresses, H2S 70 
treatment alleviates the inhibitory effect of boron on cucumber (Cucumis sativus) root 71 
elongation (Wang et al., 2010) and the inhibitory effects of copper and aluminum stress on 72 
wheat (Triticum aestivum) germination (Zhang et al., 2008; Zhang et al., 2010). In addition, 73 
H2S pretreatment alleviates cadmium toxicity in alfalfa (Medicago sativa L.) (Li et al., 74 
2012a), improves heat tolerance in tobacco (Nicotiana tabacum) suspension-cultured cells 75 
(Li et al., 2012b), and protects Bermuda grass (Cynodon dactylon (L). Pers.) from saline, 76 
osmotic and freezing stresses (Shi et al., 2013). H2S also plays a role in the regulation of 77 
drought stress and has been described as a component of the abscisic acid signaling 78 
network in guard cells (Garcia-Mata and Lamattina, 2010; Lisjak et al., 2010; Jin et al., 79 
2013; Scuffi et al., 2014). Moreover, H2S has been shown to modulate photosynthesis 80 
through the promotion of chloroplast biogenesis, photosynthetic enzyme expression, and 81 
thiol redox modification in Spinacia oleracea seedlings (Chen et al., 2011).  82 

At the cellular level, cytosolic enzyme L-cysteine desulfhydrase (DES1) is involved in 83 
the degradation of cysteine and is therefore responsible for the generation of H2S in this 84 
cellular compartment (Alvarez et al., 2010; Romero et al., 2013). The detailed 85 
characterization of DES1 null mutants has provided insight into the role of cysteine-86 
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generated sulfide as a signaling molecule that regulates the process of autophagy in the 87 
cytosol. Furthermore, DES1 deficiency promotes the accumulation and lipidation of the 88 
ATG8 protein, which is associated with the process of autophagy (Alvarez et al., 2012). In 89 
addition, the transcriptional profile of the DES1 null mutant, in which different ATG genes 90 
are upregulated, confirms its autophagy-induced phenotype. Restoring the capacity of 91 
sulfide generation through exogenous sources or by genetic complementation eliminates the 92 
phenotypic differences between the null mutants and wild-type plants. Interestingly, sulfide 93 
is also able to reverse ATG8 protein accumulation and lipidation, even in wild-type plants, 94 
when autophagy is induced by carbon starvation (Alvarez et al., 2012b; Gotor et al., 2013). 95 

Although many studies have been conducted on the physiological effects of H2S in 96 
mammals and more recently in plants, the underlying mechanisms are poorly understood. 97 
Nonetheless, two mechanisms have been proposed based on the chemical properties of H2S. 98 
The nucleophilic properties of this molecule and its capacity to react with oxygen, H2O2 or 99 
peroxynitrite suggest that it acts by reducing cellular oxidative stress (Kabil and Banerjee, 100 
2010; Fukuto et al., 2012). The second mechanism involves the posttranslational 101 
modification of protein cysteine residues to form a persulfide group (R-SSH) (Mustafa et 102 
al., 2009b; Paul and Snyder, 2012). This process is called S-sulfhydration, as opposed to S-103 
nitrosylation, i.e., the posttranslational modification of protein cysteine residues by NO to 104 
form S-nitrosocysteine residues (R-SNO).  105 

The biochemical processes underlying protein S-sulfhydration remain controversial, and 106 
it is most likely that several chemical processes can result in the modification of protein 107 
sulfhydryl groups to form a persulfide. The local environment of the cysteine residue 108 
determines its dissociation constant (pKa) to form a thiolate anion (R-S-) and therefore 109 
determines its susceptibility to oxidation by reactive oxygen species (ROS) to generate a 110 
sulfenic residue (R-SOH) (Gruhlke and Slusarenko, 2012). This residue can further react 111 
with HS- or H2S to ultimately form a persulfide residue, as has been described for the 112 
protein Tyr phosphatase 1B (PTP1B) (Krishnan et al., 2011). Other authors have suggested 113 
that H2S reacts with oxygen to form sulfane sulfur (S0), which interacts with the –SH 114 
groups of proteins to form a persulfide bridge (Toohey, 2011, 2012). Deeper investigation 115 
of this aspect by Greiner et al. (2013) revealed that polysulfides formed in NaHS solutions, 116 
and not NaHS itself, are the oxidizing species when lipid phosphatase PTEN is used as the 117 
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model protein. These authors presented evidence that sulfane sulfur is added to the active 118 
site PTEN cysteine residues. Other posttranslational protein-cysteine modifications that 119 
have been described are the reversible addition of glutathione or NO. Additionally, the 120 
direct oxidation of the cysteine residue by H2O2 to form a sulfenic (R-SOH), sulfinic (R-121 
SO2H) or sulfonic (R-SO3H) group is well established (Zachgo et al., 2013). Oxidation to 122 
sulfenic acid is also a reversible process involved in many redox regulatory mechanisms in 123 
plants and recently, the H2O2-dependent sulfenome has been reported in Arabidopsis. 124 
Several proteins involved in signal perception and transduction events, protein degradation 125 
and redox regulations processes have been identified (Waszczak et al., 2014). 126 

Although nitrosylation typically inhibits protein function (Hess and Stamler, 2012; 127 
Zaffagnini et al., 2013), the effect of S-sulfhydration can either activate, as has been 128 
described for glyceraldehyde-3-phosphate dehydrogenase and Parkin E3 ligase activity 129 
(Mustafa et al., 2009b; Vandiver et al., 2013), or inactivate enzymatic activities, as has been 130 
reported for Tyr phosphatase 1B (Krishnan et al., 2011). In other cases, S-sulfhydration has 131 
been shown to modify protein-protein interactions, such as in the case of Keap1c, which 132 
acts as a negative regulator of Nrf2, a master regulator of the antioxidant response in mice 133 
(Yang et al., 2013). 134 

In this work, we studied protein modifications by S-sulfhydration in plants and the effect 135 
of this type of modification on protein function. 136 
 137 
RESULTS AND DISCUSSION 138 
 139 
Covalent cysteine residue modification through S-sulfhydration 140 
 141 

The biotin switch method (BSM) has been widely used for the detection of post-142 
translational modifications of proteins by S-nitrosylation, the covalent attachment of NO to 143 
cysteine residues (Sell et al., 2008). This assay consists of three steps: first, free thiols are 144 
blocked by the thiol-blocking reagent methyl methanethiosulfonate (MMTS); next, the S-145 
NO bonds are reduced by ascorbate to form free thiols; finally, these thiols are ligated with 146 
N-[6-(biotinamido)hexyl]-3'-(2'-pyridyldithio)-propionamide (biotin-HPDP) to form biotin-147 
labeled proteins (Fig. 1A). Protein post-translational modifications by S-sulfhydration, i.e., 148 
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the conversion of cysteine –SH residues to persulfide (-SSH), can also be detected using a 149 
modified biotin switch method that was first described for protein analysis in mouse liver 150 
lysates (Mustafa et al., 2009b). In the modified biotin switch method, free thiol residues are 151 
first blocked with MMTS; the persulfide residues remain unreacted and are therefore 152 
available for subsequent reaction with the thiol-specific biotinylating agent biotin-HPDP 153 
(Fig. 1B) (Mustafa et al., 2009b).  154 

Total leaf protein extracts from mature Arabidopsis plants grown under physiological 155 
conditions, in the absence of oxidative stress or chemical treatments, were subjected to the 156 
modified protein switch method to detect S-sulfhydrated proteins. The method selected 157 
only biotin-labeled proteins, corresponding to proteins that contained persulfide residues, 158 
which were analyzed using immunoblotting with antibodies against biotin (Fig. 2, lane L2). 159 
A large array of proteins was clearly detected by the antibody, and the intensities of several 160 
of the labeled proteins increased in protein extracts that were previously treated 161 
exogenously using 200 µM Na2S for 30 min (Fig. 2, lane L3). Crude protein extracts that 162 
were not subjected to the modified biotin switch method did not show any biotin-labeled 163 
proteins (Fig. 2, lane L4). 164 

The biotin-labeled proteins obtained using the modified BSM were further isolated using 165 
a streptavidin-based affinity purification process. Three independent crude extracts from 166 



 9

leaf tissue that were treated using the modified BSM were incubated with streptavidin 167 
beads and then washed several times to avoid nonspecific bead binding. The eluted proteins 168 
from the streptavidin beads were digested with trypsin and subsequently analyzed using 169 
mass spectrometry. A total of 106 S-sulfhydrated proteins were identified with high 170 
confidence (FDR < 1%) (Supplemental Table S1). This list of proteins represents the first 171 
version of the group of plant proteins that are endogenously modified by S-sulfhydration.  172 

The biological processes in which these proteins are involved were classified into 26 173 
groups based on MapMan Classification (Thimm et al., 2004; Klie and Nikoloski, 2012). 174 
The most abundant groups contained proteins involved in photosynthesis, protein synthesis 175 
and cell organization (Supplemental Table S2). Many of the proteins identified are involved 176 
in enzymatic processes related to primary metabolism, such as the Calvin cycle and the 177 
tricarboxylic acid cycle, and many are regulated by thioredoxins, suggesting that these 178 
proteins contain highly reactive cysteine residues.  179 
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Based on UniProt, several of the proteins identified in Arabidopsis have also been 180 
described in mammalian systems, such as actin, catalase, glutamine synthetase, 181 
glyceraldehyde 3-phosphate dehydrogenase, leucine aminopeptidase, ATP synthase, ß-182 
tubulin, and UDP-glucose dehydrogenase (Supplemental Table S3) (Mustafa et al., 2009b). 183 
Furthermore, the identities of some of the candidate plant proteins were confirmed through 184 
immunoblot analysis. Leaf protein extracts were subjected to the modified BSM assay and 185 
purified using streptavidin-agarose beads, and the retained proteins were separated using 186 
SDS-PAGE for immunoblot analysis. The chloroplastic GapA (A-1, 42 kDa) and GapB (48 187 
kDa) isoforms and the cytosolic GapC (37 kDa) isoform of glyceraldehyde 3-phosphate 188 
dehydrogenase, the chloroplastic glutamine synthetase GS2 isoform (43 kDa) and cytosolic 189 
ascorbate peroxidase APX1 (27 kDa) were identified in the eluted biotin-labeled protein 190 
pool by their expected molecular masses using polyclonal antibodies against homolog 191 
proteins (Fig. 3). Therefore, we demonstrated that all these plant proteins underwent S-192 
sulfhydration.  193 

The recombinant cytosolic proteins ascorbate peroxidase and glyceraldehyde 3-194 
phosphate dehydrogenase were purified and used to distinguish whether the proteins 195 
identified within the eluted biotin-labeled protein pool had been identified as a consequence 196 
of uncompleted MMTS blocking or whether they were indeed endogenously S-sulfhydrated 197 
proteins. Recombinant APX1 and GAPC1 pretreated with 200 μM NaHS showed a band of 198 
similar intensity to that in the sample untreated with NaHS, which was endogenously S-199 
sulfhydrated (Supplemental Fig. S1). When the proteins were pretreated with 1 mM DTT, 200 
no bands were detected because all disulfide bonds were reduced and then blocked by 201 
MMTS. The unblocked samples showed several bands of greater intensity than in the 202 
blocked samples, indicating that the MMTS blocking conditions were optimized. 203 
 204 
Identification of S-sulfhydrated cysteine residues of cytosolic APX using mass 205 
spectrometry 206 
 207 
To demonstrate the presence of cysteine residues modified by S-sulfhydration and the 208 
target sites of a representative protein identified in this work, we carried out LC-MS/MS 209 
analysis on the cytosolic APX enzyme. Recombinant cytosolic APX enzyme was purified 210 
from a bacterial extract and trypsin-digested under non-reducing conditions to avoid the 211 
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reduction of persulfide residues. However, under this condition, disulfide bridges between 212 
digested peptides cannot be avoided. The digested peptides were analyzed using LC-213 
MS/MS for a 32-Da mass increase in the fragmentation spectrum. As illustrated in Figure 214 
4, cytosolic L-ascorbate peroxidase 1 was identified with a sequence coverage of 74%. 215 
Among the peptides identified, only one, GLIAEKNCAPIMVR, containing Cys32, showed 216 
a sulfhydryl modification. Putative peptides containing the two other cysteine residues were 217 
not detected in the analysis, most likely because they formed a disulfide bridge under the 218 
non-reducing conditions utilized. 219 
 The oxidation of Cys32 causes APX1 inactivation, and it has been suggested that 220 
glutathionylation protects the enzyme from irreversible oxidation (Kitajima et al., 2008). 221 
The active site Cys32 of APX1 can also be S-nitrosylated by nitric oxide, which increases 222 
the activity of the enzyme, and it has been hypothesized that this PTM might be involved in 223 
the specific case of salinity stress, which is accompanied by both oxidative stress and an 224 
increase in SNOs (Begara-Morales et al., 2014). The fact that Cys32 is altered by different 225 
posttranslational modifications suggests that this enzyme must be finely regulated under 226 
specific environmental stress conditions. 227 
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 228 
S-sulfhydration regulates enzyme activity 229 
 230 

To determine whether this protein modification has a biological role in plant systems, 231 
we performed enzyme activity assays using total leaf protein extracts. Protein extracts were 232 
treated with different concentrations of NaHS as a sulfide donor, and then GS, APX and 233 
GAPDH activities were measured (Fig. 5). We clearly observed a significant inactivation of 234 
GS activity, even in the presence of very low concentrations (1 nM) of NaHS in which only 235 
half the level of the measured activity in the absence of sulfide was reached (Fig. 5A). 236 
Curiously, incubation with NaHS produced the opposite response for APX and GAPDH 237 
activities. In these cases, we observed an increase in APX and GAPDH activities of 238 
approximately 40% and 60%, respectively, compared with the activity level in the absence 239 
of sulfide. However, the activity of the APX enzyme appeared less sensitive to sulfide 240 
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regulation than that of GS because the lowest concentration of NaHS required to observe 241 
increased activity was 10 nM. In the case of GAPDH activity, the addition of 1μM of 242 
NaHS was the minimum concentration required to detect a significant increase in activity 243 
(Fig. 4B and 4C). Interestingly, the addition of DTT to the sulfide-treated extracts reversed 244 
the effect of sulfide in these enzyme activity assays. In the case of APX and GAPDH, the 245 
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activity levels decreased following the addition of DTT and fell to the untreated value. In 246 
the case of GS, reactivation to the same level as that of the untreated extract was observed 247 
following the addition of DTT (Fig. 5).   248 

The enzymatic activity assay was also performed with recombinant APX1 and GAPC1 249 
(Fig. 6). Recombinant GAPC1 showed higher activity than the leaf protein extract (data not 250 
shown) but the same sensitivity to the addition of NaHS, reaching an increased activity of 251 
approximately 60% when the protein was pretreated with NaHS. In contrast, recombinant 252 
APX1 appeared to be less sensitive to the addition of NaHS, showing an increased activity 253 
of almost 15% in response to NaHS pretreatment. Nevertheless, 1 nM NaHS was the 254 
minimal concentration required to observe a significant increase in the activity of both 255 
enzymes. The addition of DTT to the NaHS-pretreated samples had the same effect as in 256 
the leaf protein extract assay: both recombinant enzymes showed a reduction in activity 257 
after the addition of DTT, decreasing to the same value as the untreated protein (Fig. 6). 258 

Because very low concentrations of NaHS were sufficient to produce an 259 
inactivation/activation effect on enzyme activities and because this effect was reversible, it 260 
is possible that sulfide has a biological role in plants, most likely through S-sulfhydration 261 
protein modification, similarly to mammalian systems, where the biological function of S-262 
sulfhydration is well established. For example, it has been reported that the protein tyrosine 263 
phosphatase PTP1B is reversibly inactivated by sulfide, with PTP1B S-sulfhydration 264 
playing a role in the response to endoplasmic reticulum (ER) stress (Krishnan et al., 2011). 265 
Similarly, it has been shown that H2S acts as an endogenous inhibitor of phosphodiesterase 266 
(PDE) activity, suggesting that some of the critical cysteine residues are S-sulfhydrated and 267 
impair PDE activity (Bucci and Cirino, 2011). However, incubation with NaHS increases 268 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) activity, which is reversed by DTT 269 
(Mustafa et al., 2009b; Gadalla and Snyder, 2010).  Similarly, NaHS specifically enhances 270 
actin polymerization and activates ATP-sensitive potassium channels, effects that are also 271 
both reversed by DTT (Mustafa et al., 2009b; Mustafa et al., 2011). Finally, the median 272 
effective physiological concentration of sulfide for sulfhydrating protein targets in most 273 
mammalian tissues is considered to be in the micromolar range (Mustafa et al., 2009a; 274 
Nagy et al., 2014), similar to the average concentration of 50 µM calculated for the cytosol 275 
in Arabidopsis leaves (Krueger et al., 2009). However, we must consider that the level of 276 
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sulfide in the cytosol is determined via the coordinated activities of both cytosolic enzymes, 277 
i.e., O-acetylserine(thiol)lyase OAS-A1 that incorporates sulfide to form cysteine, and L-278 
cysteine desulfhydrase DES1. Therefore, the level of sulfide may change under the 279 
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developmental and stress conditions that may regulate these activities (Alvarez et al., 2011; 280 
Alvarez et al., 2012a; Laureano-Marín et al., 2014). 281 
  282 
MATERIALS AND METHODS 283 
 284 
Plant Material and Growth Conditions 285 
 286 

Arabidopsis (Arabidopsis thaliana), wild-type ecotype Col-0, was grown in soil under a 287 
photoperiod of 16 h of white light (120 μE m-2 s-1) at 20 ºC and 8 h of dark at 18 ºC (Garcia 288 
et al., 2013).  289 
 290 
Modified Biotin Switch Method 291 
 292 

The modified biotin switch assay was adapted from a previously described protocol 293 
(Mustafa et al., 2009b). Frozen Arabidopsis leaves collected from 30-day-old plants were 294 
ground to a fine powder in a mortar under liquid nitrogen, homogenized in HEN buffer 295 
containing 250 mM Hepes-NaOH (pH 7.7), 1 mM EDTA and 0.1 mM neocuproine 296 
supplemented with 100 μM deferoxamine and 1X protease inhibitor cocktail (Roche) and 297 
centrifuged at 14,000 rpm for 10 min at 4ºC. Two volumes of blocking buffer (HEN buffer 298 
supplemented with 2.5% SDS and 20 mM methyl methanethiosulfonate (MMTS)) were 299 
added to the leaf extract, and the solution was incubated at 50ºC for 20 min to block free 300 
sulfhydryl groups. The MMTS was then removed, and the proteins were precipitated using 301 
acetone at -20ºC for 20 min. The acetone was removed, and the proteins were resuspended 302 
in HENS buffer (HEN buffer supplemented with 1% SDS). The S-sulfhydrated proteins 303 
were then labeled using 4 mM N-[6-(biotinamido)hexyl]-3'-(2'-pyridyldithio)propionamide 304 
(Biotin-HPDP) for 3 hours at 25ºC in the dark.  305 
Purified recombinant proteins were used to optimize the blocking conditions to avoid 306 
incomplete blocking. Thus, purified recombinant APX1 and GAPC1 were pretreated with 307 
200 μM NaHS to increase the concentration of S-sulfhydrated proteins or with 1 mM DTT 308 
to reduce all disulfide bonds; both treatments were carried out for 30 min at 4ºC and buffer 309 
exchanged to eliminate residual DTT or NaHS before performing the modified biotin 310 
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switch assay. An untreated aliquot of purified proteins did not undergo the blocking stage 311 
with methyl methanethiosulfonate (MMTS) during the modified biotin switch assay for 312 
comparison with the blocked proteins. The biotinylated proteins were detected using an 313 
immunoblot assay with anti-biotin antibodies (Abcam antibodies) as described below. 314 
 315 
Streptavidin-Based Affinity Purification Process 316 

 317 
The labeled proteins were precipitated using acetone, and the washed pellet was 318 

resuspended in HENS buffer. To purify the biotinylated proteins, the solution was 319 
incubated with streptavidin beads for 1 hour at room temperature with frequent vortexing. 320 
The streptavidin beads were intensively washed five times using ten volumes of 20 mM 321 
Hepes-NaOH (pH 7.7), 600 mM NaCl, 1 mM EDTA and 0.5% Triton X-100 and then 322 
centrifuged at 3000 rpm for 5 s at room temperature between each wash. To recover the 323 
bound proteins, the beads were incubated with 20 mM Hepes-NaOH (pH 7.7), 100 mM 324 
NaCl, 1 mM EDTA and 100 mM 2-mercaptoethanol for 10 min at room temperature. The 325 
total amount of purified proteins was determined using Bradford’s method (Bradford, 1976). 326 

 327 
Expression and Purification of Recombinant His-Tagged Proteins 328 
 329 

The complete cDNAs of cytosolic ascorbate peroxidase APX1 (At1g07890) and the 330 
cytosolic GapC isoform of glyceraldehyde 3-phosphate dehydrogenase GAPC1 331 
(At3g04120) were cloned into the pDEST17 vector (Invitrogen) to express an N-terminal 6-332 
His-tagged protein using the E. coli expression system with Gateway Technology 333 
(Invitrogen). For APX1 and GAPC1 protein expression, transformed E. coli BL21(DE3) 334 
cell cultures at an OD600 of 0.6 were treated with 0.1 and 0.5 mM of IPTG (isopropyl-beta-335 
D-thiogalactopyranoside), respectively; the cell cultures were incubated for 4 hours at 30ºC. 336 
Purification was performed by nickel resin binding under non-denaturing conditions using 337 
the Ni-NTA Purification System (Invitrogen) according to the manufacturer´s 338 
recommendations. Recombinant protein production and purification were assessed by SDS-339 
PAGE using 12% (w/v) polyacrylamide gels and Coomassie Brilliant Blue staining. 340 

 341 
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Identification of S-Sulfhydrated Cysteine Residues of Recombinant Cytosolic APX 342 
using Mass Spectrometry 343 

 344 
Cytosolic ascorbate peroxidase APX1 was separated using non-reducing SDS-PAGE on 345 

12% polyacrylamide gels and the band corresponding to APX1 was excised manually from 346 
Coomassie-stained gels, deposited in 96-well plates and processed automatically in a 347 
Proteineer DP (Bruker Daltonics, Bremen, Germany). The digestion protocol used was 348 
based on Shevchenko et al. (1996) without the reduction or alkylation steps: gel plugs were 349 
washed twice, first using 50 mM ammonium bicarbonate and second using ACN, and then 350 
dried under a stream of nitrogen. Then, proteomics-grade trypsin (Sigma Aldrich) at a final 351 
concentration of 16 ng/μl in 25% ACN/50 mM ammonium bicarbonate solution was added 352 
and digestion took place at 37ºC for 5 h. The reaction was stopped by adding 50% 353 
ACN/0.5% TFA for peptide extraction. The tryptic eluted peptides were dried using speed-354 
vacuum centrifugation and were resuspended in 6 μl of 0.1% FA in water. 355 
Digested peptides were subjected to 1D-nano LC ESI-MSMS analysis using a nano liquid 356 
chromatography system (nanoLC Ultra 1D plus, Eksigent Technologies) coupled to a high 357 
speed Triple TOF 5600 mass spectrometer (AB SCIEX, Foster City, CA) with a duo spray 358 
ionization source. Data acquisition was performed using a TripleTOF 5600 System (AB 359 
SCIEX, Concord, ON). MS and MS/MS data obtained for individual samples were 360 
processed using Analyst® TF 1.5.1 Software (AB SCIEX). Peptide mass tolerance was set 361 
to 25 ppm and 0.05 Da for fragment masses, and only 1 or 2 missed cleavages were 362 
allowed. Peptides with an individual MOWSE score ≥ 20 were considered correctly 363 
identified. 364 
 365 
Immunoblot Analysis 366 
The biotinylated proteins were separated using non-reducing SDS-PAGE on 12% 367 
polyacrylamide gels before being transferred to polyvinylidene fluoride membranes (Bio-368 
Rad) according to the manufacturer’s instructions. Anti-biotin (Abcam antibodies) and 369 
secondary antibodies were diluted 1:500,000 and 1:100,000, respectively, and an ECL 370 
Select Western Blotting Detection Reaction (GE Healthcare) was used to detect the proteins 371 
using horseradish peroxidase-conjugated anti-rabbit secondary antibodies. The streptavidin-372 
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purified biotinylated proteins were also subjected to an immunoblot analysis using SDS-373 
PAGE on 15% polyacrylamide gels using the following antibodies: i) polyclonal antibodies 374 
raised against different forms of GAPDH from the microalga Scenedesmus vacuolatus, 375 
anti-GAP2 and anti-GAP3, which recognize the Arabidopsis chloroplastic isoforms A and 376 
B and the cytosolic isoform C, respectively (Valverde et al., 2005), diluted 1:10,000; ii) 377 
anti-GS antibodies raised against recombinant homopolymeric GS from Phaseolus vulgaris, 378 
recognizing mainly the Arabidopsis chloroplastic isoform and also to a minor extent the 379 
cytosolic isoform (Betti et al., 2006) diluted 1:1,000; and iii) and anti-cytosolic APX 380 
antibodies (Agrisera) diluted 1:10,000. Prior to immunodetection, the membrane was 381 
stained using SYPRO Ruby (Life Technologies) as a protein loading control. 382 
 383 
Mass Spectrometry Analysis 384 
 385 

The purified protein samples were precipitated using 10% trichloroacetic acid and were 386 
acetone-washed before tryptic digestion. The samples were then purified using Pierce® 387 
C18 spin columns and evaporated in a speed vacuum prior to storage at -80ºC. A label-free 388 
analysis was performed as described in (Schroder et al., 2012). Briefly, peptides were 389 
separated by reverse-phase chromatography using an Eksigent Ultra 2D+ pump fitted with 390 
a 75-μm ID column (nanoLC column, 75 μm id x 15 cm, C18, 3 µm, 120 Å, ChromXP); 391 
the samples were first loaded into a 2 cm long, 100-μm ID pre-column, packed using the 392 
same chemistry as the separating column, for desalting and concentrating. The mobile 393 
phases were 100% water/0.1% formic acid (buffer A) and 100% acetonitrile/0.1% formic 394 
acid (buffer B). The column gradient was developed using a 60-min, two-step run from 5% 395 
B to 30% B in 30 min and 30% B to 70% B in 10 min. The column was equilibrated with 396 
95% B for 5 min and 5% B for 15 min. During all processes, the pre-column was in-line 397 
with the separating column, and the flow was maintained along the entire gradient at 300 398 
nl/min. The peptides eluted from the column were analyzed using an AB Sciex 5600 399 
TripleTOFTM+ system. Data-dependent acquisition occurred during a 250-ms survey 400 
sampling performed over a mass range from 350 m/z to 1250 m/z. The top 20 peaks were 401 
selected for fragmentation. The minimum accumulation time for MS/MS was set to 50 ms, 402 
for a total cycle time of 1250 ms. The product ions were surveyed during a 15-s period over 403 
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a mass range from 100 m/z to 1500 m/z and excluded from further fragmentation. After the 404 
MS/MS analysis, the data files were processed using ProteinPilotTM 4.5 software from AB 405 
Sciex, which implements the algorithms ParagonTM for database searching and 406 
ProgroupTM for data grouping (Shilov et al., 2007), and were searched against the Uniprot 407 
Arabidopsis-specific database. A false discovery rate was performed using a non-linear 408 
fitting method (Tang et al., 2008), and the results displayed are those with a 1% global false 409 
discovery rate or better. The data were analyzed using three technical replicas for each 410 
sample. Peak lists were generated in PeakViewTM 1.1 Software from AB Sciex using the 411 
combined database search results generated in the ProteinPilotTM 4.5 software. The peak 412 
list matrix generated was exported to MarkerViewTM 1.2.1 software for Principal 413 
Component Analysis (PCA). Sample comparison was performed using the first two 414 
components, which explained a total of 75% of the variance between samples. Sample 415 
dispersion was measured using a t test, and proteins with extreme t values were chosen as 416 
candidates for validation. 417 

 418 
Enzyme Activity Assays 419 
 420 

Plant leaf material from 30-day-old plants was ground using a mortar and pestle with 421 
liquid nitrogen in 50 mM potassium phosphate buffer (pH 7.5) containing 1 mM EDTA, 1 422 
mM phenylmethylsulfonyl fluoride (PMSF), 5 mM sodium ascorbate and 5% 423 
polyvinylpyrrolidone (PVPP) (w/v) for APX activity, in 50 mM Tris-HCl (pH 7.5) for 424 
GAPDH activity and in 20 mM HEPES-NaOH (pH 7.0) for GS activity. All buffers were 425 
supplemented with a protease inhibitor cocktail (Roche). The leaf extracts were centrifuged 426 
at 14,000 rpm for 10 min at 4ºC, and the supernatant was used as the soluble extract.  427 

The APX activity was determined as previously described (García-Limones et al., 2002). 428 
The reaction mixture contained 50 mM potassium phosphate buffer (pH 7.0), 0.25 mM 429 
sodium ascorbate and 0.05 ml of leaf extract (containing approx. 0.5 mg of total protein) or 430 
0.05 ml of purified APX recombinant protein (containing approx. 0.1 mg of total protein). 431 
The reaction was initiated by adding 5 mM H2O2, and the oxidation of ascorbate was 432 
determined by the decrease in absorbance at 290 nm (ε= 2.8 mM-1 cm-1). 433 
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The GAPDH activity was monitored spectrophotometrically at room temperature by 434 
following the glycolytic reaction assays, as described previously (Bedhomme et al., 2012). 435 
The glycolytic reaction was measured in an assay containing 50 mM Tris-HCl (pH 7.5), 1 436 
mM NAD+, 10 mM sodium arsenate and 0.05 ml of leaf extract (containing approx. 2 mg 437 
of total protein) or 0.05 ml of purified GAPDH cytosolic isoform C recombinant protein 438 
(containing approx. 0.1 mg of total protein). The reaction was initiated by the addition of 1 439 
mM glyceraldehyde 3-phosphate, and the absorbance at 340 nm was recorded for 1 minute 440 
(ε= 6.2 mM-1 cm-1). 441 

The GS transferase activity was measured by the formation of γ-glutamylhydroxamate 442 
(Merida et al., 1991). The assay was performed in a final volume of 1 ml that contained 60 443 
μmol of HEPES-NaOH buffer (pH 7.0), 40 μmol of L-glutamine, 4 μmol of MnCl2, 60 444 
μmol of hydroxylamine, 1 μmol of ADP and 0.05 ml of leaf extract (containing approx. 2 445 
mg of total protein). The reaction was initiated by the addition of 20 μmol of sodium 446 
arsenate, and the amount of γ-glutamylhydroxamate formed after 10 min of incubation at 447 
30°C was determined spectrophotometrically at 500 nm (ε= 0.89 mM-1 cm-1). 448 
 449 
Statistical Analysis 450 
 451 

All results are shown as the mean ± standard deviation of three biological replicas. The 452 
data were analyzed by ANOVA using Microsoft Excel (P<0.05). 453 
 454 
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FIGURE LEGENDS 465 
 466 

Figure 1. (A) Schematic representation of the biotin switch method for the detection of 467 
post-translational modification of proteins by S-nitrosylation, where free thiols are blocked 468 
by methyl methanethiosulfonate (MMTS), the S-NO bonds are reduced by ascorbate to 469 
form free thiols, and finally, these new thiols are ligated with the thiol-specific biotinylating 470 
agent biotin-HPDP to form biotin-labeled proteins. (B) Schematic representation of the 471 
modified biotin switch method for the detection of post-translational modification of 472 
proteins by S-sulfhydration, where free thiol residues are first blocked with MMTS; the 473 
persulfide residues remain unreacted and available for subsequent reaction with biotin-474 
HPDP to form biotin-labeled proteins. A sketch of a protein with different cysteine residues 475 
is shown. Additional details are described in the text.  476 
 477 
Figure 2. Immunoblot analysis of the total S-sulfhydrated proteins. Protein cell extracts 478 
from 1 g of leaf tissue were exogenously untreated (L2) or treated (L3) using 200 µM Na2S 479 
for 30 min at 4ºC and were subjected to the modified biotin switch method. The labeled 480 
proteins were detected using protein blot analysis with antibodies against biotin. Biotin 481 
labeled-cytochrome C protein (L1) and a protein cell extract that was not subjected to the 482 
modified biotin switch method (BSM) (L4) were used for the positive and negative control, 483 
respectively. Sypro Ruby fluorescent staining is shown as the protein loading control. 484 
 485 
 486 
Figure 3. Immunoblot analysis of specific S-sulfhydrated candidate proteins. Biotinylated 487 
proteins obtained from the leaf extracts subjected to the modified biotin switch assay were 488 
purified using streptavidin-agarose beads and analyzed using four different immunoblots 489 
with the following antibodies: anti-chloroplastic GAPDH antibodies that recognized the 490 
chloroplastic isoforms A and B; anti-cytosolic GAPDH antibodies that recognized the 491 
cytosolic isoform C; anti-GS antibodies that recognized both the chloroplastic and cytosolic 492 
isoforms, and anti-cytosolic APX antibodies. Sypro Ruby fluorescent staining is shown as 493 
the protein loading control. 494 
 495 
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Figure 4. Analysis of L-ascorbate peroxidase using mass spectrometry. The protein was 496 
identified with a sequence coverage of 74%; the identified peptides are shown in bold red 497 
and the peptide containing S-sulfhydrated Cys32 is shown underlined (A). LC-MS/MS 498 
analysis of the tryptic peptide containing Cys32 of APX1. The table inside the spectrum 499 
contains the predicted ion types for the modified peptide, and the ions detected in the 500 
spectrum (Biemann, 1988) are highlighted in red color. Nomenclature of the fragment ions 501 
and types corresponds to that proposed by Roepstorff and Fohlman (1984) and modified by 502 
Biemann (Biemann, 1988) (B). 503 
 504 
Figure 5. Enzyme activity regulation of glutamine synthetase, ascorbate peroxidase and 505 
glyceraldehyde-3-phosphate dehydrogenase by S-sulfhydration in Arabidopsis thaliana. 506 
The protein leaf extracts were treated in the absence or presence of NaHS at the indicated 507 
concentrations for 30 min at 4ºC (black bars), and an additional treatment with DTT 50 mM 508 
was performed for 10 min in some cases (grey bars). Then, glutamine synthetase (A), 509 
ascorbate peroxidase (B) or glyceraldehyde-3-phosphate dehydrogenase (C) enzyme 510 
activity was measured as described in Materials and Methods. All results are shown as the 511 
mean ± SD. Significant differences between the treatments with and without NaHS are 512 
indicated by the letter “a” (P<0.05). Significant differences between samples with or 513 
without DTT are indicated by the letter “b” (P<0.05). 514 
 515 
Figure 6. Enzyme activity regulation of recombinant cytosolic ascorbate peroxidase 516 
(APX1) and cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC1) by S-517 
sulfhydration. Purified proteins were treated in the absence or presence of NaHS at the 518 
indicated concentrations for 30 min at 4ºC (black bars), and in some cases an additional 519 
treatment with DTT 1 mM was performed (grey bars). Then, APX1 (A) or GAPC1 (B) 520 
enzyme activity was measured as described in Materials and Methods. All results are 521 
shown as the mean ± SD. Significant differences between treatments with and without 522 
NaHS are indicated by the letter “a” (P<0.05). Significant differences between samples 523 
with or without DTT are indicated by the letter “b” (P<0.05). 524 
 525 
 526 
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Supplemental Data 528 
 529 
Supplemental Figure S1. Immunoblot analysis of specific S-sulfhydrated candidate 530 
proteins. 531 
 532 
Supplemental Table S1. S-sulfhydrated proteins from Arabidopsis thaliana. 533 
 534 
Supplemental Table S2. Gene ontology classification of S-sulfhydrated proteins. 535 
 536 
Supplemental Table S3. Common candidates for protein S-sulfhydration from 537 
Arabidopsis thaliana and liver mammalian cells. 538 
 539 
 540 
 541 
 542 



Supplemental Figure S1. Analysis of the specificity of the modified biotin switch 
method using recombinant proteins. Purified recombinant GAPC1 (A) and APX1 (B) 
proteins were untreated (L1) or treated with 200 µM NaHS (L2) or 1 mM DTT (L3) 
prior to perform the modified biotin switch assay as described in Materials and 
Methods. As a negative control of the blocking treatment, the modified biotin 
switch assay without MMTS treatment was performed on the untreated sample 
(L4). Biotinylated proteins were separated by SDS-PAGE and inmunoblotted with 
antibodies anti-Biotin. The Sypro Rubi fluorescent staining is shown as the protein 
loading control.  
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Supplemental Table S3. Common candidates for protein S-sulfhydration from Arabidopsis 

thaliana and liver mammalian cells. 

 

 
S-sulfhydrated proteins 
in mouse liver 
 

 
S-sulfhydrated proteins in Arabidopsis 
leaves 

 
Arabidopsis 
locus 

Actin Actin-1 
Actin-2 
Actin-3 
Actin-4 
Actin-7 
Actin-11 
Actin-12 

At2g37620 
At3g18780 
At3g53750 
At5g59370 
At5g09810  
At3g12110 
At3g46520 

Catalase Catalase-3 At1g20620 

Glutamine synthetase Glutamine synthetase, 
chloroplastic/mitochondrial 

At5g35630 

Glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH) 

Glyceraldehyde-3-phosphate 
dehydrogenase A 
Glyceraldehyde-3-phosphate 
dehydrogenase B 
Glyceraldehyde-3-phosphate 
dehydrogenase, GapC1 
Glyceraldehyde-3-phosphate 
dehydrogenase, GapC2 

At3g26650 
 
At1g42970 
 
At3g04120 
 
At1g13440 

ATP synthase, mitochondrial ATP synthase subunit alpha 
ATP synthase subunit alpha, 
chloroplastic 
ATP synthase subunit beta, 
chloroplastic 

At2g07698 
 
AtCg00120 
 
AtCg00480 

Tubulin beta Tubulin beta-9 chain At4g20890 
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