ABSTRACT: In this paper, some properties of the set \mathcal{Q}_{n} of those quasigroups of n elements having maximum rank n are studied. Although one such a quasigroup Q must be a loop, the reciprocal is false in general. So, the existence of an unit element of Q can be used in order to study the symmetrical structure of its multiplication table, given by the autotopism group of Q. Moreover, by imposing the condition of having maximum rank, a classification of all possible structural patterns of \mathcal{Q}_{n} can be obtained. Finally, it is given an outline about the application of all the previous results in the calculus of the character tables of the quasigroups of \mathcal{Q}_{n} and their corresponding determinant groups.

A

1 Basic definitions

- A quasigroup is a nonempty set Q endowed with a product , such that if any two of the three symbols a, b, c in the equation $a \cdot b=c$ are given as elements of Q, the third is uniquely determined as an element of Q. It is equivalent to say that Q is endowed with a left \backslash and a right / division. If there exists $e \in Q$ such that $a \cdot e=e \cdot a=a$, for all $a \in Q$, then (Q, \cdot) is a loop with unit element e.
- Johnson and Smith $[4]$ extended the traditional character theory for finite groups to finite quasigroups. To do it, given a quasigroup (Q, \cdot), they defined the conjugacy class of a pair $(i, j) \in Q^{2}$ as the orbit $\mathfrak{o}(i, j)=\{((x \cdot i) \cdot y,(x \cdot j) \cdot y) \mid x, y \in$
$Q\} \cup\{(x \cdot(i \cdot y), x \cdot(j \cdot y)) \mid x, y \in Q$ of the diagonal action of the multiplication group G on Q^{2}. The number of conjugacy classes of a quasigroup is its rank and it is verified that almost all finite quasigroups have rank 2 [6]. \mathcal{Q}_{n} denotes the set of those quasigroups of n elements having maximum rank n. The conjugacy classes of a quasigroup constitute an association scheme of Q^{2}, such that the linear span of the set $\left\{A_{1}=I d_{n}, A_{2}, \ldots, A_{m}\right\}$ of their incidence matrices in the algebra of $n \times n$ complex matrices is a commutative Bose-Mesner algebra, called the centralizer ring $V(G, Q)$ of G in its multiplicity-free action on Q.

Let $\left\{E_{1}=J_{n} / n, E_{2}, \ldots, E_{m}\right\}$ a basis of idempotent matrices of $V(G, Q)$ obtained by diagonalizing this algebra, where J_{n} is the $n \times n$ all-ones matrix. If $\left|C_{i}\right|=n n$ $\operatorname{tr}\left(E_{i}\right)=f_{i}$ and $A_{i}=\sum_{j=1}^{m} \xi_{i, j} E_{j}$, for all $i \in[m]$, then the character table of (Q, \cdot) is the $m \times m$ matrix $\Psi=\left(\psi_{i, j}\right)$, such that $\psi_{i, j}=\frac{\sqrt{H_{1}} \xi_{j i}}{n_{j}}$

- The multiplication or Caley's table of any quasigroup with n elements is a Latin square of order n, that is to say, an $n \times n$ array with elements chosen from a set of n distinct symbols such that each symbol occurs precisely once in each row and once in each column. From now on, let us assume $[n]=\{1,2, \ldots, n\}$ as this set of symbols and let us denote the set of Latin squares of order n by $\mathcal{L} \mathcal{S}_{n}$. Given $L=\left(l_{i, j}\right) \in \mathcal{L} \mathcal{S}_{n}$, the orthogonal array representation of L is the set of n^{2} triples $\left\{\left(i, j, l_{i, j}\right): i, j \in[n]\right\}$. Thus, if L is the Caley's table of a quasigroup $([n]$, . then $a \cdot b=c \in[n]$ if and only if $(a, b, c) \in L$. The set of Latin squares of order n associated to loops is denoted by \mathcal{L}_{n}.
- The symmetric group on $[n]$ is denoted by S_{n}. Every permutation $\delta \in S_{n}$ can be uniquely written as a composition of pairwise disjoint cycles, $\delta=C_{1}^{\delta} \circ C_{2}^{\delta} \circ \ldots \circ C_{n_{s}}^{\delta}$ such that for all $i \in\left[n_{\delta}\right]$, one has $C_{i}^{\delta}=\left(c_{i, 1}^{\delta} c_{i, 2}^{\delta} \ldots c_{i, ~}^{\delta}{ }_{i}^{\delta}\right)$. Given $\delta \in S_{n}$, the cycle structure of δ is the sequence $l_{\delta}=\left(l_{1}^{\delta}, l_{2}^{\delta}, \ldots, l_{n}^{\delta}\right)$, where l_{i}^{δ} is the number of cycles of length i in δ, for all $i \in[n]$.
- An isotopism of a Latin square $L \in \mathcal{L} \mathcal{S}_{n}$ is a triple $\Theta=(\alpha, \beta, \gamma) \in \mathcal{I}_{n}=\mathcal{S}_{n}^{3}$ in such a way that $L^{\theta}=\left\{\left(\alpha(i), \beta(j), \gamma\left(l_{i, j}\right)\right) \mid i, j \in[n\}\right\}$ is also a Latin square. The cycle structure of Θ is the triple $\mathrm{l}_{\theta}=\left(\mathrm{l}_{\alpha}, \mathrm{l}_{\beta}, \mathrm{l}_{4}\right)$. It is said that two Latin squares $L_{1}, L_{2} \in \mathcal{L} \mathcal{S}_{n}$ are isotopic if there exists $\Theta \in \mathcal{I}_{n}$ such that $L_{1}^{\Theta}=L_{2}$. To be isotopic is an equivalence relation and the set of Latin squares being isotopic to a given $L \in \mathcal{L} \mathcal{S}_{n}$ is its isotopism class, which will be denoted by $[L]$. The number of isotopism classes of the set $\mathcal{L} \mathcal{S}_{n}$ is known for all $n \leq 10[5]$.
- Given $\Theta \in \mathcal{I}_{n}$, if $L^{\ominus}=L$, then Θ is called an autotopism of L. \mathfrak{A}_{n} is the set of all possible autotopisms of Latin squares of order n and the set of cycle structures of \mathfrak{A}_{n} is denoted by $\mathcal{C} \mathcal{S}_{n}$, which was determined in $[2]$ for $n \leq 11$. The stabilizer subgroup of L in \mathfrak{A}_{n} is its autotopism group $\mathfrak{A}_{L}=\left\{\Theta \in \mathcal{I}_{n} \mid L^{\ominus}=\right.$ $L\}$. Given $L \in \mathcal{L} \mathcal{S}_{n}, \Theta=(\alpha, \beta, \gamma) \in \mathfrak{A}_{L}$ and $\sigma \in \mathcal{S}_{3}$, it is verified that $\Theta^{\sigma}=$ $\left(\pi_{\sigma(1)}(\Theta), \pi_{\sigma(2)}(\Theta), \pi_{\sigma(3)}(\Theta)\right) \in \mathfrak{A}_{L^{o}}$, where π_{i} gives the $i^{\text {th }}$ component of Θ, for all $i \in[3]$. Given $\theta \in \mathfrak{R}_{n}$, the set of all Latin squares L such that $\Theta \in \mathfrak{R}_{L}$ is denoted by $\mathcal{L \mathcal { S } _ { \Theta }}$ and the cardinality of $\mathcal{L \mathcal { S } _ { \ominus }}$ is denoted by $\Delta(\Theta)=\left|\mathcal{\mathcal { S } _ { \ominus }}\right|$. Given $\mathbf{I} \in \mathcal{C} \mathcal{S}_{n}$, it is defined the set $\mathfrak{A}_{1}=\left\{\Theta \in \mathfrak{A}_{n} \mid \mathfrak{l}_{\theta}=1\right\}$. If $\Theta_{1}, \Theta_{2} \in \mathfrak{A}_{1}$, then $\Delta\left(\Theta_{1}\right)=\Delta\left(\Theta_{2}\right)$. Thus, given $\left.\mathbf{I} \in \mathcal{C S}_{n}, \Delta \mathbf{I}\right)$ denotes the cardinality of $\mathcal{\mathcal { S } _ { \Theta }}$ for all $\Theta \in \mathfrak{A}$. Grobner bases were used in $[1]$ in order to obtain the number $\Delta(\mathbf{l})$ for autotopisms of Latin squares of order up to 7

2 Cycle structures of loop autotopisms
$\left\{\begin{array}{l}(i, k) \in \mathfrak{o}(i, j) \Leftrightarrow k=j, \\ (k, j) \in \mathfrak{o}(i, j) \Leftrightarrow k=i\end{array}\right.$. Since Q is a quasigroup, given $i \in Q$, it exists $e, e^{\prime} \in Q$ such that $\left\{\begin{array}{l}(k, j) \in \mathfrak{o}(i, j) \Leftrightarrow k=i . \\ i \cdot e=i=e^{\prime} \cdot i \text {. But then, it must be } j \cdot e=j=e^{\prime} \cdot j \text {, for all } j \in Q\end{array}\right.$
Lemma 1. Every maximum rank quasigroup is a loop. Given $\Theta \in \mathcal{I}_{n}$, let $\mathcal{L}_{\theta}=\left\{L \in \mathcal{L}_{n}: \Theta \in \mathfrak{A}_{L}\right\}$ and let $\Delta_{\mathcal{L}}(\theta)$ be the cardinality of the previous set

Lemma 2. $\Delta_{\mathcal{L}}\left(\Theta^{(01)}\right)=\Delta_{\mathcal{L}}(\Theta)$, for all $\Theta \in \mathcal{I}_{n}$.

Proposition 1. Let $\alpha_{1}, \alpha_{2} \in \mathcal{S}_{n}$ be such that $\mathrm{I}_{\alpha_{1}}=\mathrm{I}_{\alpha_{2}}$. There exists a bijection φ between the sets of autotopisms $S_{1}\left(\alpha_{1}\right)=\left\{(\alpha, \beta, \gamma) \in \mathfrak{A}_{n} \mid \alpha=\alpha_{1}\right\}$ and $S_{1}\left(\alpha_{2}\right)=\left\{(\alpha, \beta, \gamma) \in \mathfrak{A}_{n}\right.$ $\left.\alpha=\alpha_{2}\right\}$, such that $\Delta_{\mathcal{L}}(\varphi(\theta))=\Delta_{\mathcal{L}}(\theta)$, for all $\theta \in S_{1}\left(\alpha_{1}\right)$.

Proposition 2. Let $L=\left(l_{i, j}\right) \in \mathcal{L}_{n}$ be the Caley's table of a loop $([n],$.$) with unit element$ e and $\operatorname{let} \Theta=(\alpha, \beta, \gamma) \in \mathfrak{A}(L)$.
a) $\gamma\left(\alpha^{-1}(e)\right)=\beta(e)$ and $\gamma\left(\beta^{-1}(e)\right)=\alpha(e)$
b) Let $m \in[n]$. If $e \in$ Fix $\left(\alpha^{m}\right)$, then $\gamma^{m}=\beta^{m}$. Analogously, if \in Fix $\left(\beta^{m}\right)$, then $\gamma^{m}=\alpha^{m}$. c) Let $m \in[n]$. If $e \notin$ Fix $x\left(\alpha^{m}\right)$, then $\gamma^{m}(a) \neq \beta^{m}(a), \forall a \in[n]$. Analogously, if $\notin F i x\left(\beta^{m}\right)$, then $\gamma^{m}(a) \neq \alpha^{m}(a), \forall a \in[n]$.
d) Given $t \in\left[n_{\gamma}\right]$ and $w \in\left[\lambda_{n_{2}}\right]$, let $r \in\left[n_{\alpha}\right]$ and $u \in\left[\lambda_{n_{a}}\right]$ be such that $c_{r, u}^{\alpha}=c_{t, w}^{\gamma}$. Let $s \in\left[n_{\beta}\right]$ and $v \in\left[\lambda_{n_{\beta}}\right]$ be such that $c_{s, v}^{\beta}=e$. If there exists $h \in\left[l . c . m .\left(\lambda_{s}^{\beta}, \lambda_{t}^{\gamma}\right)\right]$ such that

e) Given $t \in\left[n_{7}\right]$ and $w \in\left[\lambda_{n}\right]$, let $s \in\left[n_{\beta}\right]$ and $v \in\left[\lambda_{n, \beta}\right]$ be such that $c_{s, v}^{\beta}=c_{t, w}^{\gamma}$. Let $r \in\left[n_{\alpha}\right]$ and $u \in\left[\lambda_{n_{a}}\right]$ be such that $c_{, n, u}^{\alpha}=e$. If there exists $h \in\left[l . c . m\right.$. $\left.\left(\lambda_{r}^{s}, \lambda_{t}\right)\right]$ such that

Theorem 1. Let $\Theta=(\alpha, \beta, \gamma) \in \mathcal{I}_{n}\left(\mathbf{1}_{a}, \mathbf{1}_{g}, \mathbf{1}_{r}\right)$ be such that $\Delta_{\mathcal{C}}(\Theta)>0$. If $\mathrm{l}_{1}^{\alpha}=0$, then $\gamma(a) \neq \beta(a)$, for all $a \in[n]$. Analogously, if $1_{1}^{\beta}=0$, then $\gamma(a) \neq \alpha(a)$, for all $a \in[n]$.

Theorem 2. Let $\Theta=(\alpha, \beta, \gamma) \in \mathcal{L} \mathcal{I}_{n}\left(\mathbf{1}_{\alpha}, \mathbf{1}_{3}, 1_{\gamma}\right)$ be such that $1_{1}^{\alpha}=1_{1}^{\beta}=1_{1}^{\gamma}=1$ and let us consider $L \in \mathcal{L}(\Theta)$. Let $a, b, c \in[n]$ be such that $F i x(\alpha)=\{a\}, F i x(\beta)=\{b\}$ and Fix $(\gamma)=\{c\}$. If $a=c$, then b is the unit element of L. Analogous $l y$, if $b=c$, then a is the unit element of L.

Table 1: Classification of non-trivial autotopisms of loops of order up to

3 The set \mathcal{Q}_{n}

Let $(Q, \cdot) \in \mathcal{Q}_{n}$ with unit element e. It is verified that $(i, j$
Lemma 3. Every maximum rank quasigroup is abelian.
Let \mathcal{Q}_{n}^{θ} be the subset of \mathcal{L}_{θ}, whose elements are Caley's tables of a maximum rank quasigroup and let $\Delta_{Q_{n}}(\theta)$ be the cardinality of the previous set.
Lemma 4. $\Delta_{Q_{n}}\left(\Theta^{(01)}\right)=\Delta_{Q_{n}}(\theta)$, for all $\theta \in \mathcal{I}_{n}$.
From the previous result, it is enough to study the cycle structures of those autotopisms (α, β, γ) such that $n_{\alpha} \leq n_{\beta}$.

Proposition 3. $(Q, \cdot) \in \mathcal{Q}_{n}$ if and only if if it is abelian and, given $i \in Q$, it is verified that, for all $x, y \in Q$,
j, for all $j \in Q$.
Theorem 3. Every abelian group has maximum rank.
Since every loop of order up to 4 is an abelian group, Table 1 shows the classification of the autotopisms of the maximum rank quasigroups of these orders. Now, given a quasigroup (Q, \cdot) with left \backslash and right / division, it is $(i \cdot j) \cdot((i \cdot j) \backslash j)=j$, for all $i, j \in Q$

Theorem 4. $(Q, \cdot) \in \mathcal{Q}_{n}$ if and only if it is abelian and $(i \cdot k)$.
$((i \cdot j) \backslash j)=k$, for all $i, j, k \in Q$.
By adding the condition of Theorem 4 to those of Proposition 2, we obtain the number of maximum rank quasigroups having a given isotopism in its autotopism group. Specifically, we show in Tables 2 and 3 this number for quasigroups of order 5 and 6.

Table 3: Classification of non-trivial autotopisms of maximum rank quasigroups of order 6 .

It is easy to prove that the incidence matrices corresponding to any quasigroup of orders 2 or 3 are, respectively:

Thus, the Bose-Mesner algebra and, therefore, the character table of these quasigroups are univocally determined. Although it is not true for higher orders, we can restrict the general case to a particular one. Specifically, every $(Q, \cdot) \in \mathcal{Q}_{n}$ is isotopic to a maximum rank quasigroup such that the incidence matrices of their conjugacy classes are the n circulant matrices with ones in their secondary diagonals. It is enough to study the Bose-Mesner algebra related to these quasigroups because of the following: Given $L=\left(l_{i, j}\right) \in \mathcal{L} \mathcal{S}_{n}$, it is defined its associated matrix X_{L}, which
 terminant $\operatorname{det}(L)$ of L is the homogeneous polynomial of degree n in n variables $\operatorname{det}\left(X_{L}\right)$. The factors of these polynomials determine the character table of the corresponding quasigroup [4]. Two polynomials p_{1} and p_{2} in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are said to be similar, if there exists a permutation $\sigma \in S_{n}$ such that $p_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \pm p_{2}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$. Thus, it is verified that isotopic and transposed Latin squares have similar determinants and therefore, their character tables have the same structure.

References

[1] Falcón, R. M. and Martín-Morales, J. Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7. Journal of Symbolic Computatio 42 (2007), 1142-1154.
[2] Falcón, R. M. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combinatoria. To appear. (http://arxiv.org/abs/0709.2973) [3] Falcón, R. M. Incidence structures based on Latin squares autotopisms of a given cycle structure. Under preparation.
[4] Johnson, K. W. and Smith, J. D. H., Characters of finite quasigroups. Eur. J. Comb., 5 (1984), 43-50.
[5] McKay, B. D., Meynert, A. and Myrvold, W. Small Latin Squares, Quasigroups and Loops. Journal of Combinatorial Designs 15 (2007) 98-119
[6] Smith, J. D. H. An introduction to quasigroups and their representations. Chapman and Hall/CRC, Boca Raton, FL, 2006.

