Structural patterns of autotopisms of maximum rank quasigroups.

R. M. Falcón

rafalgan@us.es Department of Applied Mathematics I. University of Seville (Spain).

ABSTRACT: In this paper, some properties of the set Q_n of those quasigroups of n elements having maximum rank n are studied. Although one such a quasigroup Q must be a loop, the reciprocal is false in general. So, the existence of an unit element of Q can be used in order to study the symmetrical structure of its multiplication table, given by the autotopism group of Q. Moreover, by imposing the condition of having maximum rank, a classification of all possible structural patterns of Q_n can be obtained. Finally, it is given an outline about the application of all the previous results in the calculus of the character tables of the quasigroups of Q_n and their corresponding determinant groups.

Basic definitions.

• A **quasigroup** is a nonempty set Q endowed with a product \cdot , such that if any two of the three symbols a, b, c in the equation $a \cdot b = c$ are given as elements of Q, the third is uniquely determined as an element of Q. It is equivalent to say that Q is endowed with a left \setminus and a right / division. If there exists $e \in Q$ such that $a \cdot e = e \cdot a = a$, for all $a \in Q$, then (Q, \cdot) is a **loop** with **unit element** e.

• Johnson and Smith [4] extended the traditional character theory for finite groups to finite quasigroups. To do it, given a quasigroup (Q, \cdot) , they defined the **conjugacy class** of a pair $(i,j) \in Q^2$ as the orbit $\mathfrak{o}(i,j) = \{((x \cdot i) \cdot y, (x \cdot j) \cdot y) \mid x, y \in Q^2\}$ $Q \cup \{(x \cdot (i \cdot y), x \cdot (j \cdot y)) \mid x, y \in Q\}$ of the diagonal action of the multiplication group G on Q^2 . The number of conjugacy classes of a quasigroup is its **rank** and it is verified that almost all finite quasigroups have rank 2 [6]. Q_n denotes the set of those quasigroups of n elements having maximum rank n. The conjugacy classes of a quasigroup constitute an association scheme of Q^2 , such that the linear span of the set $\{A_1 = Id_n, A_2, ..., A_m\}$ of their incidence matrices in the algebra of $n \times n$ complex matrices is a commutative Bose-Mesner algebra, called the *centralizer* **ring** V(G, Q) of G in its multiplicity-free action on Q.

Let $\{E_1 = J_n/n, E_2, ..., E_m\}$ a basis of idempotent matrices of V(G, Q) obtained by diagonalizing this algebra, where J_n is the $n \times n$ all-ones matrix. If $|C_i| = nn_i$, $tr(E_i) = f_i$ and $A_i = \sum_{j=1}^m \xi_{i,j} E_j$, for all $i \in [m]$, then the **character table** of (Q, \cdot) is the $m \times m$ matrix $\Psi = (\psi_{i,j})$, such that $\psi_{i,j} = \frac{\sqrt{f_i}}{m} \xi_{ji}$.

• The multiplication or Caley's table of any quasigroup with *n* elements is a *Latin* **square** of order n, that is to say, an $n \times n$ array with elements chosen from a set of n distinct symbols such that each symbol occurs precisely once in each row and once in each column. From now on, let us assume $[n] = \{1, 2, ..., n\}$ as this set of symbols and let us denote the set of Latin squares of order n by \mathcal{LS}_n . Given $L = (l_{i,j}) \in \mathcal{LS}_n$, the **orthogonal array representation of** L is the set of n^2 triples $\{(i, j, l_{i,j}) : i, j \in [n]\}$. Thus, if L is the Caley's table of a quasigroup $([n], \cdot)$, then $a \cdot b = c \in [n]$ if and only if $(a, b, c) \in L$. The set of Latin squares of order n associated to loops is denoted by \mathcal{L}_n .

• The symmetric group on [n] is denoted by S_n . Every permutation $\delta \in S_n$ can be

• An *isotopism* of a Latin square $L \in \mathcal{LS}_n$ is a triple $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n = \mathcal{S}_n^3$, in such a way that $L^{\Theta} = \{(\alpha(i), \beta(j), \gamma(l_{i,j})) \mid i, j \in [n]\}$ is also a Latin square. The *cycle structure* of Θ is the triple $\mathbf{l}_{\Theta} = (\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$. It is said that two Latin squares $L_1, L_2 \in \mathcal{LS}_n$ are *isotopic* if there exists $\Theta \in \mathcal{I}_n$ such that $L_1^{\Theta} = L_2$. To be isotopic is an equivalence relation and the set of Latin squares being isotopic to a given $L \in \mathcal{LS}_n$ is its **isotopism class**, which will be denoted by [L]. The number of isotopism classes of the set \mathcal{LS}_n is known for all $n \leq 10$ [5].

• Given $\Theta \in \mathcal{I}_n$, if $L^{\Theta} = L$, then Θ is called an **autotopism** of L. \mathfrak{A}_n is the set of all possible autotopisms of Latin squares of order n and the set of cycle structures of \mathfrak{A}_n is denoted by \mathcal{CS}_n , which was determined in [2] for $n \leq 11$. The stabilizer subgroup of L in \mathfrak{A}_n is its **autotopism group** $\mathfrak{A}_L = \{ \Theta \in \mathcal{I}_n \mid L^{\Theta} = \}$ L}. Given $L \in \mathcal{LS}_n$, $\Theta = (\alpha, \beta, \gamma) \in \mathfrak{A}_L$ and $\sigma \in \mathcal{S}_3$, it is verified that $\Theta^{\sigma} =$ $(\pi_{\sigma(1)}(\Theta), \pi_{\sigma(2)}(\Theta), \pi_{\sigma(3)}(\Theta)) \in \mathfrak{A}_{L^{\sigma}}$, where π_i gives the i^{th} component of Θ , for all $i \in [3]$. Given $\Theta \in \mathfrak{A}_n$, the set of all Latin squares L such that $\Theta \in \mathfrak{A}_L$ is denoted by \mathcal{LS}_{Θ} and the cardinality of \mathcal{LS}_{Θ} is denoted by $\Delta(\Theta) = |\mathcal{LS}_{\Theta}|$. Given $\mathbf{l} \in \mathcal{CS}_n$, it is defined the set $\mathfrak{A}_{\mathbf{l}} = \{ \Theta \in \mathfrak{A}_n \mid \mathbf{l}_{\Theta} = \mathbf{l} \}$. If $\Theta_1, \Theta_2 \in \mathfrak{A}_{\mathbf{l}}$, then $\Delta(\Theta_1) = \Delta(\Theta_2)$. Thus, given $\mathbf{l} \in \mathcal{CS}_n$, $\Delta(\mathbf{l})$ denotes the cardinality of \mathcal{LS}_{Θ} for all $\Theta \in \mathfrak{A}_{\mathbf{l}}$. Gröbner bases were used in [1] in order to obtain the number $\Delta(\mathbf{l})$ for autotopisms of Latin squares of order up to 7.

uniquely written as a composition of pairwise disjoint cycles, $\delta = C_1^{\delta} \circ C_2^{\delta} \circ \ldots \circ C_{n_{\delta}}^{\delta}$, such that for all $i \in [n_{\delta}]$, one has $C_i^{\delta} = \left(c_{i,1}^{\delta} c_{i,2}^{\delta} \dots c_{i,\lambda_i^{\delta}}^{\delta}\right)$. Given $\delta \in S_n$, the **cycle** structure of δ is the sequence $\mathbf{l}_{\delta} = (\mathbf{l}_{1}^{\delta}, \mathbf{l}_{2}^{\delta}, ..., \mathbf{l}_{n}^{\delta})$, where \mathbf{l}_{i}^{δ} is the number of cycles of length i in δ , for all $i \in [n]$.

2 Cycle structures of loop autotopisms.

Let us observe that $(Q, \cdot) \in Q_n$ if and only if, given $i, j, k \in Q$, it is verified that $(i,k) \in \mathfrak{o}(i,j) \Leftrightarrow k=j,$. Since Q is a quasigroup, given $i \in Q$, it exists $e, e' \in Q$ such that $(k, j) \in \mathfrak{o}(i, j) \Leftrightarrow k = i.$ $i \cdot e = i = e' \cdot i$. But then, it must be $j \cdot e = j = e' \cdot j$, for all $j \in Q$.

Lemma 1. Every maximum rank quasigroup is a loop.

Given $\Theta \in \mathcal{I}_n$, let $\mathcal{L}_{\Theta} = \{ L \in \mathcal{L}_n : \Theta \in \mathfrak{A}_L \}$ and let $\Delta_{\mathcal{L}}(\Theta)$ be the cardinality of the previous set.

Lemma 2. $\Delta_{\mathcal{L}}(\Theta^{(01)}) = \Delta_{\mathcal{L}}(\Theta)$, for all $\Theta \in \mathcal{I}_n$.

Proposition 1. Let $\alpha_1, \alpha_2 \in S_n$ be such that $\mathbf{l}_{\alpha_1} = \mathbf{l}_{\alpha_2}$. There exists a bijection φ between the sets of autotopisms $S_1(\alpha_1) = \{(\alpha, \beta, \gamma) \in \mathfrak{A}_n \mid \alpha = \alpha_1\}$ and $S_1(\alpha_2) = \{(\alpha, \beta, \gamma) \in \mathfrak{A}_n \mid \alpha = \alpha_1\}$ $\alpha = \alpha_2$, such that $\Delta_{\mathcal{L}}(\varphi(\Theta)) = \Delta_{\mathcal{L}}(\Theta)$, for all $\Theta \in S_1(\alpha_1)$.

Proposition 2. Let $L = (l_{i,j}) \in \mathcal{L}_n$ be the Caley's table of a loop $([n], \cdot)$ with unit element e and let $\Theta = (\alpha, \beta, \gamma) \in \mathfrak{A}(L)$.

a) $\gamma(\alpha^{-1}(e)) = \beta(e)$ and $\gamma(\beta^{-1}(e)) = \alpha(e)$

b) Let $m \in [n]$. If $e \in Fix(\alpha^m)$, then $\gamma^m = \beta^m$. Analogously, if $e \in Fix(\beta^m)$, then $\gamma^m = \alpha^m$. c) Let $m \in [n]$. If $e \notin Fix(\alpha^m)$, then $\gamma^m(a) \neq \beta^m(a), \forall a \in [n]$. Analogously, if $e \notin Fix(\beta^m)$,

3 The set Q_n .

Let $(Q, \cdot) \in \mathcal{Q}_n$ with unit element e. It is verified that $(i, j \cdot i) = (e \cdot i, j \cdot i)$ i, $(i, i \cdot j) = (i \cdot e, i \cdot j) \in \mathfrak{o}(e, j)$, for all $i, j \in Q$.

Lemma 3. Every maximum rank quasigroup is abelian.

Let \mathcal{Q}_n^{Θ} be the subset of \mathcal{L}_{Θ} , whose elements are Caley's tables of a maximum rank quasigroup and let $\Delta_{\mathcal{Q}_n}(\Theta)$ be the cardinality of the previous set.

Lemma 4. $\Delta_{\mathcal{Q}_n}(\Theta^{(01)}) = \Delta_{\mathcal{Q}_n}(\Theta), \text{ for all } \Theta \in \mathcal{I}_n.$

From the previous result, it is enough to study the cycle structures of those autotopisms (α, β, γ) such that $n_{\alpha} \leq n_{\beta}$.

Proposition 3. $(Q, \cdot) \in \mathcal{Q}_n$ if and only if if it is abelian and, given $i \in Q$, it is verified that, for all $x, y \in Q$, $(i \cdot x) \cdot y = i \Leftrightarrow (j \cdot x) \cdot y = i$ j, for all $j \in Q$.

Theorem 3. Every abelian group has maximum rank.

Since every loop of order up to 4 is an abelian group, Table 1 shows the classification of the autotopisms of the maximum rank quasigroups of these orders. Now, given a quasigroup (Q, \cdot) with left \setminus and right / division, it is $(i \cdot j) \cdot ((i \cdot j) \setminus j) = j$, for all $i, j \in Q$.

\mathbf{l}_{lpha}	\mathbf{l}_eta	\mathbf{l}_{γ}	$\Delta_{\mathcal{Q}_n}(\Theta)$	
(0,0,0,0,0,1)	(0, 0, 0, 0, 0, 1) (0, 0, 2, 0, 0, 0)	(0, 0, 2, 0, 0, 0) (0, 0, 0, 0, 0, 1)	2, 6	
	(0, 0, 0, 0, 0, 1)	(1, 1, 1, 0, 0, 0)	1	
	(1, 1, 1, 0, 0, 0)	(0, 0, 0, 0, 0, 1)	1, 3	
	(0, 0, 0, 0, 0, 1)	(2, 2, 0, 0, 0, 0)	3	
	(2, 2, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 1)	0	
	(0, 0, 0, 0, 0, 1)	$\left(3,0,1,0,0,0 ight)$	2	
(0,0,0,0,0,1)	(3,0,1,0,0,0) (0,0,0,0,0,1)	$1, \ 3$		
	$\left(0,0,0,0,0,1 ight)$	(4, 1, 0, 0, 0, 0)	3	
	(4, 1, 0, 0, 0, 0)	$\left(0,0,0,0,0,1 ight)$	$1, \ 3$	
	(0, 0, 0, 0, 0, 1)	(6, 0, 0, 0, 0, 0)	6	
	(6, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 1)		
	$\left(0,0,2,0,0,0 ight)$	$\left(0,3,0,0,0,0 ight)$	$3, \ 6$	
	$\left(0,3,0,0,0,0 ight)$	$\left(0,0,2,0,0,0 ight)$	1, 2	
(0, 3, 0, 0, 0, 0)	$\left(0,0,2,0,0,0 ight)$	$\left(0,0,0,0,0,1 ight)$	12	
(0,0,2,0,0,0)	$\left(0,0,2,0,0,0 ight)$	$\left(0,0,2,0,0,0 ight)$	$2, \ 18$	
	$\left(0,0,2,0,0,0 ight)$	(6, 0, 0, 0, 0, 0)	$18, \ 36$	
	(6, 0, 0, 0, 0, 0)	$\left(0,0,2,0,0,0 ight)$	72	
(1, 0, 0, 0, 1, 0)	(1, 0, 0, 0, 1, 0)	(1, 0, 0, 0, 1, 0)	1, 3	
(0, 3, 0, 0, 0, 0)	(0,3,0,0,0,0)	(6, 0, 0, 0, 0, 0)	64, 96	
(0, 3, 0, 0, 0, 0)	(6, 0, 0, 0, 0, 0)	(0, 3, 0, 0, 0, 0)	240, 144	

Table 3: Classification of non-trivial autotopisms of maximum rank quasigroups of order 6.

It is easy to prove that the incidence matrices corresponding to any quasigroup of orders 2 or 3 are, respectively:

then $\gamma^m(a) \neq \alpha^m(a), \forall a \in [n].$

- d) Given $t \in [n_{\gamma}]$ and $w \in [\lambda_{n_{\gamma}}]$, let $r \in [n_{\alpha}]$ and $u \in [\lambda_{n_{\alpha}}]$ be such that $c_{r,u}^{\alpha} = c_{t,w}^{\gamma}$. Let $s \in [n_{\beta}]$ and $v \in [\lambda_{n_{\beta}}]$ be such that $c_{s,v}^{\beta} = e$. If there exists $h \in [l.c.m.(\lambda_{s}^{\beta}, \lambda_{t}^{\gamma})]$ such that $c_{s,v+h \pmod{\lambda_s^{\beta}}}^{\beta} = c_{t,w+h \pmod{\lambda_t^{\gamma}}}^{\gamma}, then, c_{r,u+h \pmod{\lambda_r^{\alpha}}}^{\alpha} = e.$
- e) Given $t \in [n_{\gamma}]$ and $w \in [\lambda_{n_{\gamma}}]$, let $s \in [n_{\beta}]$ and $v \in [\lambda_{n_{\beta}}]$ be such that $c_{s,v}^{\beta} = c_{t,w}^{\gamma}$. Let $r \in [n_{\alpha}]$ and $u \in [\lambda_{n_{\alpha}}]$ be such that $c_{r,u}^{\alpha} = e$. If there exists $h \in [l.c.m.(\lambda_r^{\alpha}, \lambda_t^{\gamma})]$ such that $c^{lpha}_{r,u+h \pmod{\lambda^{lpha}_r}} = c^{\gamma}_{t,w+h \pmod{\lambda^{\gamma}_t}}, \ then, \ c^{\beta}_{s,v+h \pmod{\lambda^{\beta}_s}} = e.$

Theorem 1. Let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n(\mathbf{l}_\alpha, \mathbf{l}_\beta, \mathbf{l}_\gamma)$ be such that $\Delta_{\mathcal{L}}(\Theta) > 0$. If $\mathbf{l}_1^{\alpha} = 0$, then $\gamma(a) \neq \beta(a)$, for all $a \in [n]$. Analogously, if $\mathbf{l}_1^{\beta} = 0$, then $\gamma(a) \neq \alpha(a)$, for all $a \in [n]$.

Theorem 2. Let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{LI}_n(\mathbf{l}_\alpha, \mathbf{l}_\beta, \mathbf{l}_\gamma)$ be such that $\mathbf{l}_1^{\alpha} = \mathbf{l}_1^{\beta} = \mathbf{l}_1^{\gamma} = 1$ and let us consider $L \in \mathcal{L}(\Theta)$. Let $a, b, c \in [n]$ be such that $Fix(\alpha) = \{a\}, Fix(\beta) = \{b\}$ and $Fix(\gamma) = \{c\}$. If a = c, then b is the unit element of L. Analogously, if b = c, then a is the unit element of L.

n	\mathbf{l}_{lpha}	\mathbf{l}_{eta}	\mathbf{l}_{γ}	$\Delta_{\mathcal{L}}(\Theta)$
		(0, 0, 0, 1)	(0, 2, 0, 0))	4
	(0,0,0,1)	(0, 2, 0, 0)	(0, 0, 0, 1)	4
		(0, 0, 0, 1)	(2, 1, 0, 0)	2
		(2, 1, 0, 0)	(0, 0, 0, 1)	
		(0, 0, 0, 1)	(4, 0, 0, 0)	
4		(4, 0, 0, 0)	(0, 0, 0, 1)	4
	1	(0, 2, 0, 0)	(0, 2, 0, 0)	
		(0, 2, 0, 0)	(2, 1, 0, 0)	2
(0	(0,2,0,0)	(2, 1, 0, 0)	(0, 2, 0, 0)	
		(0, 2, 0, 0)	(4, 0, 0, 0)	4
		(4, 0, 0, 0)	(0, 2, 0, 0)	
	(1, 0, 1, 0)	(1, 0, 1, 0)	(1, 0, 1, 0)	1
	(2, 1, 0, 0)	(2, 1, 0, 0)	(2, 1, 0, 0)	2

Theorem 4. $(Q, \cdot) \in \mathcal{Q}_n$ if and only if it is abelian and $(i \cdot k)$. $((i \cdot j) \setminus j) = k$, for all $i, j, k \in Q$.

By adding the condition of Theorem 4 to those of Proposition 2, we obtain the number of maximum rank quasigroups having a given isotopism in its autotopism group. Specifically, we show in Tables 2 and 3 this number for quasigroups of order 5 and 6.

\mathbf{l}_{lpha}	\mathbf{l}_eta	\mathbf{l}_{γ}	$\Delta_{\mathcal{Q}_n}(\Theta)$
(0,0,0,0,1)	(0,0,0,0,1)	(0,0,0,0,1)	
		(5, 0, 0, 0, 0)	5
	(5, 0, 0, 0, 0)	(0, 0, 0, 0, 1)	
(1, 0, 0, 1, 0)	(1, 0, 0, 1, 0)	(1, 0, 0, 1, 0)	$1, \ 2$
(1, 2, 0, 0, 0)	(1, 2, 0, 0, 0)	(1, 2, 0, 0, 0)	1, 2
(2, 0, 1, 0, 0)	(2, 0, 1, 0, 0)	(2, 0, 1, 0, 0)	2, 4, 32

Table 2: Classification of non-trivial autotopisms of maximum rank quasigroups of order 5.

$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right\}$

Thus, the Bose-Mesner algebra and, therefore, the character table of these quasigroups are univocally determined. Although it is not true for higher orders, we can restrict the general case to a particular one. Specifically, every $(Q, \cdot) \in \mathcal{Q}_n$ is isotopic to a maximum rank quasigroup such that the incidence matrices of their conjugacy classes are the n circulant matrices with ones in their secondary diagonals. It is enough to study the Bose-Mesner algebra related to these quasigroups because of the following: Given $L = (l_{i,j}) \in \mathcal{LS}_n$, it is defined its **associated matrix** X_L , which is obtained by replacing each element $l_{i,j}$ by the variable $x_{l_{i,j}}$. The **determinant** det(L) of L is the homogeneous polynomial of degree n in n variables $det(X_L)$. The factors of these polynomials determine the character table of the corresponding quasigroup [4]. Two polynomials p_1 and p_2 in $\{x_1, x_2, ..., x_n\}$ are said to be *similar*, if there exists a permutation $\sigma \in S_n$ such that $p_1(x_1, x_2, ..., x_n) = \pm p_2(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$. Thus, it is verified that isotopic and transposed Latin squares have similar determinants and therefore, their character tables have the same structure.

References

[1] Falcón, R. M. and Martín-Morales, J. Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7 . Journal of Symbolic Computation, **42** (2007), 1142–1154.

[2] Falcón, R. M. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combinatoria. To appear. (http://arxiv.org/abs/0709.2973)

[3] Falcón, R. M. Incidence structures based on Latin squares autotopisms of a given cycle structure. Under preparation.

[4] Johnson, K. W. and Smith, J. D. H., Characters of finite quasigroups. Eur. J. Comb., 5 (1984), 43–50.

