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3 The set Qn.

Let (Q, ·) ∈ Qn with unit element e. It is verified that (i, j · i) = (e · i, j ·
i), (i, i · j) = (i · e, i · j) ∈ o(e, j), for all i, j ∈ Q.

Lemma 3. Every maximum rank quasigroup is abelian.

Let QΘ
n be the subset of LΘ, whose elements are Caley’s tables of a maximum

rank quasigroup and let ∆Qn
(Θ) be the cardinality of the previous set.

Lemma 4. ∆Qn

(

Θ(01)
)

= ∆Qn
(Θ), for all Θ ∈ In.

From the previous result, it is enough to study the cycle structures of those

autotopisms (α, β, γ) such that nα ≤ nβ.

Proposition 3. (Q, ·) ∈ Qn if and only if if it is abelian and, given

i ∈ Q, it is verified that, for all x, y ∈ Q, (i ·x) · y = i ⇔ (j ·x) · y =

j, for all j ∈ Q.

Theorem 3. Every abelian group has maximum rank.

Since every loop of order up to 4 is an abelian group, Table 1 shows the

classification of the autotopisms of the maximum rank quasigroups of these

orders. Now, given a quasigroup (Q, ·) with left \ and right / division, it is

(i · j) · ((i · j)\j) = j, for all i, j ∈ Q.

Theorem 4. (Q, ·) ∈ Qn if and only if it is abelian and (i · k) ·
((i · j)\j) = k, for all i, j, k ∈ Q.

By adding the condition of Theorem 4 to those of Proposition 2, we obtain

the number of maximum rank quasigroups having a given isotopism in its

autotopism group. Specifically, we show in Tables 2 and 3 this number for

quasigroups of order 5 and 6.

lα lβ lγ ∆Qn
(Θ)

(0,0,0,0,1)
(0,0,0,0,1)

(0, 0, 0, 0, 1)

5(5, 0, 0, 0, 0)

(5, 0, 0, 0, 0) (0, 0, 0, 0, 1)

(1, 0, 0, 1, 0) (1, 0, 0, 1, 0) (1, 0, 0, 1, 0) 1, 2

(1, 2, 0, 0, 0) (1, 2, 0, 0, 0) (1, 2, 0, 0, 0) 1, 2

(2, 0, 1, 0, 0) (2, 0, 1, 0, 0) (2, 0, 1, 0, 0) 2, 4, 32

Table 2: Classification of non-trivial autotopisms of maximum rank quasigroups of order 5.

lα lβ lγ ∆Qn
(Θ)

(0,0,0,0,0,1)

(0, 0, 0, 0, 0, 1) (0, 0, 2, 0, 0, 0)
2, 6

(0, 0, 2, 0, 0, 0) (0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 1) (1, 1, 1, 0, 0, 0) 1

(1, 1, 1, 0, 0, 0) (0, 0, 0, 0, 0, 1) 1, 3

(0, 0, 0, 0, 0, 1) (2, 2, 0, 0, 0, 0) 3

(2, 2, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1)
2

(0, 0, 0, 0, 0, 1) (3, 0, 1, 0, 0, 0)

(3, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 1) 1, 3

(0, 0, 0, 0, 0, 1) (4, 1, 0, 0, 0, 0) 3

(4, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1) 1, 3

(0, 0, 0, 0, 0, 1) (6, 0, 0, 0, 0, 0)
6

(6, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1)

(0, 0, 2, 0, 0, 0) (0, 3, 0, 0, 0, 0) 3, 6

(0, 3, 0, 0, 0, 0) (0, 0, 2, 0, 0, 0) 1, 2

(0, 3, 0, 0, 0, 0) (0, 0, 2, 0, 0, 0) (0, 0, 0, 0, 0, 1) 12

(0,0,2,0,0,0)

(0, 0, 2, 0, 0, 0) (0, 0, 2, 0, 0, 0) 2, 18

(0, 0, 2, 0, 0, 0) (6, 0, 0, 0, 0, 0) 18, 36

(6, 0, 0, 0, 0, 0) (0, 0, 2, 0, 0, 0) 72

(1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 1, 0) 1, 3

(0, 3, 0, 0, 0, 0) (0, 3, 0, 0, 0, 0) (6, 0, 0, 0, 0, 0) 64, 96

(0, 3, 0, 0, 0, 0) (6, 0, 0, 0, 0, 0) (0, 3, 0, 0, 0, 0) 240, 144

Table 3: Classification of non-trivial autotopisms of maximum rank quasigroups of order 6.

It is easy to prove that the incidence matrices corresponding to any quasi-
group of orders 2 or 3 are, respectively:
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Thus, the Bose-Mesner algebra and, therefore, the character table of these

quasigroups are univocally determined. Although it is not true for higher

orders, we can restrict the general case to a particular one. Specifically,

every (Q, ·) ∈ Qn is isotopic to a maximum rank quasigroup such that

the incidence matrices of their conjugacy classes are the n circulant ma-

trices with ones in their secondary diagonals. It is enough to study the

Bose-Mesner algebra related to these quasigroups because of the following:

Given L = (li,j) ∈ LSn, it is defined its associated matrix XL, which

is obtained by replacing each element li,j by the variable xli,j . The de-

terminant det(L) of L is the homogeneous polynomial of degree n in n

variables det(XL). The factors of these polynomials determine the character

table of the corresponding quasigroup [4]. Two polynomials p1 and p2 in

{x1, x2, ..., xn} are said to be similar, if there exists a permutation σ ∈ Sn

such that p1(x1, x2, ..., xn) = ±p2(xσ(1), xσ(2), ..., xσ(n)). Thus, it is verified

that isotopic and transposed Latin squares have similar determinants and

therefore, their character tables have the same structure.

2 Cycle structures of loop autotopisms.

Let us observe that (Q, ·) ∈ Qn if and only if, given i, j, k ∈ Q, it is verified that






(i, k) ∈ o(i, j) ⇔ k = j,

(k, j) ∈ o(i, j) ⇔ k = i.
. Since Q is a quasigroup, given i ∈ Q, it exists e, e′ ∈ Q such that

i · e = i = e′ · i. But then, it must be j · e = j = e′ · j, for all j ∈ Q.

Lemma 1. Every maximum rank quasigroup is a loop.

Given Θ ∈ In, let LΘ = {L ∈ Ln : Θ ∈ AL} and let ∆L(Θ) be the cardinality of the previous set.

Lemma 2. ∆L
(

Θ(01)
)

= ∆L(Θ), for all Θ ∈ In.

Proposition 1. Let α1, α2 ∈ Sn be such that lα1
= lα2

. There exists a bijection ϕ between

the sets of autotopisms S1(α1) = {(α, β, γ) ∈ An | α = α1} and S1(α2) = {(α, β, γ) ∈ An |
α = α2}, such that ∆L(ϕ(Θ)) = ∆L(Θ), for all Θ ∈ S1(α1).

Proposition 2. Let L = (li,j) ∈ Ln be the Caley’s table of a loop ([n], ·) with unit element

e and let Θ = (α, β, γ) ∈ A(L).

a) γ(α−1(e)) = β(e) and γ(β−1(e)) = α(e)

b) Let m ∈ [n]. If e ∈ Fix(αm), then γm = βm. Analogously, if e ∈ Fix(βm), then γm = αm.

c) Let m ∈ [n]. If e 6∈ Fix(αm), then γm(a) 6= βm(a),∀a ∈ [n]. Analogously, if e 6∈ Fix(βm),

then γm(a) 6= αm(a),∀a ∈ [n].

d) Given t ∈ [nγ] and w ∈ [λnγ
], let r ∈ [nα] and u ∈ [λnα

] be such that cα
r,u = cγ

t,w. Let

s ∈ [nβ] and v ∈ [λnβ
] be such that cβ

s,v = e. If there exists h ∈ [l.c.m.(λβ
s , λ

γ
t )] such that

cβ

s,v+h (mod λβ
s )

= cγ
t,w+h (mod λγ

t )
, then, cα

r,u+h (mod λα
r ) = e.

e) Given t ∈ [nγ] and w ∈ [λnγ
], let s ∈ [nβ] and v ∈ [λnβ

] be such that cβ
s,v = cγ

t,w. Let

r ∈ [nα] and u ∈ [λnα
] be such that cα

r,u = e. If there exists h ∈ [l.c.m.(λα
r , λ

γ
t )] such that

cα
r,u+h (mod λα

r ) = cγ
t,w+h (mod λγ

t )
, then, cβ

s,v+h (mod λβ
s )

= e.

Theorem 1. Let Θ = (α, β, γ) ∈ In(lα, lβ, lγ) be such that ∆L(Θ) > 0. If lα1 = 0, then

γ(a) 6= β(a), for all a ∈ [n]. Analogously, if l
β
1 = 0, then γ(a) 6= α(a), for all a ∈ [n].

Theorem 2. Let Θ = (α, β, γ) ∈ LIn(lα, lβ, lγ) be such that lα1 = l
β
1 = l

γ
1 = 1 and let

us consider L ∈ L(Θ). Let a, b, c ∈ [n] be such that Fix(α) = {a}, Fix(β) = {b} and

Fix(γ) = {c}. If a = c, then b is the unit element of L. Analogously, if b = c, then a is the

unit element of L.

n lα lβ lγ ∆L(Θ)

2 (0,1)
(0, 1) (2, 0)

2
(2, 0) (0, 1)

3

(0, 0, 1) (0, 0, 1)

(0, 0, 1) (0, 0, 1) (3, 0, 0) 3

(3, 0, 0) (0, 0, 1)

(1, 1, 0) (1, 1, 0) (1, 1, 0) 1

n lα lβ lγ ∆L(Θ)

4

(0,0,0,1)

(0, 0, 0, 1) (0, 2, 0, 0))
4

(0, 2, 0, 0) (0, 0, 0, 1)

(0, 0, 0, 1) (2, 1, 0, 0)
2

(2, 1, 0, 0) (0, 0, 0, 1)

(0, 0, 0, 1) (4, 0, 0, 0)

4(4, 0, 0, 0) (0, 0, 0, 1)

(0,2,0,0)

(0, 2, 0, 0) (0, 2, 0, 0)

(0, 2, 0, 0) (2, 1, 0, 0)
2

(2, 1, 0, 0) (0, 2, 0, 0)

(0, 2, 0, 0) (4, 0, 0, 0)
4

(4, 0, 0, 0) (0, 2, 0, 0)

(1, 0, 1, 0) (1, 0, 1, 0) (1, 0, 1, 0) 1

(2, 1, 0, 0) (2, 1, 0, 0) (2, 1, 0, 0) 2

Table 1: Classification of non-trivial autotopisms of loops of order up to 4.

1 Basic definitions.

• A quasigroup is a nonempty set Q endowed with a product ·, such that if any

two of the three symbols a, b, c in the equation a · b = c are given as elements of

Q, the third is uniquely determined as an element of Q. It is equivalent to say that

Q is endowed with a left \ and a right / division. If there exists e ∈ Q such that

a · e = e · a = a, for all a ∈ Q, then (Q, ·) is a loop with unit element e.

• Johnson and Smith [4] extended the traditional character theory for finite groups to

finite quasigroups. To do it, given a quasigroup (Q, ·), they defined the conjugacy

class of a pair (i, j) ∈ Q2 as the orbit o(i, j) = {((x · i) · y, (x · j) · y) | x, y ∈
Q} ∪ {(x · (i · y), x · (j · y)) | x, y ∈ Q} of the diagonal action of the multiplication

group G on Q2. The number of conjugacy classes of a quasigroup is its rank and

it is verified that almost all finite quasigroups have rank 2 [6]. Qn denotes the set

of those quasigroups of n elements having maximum rank n. The conjugacy classes

of a quasigroup constitute an association scheme of Q2, such that the linear span of

the set {A1 = Idn, A2, ..., Am} of their incidence matrices in the algebra of n × n

complex matrices is a commutative Bose-Mesner algebra, called the centralizer

ring V (G, Q) of G in its multiplicity-free action on Q.

Let {E1 = Jn/n, E2, ..., Em} a basis of idempotent matrices of V (G, Q) obtained

by diagonalizing this algebra, where Jn is the n × n all-ones matrix. If |Ci| = nni,

tr(Ei) = fi and Ai =
∑m

j=1 ξi,jEj, for all i ∈ [m], then the character table of

(Q, ·) is the m × m matrix Ψ = (ψi,j), such that ψi,j =
√

fi

nj
ξji.

• The multiplication or Caley’s table of any quasigroup with n elements is a Latin

square of order n, that is to say, an n × n array with elements chosen from a set

of n distinct symbols such that each symbol occurs precisely once in each row and

once in each column. From now on, let us assume [n] = {1, 2, ..., n} as this set

of symbols and let us denote the set of Latin squares of order n by LSn. Given

L = (li,j) ∈ LSn, the orthogonal array representation of L is the set of n2

triples {(i, j, li,j) : i, j ∈ [n]}. Thus, if L is the Caley’s table of a quasigroup ([n], ·),
then a · b = c ∈ [n] if and only if (a, b, c) ∈ L. The set of Latin squares of order n

associated to loops is denoted by Ln.

• The symmetric group on [n] is denoted by Sn. Every permutation δ ∈ Sn can be

uniquely written as a composition of pairwise disjoint cycles, δ = Cδ
1 ◦Cδ

2 ◦ ... ◦Cδ
nδ

,

such that for all i ∈ [nδ], one has Cδ
i =

(

cδ
i,1 cδ

i,2 ... cδ
i, λδ

i

)

. Given δ ∈ Sn, the cycle

structure of δ is the sequence lδ = (lδ1, l
δ
2, ..., l

δ
n), where lδi is the number of cycles

of length i in δ, for all i ∈ [n].

• An isotopism of a Latin square L ∈ LSn is a triple Θ = (α, β, γ) ∈ In = S3
n,

in such a way that LΘ = {(α(i), β(j), γ (li,j)) | i, j ∈ [n]} is also a Latin square.

The cycle structure of Θ is the triple lΘ = (lα, lβ, lγ). It is said that two Latin

squares L1, L2 ∈ LSn are isotopic if there exists Θ ∈ In such that LΘ
1 = L2. To

be isotopic is an equivalence relation and the set of Latin squares being isotopic to a

given L ∈ LSn is its isotopism class, which will be denoted by [L]. The number

of isotopism classes of the set LSn is known for all n ≤ 10 [5].

• Given Θ ∈ In, if LΘ = L, then Θ is called an autotopism of L. An is

the set of all possible autotopisms of Latin squares of order n and the set of cycle

structures of An is denoted by CSn, which was determined in [2] for n ≤ 11. The

stabilizer subgroup of L in An is its autotopism group AL = {Θ ∈ In | LΘ =

L}. Given L ∈ LSn, Θ = (α, β, γ) ∈ AL and σ ∈ S3, it is verified that Θσ =

(πσ(1)(Θ), πσ(2)(Θ), πσ(3)(Θ)) ∈ ALσ, where πi gives the ith component of Θ, for all

i ∈ [3]. Given Θ ∈ An, the set of all Latin squares L such that Θ ∈ AL is denoted

by LSΘ and the cardinality of LSΘ is denoted by ∆(Θ) = |LSΘ|. Given l ∈ CSn,

it is defined the set Al = {Θ ∈ An | lΘ = l}. If Θ1, Θ2 ∈ Al, then ∆(Θ1) = ∆(Θ2).

Thus, given l ∈ CSn, ∆(l) denotes the cardinality of LSΘ for all Θ ∈ Al. Gröbner

bases were used in [1] in order to obtain the number ∆(l) for autotopisms of Latin

squares of order up to 7.
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