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Abstract. The distribution of algebras into equivalence classes is usually done according to the concept of isomorphism. However, such a distribution
can also be done into isotopism classes. The concept of isotopism was explicitly introduced in 1942 by Abraham Adrian Albert [1] to classify non-associative
algebras. In this poster we deal with the study of isotopisms of Lie algebras. The reasons for using both criteria, isotopisms and isomorphisms, to classify Lie
algebras is due to that classifications by isotopisms are different from those by isomorphisms, which involves obtaining new information about these algebras.
On a sake of example, we indicate some recent results obtained by ourselves, which are related to the distribution into isomorphism and isotopism classes of
filiform Lie algebras over finite fields.

Introduction. Two algebras g and h are iso-

topic [1] if there exist three non-singular linear trans-
formations f, g and h from g to h such that

[f (u), g(v)]h = h([u, v]g), for all u, v ∈ g. (1)

It is also said g to be an isotope of h. The tuple (f, g, h)
is called an isotopism of algebras. It is said to be
principal if h is the identity transformation. To be
isotopic is an equivalence relation among algebras. If
f = g = h, then the algebras g and h are isomorphic.
Isotopisms are therefore a generalization of isomorphisms
that can be used to gather together non-isomorphic alge-
bras. Since the original paper of Albert [1], it has been
analyzed the isotopisms of a wide variety of types of
algebras like division, Jordan, alternative or structural
algebras. Nevertheless, there barely exists any result
about isotopisms of Lie algebras, apart from the next
two results of Albert and Bruck.

Lemma. [1] A principal isotope g of a Lie algebra
h with respect to an isotopism (f, g, Id) is a Lie al-
gebra if and only if the following two conditions are
verified.

i. [f (u), g(v)]h = −[f (v), g(u)]h, for all u, v ∈ g.

ii. [f ([f (u), g(v)]h), g(w)]h− [f ([f (u), g(w)]h), g(v)]h−
[f (u), g([f (v), g(w)]h)]h = 0, for all u, v, w ∈ g.

Theorem. [4] It is verified that:

i. The Lie algebra of order n(n− 1)/2, consisting of
all skew-symmetric matrices, over any subfield of
the field of all reals, under the multiplication A ◦
B = AB −BA, is isotopically simple.

ii. The Lie algebra of order n(n− 1), consisting of all
skew-hermitian matrices in any field R(i) (where
R is a subfield of the reals and i2 = −1), under the
multiplication A◦B = AB−BA, is an isotopically
simple algebra over R.

In the last years, the concept of iso-
topism of Lie algebras has reappeared
in the literature. In 2008, Jiménez-
Gestal and Pérez-Iquierdo [6] study the
relationship that exists between the iso-
topisms of a finite-dimensional real divi-
sion algebra and the Lie algebra of its
ternary derivations. Shortly after, Alli-
son et al. [2, 3] study isotopes of a class
of graded Lie algebras called Lie tori,
but the notion of isotopism that they use
is quite different from the conventional
one. More recently, in 2014, Falcón et
al. [5] return to the conventional notion
of isotopism in order to study the distri-
bution of filiform Lie algebras over finite
fields into isotopism classes. In the rest
of the poster, we expose precisely some
results in this regard.

Preliminaries on Lie algebras.

An n-dimensional algebra g is a Lie algebra if its
second inner law is bilinear and anti-commutative and
satisfies the Jacobi identity

J(u, v, w) = [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

for all u, v, w ∈ g. The centralizer of a subset
h ⊆ g is the set Ceng(h) = {u ∈ g | [u, v] =
0, for all v ∈ h}. Given m ≤ n, we define dm(g) =
max{dimCeng(h) : h is an m-dimensional ideal}.
The sequence d(g) = {d1(g), . . . , dn(g)} is an
isotopism invariant of Lie algebras.

The lower central series of g is defined as g1 =
g, g2 = [g1, g], . . . , gk = [gk−1, g], . . . . A basis
{e1, . . . , en} of g is compatible with respect to its

lower central series if g2 = 〈e2, . . . , en−1〉, g
3 =

〈e2, . . . , en−2〉, . . . , g
n−1 = 〈e2〉, gn = 0.

The Lie algebra g is filiform if dim gk = n −
k, for all k ∈ {2, . . . , n}. We define a filiform basis

of g as a compatible basis {e1, . . . , en} with respect to
its lower central series such that either [e1, ei] = ei−1
or [ei, en] = ei−1, for 3 ≤ i ≤ n. Every finite-
dimensional filiform Lie algebra has a filiform basis.
If the only brackets distinct of zero are those of the
form [e1, ei] = ei−1, then g is called model and is not
isotopic to any other filiform Lie algebra of the same
dimension. In fact, the model algebra is the only iso-
morphism (isotopism) class of filiform Lie algebras of
dimension n ≤ 4. For n = 5, there exist two isomor-
phism (isotopism) classes of filiform Lie algebras: the
model algebra and that having an adapted basis satis-
fying the bracket [e4, e5] = e2.

Isotopisms of filiform Lie alge-

bras over finite fields.

It is verified that

a) Given a six-dimensional filiform Lie algebra g

over K, there exist a, b, c ∈ K such that

g ∼= g6abc ≡























[e1, ei+1] = ei, for all i > 1,

[e4, e5] = ae2,

[e4, e6] = be2 + ae3,

[e5, e6] = ce2 + be3 + ae4.

b) Given a seven-dimensional filiform Lie algebra
g over a field K of characteristic distinct of two,
there exist a, b, c, d ∈ K and a filiform basis
such that

g ∼= g7abcd ≡
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[e1, ei+1] = ei, for all i > 1,

[e4, e7] = ae2,

[e5, e6] = be2,

[e5, e7] = ce2 + (a + b)e3,

[e6, e7] = de2 + ce3 + (a + b)e4.

If the characteristic is two, then g can also be
isomorphic to either

g7a ≡
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[e1, e3] = [e4, e6] = [e5, e7] = e2,

[e4, e7] = [e5, e6] = e3,

[e1, e5] = e4,

[e1, e6] = e5,

[e1, e7] = e6,

[e6, e7] = e3 + ae4, where a ∈ {0, 1}.

or

h7a ≡
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[e3, e7] = [e4, e6] = e2,

[e1, e4] = [e5, e6] = e3,

[e5, e7] = e4,

[e6, e7] = e5,

[e1, e7] = e6,

[e4, e7] = ae2, where a ∈ {0, 1}.

Theorem. It is verified that

a) There exist 5 isotopism classes of six-
dimensional filiform Lie algebras:

g6000, g
6
001, g

6
010, g

6
100 and g6110.

b) There exist 10 isotopism classes of seven-
dimensional filiform Lie algebras over a
field of characteristic two:

g70000, g
7
0001, g

7
0010, g

7
0100, g

7
1000, g

7
1100,

g71110, g
7
0, g

7
1 and h70.

c) There exist 8 isotopism classes of 7-
dimensional filiform Lie algebras over an
algebraically closed field of characteristic
distinct of two and also over the finite
field Fp, where p 6= 2:

g70000, g
7
0001, g

7
0010, g

7
0100, g

7
1000, g

7
1100,

g71(−1)00 and g71(−1)10.
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[6] C. Jiménez-Gestal and J. M. Pérez-Izquierdo, Ternary derivations of finite-dimensional real division algebras. Linear Algebra Appl. 428 (2008), no. 8-9, 2192–2219.
View publication statsView publication stats

https://www.researchgate.net/publication/318100313

