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ABSTRACT

Latin squares have been historically used in order to createstatistical designs in which, starting from
a small number of experiments, it can be obtained a large experimental space. In this sense, the opti-
mization of the selection of Latin squares can be decisive. Afactor to take into account is the symmetry
that the experimental space must verify and which is established by the autotopism group of each Latin
square. Although the size of this group is known for Latin squares of order up to10, a classification of
the different symmetries has not yet been done. In this paper, given a cycle structure of a Latin square
autotopism, it is studied the regularity of the incidence structure formed by the set of autotopisms having
this cycle structure and the set of Latin squares remaining stable by at least one of the previous auto-
topisms. Moreover, it is proven that every substructure given by the isotopism class of a Latin square is
a 1-(v, k, r) design. Since the corresponding parameterk is known for Latin squares of order up to7,
we obtain the rest of the parameters of all these substructures and, consequently, a classification of all
possible symmetries is reached for these orders.

1 Introduction

An incidence structureS of v pointsandb blocksis uniform if every block contains exactlyk points and
it is regular if every point is exactly onr blocks. Two blocks areequivalentif they contain the same set
of points. Themultiplicity mult(x) of a blockx is the size of the equivalence class ofx. A designis an
uniform structure such thatmult(x) = 1, for all blockx. Given two integerst andλ, S is at-structure
for λ if each subset oft points is incident with exactlyλ common blocks. If thet-structureS is uniform
with block sizek, thenS is said to be at-(v, k, λ) structure. Everyt-(v, k, λ) structure is regular. Ifr
is the number of blocks trough any point ofS, it must beb · k = v · r. The integerst, v, b, k, λ, r are the
parametersof S. A t-(v, k, λ) structureS without repeated blocks is called at-(v, k, λ) design.

A Latin squareL of ordern is ann×n array with elements chosen from a set ofn distinct symbols such
that each symbol occurs precisely once in each row and each column. From now on,[n] = {1, 2, ..., n}
will be this set of symbols andLSn will denote the set of Latin squares of ordern. GivenL = (li,j) ∈
LSn, theorthogonal array representation ofL is the set ofn2 triples{(i, j, li,j) | i, j ∈ [n]}. Thecycle
structure ofδ ∈ Sn is the sequencelδ = (lδ1, l

δ
2, ..., l

δ
n), wherelδi is the number of cycles of lengthi in δ.
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Everyδ ∈ Sn can be uniquely written as a composition of pairwise disjoint cycles,δ = Cδ
1◦C

δ
2◦...◦C

δ
nδ
,

whereCδ
i =

(

cδi,1 c
δ
i,2 ... c

δ
i, λδ

i

)

, with λδ
i ≤ n andcδi,1 = minj{c

δ
i,j} and such that, for alli, j ∈ [nδ],

one hasλδ
i ≥ λδ

j and, ifλδ
i = λδ

j , thencδi,1 < cδj,1.

An isotopismof L = (li,j) ∈ LSn is a tripleΘ = (α, β, γ) ∈ In = S3
n. Thus,α, β and γ are

permutations of rows, columns and symbols ofL, respectively. Thecycle structureof Θ is the triple
lΘ = (lα, lβ , lγ). The resulting squareLΘ = {(α(i), β(j), γ (li,j)) | i, j ∈ [n]} is also a Latin square,
which is called to beisotopictoL. The set of Latin squares isotopic toL is its isotopism class[L]. The
number of isotopism classes ofLSn is known for alln ≤ 10 [7]. GivenΘ ∈ In, if LΘ = L, thenΘ is
called anautotopismof L. An is the set of all possible autotopisms of Latin squares of ordern and the
set of cycle structures ofAn is denoted byCSn, which was determined in [2] forn ≤ 11. The stabilizer
subgroup ofL in An is its autotopism groupAL = {Θ ∈ In | LΘ = L}. GivenΘ ∈ An, the set of all
Latin squaresL such thatΘ ∈ AL is denoted byLSΘ and the cardinality ofLSΘ is denoted by∆(Θ).
Givenl ∈ CSn, it is defined the setAl = {Θ ∈ An | lΘ = l}. If Θ1,Θ2 ∈ Al, then∆(Θ1) = ∆(Θ2).
Thus, givenl ∈ CSn, ∆(l) denotes the cardinality ofLSΘ for all Θ ∈ Al. Gröbner bases were used
in [3] in order to obtain the number∆(l) for autotopisms of Latin squares of order up to7. Finally, we
consider the setsLSl =

⋃

Θ∈Al
LSΘ andAl(L) = {Θ ∈ Al | L ∈ LSΘ}.

In this paper, givenl ∈ CSn, we study the incidence structureSl = (LS l,Al,Il), where, givenL ∈ LS l

andΘ ∈ Al, it is (L,Θ) ∈ Il if and only if L ∈ LSΘ. Since∆(Θ1) = ∆(Θ2) = ∆(l), for all
Θ1,Θ2 ∈ Al, it is verified thatSl is uniform with block size∆(l). In Section 2, we prove that any
Θ ∈ Al restricts the study of the regularity ofSl to the setLSΘ. Moreover, it is proved that the
substructureSl,[L] of Sl, given by the isotopism class ofL is regular. In order to obtain the parameters
of Sl,[L], we implement in Section 3 all the previous results in an algorithm in SINGULAR [5] and we
obtain the parameters ofSl,[L], for all cycle structures related with Latin squares of order up to7.

2 Regularity of the structure Sl

Lemma 2.1. It is verified thatlδ1δ2δ−1
1

= lδ2 , for all δ1, δ2 ∈ Sn.

Lemma 2.2. Givenδ1, δ2 ∈ Sn such thatlδ1 = lδ2 , let us define the permutationδ1 ∗ δ2, such that
δ1 ∗ δ2(c

δ1
i,j) = cδ2i,j , for all i ∈ [nδ1 ] andj ∈ [λδ1

i ]. It is verified thatδ2 = (δ1 ∗ δ2)δ1(δ1 ∗ δ2)
−1.

Proposition 2.3. Let l ∈ CSn. GivenΘ1 = (α1, β1, γ1),Θ2 = (α2, β2, γ2) ∈ Al, let us define the
isotopismΘ1 ∗Θ2 = (α1 ∗α2, β1 ∗β2, γ1 ∗γ2) ∈ In. It is verified thatΘ2 = (Θ1 ∗Θ2)Θ1(Θ1 ∗Θ2)

−1

and thatΘ1 ∗Θ2 is a bijection between the setsLSΘ1 andLSΘ2 .

Proof. The first assertion is an immediate consequence of Lemma 2.2.So, ifΘ∗ = Θ1 ∗Θ2, then it is
Θ2Θ

∗ = Θ∗Θ1. Thus, givenL ∈ LSΘ1, it is
(

LΘ∗)Θ2 = LΘ2Θ∗
= LΘ∗Θ1 =

(

LΘ1
)Θ∗

= LΘ∗
and,

therefore,Θ∗ (LSΘ1) ⊆ LSΘ2. Analogously, it can be seen thatΘ∗−1 (LSΘ2) ⊆ LSΘ1 .

Theorem 2.4. Givenl ∈ CSn, every block ofSl has the same multiplicity.

Proof. Let Θ1,Θ2 ∈ Al and let us defineΘ∗ = Θ1 ∗ Θ2. From Lemma 2.1, it isΘ∗ΘΘ∗−1 ∈ Al, for
all Θ ∈ Al. So, it is enough to prove thatLSΘ2 = LSΘ∗ΘΘ∗−1 , for all Θ ∈ Al such thatLSΘ1 =

LSΘ. Let us take one such aΘ. GivenL ∈ LSΘ2 , from Proposition 2.3, it must beLΘ∗−1
∈ LSΘ1 .

SinceLSΘ = LSΘ1 , it is
(

LΘ∗−1
)Θ

= LΘ∗−1
and therefore,LΘ∗ΘΘ∗−1

=
(

LΘ∗−1
)Θ∗

= L. So,

LSΘ2 ⊆ LSΘ∗ΘΘ∗−1 . The uniformity ofSl finishes the proof.



Theorem 2.5. Let l ∈ CSn. If there exists an autotopismΘ ∈ Al such that|Al(L)| = |Al(L
′)|, for all

L,L′ ∈ LSΘ, then the structureSl is regular.

Proof. Let Θ ∈ Al be an autotopism verifying the hypothesis and letL ∈ LSΘ. GivenL′ ∈ LS l,
it is enough to prove that|Al(L

′)| = |Al(L)|. Let Θ′ ∈ Al be such thatL′ ∈ LSΘ′ . If Θ′ = Θ,
then the proof is immediate from the hypothesis. Otherwise,since lΘ = lΘ′ , we can consider the
isotopismΘ∗ = Θ ∗ Θ′. From Proposition 2.3, there must existL′′ ∈ LSΘ such thatL′′Θ∗

= L′.
Let us see that|Al(L

′′)| = |Al(L
′)|: SinceAl(L

′′) ⊆ Al, if Al(L
′′) = {Θ′′

1 ,Θ
′′
2, ...,Θ

′′
m}, it must

be, from Lemma 2.1,{Θ∗Θ′′
iΘ

∗−1 | i ∈ [m]} ⊆ Al. Now, given i ∈ [m], it is L′Θ∗Θ′′
i Θ

∗−1
=

(

L′′Θ∗)Θ∗Θ′′
i Θ

∗−1

= L′′Θ∗Θ′′
i Θ

∗−1Θ∗
= L′′Θ∗Θ′′

i =
(

L′′Θ′′
i

)Θ∗

= L′′Θ∗
= L′. Thus,Θ∗Θ′′

iΘ
∗−1 ∈

Al(L
′), for all i ∈ [m] and, therefore,|Al(L

′′)| ≤ |Al(L
′)|. The opposite inequality can be analogously

obtained by considering the isotopismsΘ∗−1Θ′
iΘ

∗, for all Θ′
i ∈ Al(L

′).

Proposition 2.6. GivenΘ,Θ′ ∈ Al, Θ ∗ Θ′ is a bijection between[L]Θ = [L] ∩ LSΘ and [L]Θ′ =
[L] ∩ LSΘ′ .

Proof. From Proposition 2.3,Θ∗ = Θ ∗ Θ′ is a bijection betweenLSΘ andLSΘ′ . Besides, since
Θ∗ ∈ In, it is [L′Θ∗

] = [L′] = [L], for all L′ ∈ [L].

Proposition 2.7. It is verified that
⋃

Θ∈Al
[L]Θ = [L].

Proof. Since[L]Θ ⊆ [L], for all Θ ∈ Al, it is
⋃

Θ∈Al
[L]Θ ⊆ [L]. LetL1 ∈ [L] andL2 ∈

⋃

Θ∈Al
[L]Θ.

Let Θ ∈ Al be such thatLΘ
2 = L2 and letΘ′ ∈ Al such thatLΘ′

2 = L1. Then, from Lemma 2.1,

lΘ′ΘΘ′−1 = lΘ and so,Θ′ΘΘ′−1 ∈ Al. Moreover,L1 ∈ LS(Θ′ΘΘ′−1), becauseLΘ′ΘΘ′−1

1 = LΘ′Θ
2 =

LΘ′

2 = L1. Thus,L1 ∈
⋃

Θ∈Al
[L]Θ and, therefore,[L] ⊆

⋃

Θ∈Al
[L]Θ.

Let us denote by∆[L](l) the cardinality of[L]Θ, for all Θ ∈ Al. From Propositions 2.6 and 2.7, we
can define the uniform incidence structureSl,[L] =

(

[L],Al,Il,[L]
)

, with blocks of size∆[L](l), where,
givenL ∈ [L] andΘ ∈ Al, it is (L,Θ) ∈ Il,[L] if and only if L ∈ LSΘ. Then, by keeping in mind
Proposition 2.6, next results can be proven analogously to Theorem 2.4 and 2.5:

Theorem 2.8. GivenL ∈ LSn andl ∈ CSn, every block ofSl,[L] has the same multiplicity. �

Theorem 2.9. LetL ∈ LSn and l ∈ CSn. If there exists an autotopismΘ ∈ Al such that|Al(L1)| =
|Al(L2)|, for all L1, L2 ∈ [L]Θ, then the structureSl,[L] is regular. �

Let us denote bymult[L](l) the multiplicity of Theorem 2.8. We obtain the main result ofthis section:

Theorem 2.10.Sl,[L] is regular, for allL ∈ LSn andl ∈ CSn.

Proof. Let Θ ∈ Al andL1, L2 ∈ [L]Θ. There must existΘ′ ∈ In such thatLΘ′

1 = L2. If Al(L1) =
{Θ1,Θ2, ...,Θm}, then,{Θ′ΘiΘ

′−1 | i ∈ [m]} ⊆ Al(L2), because, giveni ∈ [m], lΘ′ΘiΘ′−1 = lΘi

andLΘ′ΘiΘ′−1

2 = LΘ′Θi

1 = LΘ′

1 = L2. So, |Al(L1)| ≤ |Al(L2)|. The opposite inequality can be
analogously obtained by considering the isotopismsΘ′−1ΘiΘ

′, for all i ∈ [m]. From Theorem 2.9,
Sl,[L] must be regular.



3 Structures of Latin squares of order up to7.

In this section, givenn ≤ 7, the parameters ofSl,[L] are obtained, for alll = (l1, l2, l3) ∈ CSn and
L ∈ LSn. The general procedure to obtain them has been the following: Since the parameterb = |Al|
of Sl,[L] can be obtained from a simple combinatorial calculus, the first difficulty is indeed the calculus
of the parameterk. In this sense, givenΘ ∈ Al, the algorithm indicated in [3] and implemented in
SINGULAR [4] can show as output all the elements of the setLSΘ, which can be classified according
to their isotopism classes. From Proposition 2.6, it allowsto obtain the parameterk = ∆[L](l). The
identification of the isotopism classes has been done by obtaining some isotopic invariants of each
Latin square of the previous setLSΘ, like the numbers of transversals, intercalates,3 × 3 subsquares
and2× 3 and3× 2 subrectangles. Specifically, for orders6 and7, the list of isotopism classes given by
McKay [8] has been used to identify those classes with the same set of isotopic invariants. Moreover,
the previous invariants can be used to know, according to thetables given in [1] (pp.137-141) and those
of the appendix of [7], the size of the autotopism group of each isotopism class. Thus, it is also obtained
the parameterv = |[L]| = n!3

|AL|
. Finally, the parameterr is attained from the expressionb · k = v · r.

n l1 = l2 l3 v = |LSn| b = |Al| k = ∆(l) r mult(l)
2 (0,1) (2,0) 2 1 2 1 1

(0,0,1)
(0,0,1) 8 3

2 2
3 (3,0,0) 12 4 6

(1,1,0) (1,1,0) 27 4 9 1

Table 1: Parameters of the1-(v, k, r) structuresSl, for l ∈ CS2 ∪ CS3.

n l1 = l2 l3 [L] v = |[L]l| b = |Al| k = ∆[L](l) r mult[L](l)

(0,2,0,0) c4,1 432 108 8 2 2
(0,0,0,1) (2,1,0,0) c4,2 144 216 8 12 4

(4,0,0,0) c4,1 432 36 24 2 2

(0,2,0,0)

(0,2,0,0) c4,2 144 27 32 6

1
4 (2,1,0,0) c4,1 432 54 32 4

(4,0,0,0)
c4,1 432

9 48
1

c4,2 144 3
(1,0,1,0) (1,0,1,0) c4,2 144 512 9 32 2

(2,1,0,0) (2,1,0,0)
c4,1 432

216 8
4

4
c4,2 144 12

(0,0,0,0,1)
(0,0,0,0,1) c5,1 17280 13824 15 12

4
(5,0,0,0,0) c5,1 17280 576 120 4

5 (1,0,0,1,0) (1,0,0,1,0) c5,1 17280 27000 32 50 2

(1,2,0,0,0) (1,2,0,0,0)
c5,1 17280

3375 128
25

1
c5,2 144000 3

(2,0,1,0,0) (2,0,1,0,0) c5,2 144000 8000 144 8 2

Table 2: Parameters of the1-(v, k, r) structuresSl,[L], for l ∈ CS4 ∪ CS5 andL ∈ LS4 ∪ LS5, where:

c4,1 =

















1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

















, c4,2 =

















1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

















, c5,1 =





















1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4





















, c5,2 =





















1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4





















.

c6,1 (0,0,4,12,12,108) c6,7 (0,15,0,0,8,12) c6,13 (8,5,0,4,8,4) c6,19 (24,15,0,0,0,120)
c6,2 (0,9,4,12,12,72) c6,8 (0,15,0,8,0,12) c6,14 (8,5,0,8,4,4) c6,20 (24,15,0,0,20,120)
c6,3 (0,9,4,12,12,36) c6,9 (0,19,0,4,4,8) c6,15 (8,7,0,0,0,8) c6,21 (24,15,0,20,0,120)
c6,4 (0,9,4,12,12,36) c6,10 (0,27,4,12,12,216) c6,16 (8,7,0,0,12,8) c6,22 (32,9,0,12,12,24)
c6,5 (0,9,4,12,12,36) c6,11 (8,4,0,4,4,4) c6,17 (8,7,0,12,0,8)
c6,6 (0,15,0,0,0,12) c6,12 (8,5,0,4,4,4) c6,18 (8,11,0,4,4,4)

Table 3: Number of transversals, intercalates,3×3 subsquares,2×3 subrectangles,3×2 subrectangles
and size of the autotopism group of the22 isotopism classes ofLS6.



l1 l2 l3 [L] v = |[L]l| b = |Al| k = ∆[L](l) r mult[L](l)

(0,0,2,0,0,0)
2 5184000

576000
18

2

2

22 15552000 54

(1,1,1,0,0,0)
19 3110400

1728000 36
20

3 10368000 6
(0,0,0,0,0,1) (0,0,0,0,0,1)

(2,2,0,0,0,0)
10 1728000

648000
48

18
1 3456000 96

(3,0,1,0,0,0) 10 1728000
576000

36 12
6 31104000 108 2

(4,1,0,0,0,0) 3 10368000 216000 288 6
(6,0,0,0,0,0) 2 5184000 14400 720 2

(0,0,0,0,0,1) (0,0,2,0,0,0) (0,3,0,0,0,0)
10 1728000

72000 144
6

2 5184000 2

(0,0,2,0,0,0)
2 5184000

64000
162

2
22 15552000 486

(0,0,2,0,0,0) (0,0,2,0,0,0)
(3,0,1,0,0,0)

10 1728000

64000

108
4

1 3456000 216
3 10368000 324 2
19 3110400

972
20

6 31104000 2

(6,0,0,0,0,0)

10 1728000

1600

2160

2
1 3456000 4320
2 5184000 6480
3 10368000 12960

(1,0,0,0,1,0) (1,0,0,0,1,0) (1,0,0,0,1,0) 19, 20, 21 3110400 2985984 25 24 4

(0,3,0,0,0,0) (0,3,0,0,0,0)

(2,2,0,0,0,0)

10 1728000

10125

1536

1

1 3456000 3072 9
2 5184000
22 15552000 4608 3
9 46656000 1
6 31104000

9216
3

11 93312000 1

(4,1,0,0,0,0)

19 3110400

3375

9216 10
3 10368000 18432 6
15 46656000 27648

2
12 93312000 55296

(6,0,0,0,0,0)

10 1728000

225

23040
3

2 5184000

1
22 15552000 69120
6 31104000 138240
9 46656000 207360

(2,0,0,1,0,0) (2,0,0,1,0,0) (2,0,0,1,0,0)
19, 20, 21 3110400

729000 128
30

2
15, 16, 17 46656000 2

(2,2,0,0,0,0) (2,2,0,0,0,0) (2,2,0,0,0,0)

10 1728000

91125

512
27

1

19, 20, 21 3110400 15
2 5184000 9
22 15552000 3
9 46656000 1

3, 4, 5 10368000
1024

9
6, 7, 8 31104000 3

12, 13, 14 93312000 1
15, 16, 17 46656000 1536 3

18 93312000 3072 3

(3,0,1,0,0,0) (3,0,1,0,0,0) (3,0,1,0,0,0)
10 1728000

64000
216

8
21 3456000 432

3, 4, 5 10368000 48 4

Table 4: Parameters of the1-(v, k, r) structuresSl,[L], for l ∈ CS6 andL ∈ LS6.
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c7,1 (3,18,1,9,9,12) c7,17 (15,22,1,11,9,2) c7,71 (23,26,3,13,13,8) c7,137 (43,18,3,9,9,4)
c7,7 (13,18,1,9,9,2) c7,24 (19,6,0,3,6,3) c7,72 (23,26,3,13,13,8) c7,138 (43,30,3,13,13,4)
c7,8 (13,18,1,9,9,2) c7,25 (19,6,0,6,3,3) c7,83 (25,0,0,0,6,6) c7,139 (45,16,0,5,5,5)
c7,9 (13,18,1,9,9,2) c7,26 (19,6,0,6,6,3) c7,84 (25,0,0,6,0,6) c7,140 (45,16,0,5,5,5)
c7,10 (15,1,0,5,5,5) c7,33 (21,18,1,7,7,2) c7,85 (25,0,0,6,6,6) c7,141 (45,16,0,5,5,5)
c7,11 (15,1,0,5,5,5) c7,34 (21,18,1,7,13,2) c7,107 (27,18,1,9,9,4) c7,145 (55,22,3,9,9,8)
c7,12 (15,10,1,5,9,4) c7,35 (21,18,1,13,7,2) c7,123 (31,6,3,9,9,24) c7,146 (55,22,3,9,17,8)
c7,13 (15,10,1,9,5,4) c7,67 (23,14,1,7,7,2) c7,130 (33,18,0,6,6,3) c7,147 (55,22,3,17,9,8)
c7,14 (15,10,1,9,9,4) c7,68 (23,14,1,7,7,2) c7,131 (33,18,0,6,12,3) c7,148 (63,42,7,21,21,168)
c7,15 (15,22,1,9,9,2) c7,69 (23,14,1,7,7,2) c7,132 (33,18,0,12,6,3) c7,149 (133,0,0,0,0,294)
c7,16 (15,22,1,9,11,2) c7,70 (23,26,3,13,13,8) c7,133 (33,18,0,12,12,3)

Table 5: Number of transversals, intercalates,3×3 subsquares,2×3 subrectangles,3×2 subrectangles
and size of the autotopism group of several of the149 isotopism classes ofLS7.

l1 = l2 = l3 [L] v = |[L]l| b = |Al| k = ∆[L](l) r mult[L](l)

(0,0,0,0,0,0,1)
149 435456000

373248000
35 30

6148 762048000 98 48
(7,0,0,0,0,0,0) 149 435456000 518400 5040 6

(1,0,0,0,0,1,0)
149 435456000

592704000 72
98

2

83, 84, 85 21337344000 2

(1,0,2,0,0,0,0)

149 435456000

21952000

1944

98
148 762048000 56
123 5334336000 8

83, 84, 85 21337344000 2
1 10668672000

3888

8
24, 25, 26

42674688000 2130, 131, 132
133

(1,1,0,1,0,0,0)
148 762048000

250047000 128
42

70, 71, 72 16003008000 2

(2,0,0,0,1,0,0)
10, 11

25604812800 128024064 800 4 4
139, 140, 141

(1,3,0,0,0,0,0)

149 435456000

1157625

18432
49

1
83, 84, 85 21337344000 1

123 5334336000 27648 6
145, 146, 147 16003008000 138240

10
10, 11 25604812800 221184

(3,0,0,1,0,0,0)

123 5334336000

9261000
3456

6

2
145, 146, 147 16003008000

212, 13, 14
32006016000 6912

107

(3,2,0,0,0,0,0)

148 762048000

1157625

13824
21

1

123 5334336000
3

1 10668672000
2764812, 13, 14

32006016000 1
107

145, 146, 147 16003008000 41472 3
7, 8, 9

64012032000 55296 1
15, 16, 17
33, 34, 35
67, 68, 69
70, 71, 72 16003008000 69120 5

137
32006016000 82944 3

138

Table 6: Parameters of the1-(v, k, r) structuresSl,[L], for l ∈ CS7 andL ∈ LS7.
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[8] B. D. McKay. http://cs.anu.edu.au/∼bdm/data/latin.html.
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