
Simulating a P system based efficient solution to SAT by using GPUs

José M. Cecilia b,**, José M. García b, Ginés D. Guerrero b, Miguel A. Martínez–del–Amor a,*,
Ignacio Pérez–Hurtado a,***, Mario J. Pérez–Jiménez a

a Research Group on Natural Computing, Dpt. of Computer Science and Artificial Intelligence, University of Seville, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
b Grupo de Arquitectura y Computación Paralela, Dpto. Ingeniería y Tecnología de Computadores, Universidad de Murcia, Campus de Espinardo, 30100 Murcia,
Spain

A B S T R A C T

Keywords:

SAT

P systems

Membrane Computing

GPUs

P systems are inherently parallel and non-deterministic theoretical computing devices

defined inside the field of Membrane Computing. Many P system simulators have been

presented in this area, but they are inefficient since they cannot handle the parallelism

of these devices. Nowadays, we are witnessing the consolidation of the GPUs as a parallel

framework to compute general purpose applications. In this paper, we analyse GPUs as an

alternative parallel architecture to improve the performance in the simulation of P systems,

andwe illustrate it by using the case study of a family of P systems that provides an efficient

anduniformsolution to the SATproblem. Firstly,wedevelop a simulator that fully simulates

the computation of the P system, demonstrating that GPUs are well suited to simulate

them. Then, we adapt this simulator to the GPU architecture idiosyncrasies, improving the

performance of the previous simulator.

1. Introduction

Membrane Computing is a computing paradigm inspired on living cells, introduced by Păun [1]. The main idea of this

new model of computation is to consider biochemical processes taking place inside living cells from a computational point

of view. Devices of this model are called P systems. They have several syntactic ingredients: amembrane structure consisting

of a hierarchical arrangement of membranes embedded in a skinmembrane, and delimiting regions or compartments where

multisets of objects and sets of evolution rules are placed. P systems also have twomain semantic ingredients: their inherent

parallelism and non-determinism.

Up to now, it has not been possible to have implementations neither in vivo nor in vitro of P systems. The only way to

analyse and execute these devices is through simulators. Therefore, P systems simulators are tools that help the researchers

to extract results from a model without the need of having a real implementation.

Since the model of P systems was presented, many simulators and software applications have been produced [2,3]. The

majority of these simulators has been developed under sequential architectures using languages such as Java, CLIPS, Prolog or

C. However, all of sequential P systems simulators are inefficient on time of execution. They serialise the natural parallelism

of P systems, and therefore, the performance is dramatically decreased.

We are witnessing the consolidation of the parallel architectures in the newest generation of processors. The last gen-

eration of CMP (Chip MultiProcessor) processors from both Intel and AMD contains up to 8 cores per die. Moreover, these

*
Corresponding author. Tel.: +34954557947; fax: +34954556251.

** Corresponding author.
*** Corresponding author.

E-mail addresses: mdelamor@us.es (M. Martínez–del–Amor), chema@ditec.um.es (J.M. Cecilia), jmgarcia@ditec.um.es (J.M. García),
gines.guerrero@ditec.um.es (G.D. Guerrero), perezh@us.es (I. Pérez–Hurtado), marper@us.es (M.J. Pérez–Jiménez).

http://www.sciencedirect.com/science/journal/15678326
http://www.elsevier.com/locate/jlap
mailto:mdelamor@us.es
mailto:chema@ditec.um.es
mailto:jmgarcia@ditec.um.es
mailto:gines.guerrero@ditec.um.es
mailto:perezh@us.es
mailto:marper@us.es

processors are still organised in clusters of computers, which are extremely expensive and only available for organisations

that have enough resources to buy and maintain them. However, other parallel architectures are being consolidated as an

alternative computational model. Among these emergent parallel architectures, the newest version of programmable GPUs

provide a compelling alternative to the traditional parallel environments such as cluster of computers, delivering extremely

highfloatingpointperformanceandalsoamassivelyparallel framework for scientificapplicationswhichfit their architectural

idiosyncrasies.

GPUs can support several thousand of concurrent threads providing a massively parallel environment. Current NVIDIA

Corporation’s GPUs, for example, contain up to 240 scalar processing elements per chip [4], they are programmed using C

and CUDA [5,6], and they a have low cost compared with a cluster of computers.

So far, many simulators and software for P systems have been designed for clusters of computers [7], for reconfigurable

hardware as FPGA [8,9], and for specific circuits [10]. There is also another attempt to design simulators on GPUs, e.g. [11]. All

of these efforts have demonstrated that a parallel architecture is better positioned in performance than traditional CPUs to

simulate P systems, due to the inherently parallel nature of them, and specifically GPUs obtain very good preliminary results

simulating P systems.

In this paper, we analyse the behaviour of GPUs simulating a P system that belongs to the family of P systems with

active membranes and solves the NP-complete problem SAT. We analyse the bottlenecks presented in this simulation, and

demonstrate that several parameters can be considered when designing P systems based solutions in order to be simulated

efficiently on GPUs.

The rest of the paper is structured as follows: In Section 2 a family of P systems with active membranes solving SAT is

defined. Section 3 introduces the Compute Unified Device Architecture (CUDA) and some concepts of programming on GPUs

are specified. In Section 4 we explain the design aspects of the simulators. Finally, in Section 5 we show some results and

several comparisons between the developed simulators. The paper ends with some conclusions and ideas for future work in

Section 6.

2. A family of P Systems solving SAT in linear time

Most research in P systems concentrates on the computational power and efficiency of the devices involved. In this

context, the inherent parallelism and non-determinism of P systems have been used as tools to solve computationally hard

problems in a feasible time. Polynomial time solutions to NP-complete problems by means of P systems are achieved by

trading time (number of computation steps of the device) for space (number of membranes and objects). This is inspired

by the capability of cells to produce an exponential number of new membranes in polynomial time. There are many ways a

living cell can produce new membranes: mitosis (cell division), autopoiesis (membrane creation), gemmation, etc. Following

these inspirations a number of different models of P systems has arisen, and many of them proved to be computationally

complete.

P systemswith activemembranes is one of themost studied inMembrane Computing [12]. They are formed by amembrane

structure, where a label and a polarization (positive, negative or neutral) is associated to eachmembrane. In this model, every

elementary membrane is able to divide itself by replicating its content into a new membrane. In order to solve decision

problems (abstract problems that require a yes or non answer), we consider recognizer P systems [13], that is, P systems such

that: (a) the working alphabet contains two distinguished elements yes and no; (b) all computations halt; and (c) if C is a

computation of the system, then either object yes or object no (but not both) must have been sent out of the system (i.e. to

the environment), and only at the last step of the computation.

Many examples have been proposed in the framework of P systems with active membranes (with polarizations). In [13],

a (uniform) family of recognizer P systems with active membranes solving SAT in linear time is described. The SAT problem

is the following: given a Boolean formula in conjunctive normal form (CNF), to determine whether or not there exists a truth

assignment to its variables on which it evaluates true.

Let us consider a propositional formula ϕ = C1 ∧ · · · ∧ Cm in CNF with Var(ϕ) = {x1, . . . , xn}, consisting of m clauses

Ci = yi,1 ∨ · · · ∨ yi,ki , 1 � i � m, where yi,i′ ∈ {xj ,¬xj : 1 � j � n} are the literals of ϕ. Without loss of generality, we may

assume that no clause contains two occurrences of some xj or two occurrences of some ¬xj (the formula is not redundant at

the level of clauses), or both xj and ¬xj (otherwise such a clause is trivially satisfiable, hence can be removed).

We codify ϕ, which is an instance of SATwith size parameters n andm, by the multiset

cod(ϕ) =
m⋃

i=1
{xi,j : xj ∈ Ci} ∪ {xi,j : ¬xj ∈ Ci}

and we represent by s(ϕ) = (n+m)·(n+m+1)
2

+ n (denoted by 〈n,m〉) the length of the formula ϕ (in a reasonable encoding

scheme). The instance ϕ will be processed by the P system with active membranes �(s(ϕ)) with input cod(ϕ).

For eachm,n ∈ Nwe consider the P systemwith activemembranes of degree 2:�(〈m,n〉) = (�,�,μ,M1,M2,R, 2) defined

as follows:

• The input alphabet is � = {xi,j , xi,j : 1 � i � m, 1 � j � n}.
• The working alphabet is � = � ∪ {ck : 1 � k � m+ 2} ∪ {dk : 1 � k � 3n+ 2m+ 3} ∪ {ri,k : 0 � i � m, 1 � k � 2n}
∪ {e, t} ∪ {Yes,No}. The set of labels is {1, 2}.

• The initial membrane structure is μ = [[]2]1.
• The initial multisets associated with the membranes are M1 = ∅ and M2 = {d1}.
• The input membrane is the membrane labeled by 2.

• The set of rules, R, consists of:

(a) {[dk]02 → [dk]+2 [dk]−2 : 1 � k � n}.
(b) {[xi,1 → ri,1]+2 , [xi,1 → ri,1]−2 : 1 � i � m}.
{[xi,1 → λ]−

2
, [xi,1 → λ]+

2
: 1 � i � m}.

(c) {[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 : 1 � i � m, 2 � j � n}.
{[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 : 1 � i � m, 2 � j � n}.

(d) {[dk]+2 → []02dk , [dk]−2 → []02dk : 1 � k � n}.
{dk[]02 → [dk+1]02 : 1 � k � n− 1}.

(e) {[ri,k → ri,k+1]02 : 1 � i � m, 1 � k � 2n− 1}.
(f) {[dk → dk+1]01 : n � k � 3n− 3}; [d3n−2 → d3n−1e]01.
(g) e[]0

2
→ [c1]+2 ; [d3n−1 → d3n]01.

(h) {[dk → dk+1]01 : 3n � k � 3n+ 2m+ 2}.
(i) [r1,2n]+2 → []−2 r1,2n.
(j) {[ri,2n → ri−1,2n]−2 : 1 � i � m}.
(k) r1,2n[]−2 → [r0,2n]+2 .
(l) {[ck → ck+1]−2 : 1 � k � m}.

(m) [cm+1]+2 → []+2 cm+1.
(n) [cm+1 → cm+2t]01.
(o) [t]0

1
→ []+

1
t.

(p) [cm+2]+1 → []−1 Yes.
(q) [d3n+2m+3]01 → []+1 No.
The execution of the P system �(s(ϕ)) with input cod(ϕ) can be structured in four consecutive stages:

• In generation stage, all possible truth assignments to the variables are generated by using division rules, and they are

encoded in the internal membranes. Simultaneously, in such membranes, clauses being true by the encoded truth

assignment are checked. Only rules from (a) to (e) are executed, and the whole stage takes 3n− 1 computation steps.

• Synchronization stage has the goal of unifying the second subindexes of the objects ri,k , tomake them equal to 2n. Rules

from (e) to (g) are executed, and the stage needs 2n steps to be completed.

• Check-out stage has the goal to determine how many (and which) clauses are true in every internal membrane (that

is, by the assignment represented by it). This stage spends 2 steps per clause (a total number of 2m steps in the stage),

and rules from (h) to (l) are executed.

• Output stage searches for internal membranes encoding a solution (that is, containing the object cm+1), what is calcu-

lated in each one by the previous stage. If such membranes are found, the object Yes is sent out to the environment.

Otherwise, the object No is sent. Only 4 steps are needed by this stage, and rules from (m) to (q) are executed.

3. Compute Unified Device Architecture (CUDA) parallel programming model

The CUDA programming model developed by NVIDIA allows the programmers write scalable parallel programs for GPUs

using a straightforward extension of the C language. Moreover, CUDA is designed for writing highly scalable parallel code

that can run across tens of thousands of concurrent threads and hundreds of processor cores. This is basically true because

current GPUs can physically contain up to 240 processor cores and 30,720 thread contexts. Therefore, the CUDAprogramming

model is oriented to develop parallel programs that transparently and efficiently scale across different levels of parallelism

that GPUs naturally present.

A CUDA program is divided into twomain parts (see Fig. 1): The host part and the device part. The former is the part of

the CUDA program which runs on the CPU, being executed by one or more sequential CPU threads. The latter is executed on

the GPU and it is called kernel in the CUDA programming model. This part can be composed by one or more kernels that are

suitable for execution on the GPU. A kernel executes a scalar sequential program on a set of parallel threads. The programmer

organizes these threads in two ways showing the two levels of parallelism inside the kernel (see Fig. 1).

Firstly, the programmer declares the number of threads that compose the thread block. The threads of the same block can

communicate to each other through fast on-chip memory and they are allowed to synchronize with each other via barriers.

Moreover, the programmer declares the number of thread blocks that forms theGrid of blocks that executes a kernel. Threads

from different blocks only can share data through a slow off-chip global memorywhich is visible for every thread in the grid,

and the only way to synchronize all the blocks is ending the kernel.

Finally, the CUDA programming model requires that all thread blocks in the same kernel have to be independent, which

means that the final result should be the same, independent of the order of the blocks.More details of the CUDAprogramming

model can be found in [5,6].

Fig. 1. The CUDA programming model.

Fig. 2 shows the skeleton of a parallel programming with CUDA with a simple example that adds two vectors in parallel.

Given vectors Ad and Bd containing dimgrid*dimblock integer numbers, it performs Ad← Ad+ Bd. It contains a very simple

implementation of a vector addition in parallel showing both host and device sides of CUDA programming model. The GPU

memory needed by the kernel is allocated in the host program. Once the GPUmemory is allocated, the host programmoves

the data from the main memory (CPU memory or host memory) to the GPU memory (global or device memory). The CPU

program also launches the kernel and defines the number of threads and blocks that performs the computation on the GPU.

This is done with an extension function call syntax AddVectors <<<dimGrid, dimBlock>>>(...) used to launch the kernel

AddVectors() in parallel across dimGrid blocks of dimBlock threads each. Finally, the host program retrieves the results from

the GPU memory to the host memory and frees the memory used in the GPU.

The parallel kernel assigns one element to one thread, performing the addition of each element in parallel. The __global__
key word indicates that the function is a kernel and, therefore, it will be executed on the GPU. Inside the kernel, first of all,

each thread determines which element it should process depending of threemain parameters: its thread block integer index

(blockIdx.x), index within its block (threadIdx.x), and the total number of threads per block (blockDim.x).

The kernel showed in Fig. 2 is a common parallelization pattern, where a serial loop with independent iterations can be

executed in parallel across many threads [14]. The CUDA programmer writes a scalar program (kernel) which specifies the

behaviour of a single thread. Each thread computes an iteration of the serial loop identifying the data to compute through

indexes previously explained.

The GPU is well suited for certain kind of computations. Among these computations, the data parallelism programs are

the best positioned to be accelerated on these architectures. The AddVectors kernel is a simple example where parallel work

is decomposed to match result data elements. However, other kind of computations can be accelerated on the GPU. While

different thread blocks or different threads of a kernel can potentially execute entirely different code, such task parallelism

does not generally scale as well as data parallelism. Moreover, data-parallel kernels typically expose substantially more fine-

grained parallelism than task-parallel kernels and, therefore, generally can take best advantage of the GPU architecture [14].

4. Design of the simulator

In this section we briefly describe the simulator for the family of recognizer P systems described in Section 2. Firstly, we

explain the previous work that we have done to prepare the development of the parallel simulator on the GPU. Then, we

introduce the simulator design that fully simulates the P system computation to solve the SAT problem. Finally, we describe

the adapted simulator to the GPU in order to accelerate the simulation.

Fig. 2. Parallel programming with CUDA. Code to compute a→ a+ b.

4.1. Design of the baseline simulator: sequential simulator

As previously mentioned in Section 3, the CUDA programming model is based on C/C++ language. Therefore, the first

recommended step when developing applications in CUDA is to start from a baseline algorithm written in C++, where some

parts can be susceptible to be parallelized on the GPU. The sequential simulator design is based on the four main stages of

the P system execution, as it is depicted in Section 2: Generation, Synchronization, Check-out, and Output. All of these stages

are sequentially executed in this simulator, reproducing the behaviour of the P system.

Firstly, the Generation stage is executed, generating 2n membranes by dividing each one in n steps, where n is the number

of variables that composes the CNF formula of the SAT problem. After that, the simulator executes the Synchronization stage

which evolves the objects following the rules previously explained. The Check-out stage determines the membranes that

codify a solution (where all the clauses are true) of the SAT problem, and finally the Output stage sends out the answer to

the environment.

The input of this simulator is a DIMACS CNF file, where the CNF formula is encoded. The output is read in the environment

of the P system, where the result is stored. It is important to remark that the semantics of the P system is reproduced by the

simulation algorithm, so the present simulator is specific for this solution.

4.2. Design of GPU simulator using CUDA: parallel simulator

The objective of this parallel simulator is to fully simulate the behaviour of the P system computation, doing this in a

parallel way whenever is possible. To do that, we use the baseline design based on the four main stages of the P system

computation. The first three stages are developed as CUDA kernels in this simulator, and the last one (Output stage) is

developed on the CPU.

Similarly to the design presented in [11], this simulator assigns a thread block to each membrane as showed in Fig. 3. In

this way, the parallelism among membranes in the P system is simulated. Moreover, each thread is assigned to each object

of the input multiset, which is a literal of the CNF formula of the input SAT problem (with the exception of object d1). This

mapping is common to all the defined kernels.

Algorithm 1 shows the pseudocode for this version of the simulator. The Generation stage is simulated by using three

kernelswhich computes the rulespreviously explained inSection2. This is an iterativeprocessofn stepswhere thekernels are

Fig. 3. General design of the parallel simulator.

Algorithm 1. Parallel simulator. Fully reproducing the SAT P system

Require: numMembranes � 0

{Start Generation stage}

repeat

Division_kernel <<< Blocks, Threads >>> (numMembranes)

numMembranes⇐ numMembranes× 2

AdjustBlocks(Blocks,numMembranes)

Send_out_kernel <<< Blocks, Threads >>> (numMembranes)

Send_in_kernel <<< Blocks, Threads >>> (numMembranes)

d⇐ d+ 1

until d < numVariables

{Starts Synchronization and Check Out stage}

Syn_Check_kernel <<< Blocks, Threads >>> (numMembranes)

{Starts Output stage on CPU}

Output(numMembranes)

called n times. Each time, the simulator adjusts the number of thread blocks before calling the kernel, since newmembranes

are created.

When the exponential workspace is created, the Synchronization and Check-out stages are executed following the rules

showed in Section 2. Both stages are performed in the same kernel, and so, in parallel to each membrane. Global synchro-

nization is not needed because there is no communication among the internal membranes at this stage. Finally, the Output

stage is developed on the CPU, checking the conditions and launching the result of the computation.

4.3. Adapting the simulator to the GPU architecture: hybrid simulator

Although the parallel simulator fully reproduces the P system computation showed in [13], perhaps another P system

design can obtain better performance whenever it is simulated by GPUs. In this sense, the hybrid simulator1 uses some

heuristics along the simulation to adapt the P system computation to the GPU architecture idiosyncrasy.

GPUs are basically a graphics accelerator which are designed to mainly accelerate graphics applications. Graphics ap-

plications presents huge data parallelism, that is, developing the same computation over different set of data. Then, the

1 It is a hybrid simulator because it does not perform exactly the same computational steps as the theoretic P system.

Algorithm 2. Hybrid simulator. Adapting the P system computation

Require: numMembranes � 0

{Starts Generation stage}

repeat

Generation_kernel <<< Blocks, Threads >>> (numMembranes)

numMembranes⇐ numMembranes× 2

AdjustBlocks(Blocks,numMembranes)

d⇐ d+ 1

until d < N

{Starts Synchronization, Check Out and Output stage}

Syn_Check_kernel <<< Blocks, Threads >>> (numMembranes)

communication and synchronization requirements among processing elements should be drastically limited in order to

enhance performance [4].

The objective of this simulator is to reduce the communication and synchronization overheads presented in the previous

simulator by using several heuristics as showed in the pseudocode 2. For instance, some objects that control the timing of

the theoretical computation, depicted in Section 2, are replaced by statical variables instead of dynamic variables. Doing this,

this simulator can join CUDA kernels, and therefore, reduce the synchronization overhead produced by launching kernels

onto the GPU, since only one kernel can be launched at the same time on the GPU.

The Generation stage is basically the same than the parallel simulator, creating the exponential workspace in the system

and reproducing the same steps, but now all of themare included in the same kernel, reducing the synchronization overhead.

Furthermore, the kernel that represents the Check-out stage differs substantially, including a fastest way to produce the

output. In this case, this kernel presents more data parallelismwhenever it checks the clauses. For this purpose, each thread

checks whether its corresponding object encode a true clause. If so, a shared variable, one per thread block and clause, is

true. At the end of the kernel, if all these variables are set to true, the answer to the CPU is affirmative (a solution has been

found). Otherwise, the answer for this thread block is negative, which means that there is no solution in the membrane,

and therefore, the solution depends on the rest of membranes. This approach reduces the data movement through the PCI

Express bus which is expensive in terms of performance, and it also loads more computational workload onto the GPU.

5. Performance analysis

In this section, we analyse the performance of the three simulators presented above: the sequential simulator developed

in C++ (from now, simulator 1), the parallel simulator on CUDA (simulator 2) and the hybrid simulator on CUDA (simulator 3).

The GPU used for the experiments is a NVIDIA GPU Tesla C1060 which has 240 execution cores and 4 GB of device memory,

Fig. 4. Simulation performance for sequential, parallel and hybrid simulator: test 1 (2048 membranes).

Fig. 5. Simulation performance for sequential, parallel and hybrid simulator: test 2 (256 Objects/Membrane).

plugged in a computer server with a Intel Core2 Quad CPU and 8 GB of RAM, and using a 32-bit Ubuntu Server as Operating

System.

We have developed two benchmarks (called test 1 and test 2, respectively) to analyse the performance behaviour of our

simulators in two ways: increasing the number of threads per thread block, and increasing the number of thread blocks per

grid. Both benchmarks have been generated by WinSAT program [15]. WinSAT is able to generate random SAT problems in

DIMACS CNF format file by configuring several parameters: the number of variables (n), the number of clauses (m) and the

number of literals per clause (we fix k for our experiments). As mentioned in Section 4, the number of threads per block is

associated to the number objects in the input multiset, which is the same as the number of literals of the CNF formula ϕ

(m*k). The number of thread blocks (2n) is equal to the number of membranes in the system, which depends on the number

of variables in the CNF formula (n).

Fig. 4 shows the experimental performance of the simulators (in a log scale) for test 1, The benchmark test 1 increases

exponentially the number of literals in the CNF formula (and so, the number of objects in the P system and threads per block

in the GPU) until reaching a configuration with 512 literals. It also has fixed the number of thread blocks (and membranes)

to 2048 (n = 11). When the number of threads per block is low, the performance of GPU codes is not substantial compared

with the sequential code. That is, the data parallelism is low, and we cannot take advantage of the resources available on the

GPU. However, as long as the number of threads per block increases, the data parallelism of the application also increases,

and therefore, the performance of our GPU codes improves notably compared to the sequential code, obtaining up to 63x of

speed-up between simulators 1 and 2. Furthermore, the simulator 3 accelerates the simulation on the GPU, being this up to

9.63 times faster than simulator 2. Hence, the hybrid simulator is better adapted to the GPU architecture than the parallel

simulator of the P system, because it presents more data parallelism in its computation as it is described in Section 4.

Fig. 5 shows the experimental performance of the simulators (in a log scale) for test 2. The benchmark test 2 increases the

number of variables in the CNF formula (and so, the number of membranes in the P system and the number of blocks in the

GPU in an exponential manner) until reaching a configuration with 211 membranes. The number of simulatedmembranes is

constrained by the available memory of the system. The number of literals in the formula is fixed to 256, which means 256

threads per block.

The behaviour of the GPU simulators, as shown in Fig. 5, is similar in both. This is because the execution time in the GPU

codes increases exponentially depending on the number of blocks running at the same time. Once all the GPU resources

have been fully occupied, the execution time increases linearly with the number of blocks. In this case, we report up to 94x

of speed-up between simulators 1 and 2. However, Fig. 5 shows the speed-up becomes a constant number of 10x when the

number of membranes is greater than 128k. This is the number of blocks that fills the pipeline of the GPU in this case, having

the hybrid simulator better overall performance than the parallel one.

6. Conclusions and future work

In this paper, we have designed and analysed three simulators for a family of P systems with active membranes that

provides an efficient and uniform solution to the SAT problem [13]. The first simulator (simulator 1) performs sequentially

on the CPU the computation of this P system. The other two simulators (simulators 2 and 3) have been developed on the GPU

using CUDA. Simulator 2 fully simulates the computation of the P system as simulator 1. Simulator 3 adapts the previous

simulator to the GPU architecture idiosyncrasies, increasing the data parallelism of the application in some parts, taking

advantage of all the parallel resources available on the GPU.

Doing this, we report up to 94x of speed-up between the simulators 1 and 2, and up to 10x between both GPU codes.

Therefore, in this work we show two different results. On one hand, we demonstrate that GPUs are well suited to simulate

P system due to the highly parallelism that they present in its architecture. Although the GPU is not a cellular machine, its

features help the researches to accelerate their simulations. On the other hand, if the P systemsbased solutions are redesigned

to be adapted to the GPU programming model, the performance of the simulations can be also improved.

Nevertheless, the simulation of this kind of P systems that creates an exponentialworkspace to achieve polynomial time is

memory bounded. This bottleneck limits the size of theNP-complete problem instances whose solutions can be successfully

simulated.Moreover, the simulationof this exponentialworkspace is performed in exponential time, sinceno real parallelism

like in P systems is available. However, we can reduce this restriction to obtain better simulation times, using the highly

parallelism that the GPU provides.

The massively parallel environment provided by the GPUs is good enough for the simulator, however, we need to go

beyond. The clusters of GPUs provides a higher massively parallel environment, so we will attempt to scale to those systems

to obtain better performance in our simulated codes. Moreover, the newest generation of GPUs such as FERMI from NVIDIA

provides improved GPU architectures to develop general purpose applications and also more memory resources.

Furthermore, it would be interesting to avoid the brute force algorithms in the P system designs, and start to develop

heuristics in the design of membrane solutions (for instance, avoiding membrane division as much as possible).

Acknowledgements

The first three authors acknowledge the support of the project from the Fundación Séneca (Agencia Regional de Ciencia

y Tecnología, Región de Murcia) under Grant 00001/CS/2007, and also by the Spanish MEC and MICINN, as well as European

Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. The last three authors acknowledge the

support of the project TIN2009-13192 of the Ministerio de Ciencia e Innovación of Spain, cofinanced by FEDER funds, and

the support of the “Proyecto de Excelencia con Investigador de Reconocida Valía” of the Junta de Andalucía under Grant

P08-TIC04200.

References

[1] G. Păun, Computing with membranes, Journal of Computer and System Sciences, 61 (2000) 108–143, Turku Center for CS–TUCS Report No 208 (1998).
[2] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, Available Membrane Computing software, in: Applications of Membrane Computing,

2006, pp. 411–436.
[3] M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, An overview of P-lingua 2.0, Membrane

Computing: 10th International Workshop, WMC 2009, Lecture Notes in Computer Science 5957 (2010) 264–288.
[4] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: A unified graphics and computing architecture, IEEE Micro 28 (2) (2008) 39–55.
[5] NVIDIA, NVIDIA CUDA Programming Guide 2.0, 2008.
[6] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, Queue 6 (2) (2008) 40–53.
[7] G. Ciobanu, G.Wenyuan, P systems running on a cluster of computers, Membrane Computing: 4th InternationalWorkshop,WMC 2003, Lecture Notes

in Computer Science 2933 (2004) 289–328.
[8] V. Nguyen, D. Kearney, G. Gioiosa, An algorithm for non-deterministic object distribution in P systems and its implementation in hardware, Membrane

Computing: 9th International Workshop, WMC 2008, Lecture Notes in Computer Science 5391 (2009) 325–354.
[9] V. Nguyen, D. Kearney, G. Gioiosa, A region-oriented hardware implementation for Membrane Computing applications, Membrane Computing: 10th

International Workshop, WMC 2009, Lecture Notes in Computer Science 5957 (2010) 385–409.
[10] L. Fernandez, V.J. Martinez, F. Arroyo, L.F. Mingo, A hardware circuit for selecting active rules in transition P systems, SYNASC ’05: Proceedings of the

Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE Computer Society,Washington, DC, USA, 2005,
pp. 415–418.

[11] J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, Simulation of P systems with active membranes
on CUDA, Briefings in Bioinformatics, Parallel and ubiquitous methods and tools in Systems Biology (online version). doi:10.1093/bib/bbp064

[12] G. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, Germany, 2002.
[13] M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini, Complexity classes inmodels of cellular computingwithmembranes, Natural Computing:

an International Journal 2 (3) (2003) 265–285.
[14] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang, V. Volkov, Parallel computing experiences with CUDA,

Micro, IEEE 28 (4) (2008) 13–27.
[15] M. Qasem, WinSAT website (5 2009). URL http://users.ecs.soton.ac.uk/mqq06r/winsat/

doi:10.1093/bib/bbp064
http://users.ecs.soton.ac.uk/mqq06r/winsat/

	Simulating a P system based efficient solution to SAT by using GPUs
	Introduction
	A family of P Systems solving SAT in linear time
	Compute Unified Device Architecture (CUDA) parallel programming model
	Design of the simulator
	Design of the baseline simulator: sequential simulator
	Design of GPU simulator using CUDA: parallel simulator
	Adapting the simulator to the GPU architecture: hybrid simulator

	Performance analysis
	Conclusions and future work
	References

