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ABSTRACT: We expose in this paper how the command 

ShortestDistance can be used in GeoGebra to design evacuation 

routes in buildings in a dynamic and interactive way. For those 

cases in which a legal regulation or procedure compels specific 

requirements in the design, we also indicate how to make use of 

JavaScript in order to implement a more general version of 

Dijkstra’s algorithm that makes possible to deal with such 

specifications.  
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1   Introduction 
 

Nowadays, the importance of designing optimal evacuation routes in public 

and private buildings is unquestionable due to the fact that they guarantee, 

with a very high probability, the safe evacuation of all their occupants in case 

of any kind of emergency. In the case of buildings like schools, hospitals or 

hotels, all these routes have to be clearly visible to everybody and, because of 



that, it is usual or even mandatory to post evacuation maps in all their rooms 

and corridors. The problem of these maps is that they are usually fixed and 

static and they could point exactly at the cause of the emergency, like the seat 

of a fire, for instance. In order to avoid these cases, it is interesting to have 

dynamic screens or LED lamps that could show in real time which is exactly 

the evacuation route that must be follow the person who is watching them. 

Keeping this idea in mind, we expose in this paper how to use GeoGebra in 

order to design a dynamic evacuation map that make possible a fast update of 

the evacuation routes of a building in case of being necessary. 

The paper is organized as follows. In Section 2 we introduce the shortest 

path problem in Graph theory and expose how the command 

ShortestDistance, which is implemented by defect in GeoGebra, can be used 

to solve this problem. We focus specifically on the creation of a template in 

GeoGebra that makes possible to design a dynamic and interactive evacuation 

map of a building whose plan has been previously inserted in the worksheet. 

In Section 3 we make use of JavaScript in order to implement in GeoGebra 

the Dijkstra’s algorithm, which is commonly used to solve the shortest path 

problem for any connected and weighted graphs with non-negative weights. 

This implementation makes possible to deal with legal regulations or 

procedures that compel specific requirements in the design of evacuation 

routes.  

 

  

2   The shortest path problem 
 

We start with some basic results on Graph theory that are used throughout the 

paper. For more details on this topic we refer to the monograph of Gross and 

Yellen [GY04].  

A graph G = (V, E) is a pair formed by a set V of points called vertices 

and a set E of segments connecting them called edges (see Figure 1). It is said 

to be directed if its edges has a direction from one of its vertices to the other 

one. Otherwise, the graph is said to be undirected. A path between two given 

vertices v and v’ in E is a series of vertices v0 = v, v1, …, vn = v’ such that 

vivi+1 determines an edge in E, for all i œ {0, …, n - 1}. The graph G is said to 

be connected if there exists a path for any pair of its vertices. Further, if the 

graph G is weighted, that is, if every edge e in E has associated a numerical 

label or weight We, then the shortest path problem consists of finding a path 

between two given vertices that minimizes the sum of weights of its edges. 

This minimum sum of weights constitutes the length of the minimal path or 

the graph distance between the two given vertices.  



This problem can be solved in GeoGebra for weighted graphs whose 

weights are either constant or are determined by the Euclidean distance 

between connected vertices, that is, by the length of the edges. In the first 

case, the shortest path between two given points of the graph is a path with 

the minimum possible number of edges between both points. Once a weighted 

undirected graph G has been drawn in a worksheet of GeoGebra as a set of 

points (vertices) and segments (edges) and the initial and final points of the 

path, A and B, have been identified, it is enough to create a list L containing 

all the segments of the graph. Then, we enter in the input bar the command 

ShortestDistance[L, A, B, <Boolean Weighted>], 

where the Boolean value can be true or false depending, respectively, on 

whether we use the Euclidean distance or the number of edges between two 

given points. Figure 1 shows an example in this regard. The red edges 

determine the shortest path between the points B and E according to the 

Euclidean distance whereas the green ones determine the path with the 

minimum number of edges between both points. 

 
Figure 1: Shortest path problem in GeoGebra. 

 
 

The command ShortestDistance together with the dynamical structure of the 

graphics view of Geogebra constitutes an especially useful tool to design 

dynamic and interactive evacuation maps. In this regard, let us suppose that 

we are interested in designing an evacuation map of the building whose plan 

is shown in Figure 2. It represents the ground floor of the School of Building 

Engineering at the University of Seville, in which we can observe the 

existence of three emergency exit doors. This map has conveniently been 

inserted in the graphic view of GeoGebra in such a way that the image 

respects the real scale. In this case, the real size of the plan is 720 x 740 m2. 



  
Figure 2: Plan of the first ground of a school. 

 

In order to design our evacuation map in GeoGebra, it is required to 

determine a graph that represents the distribution of rooms, corridors and 

stairs. To this end we draw a series of points and edges by following the next 

sequential order: 

• We draw a point for each door or stair in the plan (see Figure 3.a). 

The points related to the emergency exit doors are called Exit1, 

Exit2 and Exit3. 

• We draw an edge for each pair of such points that are related to 

distinct doors in a same room (see Figure 3.b). 

• In front of each door and stair, in the middle of corridors, we draw 

a point connected by an edge with the point of the corresponding 

door or stair. Adjacent points in the corridor are also connected with 

an edge (see Figure 3.c). 

 

The resulting graph (see Figure 3.d and Figure 4) is called the base 

graph of the evacuation map. Once this graph is constructed, we click on the 

tool Create List in the Toolbar of GeoGebra and we create the list L of edges 

that will be used as argument of the command ShortestDistance. After that, 

we define in the input bar the text Origin = “A”, which we hide immediately 

after from the graphics view and for which we create a related input box (see 

Figure 5). In the On Update tab of the Scripting tab of the input box, we write 

the next code in GeoGebra script: 



 
(a) 

 

 

 
 

(b) 

 
(c) 

 
(d) 

Figure 3: Construction of the base graph of an evacuation map. 

 

    
Figure 4: Base graph of an evacuation map. 

 

 

 



  
Figure 5: Evacuation route in GeoGebra. 

 

 

Execute[{"path1=ShortestDistance[L,"+Origin+", Exit1, true]", 

"path2=ShortestDistance[L, "+Origin+", Exit2, true]", 

"path3=ShortestDistance[L, "+Origin+", Exit3, true]"}] 

path={Length[path1], Length[path2], Length[path3]} 

 

This code involves the computation of the three possible evacuation 

routes from the given initial point to the three possible emergency exit doors 

and of their respective lengths. Since we are only interested in the evacuation 

route of minimum length, we have to make use of some condition to show 

object in the advanced properties of each one of the three paths. Specifically, 

we impose in path1, path2 and path3 the respective conditions: 
Min[RemoveUndefined[path]] ≟ Length[path1] 

Min[RemoveUndefined[path]] ≟ Length[path2] 

Min[RemoveUndefined[path]] ≟ Length[path3] 

 

After that, our template constitutes a dynamical and interactive 

evacuation map of our building where it is enough to define in the created 

input box the initial point from where the shortest evacuation route is 

required. Moreover, the use of the command RemoveUndefined in the just 

exposed three conditions makes possible to delete a series of edges in the base 

graph of the evacuation map that, in case of an emergency, are temporally 



blocked, due to fire propagation or gas leak, for example. These edges are 

directly eliminated from the list L of edges and, after that, new alternative 

evacuation routes are automatically obtained (see Figure 6, where there are 

indicated a pair of alternative routes of the shortest path shown in Figure 5, 

in case of being blocked one or two of the closer emergency exit doors) . 

 

             
Figure 6: Alternative routes when some emergency exit doors are blocked. 

 

 

Nevertheless, even if our evacuation route is automatically selected and 

exposed by GeoGebra as the shortest path between the initial point in question 

and the three possible emergency exit doors, two important remarks have to 

be done to our construction: 

1) Real evacuation routes must facilitate paths through wide corridors 

and avoid, whenever is possible, to enter from one corridor to a 

small room as a crossing point of our path. It is due to the fact that 

this type of rooms could constitute bottle necks in case of an 

emergency. Nevertheless, since our base graph is undirected and our 

shortest path is obtained by taking into account the Euclidean 

distance, GeoGebra include these small rooms as possible crossing 

points of the final evacuation route (see Figure 7). 

2) Depending on the type of building, there can exist a series of legal 

regulations or procedures that compel specific requirements in the 

design of an evacuation route like the minimum width or height of 

doors and stairs, the lengths of corridors or the maximum number 

of people (capacity) that can use a certain route, amongst others. 

Nevertheless, none of these factors can be taken into account in our 

previously designed evacuation route. 

  



 

 
Figure 7: Evacuation route proposed by GeoGebra. 

 

 

It is therefore necessary to generalize our construction in order to deal 

with more realistic evacuation routes. To this end, we propose in the next 

section to make use of Javascript in order to implement the Dijkstra’s 

algorithm in GeoGebra. 
  
 

3   The Dijkstra’s algorithm 
 

In 1959, Edsger W. Dijkstra [Dij59] established an algorithm that solves the 

shortest path problem for connected and weighted graphs with non-negative 

weights. These graphs can be directed or undirected. In the course of the 

algorithm, given a weighted graph G = (V, E) and the initial and final vertices, 

v and v’, of the path, Dijkstra subdivides the set of vertices V into three sets:  

• The set V1 of vertices w for which the path of minimum length from 

v is known. 

• The set V2 of vertices in V– V1 that are connected by one edge to at 

least one vertex of V1. If the graph is directed, then this edge must 

be oriented from the vertex in V1 to the vertex in V2. 

• The set V3 formed by the rest of vertices. 

 

Dijkstra also subdivides the set of edges E in other three sets: 

• The set E1 of edges in the minimal paths from v to the vertices of 

V1. 

• The set E2 of edges in E– E1 that connect vertices of V1 and V2. 



• The set E3 formed by the rest of edges. 

 

At the beginning of the algorithm, all the vertices are in V3 and all the 

edges are in E3. The vertex v is then the first vertex to be included in V1. At 

each step of the algorithm, it is considered all the edges e that connect the last 

vertex w included in V1 with vertices w’ in V2 » V3. 

• If the vertex w’ is in V3, then it is added to V2 and the edge e is added 

to E2. The path of minimum length lw between v and w together with 

the edge e of weight We determines a provisional path between v 

and w’ of length lw’ = lw + We. 

• If the vertex w’ is already in V2, then there exists exactly one edge 

e’ in E2 that connects w’ with a vertex w’’ in V1 so that the path of 

minimum length lw’’ between v and w’’ together with the edge e’ of 

weight We’ determines a provisional path of minimum length lw’ = 

lw’’ + We’. If lw’ ≤ lw + We, then the edge e is rejected. Otherwise, the 

edge e replaces the edge e’ in V2. 

  

After that, the vertex in V2 with the shortest provisional path from v and 

its related edge in E2 are respectively transferred to V1 and E1, and the 

procedure is then repeated for this new vertex in V1. The algorithm finishes 

when the final vertex v’ is transferred to V1. 

In practice, the n vertices of the graph are initially ordered and labeled 

as v1,…, vn. An auxiliary ordered list L of cardinality n, initialized as {0,…,0}, 

can then be defined in the course of the algorithm in such a way that its ith 

element is the immediately previous vertex through which any shortest path 

starting in v has to pass to get the vertex vi. It coincides with the second vertex 

related to the edge that is transferred to E1 at the same time that vi is 

transferred to V1. Once the algorithm finishes, this list determines all the 

previous vertices through which the shortest path from v to v’ has to pass. 

Further, since the algorithm can be repeated for any pair of vertices, it 

is also possible to determine the distance matrix D = (dij) of the graph, where 

dij is the length of the shortest path between the vertices vi and vj of the graph.  

As an example of implementation of the Dijkstra’s algorithm, we show 

in Figure 8 the steps that are sequentially required to determine the shortest 

path between two vertices, A and I, of a given undirected graph. Orange edges 

determine the vertices and edges that are transferred in each step to the sets 

V1 and E1, respectively. Below each image we indicate the vertices w that are 

in the set V2 after each step, which are indicated as pairs (w, lw), where lw is 

the weight of the provisional minimum path to w from the vertex A by only 

taking into consideration the edges in E2. The ordered auxiliary list L is also 



indicated in each step. We have used the lexicographical order. Let us 

examine the procedure in detail.  

• Step 0: The initial vertex A is transferred to V1. 

• Step 1: We transfer to V2 the vertices in V3 connected to A, that is,  

B and C. The edges AB and AC are transferred to E2. Since both 

edges have weight 2, we can transfer any of the vertices B or C to 

the set V1. We have selected B. The edge AB is transferred to E1. 

• Step 2: We transfer to V2 those vertices in V3 that are connected to 

B, which are D and H, and to E2 the edges BH and BD. The distances 

to A of these two new vertices according to the edges of E2 are, 

respectively, lD = 6 and lH = 7. Hence, the vertex in V2 with 

minimum distance to A by using the edges of E2 is C (lC = 2), which 

is transferred to V1. The edge AC is transferred to E1. 

• Step 3: We transfer to V2 the vertex E, which is the only vertex in 

V3 connected to C. The edges CD and CE are transferred to E2 and 

hence, the distance from A to D by using E2 decreases from 6 to 5. 

The vertex with minimum distance to A is then E (lE = 4.5), which 

is transferred to V1. The edge CE is transferred to E1. 

• Step 4: We transfer to V2 the vertex F, which is the only vertex in 

V3 connected to E. The edge EF is transferred to E2. The distance 

from A to F by using E2 is lF = 6.5. The vertex with minimum 

distance to A in V2 is D (lD = 5). It is transferred to V1 and the edge 

CD to E1. 

• Step 5: We transfer to V2 the vertex I, which is the only vertex in V3 

connected to D. The edges DI and DF are transferred to E2. The 

distance from A to I by using E2 is lI = 7. The vertex with minimum 

distance to A in V2 is F (lF = 6.5). It is transferred to V1 and the edge 

DF to E1. 

• Step 6: The vertex G is transferred to V2 and the edge FG to E2. It 

is lG = 9.5. The minimum distance to A in V2 is lH = lI = 7. We transfer 

to V1 the final vertex I and the edge DI to E1. The algorithm finishes 

here and the shortest path is formed by the edges AC, CD and DI, 

with total length 7.  

• Solution: Once the final vertex I is reached, the shortest path is 

uniquely determined by the auxiliary list L, which is 

lexicographically ordered. In our case, it can be observed in this list 

that I is reached from D, D from C and C from A. 



 
Step 0: 

V2 = « 

L={0,0,0,0,0,0,0,0,0}  

 
Step 1: 

V2 = {(C,2)} 

L={0,A,0,0,0,0,0,0,0} 

 
Step 2: 

V2 = {(D,6),(H,7)} 

L={0,A,A,0,0,0,0,0,0} 

 
Step 3: 

V2 = {(D,5),(H,7)} 

L={0,A,A,0,C,0,0,0,0} 

 
Step 4: 

V2 = {(F,6.5),(H,7)} 

L={0,A,A,C,C,0,0,0,0} 

 
Step 5: 

V2 = {(H,7), (I,7)} 

L={0,A,A,C,C,E,0,0,0} 

 
Step 6: 

V2 = {(G,9.5),(H,7)} 

L={0,A,A,C,C,E,0,0,D} 

 
Shortest path 

 

 Figure 8: Dijkstra’s algorithm. 

 

 

The Dijkstra’s algorithm can be implemented in GeoGebra by 

making use of Javascript. Previously, the vertices of our weighted graph 

G have to be ordered and its adjacency matrix defined, that is, the n x n 

binary matrix M = (mij) such that, if there exists an edge between the vertices 

i and j (from the vertex i to the vertex j if the graph is directed), then mij 

coincides with the weight of such an edge. Otherwise, it is mij = 0. The 

adjacency matrix of a directed graph is, therefore, symmetric, but it is not true 

in general if the graph is undirected. 

The specific construction in GeoGebra is as follows: Let us suppose that 

we are interested in a directed graph of six vertices and adjacency matrix 



 

� �
�
��
�
0 1 2
0 0 0
1 0 0

0 4 0
1 1 1
2 1 00 2 0

1 0 0
1 0 1

0 1 3
2 0 1
0 1 0�


�

 

 

In order to draw this graph in GeoGebra, we create six points, A, B, C, 

D, E and F, in the graphics view of GeoGebra and we enter in the input bar 

the next six sentences: 
V = {A, B, C, D, E, F} 

n=Length[V] 

M={0,1,2,0,4,0,0,0,0,1,1,1,1,0,0,2,1,0,0,2,0,0,1,3,1,0,0,2,0,1,1,0,1,0,1,0} 

Edges=Sequence[Sequence[If[Element[M, (i - 1) n+ j] > 0, Vector[ 

Element[V, i], Element[V, j]]], j, 1, n], i, 1, n] 

Initial = 1 

Final = 1 

The last two sentences will refer to the position in the list V of the 

initial and final vertices of our path. In order to design an interactive 

template, we create two input boxes in the graphics view that are respective 

related to these two vertices (see Figure 9). 

 
Figure 9: Directed graph in GeoGebra. 

 

 

The next step consists of implementing the Dijkstra’s algorithm in 

GeoGebra. To this end, we enter in the JavaScript Global tab, the next 

code in JavaScript: 



function distance(){ 

var i, d, m, v, a, a0; 

var s=0; 

var n = ggbApplet.getValue("n"); 

var D = new Array(); 

var NM = new Array();  

var P = new Array();  

for(i =0; i < n*n; i++){ 

D[i] = 100;} 

for(a0 =1; a0 < n+1; a0++){ 

for(i =0;i<n;i++){ 

NM[i]=0; 

P[i]=-1; 
D[n*n+(a0-1)*n+i]=-1;} 

a=a0; 

D[(a0-1)*n+a-1]=0; 

NM[a-1]=1; 

   while(a!=0){ 

      for(i =0;i<n;i++){ 

           m=ggbApplet.getListValue("M",(a-1)*n +i+1); 

          if (NM[i]==0 & m!=0 & D[(a0-1)*n+i]>D[(a0-1)*n+a-1]+m){ 

              D[(a0-1)*n+i]=D[(a0-1)*n+a-1]+m; 

P[i]=a; 
              D[n*n+(a0-1)*n+i]=a;}} 

          d=100; 

          for(i=0;i<n;i++){ 

         if (NM[i]==0){ 

                if (s==0){ 

s=i; 

d=D[(a0-1)*n+i];} 

                else{ 

if (D[(a0-1)*n+i]<d){ 

d=D[(a0-1)*n+i]; 

s=i;}}}} 

          if (d==100){ 

v=0;}  

     else{ 

v=s;} 

          if (v==0){ 

a=0;}  

     else{ 

NM[v]=1;  

a=v+1;}}} 

        return(D);} 



The output of this function is an array D of cardinality 2n2, such that 

its n2 first elements determine the distances among the vertices of the 

graph. These first elements are initialized to 100, which would correspond 

to the maximum possible weight of the graph in question. Depending on 

the graph, this initial value can conveniently be increased. Further, the n2 

last elements of the array D determine the list of previous vertices in any 

shortest path from a given initial vertex.  

Since D is not yet an explicit object in GeoGebra, we enter the next 

code in JavaScript in the On Update tab of the Scripting properties of the 

numbers Initial and Final: 

ggbApplet.evalCommand("d={"+distance()+"}"); 

We can then press F9 or to introduce a number in any of the two 

input boxes of our template to define automatically an auxiliary list d with 

all the 2n2 elements of the array D. In particular, the distance matrix of our 

graph can be explicitly defined by entering in the input bar the sentence 

DM=Sequence[Sequence[If[Element[d,(i-1) n+j]==100, ∞, 

Element[d,(i-1) n+j]], j, 1, n], i, 1, n] 

In our case, this distance matrix is 

�� �
�
��
�
0 1 2
2 0 2
1 4 0

2 2 2
1 1 1
2 1 22 2 3

1 4 2
1 5 1

0 1 2
2 0 1
3 1 0�


�

 

The next step is to define the auxiliary list of previous vertices in a 

shortest path with initial vertex that one that has been inserted in the 

corresponding input box of our template. To this end, we enter the next 

sequence in the input bar: 

L=Sequence[If[Element[d, n² + (Initial - 1) n + i] ≟ -1, 0, 

Element[d, n² + (Initial - 1) n + i]], i, 1, n] 

This list can be used to determine the shortest path from the initial to 

the final vertices introduced in the corresponding input boxes. This path is 

got by adding the next code in Javascript in the Global JavaScript tab: 
function path(){ 

      var i,j,m; 

   var ip = ggbApplet.getValue("Initial"); 

   var fp = ggbApplet.getValue("Final"); 

   var n = ggbApplet.getValue("n"); 

   var A = new Array(); 

   var C = new Array(); 

   for(i =0;i<n;i++){ 



      m=ggbApplet.getListValue("L",i+1); 

      A[i]=m;} 

   C[0]=A[fp-1]; 

   j=0; 

   for(i =0;i<n-1;i++){ 

      if (C[i]==0){ 

         C[i+1]=0;} 

     else{ 

         if (C[i]!=ip){ 

             C[i+1]=A[C[i]-1];} 

         else{ 

             C[i+1]=0;}}} 

   return(C);} 

  The output of this function is a list of numbers that determine the 

position in the list V of all the vertices through which our shortest path has 

to pass before reaching the final vertex. In order to have this list as an 

explicit object in GeoGebra, we add the next code in JavaScript in the On 

Update tab of the Scripting properties of the numbers Initial and Final: 

ggbApplet.evalCommand("path= {"+path()+"}"); 
Finally, the shortest path is drawn in GeoGebra (see Figure 10) by 

entering the next sequence in the input bar: 
Shortest=Union[Sequence[If[Element[path, i] Element[path, i + 1] > 0, 

Vector[Element[V, Element[path, i + 1]], Element[V, Element[path, i]]]], i, 1, n], 

{If[Element[path, 1] > 0, Vector[Element[V, Element[path, 1]], Element[V, 

Final]]]}] 

 

  
Figure 10: Shortest path in GeoGebra by using the Dijkstra’s algorithm. 

 

 



The template that we have just constructed can be considered as the 

base worksheet from which we can elaborate any dynamic and interactive 

evacuation map in a similar way to the construction that we have done in 

Section 2. It is due to the fact that this template is completely parametric, not 

only with respect to the initial and final points of our path, but also with 

respect to the initial graph. Specifically, if we change the list V of vertices of 

the new graph and the list M that corresponds to the entries of its adjacency 

matrix, all the constructed objects are conveniently redefined. It is particularly 

useful in case of being required to eliminate some vertex or edge of the base 

graph of the evacuation map because of an emergency.  

The advantage of this template with respect to that one constructed in 

Section 2 is that the new one facilitates the use of directed edges in the base 

graph of the evacuation map and also the use of any type of weight, not only 

constant weights or weights based on the Euclidean distance among vertices. 

It makes possible the implementation of our model in the design of evacuation 

routes of any type of building, with independence of the particular 

requirements compelled by the corresponding legal regulation. 

 
 

4   Conclusions 
  

In this paper we have exposed how to use GeoGebra in order to design a 

dynamic and interactive evacuation map that can be used in real time to 

optimize the evacuation plan of public and private buildings like schools, 

hospitals or hotels, amongst others. The use of the command 

ShortestDistance, which is implemented by defect in GeoGebra, is a good 

alternative to this end. Nevertheless, this command can only be used for 

weighted graphs labeled with constant weights or with weights based on the 

Euclidean distance among vertices. To deal with more general cases, we have 

made use of JavaScript to implement in GeoGebra the Dijkstra’s algorithm. 

A more comprehensive study for possible implementation of our model in 

real buildings has to be further developed. 
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