
Simulation of P systems with active
membranes on CUDA
Jose¤ M. Cecilia, Jose¤ M. Garc|Ła, Gine¤ s D.Guerrero, Miguel A. Mart Ł|nez-del-Amor, Ignacio Pe¤ rez-Hurtado and
Mario J. Pe¤ rez-Jime¤ nez

Abstract
P systems or Membrane Systems provide a high-level computational modelling framework that
combines the structure and dynamic aspects of biological systems in a relevant and understandable way.
They are inherently parallel and non-deterministic computing devices. In this article, we discuss the
motivation, design principles and key of the implementation of a simulator for the class of recognizer P
systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the
simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than
CPUs to simulate P systems due to their highly parallel nature.

Keywords: natural computing; membrane computing; P Systems; parallel computing; GPU; CUDA

INTRODUCTION
Membrane Computing is an emergent branch

of Natural Computing introduced by G. Pãun a

decade ago [1]. This new model of computation

starts from the assumption that the processes taking

place in the compartmental structure of a living cell

can be interpreted as computations. Devices of this

model are called P systems [2]. In essence, a P system

consists of a cell-like membrane structure, in which

multisets of objects can be placed, i.e. sets of objects

with multiplicities associated with the elements.

They have several syntactic ingredients (Figure 1): a

membrane structure consisting of a hierarchical arrange-

ment of membranes embedded in a skin membrane,

and delimiting regions or compartments where multi-

sets of objects and sets of evolution rules are placed.

P systems also have two main semantic ingredients:

their inherent parallelism and non-determinism. The

objects inside the membranes can evolve accord-

ing to given rules in a synchronous (in the sense

that a global clock is assumed), parallel, and

non-deterministic way. Computation of P system is

a (finite or infinite) sequence of instantaneous tran-

sitions between configurations, as shown in Figure 1.

Jose¤ M. Cecilia is a member of the Parallel Computer Architecture Research Group at the University of Murcia. His current research

interests are in evaluating the newest generation of accelerators for general purpose applications, and also the use of GPUs for general

purpose applications in different areas.

Jose¤ M.Garc|Ła is the Head of the Research Group on Parallel Computer Architecture and a professor in the Department of Computer

Engineering at the University of Murcia. His current research interests are high-performance coherence protocols for Chip

Multiprocessors (CMPs) and shared-memory multiprocessor systems, high-speed interconnection networks and the use of GPUs

for general-purpose applications. He is a member of HiPEAC, the European Network of Excellence on High Performance and

Embedded Architecture and Compilation.

Gine¤ s D. Guerrero is a member of the Parallel Computer Architecture Research Group at the University of Murcia. His main

research interest is in designing general purpose applications for the graphics processing unit.

Miguel A. Mart|Łnez-del-Amor is a member of the Research Group on Natural Computing at the University of Seville. His main

research interest is to join membrane computing and High Performance Computing using efficient computer simulators.

IgnacioPe¤ rez-Hurtado is an Associate professor in the Department of Computer Science and Artificial Intelligence at the University

of Seville, and a member of the Research Group on Natural Computing. His main research interests are computer simulation and

models for biological processes within membrane computing.

Mario J. Pe¤ rez-Jime¤ nez is the Head of the Research Group on Natural Computing and a professor in the Department of Computer

Science and Artificial Intelligence at the University of Seville. His main research fields are computational complexity theory, natural

computing, membrane computing, bioinformatics, and computational modelling for systems biology and ecosystems.

Corresponding author. José M. Cecilia, DITEC, Facultad de Informática, Universidad de Murcia, Campus de Espinardo 30100,

Murcia, Spain. Tel: þ34 868 88 7656; Fax: þ34 868 88 4151; E-mail: chema@ditec.um.es

Computation always starts with an initial configuration
of the system, where the input data is encoded.

The transition from one configuration to the next

is performed by applying rules to the objects inside

the regions (the rules to be used and the objects to

evolve are chosen randomly). Whenever it is not

possible to apply many rules to the existing objects

and membranes of a given configuration, the com-

putation halts (then, the configuration is called a

halting computation). The result of a halting computa-

tion of the system is encoded by the multiset

associated with a specific output membrane (or alter-

natively the environment) in the last configuration.

It is noteworthy that here we have double paral-

lelism, one at the level of each region (the rules are

used in parallel way), and other at the level of the

system (all regions evolve concurrently). This paral-

lelism and non-determinism can be used to solve

computationally hard problems; however, we must

point out two considerations. On one hand, we have

to deal with non-determinism in such a way that the

solutions obtained from these devices must be algo-

rithmic solutions in classic sense. On the other hand,

the drastic decrease of the execution time from an

exponential to a polynomial one is not achieved free,

but by the use of an exponential workspace (in the

form of membranes and objects), though this space is

created in polynomial (often linear) time.

In order to solve decision problems (abstract

problems that require a yes or no answer), we con-

sider recognizer P systems; i.e. P systems such that:

(i) the alphabet of objects contains two distinguished

elements: yes and no; (ii) all computations halt; and

(iii) if C is a computation of the system, then either

object yes or object no (but not both) must be sent to

the output region of the system in the last step of the

computation and never in any previous step.

Although most researches in P systems concen-

trates on the computational power and efficiency of

the devices involved, lately they have been used to

model biological phenomena within the framework

of Computational Systems Biology. P systems

provide a modelling approach to biological systems

fulfilling the requirements of a good modelling

framework: relevance, understandability, extensibil-

ity and computational/mathematical tractability.

In this case, P systems are not used as a computing

paradigm, but rather as formalism for describing the

behaviour of the system to be modelled. Several P

system models have been proposed to describe oscil-

latory systems [3], signal transduction [4, 5], gene

regulation control [6], quorum sensing [7–9] and

metapopulations [10]. These models differ from

each other in type of rewriting rules, membrane

structure and the strategy applied to run the rules

in the compartments defined by membranes. Some

of these models using metabolic algorithm [11], dynami-
cal probabilistic P systems [10] and (multicompartmental)
Gillespie Algorithm [8] were applied in various case

studies. Furthermore, (probabilistic) P systems have

also been successfully applied as a tool for macro-

scopic level processes, as the computational model-

ling of real ecosystems [12].

P systems based models are more useful than

other classical modelling approaches, such as

Ordinary Differential Equations, because P systems

can be used when classical approaches fail to specify

and simulate biological phenomena, for instance,

when chemical concentrations do not vary continu-

ously over time in a deterministic way [8].

In order to validate a P system based model

experimentally, it is necessary to have simulators

able to be executed on electronic computers. They

would help researchers to compute, analyse and

extract results from a model [13]. These simulators

have to be as efficient as possible to handle instances

of large size. This is one of the main problems with

current simulators for P systems.

Software applications for Membrane Computing

normally implement sequential (or parallel with rel-

atively few threads) simulation algorithms adapted to

common central processing unit (CPU) architectures

[13], so they lack the possibility of exploiting the

massively parallel nature that P systems present by

their definition.

Figure 1: Structure and main components of a
P system.

This parallel computation model leads us to look

for a highly parallel computational technology where

a parallel simulator can run efficiently. The newest

generations of graphics processor units (GPUs)

are massively parallel processors which can support

several thousand concurrent threads. To date, many

general purpose applications have been ported to

these platforms obtaining good speedups compared

to their corresponding sequential versions [14–18].

Current Nvidia GPUs, for example, contain up to

240 scalar processing elements per chip [19], and

they are programmed using C programming

language extensions called CUDA (Compute

Unified Device Architecture) [16, 19, 20].

In this article, we try to highlight the necessity to

use a parallel architecture which improves the effi-

ciency of P systems simulators designed to model

biological processes. For this purpose, we present a

parallel simulator for the class of recognizer P systems

with active membranes using CUDA, due to the fact

that in this theoretical model, the creation of an

exponential number of membranes and objects

takes place in a natural way.

The simulator receives as input a P system which

is defined and translated into a binary file using the

P-Lingua programming language [21]. The simula-

tion algorithm is divided into two main stages:

Selection stage and Execution stage. Both phases are

implemented on the GPU, so the entire simulation

executes all the computations in different membranes

in a parallel way.

We test the simulator with a P system which

exploits the intrinsic parallelism of P systems and

demonstrate that GPUs are better suited than

CPUs to simulate P systems as long as the problem

size increases.

The article also describes the model of recognizer

P systems with active membranes, and introduces the

Compute Unified Device Architecture (CUDA) and

some concepts of programming on GPUs, (both

conceptual aspects and technical details). Finally,

we conclude the article highlighting the main ideas

presented, and also some directions for future work.

P SYSTEMSWITH ACTIVE
MEMBRANES
Biological membranes are not completely passive.

Passing of a chemical compound through a mem-

brane is often by direct interaction with the mem-

brane itself. During this interaction, the chemical

compound which passes through the membrane

as well as the membrane itself can be modified.

These ideas were captured in [1] considering P sys-

tems with active membranes where the central role

in the computation is played by the membranes.

Each membrane is supposed to have an electrical

polarization (we will say charge), one of the three

possible: positive, negative and neutral. This kind

of P systems with a probabilistic semantic has been

used to model real ecosystems based on scavenger

birds in the Catalan Pyrenees [12].

A P system with active membranes is a tuple of

the form
Q
¼ (O,H,�,!1, . . . ,!m,R), where m�1

is the initial degree of the system; O is the alphabet

of objects; H is a finite set of labels for membranes;

� is a membrane structure (a rooted tree), consisting

of m membranes injectively labelled with elements

of H; !1, . . . ,!m are strings over O, describing the

multisets of objects placed in the m regions of �; and

R is a finite set of rules, where each rule is of one

of the following forms:

(i) ½a! v��h where h 2 H, � 2 {þ,�, 0} (electrical
charges), a 2 O and v is a string over O. They

are associated with membranes and depending

on the label and the charge of the membranes,

but not directly involving the membranes, in

the sense that the membranes are neither

taking part in the application of these rules nor

are they modified by them (evolution rules).
(ii) a½ ��h ! ½b�

�
h where h 2 H, �, � 2 {þ,�, 0},

a, b2O. An object is introduced in the mem-

brane, possibly modified during this process;

the polarization of the membrane can also be

modified, but not its label (send-in communication
rules).

(iii) ½a��h ! ½ �
�
h b where h 2 H, �, � 2 {þ,�, 0},

a, b2O. An object is sent out the membrane,

possibly modified during this process; the polar-

ization of the membrane can also be modified,

but not its label (send-out communication rules).
(iv) ½a��h ! b where h 2 H, � 2 {þ,�, 0}, a, b 2 O.

In reaction to an object, a membrane can be

dissolved, while the object specified in the rule

can be modified (dissolution rules).

Rules are applied in a maximal parallel way. In one

step, each object in a membrane can only be used by

at most one rule, but any object which can evolve by

a rule must do it. However, rules (ii) to (iv) cannot

be applied simultaneously in a membrane in one

computation step. Moreover, rules associated with

label h are used for all membranes with this label,

and all the objects which are not involved in any of

the operations to be applied remain unchanged.

Finally, the skin is never dissolved.

One of the most important roles of cells is repro-

duction, and this is achieved through the division of

a cell into two identical copies. The biological term

for this process is called mitosis, and, in fact, it consists

of a sequence of several phases. By division we can

obtain 2n cells in n steps, which look very attractive

from a computational efficiency point of view.

Bearing in mind that many reactions which take

place in a cell are related to membranes, rules for

membrane division are considered. This kind of P

system is able to efficiently solve computationally

hard problems making use of an exponential work-

space created in a natural way by division rules.

Hence, the simulation of these P systems using con-

ventional software is a good challenge.

This idea can be formalised through the following

rule:

(v) ½a��h ! ½b�
�
h ½c�

�
h where h2H, �, �, � 2 {þ,�, 0},

a, b, c 2 O. In reaction to an object, the mem-

brane is divided into two membranes with the

same label, but possibly different polarizations;

the object specified in the rule is replaced in the

two new membranes by possibly new objects

(division rules).

Rules (ii) to (v) cannot be applied simultaneously in

a membrane in one computation step. The skin is

never divided.

Figure 2 shows an example of a simple P system

and its computation, in order to help the understand-

ing of the dynamics of the model (see chapter 7 in

[26]).

PARALLEL COMPUTING ONGPUS
Graphics coprocessors were designed to process

voluminous and repetitive calculations and render

smooth and realistic-looking images on computer

screens. They ease the computational burden on

the CPU by handling the calculations and other

simple, highly repetitive operations necessary for

rendering the lines, polygons, and surfaces of

full-motion graphics scenes, for example.

With the growing demand for more realistic

computer games (the major force driving GPU evo-

lution) a GPU can deliver hundreds of billion

of operations per second (some GPUs more than a

teraflop, or a trillion operations per second).

In 2002, Mark Harris, now a computer researcher

with Nvidia, coined the term GPGPU [17] for

‘general purpose computation on GPUs’.

In mid-2007, Nvidia consolidated this trend

and introduced the Compute Unified Device

Architecture (CUDA). The CUDA is composed as

both, hardware and software architecture for issuing

Figure 2: Example of a P system computation.

and managing computations on their most recent

GPU families (G80 family onward), making it oper-

ate as a truly generic parallel computing device.

From the hardware point of view, the GPU

device is a scalable processor array consisting of a

set of SIMT (Single Instruction Multiple Threads)

multiprocessors (SM), each of them containing

several stream processors (SPs) as it is showed in

Figure 3. Different memory spaces are available in

the GPU. The global memory (also called device

memory) is the only space accessible by all multi-

processors, acting as the main device memory with

the largest capacity in the GPU. Each multiprocessor

has its own private memory space called shared

memory. The shared memory is smaller and also

lower access latency than global memory. Finally,

there are other addressing spaces for specific purpose:

texture and constant memory [19,20,22,23,25].

Figure 3 shows the Nvidia GPU called Tesla

C1060 which has been used for this work. It contains

30 multiprocessors, and each of them consists of

8 processors (240 processors in total). As for

memory, Tesla C1060 contains 4 GB of global

memory and 16 kB of shared memory per SM.

Table 1 shows the Tesla C1060 features.

A parallel program in the CUDA programming

model is similar to a program in another sequential

language (like Fortran or C), but it has two different

parts or codes: a sequential code (host code) executed

by the CPU, and a parallel code (device code or

kernel) executed by the GPU. The host code is

mainly responsible of transferring data between

main memory and global memory, and also setting

the kernel parameters, such as the number of blocks

per grid and the number of threads per block, as well

as invoking the device code.

The device code is grouped into one or more

program routines called kernels, named from the

host code as if they were procedures or objects in

C/Cþþ. A kernel is a piece of code programmed

in a SPMD (Single Program, Multiple Data) style,

i.e. the same code is executed over different data

Figure 3: Tesla C1060 GPU with 240 SPs (Streaming Processors) organized in 30 SMs (Streaming Multiprocessors).

Table 1: Major hardware and software features of
Tesla C1060

Tesla parameters Value

SM 30
SP/SM 8
32-bit registers/SM 16384
Shared memory/SM 16 KB
Threads/SM 1024
Threads/Block 512
Threads/Warp 32
Device memory 4 GB

by different threads on different SP cores. The kernel

computation is performed by all these threads run-

ning in parallel.

Figure 4 shows the CUDA execution model [19]

which is based on a hierarchy of abstraction layers:

grids, blocks, warps and threads. The thread is the

basic execution unit that is mapped to a single SP.

A block is a batch of threads which can cooperate

together because they are assigned to the same multi-

processor, and therefore they share all the resources

included in this multiprocessor, such as register file

and shared memory. A grid is composed of several

blocks which are equally distributed and scheduled

among all multiprocessors, since there are normally

more blocks than multiprocessors. Finally, threads

included in a block are divided into batches of

32 threads called warps. The warp is the scheduled

unit, so the threads of the same block are scheduled

in a given multiprocessor warp by warp.

The programmer declares the number of blocks,

the number of threads per block and their distribu-

tion, which can be declared in one, two or three

dimensions (see values on Table 1). Each block,

and also each thread, has its own and unique identi-

fier (thread id and block id). These allow the pro-

grammer to select different data and code depending

on the thread id and block id.

Memory accesses and synchronization scheme are

other important aspects in the CUDA programming

model. The latency of access to each memory

included in the GPU can be reduced if the

memory access follows the correct pattern [16].

Global synchronization is not provided at the

device side, only threads in a block can wait for

each other. Hence, block synchronization mecha-

nisms must be explicitly implemented by the host

through consecutive kernel invocations.

SIMULATING P SYSTEMSWITH
ACTIVEMEMBRANES
The simulator we have developed is based on the

sequential simulator for P systems with active mem-

branes developed in P-Lingua [24]. In this design,

the simulation process is divided into two stages:

selection stage and execution stage. The selection stage

consists of the search for the rules to be executed

in each membrane in a given configuration. The

rules selected are executed at the execution stage.

At the end of the execution stage, the simulation

process restarts the selection stage in an iterative way

until a halting configuration is reached. This stop

condition is 2-fold: a certain number of iterations

or a final configuration is reached. On one hand, at

the beginning of the simulation, we define the max-

imum number of iterations. On the other hand,

a halting configuration is obtained when there are

no more rules to select at selection stage. As pre-

viously explained, the halting configuration is

always reached since it is a simulator for recognizer

P systems.

The input data for the selection stage consists of

a description of the membranes with their multisets

(strings over the working alphabet O, labels asso-

ciated with the membrane in H, etc.) and the set

of rules R to be selected. The output data of this

stage is the set of selected rules per membrane which

will be executed on the execution stage.

The execution stage applies the rules previously

selected on the selection stage. During the execution

stage, membranes can vary by including new objects,

dissolving membranes, dividing membranes, etc,

obtaining a new configuration of the simulated P

system. This new configuration will be the input

data for the selection stage of the next iteration.

PARALLEL SIMULATOROF
P SYSTEMSON THEGPU
Figure 5 shows the basic design of the simulator that

we have implemented on the GPU.

We have developed five kernels to implement the

selection and execution stages. The first kernel

Figure 4: CUDA execution model.

implements the selection stage and also the execution

stage for evolution rules. The other four kernels

implement the other execution rules (dissolution,

division, send-out and send-in rules).

The selection kernel starts with the selection

stage, which maps each membrane to a block,

where each thread represents an object of the alpha-

bet O. Each block runs in parallel looking for the set

of rules that have to be selected for its membrane,

and each individual thread is responsible for identify-

ing if there are some rules to be executed associated

with the object represented on the left hand side.

After the selection stage, we also execute in this

kernel the evolution rules. These rules are executed

inside this kernel for three main reasons: the evolu-

tion rules do not imply communication (and there-

fore, synchronization) among membranes; they are

executed in a maximal way, and this decision allows

us to use less global memory because it is not nec-

essary to store the selected evolution rules for the

execution stage.

The rest of the rules to be applied are executed

in four different kernels, one kernel per each kind of

rule (dissolution, division, send-out, send-in).

Algorithm 1 shows the pseudo-code of the

simulator. First of all, we move the data needed for

the computation to the GPU. Then, the code calls

the selection kernel which returns the selected rules

for the current configuration of the P system.

Among the possible selected rules there will be

different kinds of rules to be executed, therefore,

we identify the type of those rules in order to

launch only the kernels which are needed to com-

plete the execution stage. As we explained before, we

iterate on this process until the maximum number of

steps is reached or the system returns an answer.

Finally, we copy back the result data to CPU.

Our simulator presents two restrictions, due to

some peculiarities in the CUDA programming

model: it can handle only two levels of membrane

hierarchy for simplicity (the skin and the rest of ele-

mentary membranes), and the number of objects in

the alphabet must be divisible by a number smaller

than 512 (the maximum number of threads per

thread block), in order to distribute the objects

among the threads equally.

DESIGNINGACASEOF STUDY FOR
P SYSTEMS
In order to evaluate the performance of the simula-

tor, we have designed a family of P systems, named

Figure 5: Structure of our parallel simulator on the GPU.

test P system, where it is easy to vary the number of

membranes as well as the number of objects. This

test P system also fits the behaviour of the GPU

since only evolution and division rules are defined

(without communication and dissolution rules), and

every object in every membrane will evolve accord-

ing to a given rule. The defined P system is of the

following form
Q
¼ (O,H,�,!1,!2,R), where:

O¼ {d,oi/0� i5n}, H¼ {1,2}, �¼ [[]2]1, !1¼�,
!2¼O, R¼

(i) Evolution rules: ½oi ! oi�
0
2, 0� i5n

(ii) Division rule: ½d�02 ! ½d�
0
2 ½d�

0
2

Thus, the test P system allows us to take control of

the number of objects in the system by modifying

the n parameter. Furthermore, the number of rules

changes along with the number of objects, and the

number of membranes in every step of the compu-

tation is equal to 2s, where s is the step number.

Lastly, the number of evolution rules selected and

executed per membrane in every step is invariable,

since they are defined one per object and all the

objects of the alphabet are presented in every mem-

brane labelled with 2.

EXPERIMENTALRESULTS
Figure 6 presents the results we have obtained for the

simulator between a sequential version developed in

the Cþþ language and our simulator developed in

CUDA. Notice that in both graphs the Y-axis is

represented in an exponential form.

For our tests, we use two benchmarks based on

the test P system explained in the previous section.

These benchmarks cover both ways of parallelism

that P systems naturally have by its definition. The

first one tests the parallelism between membranes,

increasing the number of membranes exponentially,

and the second one tests the parallelism between

objects increasing the number of objects within

each membrane exponentially.

Figure 6a shows the results for the benchmark

which increases the number of membranes exponen-

tially, having a fixed number of objects per mem-

brane (2560 objects). The CPU simulator increases

its time exponentially from the beginning (with four

membranes) until reaching the final configuration

(with 32768 membranes). Our CUDA simulator,

which assigns 256 threads per block (each thread

handles 10 elements per membrane), also increases

its execution time in a near exponential way, but

the performance difference is about two orders of

magnitude (100�), and this difference enlarges

with the number of membranes (because the

resources of the GPU are fully utilized).

Figure 6b shows the behaviour of both simulators

executing the benchmark which increases the

number of objects per membrane. In this case, the

number of membranes is fixed to 1024, which

implies to have enough blocks to distribute the

Figure 6: Test P system results for both sequential
and CUDA simulator. (A) By number of membranes
and (B) by number of objects.

Algorithm 1: Parallel simulator of P systems on
the GPU.

work among multiprocessors. Our simulation starts

with only few objects per membrane, which implies

just few threads per block in the CUDA code.

Figure 6b shows that the sequential code initially

obtains better performance than the CUDA code

until the simulations reach 32 elements per mem-

brane. Less than 32 elements per membrane implies

less than 32-threads per blocks in the CUDA code

which does not fill a Warp; hence GPU resources are

badly used.

The sequential code increases its simulation time

along with the number of objects since just one thread

has to deal with all the objects in each membrane.

The simulation time remains flat using the CUDA

code until reaching a 256-object configuration. The

simulation time increases a little bit faster from this

configuration onwards because the following config-

urations have more objects per membranes than

threads per block (it uses 256-thread blocks).

Therefore, objects in a membrane are equally distrib-

uted across all the threads in a block: 512-object

per membrane implies two objects per thread;

1024-object per membrane implies 4 objects per

thread, and so on. Otherwise, it implies to have an

overloaded thread which reduces the performance of

our simulator, and leads us to conclude that it is

better to have lightweight threads.

Overall, we have obtained an impressive reduc-

tion in the simulation time, reaching for our bigger

tested configuration (32 768 objects per membrane)

an improvement of three orders of magnitude

(1000�) in the execution time between the sequen-

tial simulator and our CUDA simulator.

CONCLUSIONSAND FUTURE
WORK
In this article, we have described the design of a

simulator for the class of recognizer P systems with

active membranes on the GPU. Our experimental

results show that GPUs are good platforms to simu-

late membrane systems due to the double parallel

nature that they present. The first level of parallelism

is presented by the objects inside the membranes

which fits with the parallelism among threads

exposed on GPUs, and the second one is presented

between membranes which we represent with the

thread blocks on the CUDA programming model.

Using the power and parallelism provided by

GPUs to simulate P systems with active membranes

is a new concept in the development of applications

for membrane computing. We believe that GPU

features help researches to accelerate their simula-

tions by using a cheap and scalable parallel

architecture.

In forthcoming versions, we are planning to adapt

our simulator to simulate specific problems at max-

imum performance. We are also working to obtain

full simulation of P systems with active membranes,

removing the limitations mentioned above.

Furthermore, we would like to include the possibil-

ity to simulate other kinds of P systems in our

simulator, such as probabilistic and stochastic P

system models, which could be used to computa-

tionally model biological systems within the frame-

work of systems biology.

The latest GPUs provide even more massively

parallel programming environment, so we will

attempt to scale our simulator to obtain better per-

formance and also provide more memory space for

our simulations.

Key Points

� P systems are an alternative approach to model biological
phenomena in the field of computational systems biology based
on the functioning of living cells. However, one needs efficient
simulators in order to experimentally validate themodels.

� GPUs are being established as a massively parallel processor
where programmers can accelerate scientific applications.

� GPUs are good alternative to conventional CPUs to simulate
membrane systems due to the double parallel nature that GPUs
and P systems present.

� The advent of the accelerators in high performance computing
offers fresh avenues for developing new and efficient simulators
for P systems and systems biology.

Acknowledgements
The authors would like to thank anonymous reviewers for their

detailed and constructive comments and suggestions that have

helped to improve this article.

FUNDING
Fundación Séneca (Agencia Regional de Ciencia

y Tecnologı́a, Región de Murcia) under grant

00001/CS/2007, and also by the Spanish MEC

and European Commission FEDER under grant

CSD2006-00046 to J.M.C., J.M.G., G.D.G.;

TIN2006–13425 of the Ministerio de Educación

y Ciencia of Spain, cofinanced by FEDER funds,

and ‘‘Proyecto de Excelencia con Investigador de

Reconocida Valı́a’’ of the Junta de Andalucı́a

under grant P08-TIC04200 to M.A.M., I.P.-H.

and M.J.P.-J.

References
1. Păun G. Computing with membranes. J Comput Syst Sci

2000;61(1):108–43, and Turku Center for Computer
Science-TUCS Report, Nr. 208, 1998.

2. The P systems Webpage: http://ppage.psystems.eu
(November 2009, date last accessed).

3. Fontana F, Bianco L, Manca V. P systems and the modeling
of biochemical oscillations. LectNotesComput Sci 2006;3850:
199–208.

4. Cheruku S, Pãun A, Romero–Campero FJ, etal. Simulating
FAS-induced apoptosis by using P systems. Prog Nat Sci
2007;17(4):424–31.

5. Pérez-Jiménez MJ, Romero-Campero FJ. P systems, a new
computational modelling tool for systems biology.
Transactions on computational systems biology VI. Lect
Notes Bioinform 2006;4220:176–97.

6. Pérez-Jiménez MJ, Romero-Campero FJ. Modelling gene
expression control using P systems: The lac operon, a case
study. Biosystems 2008;91(3):438–57.

7. Krasnogor N, Gheorghe M, Terrazas G, et al. An appealling
computational mechanism drawn from bacterial quorum
sensing. Bull EATCS 2005;85:135–48.

8. Pérez–Jiménez MJ, Romero-Campero FJ. A model of the
Quorum Sensing system in Vibrio fischeri using P systems.
Artificial Life 2008;14(1):95–109.

9. Terrazas G, Krasnogor N, Gheorghe M, et al. An environ-
ment aware P-System model of quorum sensing. Lect Notes
Comput Sci 2005;3526:473–85.

10. Pescini D, Besozzi D, Mauri G, etal. Dynamical probabilistic
P systems. IntJ Found Comput Sci 2006;17(1):183–95.

11. Bianco L, Fontana F, Manca V. P Systems with reaction
maps. IntJ Foundations Comput Sci 2006;17(1):27–48.

12. Cardona M, Colomer MA, Pérez–Jiménez MJ, et al.
Modeling ecosystems using P systems: the bearded vulture,
a case study. Lect Notes Comput Sci 2009;5391:137–56.

13. Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Núñez
A. Available membrane computing software. In: Ciobanu
G, Gh Păun, Pérez-Jiménez MJ (eds). Applications of
Membrane Computing, Natural Computing Series. Berlin,
Heidelberg: Springer-Verlag, 2006;411–436.

14. Ruiz A, Ujaldon M, Andrades JA, Becerra J, Huang K,
Pan T, Saltz JH, et al. The GPU on biomedical image
processing for color and phenotype analysis, BIBE, IEEE
2007;1124–8.

15. Satish N, Harris M, and Garland M. Designing efficient
sorting algorithms for manycore GPUs, NVIDIA
Corporation No. NVR-2008-001, September 2008.

16. NVIDIA CUDA Programming Guide 2.0 2008: http://
developer.download.nvidia.com/compute/cuda/2_0/docs/
NVIDIA_CUDA_Programming_Guide_2.0.pdf
(November 2009, date last accessed).

17. GPGPU organization. World Wide Web electronic publi-
cation: http://www.gpgpu.org (November 2009, date last
accessed).

18. NVIDIA CUDA. World Wide Web electronic publication:
http://www.nvidia.com/cuda (November 2009, date last
accessed).

19. Lindholm E, Nickolls J, Oberman S, et al. NVIDIA Tesla:
A unified graphics and computing architecture. IEEEMicro
2008;28(2):39–55.

20. Owens JD, Houston M, Luebke D, et al. Gpu computing.
Proc IEEE 2008;96(5):879–99.

21. Garcı́a–Quismondo M, Gutiérrez–Escudero R, Martı́nez–
del–Amor MA, et al. P-Lingua 2.0: A software framework
for cell-like P systems. Int J Comput Commun Control 2009;
4(3):234–43.

22. Nickolls A, Buck I, Garland M, et al. Scalable parallel
programming with CUDA. Queue 2008;6(2):40–53.

23. Owens JD, Luebke D, Govindaraju N, et al. A survey of
general-purpose computation on graphics hardware.
Comput Graph Forum 2007;26(1):80–113.

24. Dı́az–Pernil D, Pérez–Hurtado I, Pérez–Jiménez MJ, et al.
A P-Lingua programming environment for
Membrane Computing. Lect Notes Comput Sci 2009;5391:
187–203.

25. Garland M, Grand SL, Nickolls J, et al. Parallel
computing experiences with CUDA. IEEE Micro 2008;
28(4):13–27.

26. Păun G. Membrane Computing, An Introduction. Berlin:
Springer-Verlag, 2002.

