
Evolving a Predator–Prey Ecosystem of
Mathematical Expressions with

Grammatical Evolution

MANUEL ALFONSECA1 AND FRANCISCO JOS�E SOLER GIL2

1Escuela Polit�ecnica Superior, Universidad Aut�onoma de Madrid, Francisco Tom�as y Valiente, 11,

Campus de Cantoblanco, Madrid 28049, Spain; and 2Dept. Filosof�ıa y L�ogica, Universidad

de Sevilla, Spain

Received 21 October 2013; Revised 24 December 2013; accepted 25 January 2014

This article describes the use of grammatical evolution to obtain a predator–prey ecosystem of artificial beings asso-

ciated with mathematical functions, whose fitness is also defined mathematically. The system supports the simulta-

neous evolution of several ecological niches and through the use of standard measurements, makes it possible to

explore the influence of the number of niches and the values of several parameters on ‘‘biological’’ diversity and sim-

ilar functions. Sensitivity analysis tests have been made to find the effect of assigning different constant values to the

genetic parameters that rule the evolution of the system and the predator–prey interaction or of replacing them by

functions of time. One of the parameters (predator efficiency) was found to have a critical range, outside which the

ecologies are unstable; two others (genetic shortening rate and predator–prey fitness comparison logistic amplitude)

are critical just at one side of the range), the others are not critical. The system seems quite robust, even when one or

more parameters are made variable during a single experiment, without leaving their critical ranges. Our results

also suggest that some of the features of biological evolution depend more on the genetic substrate and natural

selection than on the actual phenotypic expression of that substrate. VC 2014 Wiley Periodicals, Inc. Complexity 20:

66–83, 2015
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1. INTRODUCTION

E
cological simulation is useful because it makes possi-

ble to test under controlled conditions, situations very

difficult to analyze in real-life systems. Real systems,

except where the ecologies are made up of microorgan-

isms, usually take thousands of years to evolve, what

makes experimentation unpractical. Conversely, it is diffi-

cult to build experimental ecological systems simple

enough to perform controlled experiments. This is

straightforward in simulated systems.

Ecological simulation has a long history. Ever since Vito

Volterra developed his famous predator–prey equations
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[1], continuous simulation has been used to represent arti-

ficial ecological systems [2–4]. Discrete simulation has

also been used frequently, using tools such as cellular

automata [5,6] and Lindenmayer systems [7]. Agent-based

artificial life ecosystems are relatively old [8] and have

fused with artificial life research since the end of the

1980s (see [9] for a relatively recent survey of the field).

Typical recent simulations in this field tend to define com-

plicated predator–prey systems, which embody the agents

with fuzzy cognitive maps and similar constructs [10,11].

Some of these systems do not address biological ecosys-

tems but are directed to the simulation of social systems,

with special application on economy [4,12].

In biological evolution, a genetic substrate, embodied

in nucleic acids, is subject to a certain number of random

actions (mutation, recombination, etc.). The different

genetic compositions are not selected directly. They are

translated into phenotypes whose mutual interaction gives

rise to natural selection. Our hypothesis is that many of

the features of biological evolution depend more on the

genetic substrate and the mechanism of natural selection

than on the actual phenotypic expression of that sub-

strate. The fact that phenotypes as different as mathemati-

cal functions and biological beings give rise to similar

features seems to support this hypothesis.

This article describes our experiments to build an

evolving predator–prey ecosystem of artificial beings that

compete for a limited resource nonspatial environment.

The underlying genetic structure is not too dissimilar to

that of living beings (a series of genes, represented as inte-

gers), subject to genetic algorithms similar to those in

biology, but its phenotypic expression is quite different:

grammatical evolution (GE) is used to generate, from the

genetic substrate, phenotypic counterparts made of simple

mathematical expressions. Natural selection is then

applied to these phenotypes, after mathematically com-

puting the fitness of the different individuals.

Our goal was to reduce the complexity of the ecosys-

tem to the minimal expression, and test whether some of

the typical features of biological evolution can be repro-

duced successfully in this simplified environment, such as

a Volterra-like relationship between predators and prey,

and others mentioned in the conclusions. In this way,

other features we detect could provide new ideas about

biological evolution. We have also studied which values of

the genetic parameters generate more stable ecologies,

and whether these parameters should actually be con-

stants, or a certain amount of time-dependence is com-

patible with the stability of the ecologies. Exploring this

question can lead to discovering the extent to which the

structural changes affect the robustness of ecosystems.

Grammatical evolution, a standard technique in genetic

programming (see [13–15]), suggested itself as the proper

method, as it separates genomes from phenotypes and

improves the closure problem (the need to eliminate indi-

viduals with invalid phenotypes), by protecting pheno-

types against syntactic errors. Extensions to GE, such as

attribute GE or Chistiansen GE [16,17] can also protect

from semantic errors. We did not need to use those exten-

sions because our individuals are protected from semantic

errors in a different way (see Appendix A).

Our agents are very simple, as they only embody a

mathematical expression, which is executed to compare

their respective fitness. The environment is also very sim-

ple. In some ecological simulations, spatial distribution is

important [6,18]. Our agents, however, do not have a

space location. Conversely, they can belong to one of the

several ecological niches, which evolve simultaneously but

independently. We represent niches by applying different

fitness functions to those individuals belonging to each

niche. We also regulate niche population by making it

possible for two niches to share the same fitness function,

thus duplicating the population associated to that

function.

This is the second set of experiments we have imple-

mented following this technique. The first one [19]

focused on the simulation of a parasite–host system,

rather than a predator–prey system, like the one described

here. Also, in the former study, we analyzed interniche

interbreeding, while in this new study, we have performed

a rather complete sensitivity analysis of the influence of

different system parameters on the result. A detailed com-

parison between the results of both sets of experiments is

left as future work.

This article is divided in the following way: Section 2

describes our procedure (GE and the generation of mathe-

matical expression phenotypes from a genome; the evolu-

tionary algorithm we use; and the predator–prey

interaction). Section 3 describes the external parameters

in our experiments. Section 4 shows the detailed results of

two experiments that we thought particularly interesting

among a total of 426 successful experiments we have per-

formed; Section 5 describes a sensitivity analysis that

shows the effect of changing several parameters, some of

which were found to be critical or semicritical for the sta-

bility of the ecologies. Both fixed and variable parameters

have been tested. Finally, Section 6 discusses and summa-

rizes our conclusions and lists our future work objectives.

Two appendices add some programming considerations

and an example of the genotype to phenotype translation

using the procedure described in Section 2.

2. GRAMMATICAL EVOLUTION
Grammatical evolution is an evolutionary automatic

programming (EAP) algorithm based on strings, independ-

ent of the language used. Genotypes are represented by

strings of integers (each of which is named gene) and the
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context-free grammar of the target programming language

is used to map each genotype into a syntactically correct

phenotype (a mathematical expression or a program). In

this way, GE avoids one of the main difficulties in EAP:

the results of genetic operators are guaranteed to be syn-

tactically correct.

Our agents are very simple entities reduced to the min-

imum information, which ‘‘live’’ and ‘‘evolve’’ together in a

controlled non-spatial environment. Each individual con-

sists of a ‘‘genome,’’ a vector of n integers in the [0-255]

interval. The value of n is random for each initial genome

in the [50-199] interval.

We have introduced the concept of ‘‘niche,’’ which

makes it possible to split the population in several subpo-

pulations, each using a different fitness function. The first

element of the genome defines the ecological niche to

which the individual belongs. The remaining elements pro-

vide the genomic information used to translate the geno-

type into an equivalent phenotype, which will be subject to

evolutionary selection. The role of each element in the

genome depends on its position and is redundant (several

different integers in the same position give rise to the same

phenotype). This is done to emulate the fact that the

genetic code in living beings is degenerate [20], although

the amount of redundancy used in GE is usually larger.

One of the niches in each experiment is assumed to be

the ‘‘predators.’’ The remaining niches are made of ‘‘prey.’’

Therefore, the minimum number of niches is 2. Predators

have an additional externally controlled parameter, their

average ‘‘efficiency’’ (Ef). This parameter can be changed

for each different experimental run but is constant during

the execution of the experiment.

Different strategies were tested for predator–prey

interaction.

� First, predators and prey are paired-up. We tested a

random pairing versus pairing the best predators

with the worst prey (this happens in biological sys-

tems, where predators usually capture aged, sick, or

tired prey). We found the second strategy to be best

for our purposes (in the sense that it gives rise to a

higher number of stable experiments, those which

endure for more than 200 generations).

� Once paired up, each predator may ‘‘eat’’ its prey, or

the prey may ‘‘escape,’’ depending on their fitness.

Several strategies were also tested here: forcing the

predator fitness to be better than the prey versus

using a functional comparison of the form

Ef:fun
FP

Fp

� �
� ?100

where Ef is the predator efficiency mentioned before,

FP is the inverse fitness of the prey, Fp the inverse fit-

ness of the predator, ?100 is a uniformly distributed

random number in the [0,100) interval and ‘‘fun’’ is a

function that can be changed in different experiments.

Two functions were tested: a simple logarithm and the

logistic curve:

k1
2ð12kÞ

11e20:5LNFP
Fp

(1)

where 0 � k � 1 is the logistic amplitude coefficient.

The logistic curve takes values between k and 2 2 k,

which multiplied by Ef (the predator efficiency) gives

the probability that the interaction ends in the predator

eating the prey. If the condition holds, the predator eats

and the prey dies and disappears from the population.

Otherwise, the prey escapes. This process is repeated a

predefined number of times (external parameter N1). At

the end of this loop, all the predators in the population

that were unable to reach a given number of ‘‘meals’’

(the external parameter N2) also die.

The following scheme shows the way in which GE com-

bines traditional genetic algorithms with genotype-to-

phenotype mapping.

1. An initial population of N genomes is generated at

random. In our experiments, the value of N is a

parameter, which can be set for each experiment

run.

2. The phenotypes associated to all the members in

the initial population are generated using a gram-

mar. In our experiments, each genome is assigned

an arbitrary id: a unique function number in the

interval [000–N).

3. The genotype population is sorted according to fit-

ness (computed from the phenotypes). In fact, as

indicated before, what we usually call fitness is

actually an ‘‘inverse fitness,’’ as we consider best

those functions that get the minimum results (our

optimal fitness value is 0). In our experiments, the

fitness of a function is defined by a mathematical

expression, which can be different for different eco-

logical niches. For instance, one of the (inverse) fit-

ness functions we have used computes the

following mathematical expression:

ð
X
jD4Z jÞ1 1

j
P

D3Z j

 !" #
3c (2)

where Z represents the result of applying the function

associated to one individual to the input values (in our

experiments, all the integers from 1 to 10). This fitness

function is smaller (and, therefore, selects) for those

mathematical expressions whose fourth difference is

minimal and their third difference is maximal, (i.e., pol-

ynomials of degree 3). To prevent genome length
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shooting up, long genomes are penalized (this is the

meaning of the correction multiplier, c).

4. The individuals in the population are ordered by their

fitness. In our experiments, this is done independ-

ently for all ecological niches, so that evolution takes

place independently in each niche. All those individ-

uals whose (inverse) fitness values are greater than

1000 are eliminated (with this limit, over half of

purely random genomes are eliminated), together

with their associated phenotype functions. This is

done to prevent the population to be invaded by indi-

viduals with very bad fitness, leaving room for new

offspring. In any case, once the population stabilizes

with a reasonable fitness, only a small proportion of

individuals are eliminated in this way (less than 5%),

so the effect of this pruning is effective mainly during

the first generations, before the population reaches a

steady state.

5. Predator–prey interaction. Each predator (an indi-

vidual belonging to the predator niche) is paired to

a prey (one individual belonging to one of the dif-

ferent prey niches). The predator may ‘‘eat’’ the

prey, or the prey may ‘‘escape’’ according to the

procedure indicated above. The predator may also

‘‘starve,’’ if it fails too much.

6. Create the next generation from a mating pool. In

our experiments, the mating-pool is chosen from

the 100 best-fitted individuals in the population (or

those that remain, if they are less than 100), taken

in equal numbers from the different niches, and

the future parents in each niche are paired ran-

domly. Four different genetic operations are applied

to the offspring:

� Single-point recombination of parent genomes.

This operation is always performed.

� Mutation (random change of a component of the

genome). This operation is performed after

recombination has taken place, with a high (80%)

probability when the two parents are identical

and a lower (p1) percent probability otherwise, to

compensate the fact that recombination has no

effect in that case. This is not the standard muta-

tion procedure but it has been used before in

genetic programming [15,21]. The first element of

a genome can also mutate, which means that the

offspring may belong to a different niche than

their parents. This makes niche colonization after

extinction possible.

� Extension: with a certain percent probability (p2),

a randomly selected part of the genome (from 0

to 100%) of one parent is added at the end of the

offspring genome. This can happen in living

beings in unequal crossing over [22], or when a

genome suffers polyploidy and its genetic con-

tents increases.

� Shortening: with a certain percent probability

(p3), one component of the offspring genome is

deleted randomly. This can happen in living

beings in unequal crossing over, or in a different

way, when a genome loses one or more chromo-

somes and its genetic contents decreases.

7. The offspring genomes are added to the population.

In our experiments, if the total number of individuals

exceeds Nmax (the maximum population size), the

worst genomes in every niche of the previous popula-

tion are eliminated (together with their phenotypes)

until the number is Nmax or less. The offspring

genomes are associated with phenotype numbers

that are or have become free after this operation.

8. The phenotypes associated to all the new members

of the population are generated using the same

grammar.

9. Go to step 3.

A phenotype is generated from a genotype in the following

way:

1. Variable V is initialized with the axiom of the gram-

mar, ‘‘E.’’

2. If V does not contain a nonterminal symbol, the

process has finished and the value of variable V is

the phenotype expression. If step 2 has been exe-

cuted 500 times, the process finishes and returns

an empty expression. Otherwise:

a. Let Y be the first nonterminal symbol in V.

b. Let K be the number of rules in the grammar,

whose left part is Y. If K 5 1, the only available

right part replaces the first appearance of Y in

V and step 2 is repeated. Otherwise:

c. Let G be the next element of the genome under

translation. If all the elements of the genome

have been used, the first one is used again

(genomes are circular).

d. The first appearance of Y in V is replaced by

the mth right part of the rule, whose left part is

Y (numbered in zero origin), where m 5

mod(G,K).

e. Repeat step 2.

Appendix A provides some considerations about the

way in which the system has been programmed. Appendix

B shows an example of the translation of a genotype into

a phenotype, as described by the previous algorithm.

3. ECOSYSTEM AND POPULATION PARAMETERS
In our experiments, we give values to the following

external parameters:
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� The initial and maximum sizes of the population, N

and Nmax. In all the experiments discussed in this

article, these parameters have been set at 1000 and

2000, respectively.

� The number of ecological niches. Two cases were

considered: four niches (one predator, three preys

sharing the same fitness function), and four niches

(one predator, two preys sharing the same fitness

function, one prey with a different fitness function).

In this way, the initial population of prey is initially

three times larger than the initial population of

predators, although the population of both stabilizes

spontaneously at a different relationship.

� Genetic algorithm parameters controlling mutation,

extension, and deletion rates are represented as p1,

p2, and p3, respectively. All of them are percent

probabilities with their values in the [0,100] interval.

� The predator efficiency Ef, which may vary in the

[0,100] interval (it can also be considered as a per-

cent probability).

� The two external predator–prey interaction parame-

ters: N1 (number of trials each predator can try to

eat a prey in each generation) and N2 (minimum

number of successful trials).

� The set of values used as arguments for the pheno-

type functions. In all the experiments discussed in

this article, this was a vector of integers from 1 to

10.

� The fitness functions used for each niche.

� The random seed defines the initial conditions of

the experiment and affects all the random opera-

tions during its execution.

� Interbreeding between different niches was not

allowed in these experiments.

4. STUDY OF TWO DETAILED EXPERIMENTS
In this section, we analyze in detail a couple of con-

crete experiments. The two experiments have been chosen

because they illustrate well what happens during the evo-

lution of our ecologies. They cannot be considered typical,

however, as every experiment is different and provides

interesting suggestions. However, we have performed so

many experiments that it is impossible to discuss them

all, so this section should be taken as just a sample.

In our first detailed experiment, we used the following

parameters: initial population, 1000 individuals; maximum

population, 2000 individuals; the random seed was 16,807.

There were four niches (one predator and three preys

sharing the same fitness function). The fitness functions

used were:

� prey: fourth-degree polynomials

� predators: third-degree polynomials

We chose these functions arbitrarily but in such a way

that their genetic distance is not large (for our definition

of genetic distance, see [19]). In both niches, the polyno-

mials with the largest absolute value were positively

selected. Genomes of less than 50 elements are positively

selected to prevent runaway genome length.

In each cycle, predators were allowed N1 5 4 tries to

make a prey. Just one prey captured per cycle was suffi-

cient to keep it alive. Predator efficiency was set at Ef 5

24%.

Table 1 shows the dominant functions (with the best

fitness) during the evolution of the ecosystem simulated

in our first detailed experiment.

This ecosystem endured for 2565 generations and then

was halted when the size of its predator population

became zero. It could have proceeded with just the prey

but this was not done in this case. Figure 1 shows the

total size of the prey population as a function of time

(generation number), as well as the number of predators.

Figure 2 shows a typical Lotka–Volterra plot for a section

of the experiment.

Looking at Table 1 and Figures 1 and 2, the following

facts can be observed1:

� At the beginning of the experiment, when it is gen-

erated, the initial population of 1000 individuals is

divided equally between the four niches. As all those

with a fitness worse (greater) than 1000 are auto-

matically eliminated, the total initial population

(136) is smaller. The initial prey/predator relation

(114/22 5 5.2) is not significantly greater than 3 (the

relation between prey/predator niches).

� In a few generations, a stable equilibrium is reached

with a much larger prey/predator relation (the aver-

age for the complete experiment was 58). This is

exclusively due to the predator/prey interaction.

Without it, the relation would stabilize at 3.

� Figure 2 shows the evolution of the prey versus the

predator populations in this experiment during gen-

erations 121–165. It will be observed that temporary

increases in the number of predators coincide with

temporary decreases in the number of prey, giving

rise to curves somewhat similar to the results of the

Lotka–Volterra equations, where a circular shape

would have been obtained. This, however, only hap-

pens during a certain number of generations, for

those equations are applicable to two-species

1These observations must not be considered as generalized

conclusions, since no statistical analysis has been performed

on them. They are just interesting remarks which suggest

that our experiments do not differ too much in their behav-

ior from biological ecosystems, at least at first sight.
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ecologies in evolutionary equilibrium, while in our

system evolution changes the mixture of species and

the situation is different [23].

� The data shown by Table 1 can be interpreted as a

predator–prey arms race, where sometimes the pred-

ators, sometime the prey, experience significant fit-

ness improvements that give them a visible

advantage. A little after generation 120, predator fit-

ness went down from 0.19 to 2e24, which gave

them a great advantage against their prey. The effect

on the respective populations is clear in Figure 1:

the prey descended to below 1700, the predators

increased to about 80. A little before generation 150,

however, the prey discovered a new mathematical

function that gave them a tremendous fitness

improvement (from 0.3 down to 8e211), which

allowed them to recover their previous population

and even reduce somewhat the predator population.

The arms race continued during most of the life of

the ecosystem,

� Around generation 800, an interesting event is visi-

ble in Table 1: predators improve their fitness

TABLE 1

Evolution of the Dominant Functions in the First Experiment

Generation Prey Best Function Fitness Population Predator Best Function Fitness Population

0 1/x 0.84 114 log8 x1 4!
x

� �
1.25 22

50 2828xlog x 0.3 1368 3
x

0.35 47

100 1943 2x2lnx 0.19 52
150 264x4 8e211 1719 xðx28px2Þ 2e24 61
250 ð28x:8!Þ4 1.3e225 1978 20

800 1859 x3:8! 1.2e27 36
850 1966 28px3 2e24 29
950 1965 xðx29px2Þ 1.7e24 28
1250 8:ð8x:8!Þ4 1.6e226 1957 34

1300 9:ð8x:8!Þ4 1.4e226 1962 35

2000 1943 9px2ð92xÞ 55
2100 1982 9px2: 92 3

2 x
� �

1.1e24 14

2350 1967 9px2: 92 8
3 x

� �
6e25 28

2500 1965 9px2:ð928xÞ 2e25 26
2565 1994 0

FIGURE 1

Results of the first experiment: prey/predator populations as a func-
tion of time.

FIGURE 2

A Lotka-Volterra like plot of prey population versus predator
population.
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significantly (in fact, they reach their best fitness in

the whole experiment, 1.2e 27) but in a few genera-

tions they go back to their previous best fitness (2e

24). What happened was: before that improved

genome could spread to the whole population of pred-

ators, chance made them fail to get a prey and all of

them died without leaving descendants. The next best

genome then became again dominant for predators.

� The evolution of this ecosystem seems to favor Ste-

phen Jay Gould’s theory of punctuated equilibrium

evolution [24,25]. It can be seen that during long

stretches of time (as between generations 250 and

800, or between 1300 and 2100) there were no

improvements in fitness. At other times, however (as

between 100 and 250, or between 800 and 950), sev-

eral consecutive improvements in the genome hap-

pen one after another in a short stretch of time.

In a similar, but different experiment, with the same

parameters, except for N1 5 5 and Ef 5 14%, the situation

where predators disappeared but prey remained was

tested. After 46 generations where the predator niche was

empty, this niche was invaded by one individual, descend-

ant from parents of one of the prey niches, which under-

went a mutation in the gene defining the niche. It so

happened that, in that experiment, the best prey individu-

als had a mathematical function that maintained a com-

parable fitness when transplanted to the predator niche.

As a consequence, both the predator and the prey niches

were occupied during some time (349 generations) by the

same species. In other words, when predators disap-

peared, some of the prey developed cannibalism. Finally,

however, the predators again became extinct.

In our second detailed experiment, we used the following

parameters: initial population, 1000 individuals; maximum

population, 2000 individuals; random seed, 16,807. There

were four niches (one predator, three preys, two of them

sharing the same fitness function, the other with a different

fitness function). The fitness functions selected for were:

� prey 1 (one niche): exponential functions

� prey 2 (two niches): fourth-degree polynomials

� predators: third-degree polynomials

In this case, the fitness functions were chosen in such

a way that the genetic distance [19] of the new prey (prey

1) to both the old prey and the predator would be large,

keeping the other two niches identical to the preceding

experiment. In all cases, the functions with the largest

absolute value were positively selected. Genomes of less

than 50 elements were positively selected to prevent run-

away genome length.

In each cycle, predators were allowed N1 5 4 tries to

make a prey. Just one prey per cycle was sufficient to keep

it alive. Predator efficiency was set at Ef 5 25%.

Table 2 shows the dominant functions, which reached

the maximum fitness during the evolution of the ecosys-

tem simulated in our second detailed experiment. In this

ecosystem, prey failed first after an interesting three-sided

arms race. Of course, once the prey disappeared, the pred-

ators failed also in the next generation (their fall had

begun before, when the prey started to be scarce). Figure

3 shows the size of the three populations (prey 1, prey 2,

and predators) as a function of time (generation number).

Looking at Table 2 and Figure 3, the following facts can

be observed:

� At the beginning of the experiment, the initial popu-

lation of 1000 individuals is divided equally between

the four niches. As all those with fitness greater

than 1000 are automatically eliminated, the total ini-

tial population (222) is much smaller. However, due

to the difference between their fitness functions, the

number of prey 1 individuals is about double than

the initial number of prey 2, in spite of the fact that

the latter occupy two niches. The initial prey/preda-

tor relation (200/22 5 9) is greater than 3 (the rela-

tion between prey/predator niches) but not too

much, especially if we compare the predator and

prey 2 populations, which have similar fitness func-

tions (polynomials).

� In a few generations, a stable equilibrium is reached

with prey 2 systematically maintaining a double

population to prey 1 (they occupy two niches) and a

larger prey/predator relation (the average for the

complete experiment was 31). Observe, however,

that this relation is significantly smaller than in the

previous experiment. Apparently, the diversification

of the prey in two different niches allows predators

to reach a higher population. In fact, the set of all

the experiments performed2 with three different spe-

cies appears to be more stable than the previous set,

with just two species, which corresponds to the

well-known biological equivalent, that an ecosystem

is more stable when it contains a greater number of

species.

� The final failure of the prey was obviously due to the

persistent and overwhelming improvement of predator

fitness in the last 200 generations. It should be noticed

that predator fitness had to get better than the fitness

of both prey niches before forcing them to disappear.

In some way, each of the prey species seems to stabi-

lize the population of the other.

� The evolution of this ecosystem also seems to favor

Stephen Jay Gould’s theory of punctuated evolution.

During two long stretches of time (between genera-

2Not this particular experiment, which has a shorter dura-

tion than the previous one.
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tions 500 and 800, and again between 1100 and

1400), no improvements in fitness took place. At

other times, however (as between 1500 and 1600),

several consecutive improvements in the genome

happen one after another in a short stretch of time.

In a different but similar experiment, we analyzed dur-

ing 20 generations, which individual prey were eaten by

the predators and how many predators starved. The aver-

age per generation was:

Prey 1 eaten: 13.4

Prey 2 eaten: 32.1

Starved predators: 16.8

Predators, therefore, seemed to have a certain prefer-

ence for prey 2. In this population, the prey were distrib-

uted at 33.3 and 66.7%, while predators ate them at 29.5

and 70.5%, respectively. While this difference is not very

significant, it may be due to the fact that the fitness of

FIGURE 3

Results of the second experiment: prey/predator populations as a
function of time.

TABLE 2

Evolution of the Dominant Functions in the Second Experiment

Gener. Prey 1 Best Function Fitness Pop. Prey 2 Best Function Fitness Pop. Predator Best Function Fitness Pop.

0 9x 5e 26 132 5/x 9.0 68 log8 x1 !4
x

� �
1.25 22

50 9x 2e 27 1 6e 211 541 5/x 0.36 1053 �
x

3

� 0.029 61

100 648 24x!
x

0.358 1298 53

200 648 23x!
x

0.34 1283 67

450 648 x1ð23Þ
x
6 0.33 1288 63

500 647 x1ð3pÞ
x
6 0.24 1285 67

800 92x16 2e 27 1 3e 226 649 1293 57

850 650 x1e2x1ð3pÞ
x
6 0.22 1293 px

3

 !
0.0009 54

900 92x17 2e 27 1 3e 227 647 1287 � 6px

3

� 4.4e 26 61

1000 649 1290 � 8px

3

� 2.2e 26 57

1050 649 1290 � 13px

3

� 2e 26 59

1100 92x18 2e 27 1 4e 228 651 1296 52

1400 649 x3:8x 1.7e 24 1293 55
1450 644 x3:64x 2e 25 1277 70
1500 648 1291 � 72x

3

� 8e 28 54

1550 559 x3:90x 1.5e 25 1203 � 90x

3

� 4e 28 69

1600 250 496 � 162x

3

� 7e 29 80

1623 0 0 9
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prey 1 was usually better than the fitness of prey 2, at

least in these experiments (there are exceptions).

5. SENSITIVITY ANALYSIS
In all the experiments described next, performed to

study the influence of the different genetic and ecologic

parameters on the stability and diversity of the results, the

following ranges and basic values were used:

� Mutation rate when the two parents are different.

Range: [0%, 80%]. Basic value: 10%. The mutation

rate when both parents are identical was kept always

at 80%, which forces the maximum value indicated

above.

� Extension. Range: [0%, 100%]. Basic value: 5%.

� Shortening. Range: [0%, 100%]. Basic value: 5%.

� Logistic amplitude coefficient k, see Eq. (1). Range:

[0,1]. Basic value: 0.75.

From all the experiments performed, those where pred-

ators or prey withstood for 200 generations or less were

discarded, as they gave rise to very unstable ecologies. We

call ‘‘successful’’ those experiments where both predators

and prey went beyond 200 generations.

Experiments were performed in batches, sharing the

values of all external parameters except predator effi-

ciency, which happens to be a relatively critical parameter.

It was discovered that predator efficiency only gives rise to

successful experiments in a small part of its range of vari-

ation, which depends on the values of the remaining

parameters. Thus, the [0,100] interval of possible values

gets divided into three sections:

� The [0,a) interval, where predator efficiency is too

small and the predator population disappears in no

more than 200 generations.

� The [a,b] interval, where predator efficiency is suffi-

cient, but not too large, and one or more experi-

ments endure for more than 200 generations.

� The (b,100] interval, where predator efficiency is too

large, and the prey population disappears in no

more than 200 generations (immediately followed by

the predators, of course).

For every set of external parameter values, the [a,b]

interval of predator efficiency was discovered, and all the

experiments in that interval for integer values of the

parameter were performed. This is what we call a ‘‘batch

of experiments,’’ where the [a,b] interval rarely contains

more than 20 different integer values. In all the results

presented below, averages and standard deviation were

computed for batches.

In each of the next subsections, we made two types of

experiments: first, we tried to find what happens when

different constant values are assigned to the parameter

under study during a complete batch of experiments.

Then we tested the effect of making the parameter vari-

able during the execution of particular experiments. The

first type let us deduce how changing the value of some

parameter affects the evolution of the ecosystem. The sec-

ond type tells us whether that parameter should actually

be constant or if a certain time dependency can be

allowed. While each of the parameters was modified, the

basic values were used for all the other parameters.

We performed a total of 426 successful experiments. In

all the statistical measurements performed, the first 15

generations were excluded, to allow the ecosystem to go

into a permanent regime. In this analysis, we measured

the following results:

1. Successful experiments: We measured the number

of successful experiments, the number of those that

exceeded 2000 generations, and the average num-

ber of generations in each batch. If a successful

experiment exceeded 2000 generations, it was inter-

rupted and its total duration was computed as

2000.

2. Diversity: Biological populations are almost never

genetically identical, they embody a certain degree

of variation, even when they belong to a single spe-

cies. Among different ways to measure biodiversity,

the Shannon diversity index [26–28] is frequently

used. This index is defined by the following

formula:

2
Xn

i51

pilog pi (3)

where n is the number of different species and pi is the

frequency of species number i (the number of individu-

als belonging to that species divided by the total num-

ber of individuals).

To study the evolution of diversity in our simulation

experiments by means of Shannon’s diversity index, we

group the individuals in ‘‘species.’’ Two individuals

belong to the same ‘‘species’’ when their phenotypes are

identical, even though their genotypes may not be, due

to the redundancy of the genetic code. This accords

with the fact that the current definition of biological

species is mainly based on a common genome but

takes into account that the genetic code is redundant.

Phenotypes are considered identical when the mathe-

matical expressions in their phenotype functions are

identical. Expressions that always give rise to the same

values, but are not identical, are considered to belong

to different species. For instance, (2X)3 and 8X3, are

considered different species, even though their results

(and, therefore, their fitness value) are always the same.

We computed three different measures of diversity:

maximum diversity, average diversity, and maximum
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number of species during the experiment (all the results

in the tables are averaged for batches of experiments).

3. Additional population results: Average prey/preda-

tor population quotient and average number of

predators.

5.1. Effect of Changing the Mutation Rate
Table 3 shows the global results of 180 experiments per-

formed varying the mutation rate and the predator effi-

ciency. For each fixed mutation rate between 0 and 80%,

20 experiments were performed for 20 different values of

the predator efficiency. In all the successful experiments

in this set, predator efficiency belonged to the interval

[18,31]. For all values of the efficiency outside this interval,

there were no successful experiments at all.

The following behavior can be observed in the table:

� The number of successful experiments (those that

endured over 200 generations) is practically inde-

pendent of the mutation rate. Conversely, the num-

ber of stable experiments (over 2000 generations)

decreases slightly as the mutation rate increases

(specially at the beginning). The same effect can be

seen in the average duration of the experiments,

where experiments reaching 2000 generations have

been assigned that duration, although in fact they

would have endured longer, if allowed to proceed.

Therefore, this parameter is not critical, as its viabil-

ity range coincides with its possible range, although

stability diminishes progressively.

� The diversity of the experiments (measured in the

three ways indicated in the previous subsection)

increases clearly with the mutation rate, although it

remains stable between 20 and 50% (see also Figure

4, where the error bars show the standard error in

the samples). This effect is easy to see in the three

diversity measurements we are considering: maxi-

mum diversity, average diversity, and maximum

number of different species.

� The average prey/predator population quotient, and

the average number of predators, seem to be inde-

pendent from the mutation rate.

Table 4 shows the global results of 80 experiments per-

formed as the preceding ones, with a time variable muta-

tion rate, a sinusoid between two extremes differing by

20%, with a period of 314 generations. For each variable

mutation rate, 20 experiments were performed for 20 dif-

ferent values of the predator efficiency. The result of each

batch of experiments is compared with the average of the

three experiments with fixed mutation rate corresponding

to each variable case, obtained from Table 3. In this case,

predator efficiency for all successful experiments belonged

to the interval [18,33].

TABLE 3

Effect of Different Fixed Mutation Rates on the Results of Experiments

Mut. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0 11 9 1691 2.69 1.35 24.1 39.7 50.1
10 11 7 1609 2.97 1.61 39.4 47.7 47.0
20 12 7 1430 3.74 2.05 70.5 52.5 42.1
30 10 5 1479 3.39 1.83 46.7 46.8 43.6
40 9 6 1647 3.74 1.89 67.8 50.3 39.7
50 14 5 1252 3.54 1.83 68.6 42.1 48.9
60 10 8 1740 4.28 2.49 103.0 45.1 44.3
70 10 6 1397 4.20 2.57 120.2 48.7 41.9
80 10 5 1475 5.37 3.07 248.3 47.9 41.5
Ave. 10.8 6.4 1524.4 3.77 2.08 87.6 46.8 44.3

FIGURE 4

Evolution of diversity as a function of mutation rate.
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The following behavior can be observed in the table:

� The performance of the experiments with a variable

mutation rate was quite similar to those experiments

performed with fixed rates (the correlation coeffi-

cient for the numbers of experiments that reached

2000 generations is 0.98).

� Although they show the same general increase with muta-

tion rate, the three diversity measurements gave slightly

smaller values than the corresponding fixed rates.

5.2. Effect of Changing the Shortening Rate
Table 5 shows the global results of 160 experiments

performed varying the genomic shortening rate and the

predator efficiency. For each fixed shortening rate between

0 and 100%, 20 experiments were performed for 20 differ-

ent values of the predator efficiency. In this set, predator

efficiency for all successful experiments belonged to the

interval [19,33].

The following behavior can be observed in the table:

� The number of successful experiments (those that

endured over 200 generations) and the number of

stable experiments (over 2000 generations) diminish

abruptly when the shortening rate increases, until

they become zero for a 100% rate. Therefore, this

parameter is semicritical, as its viability range is

limited at one side of its possible range. The average

duration of the experiments, however, does not seem

to depend on this parameter or shows a slight

decrease.

� The diversity of the experiments decreases clearly

when the shortening rate increases, although it

remains stable between 5 and 20% (see also Figure

5, where the error bars show the standard error in

the samples). This effect is easy to see in our three

diversity measurements: maximum diversity, average

diversity, and maximum number of different species.

� The average prey/predator population quotient

seems to decrease somewhat, while the average

number of predators increases slightly, when the

shortening rate increases.

Table 6 shows the global results of 80 experiments per-

formed as the preceding ones, with a time varying short-

ening rate, a sinusoid between two extremes differing by

TABLE 4

Effect of Different Variable Mutation Rates on the Results of Experiments

Mut. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0220 12 9 1793 3.07 1.58 45.0 44.5 45.3
Fix. ave. 11.3 7.7 1577 3.13 1.67 44.7 46.7 46.4
20240 10 6 1452 3.27 1.91 42.9 42.7 47.0
Fix. ave. 10.3 6.0 1519 3.62 1.92 61.7 49.9 41.8
40260 12 6 1468 3.39 1.74 60.3 47.8 43.3
Fix. ave. 11.0 6.3 1546 3.85 2.07 79.8 45.8 44.3
60280 13 6 1199 4.14 2.32 119.8 48.2 43.8
Fix. ave. 10.0 6.3 1537 4.62 2.71 157.2 47.2 42.6
Var. ave. 11.8 6.8 1477.8 3.47 1.89 67.0 45.8 44.8

TABLE 5

Effect of Different Fixed Shortening Rates on the Results of Experiments

Short. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0 12 9 1612 3.43 1.89 52.2 48.8 42.5
5 11 7 1609 2.97 1,61 39.4 47.7 47.0
10 10 9 1937 2.97 1.52 33.5 43.1 47.2
20 11 8 1686 2.98 1.56 34.5 48.2 42.5
40 7 3 1655 2.46 1.41 19.6 38.6 54.7
60 5 1 968 2.67 1.71 24.8 54.8 42.4
80 2 2 2000 2.39 1.20 17.5 31.5 60.0
100 0 0
Ave. 7.3 4.9 1638 2.84 1.56 31.6 44.7 48.0
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20%, with a period of 314 generations. For each variable

shortening rate, 20 experiments were performed for 20 dif-

ferent values of the predator efficiency. The result of each

batch of experiments is compared with the average of

those experiments with fixed shortening rate correspond-

ing to each variable case, obtained from Table 5. In this

case, predator efficiency for all successful experiments

belonged to the interval [19,34].

The following behavior can be observed in the table:

� The performance of the experiments with variable

shortening rate was quite similar to those experi-

ments performed with fixed rates (the correlation

coefficient for the numbers of experiments that

reached 2000 generations is 0.99).

� Although they show the same general decrease with

shortening rate, the three diversity measurements

gave slightly smaller values than the corresponding

fixed rates.

5.3. Effect of Changing the Lengthening Rate
Table 7 shows the global results of 160 experiments

performed varying the genomic lengthening rate and the

predator efficiency. For each fixed lengthening rate

between 0 and 100%, 20 experiments were performed for

20 different values of the predator efficiency. In this set,

predator efficiency for all successful experiments belonged

to the interval [19,30].

The following behavior can be observed in the table:

� The number of successful experiments (those that

endured over 200 generations) remains practically

constant for all lengthening rates. The number of

stable experiments (over 2000 generations) diminish

abruptly toward the end of the lengthening rate

range. Therefore, this parameter is not critical, as its

viability range coincides with its possible range,

although stability diminishes at the end. The average

duration of the experiments decreases slightly with

the increase of this parameter.

� The diversity of the experiments increases clearly

when the lengthening rate increases (see also Figure

6, where the error bars show the standard error in

the samples). This effect is easy to see in our three

diversity measurements: maximum diversity, average

diversity, and maximum number of different species.

� The average prey/predator population quotient

seems to increase somewhat, while the average

number of predators decreases slightly, when the

lengthening rate increases.

Table 8 shows the global results of 100 experiments

performed as the preceding ones, with a time varying

lengthening rate, a sinusoid between two extremes differ-

ing by 20%, with a period of 314 generations. For each

variable lengthening rate, 20 experiments were performed

for 20 different values of the predator efficiency. The result

of each batch of experiments is compared with the aver-

age of those experiments with fixed lengthening rate

FIGURE 5

Evolution of diversity as a function of shortening rate.

TABLE 6

Effect of Different Variable Shortening Rates on the Results of Experiments

Short. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0220 13 8 1684 3.02 1.53 35.9 45.7 45.1
Fix. ave. 11 8.3 1711 3.09 1.64 39.9 46.9 44.8
20240 9 6 1634 2.66 1.52 27.6 41.1 49.2
Fix. ave. 9 5.5 1670 2.72 1.48 27.0 43.4 48.6
40260 3 3 2000 2.35 1.37 19.3 33.3 57.3
Fix. ave. 6 2.0 1312 2.56 1.56 22.2 46.7 48.6
60280 4 2 1409 2.22 1.39 15.3 37.0 54.0
Fix. ave. 3.5 1.5 1484 2.53 1.45 21.2 43.2 51.2
Var. ave. 7.3 4.8 1682 2.56 1.45 24.5 39.3 51.4
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corresponding to each variable case, obtained from Table

7. In this case, predator efficiency for all successful experi-

ments belonged to the interval [19,30].

The following behavior can be observed in the table:

� The performance of the experiments with variable

lengthening rate was somewhat similar to those

experiments performed with fixed rates, with a

slightly smaller average duration: the correlation

coefficient for the numbers of experiments that

reached 2000 generations is 0.51 in this case.

� The three diversity measurements gave values very

similar to the corresponding fixed rates.

5.4. Effect of Changing the Amplitude of the Logistic
Predator–Prey Curve

Table 9 shows the global results of 140 experiments

performed varying the amplitude of the logistic curve

defining the predator–prey interaction and the predator

efficiency. For each fixed amplitude of the logistic curve

between 0 and 1, 20 or more experiments were performed

for different values of the predator efficiency. The effi-

ciency interval where successful experiments happen is

strongly affected by this parameter. Thus, for the ampli-

tude between 0.75 and 1, the interval where successful

experiments appear is the same as in the previous analy-

sis, around [17,30]. For 0.5, however, the interval of stabil-

ity moves to [20, 38]; for 0.25, to [33,60]; for 0.1, as

indicated in the table, just two experiments were success-

ful, with predator efficiencies equal to 71 and 96. So it

appears that a smaller value of the amplitude moves the

interval up, but a very small value destabilizes the system.

The following behavior can be observed in the table:

� The number of successful experiments (those that

endured over 200 generations) is zero at one

extreme of the range of variation, grows to a maxi-

mum between 0.25 and 0.5, and decreases again

slightly between 0.75 and 1. The number of stable

experiments (over 2000 generations) remains con-

stant in the viable range. Therefore, this parameter

is semicritical, as its viability range is limited at one

side of its possible range. The average duration of

the experiments, however, increases regularly with

the logistic-curve amplitude.

� The diversity of the experiments remains practically

constant for all the viable values of the logistic-

curve amplitude. This effect can be seen in our

three diversity measurements: maximum diversity,

average diversity, and maximum number of different

species.

� The average prey/predator population quotient and

the average number of predators seem to be inde-

pendent on the logistic-curve amplitude.

� The last row in the table shows the result of one

batch of experiments performed with a predator–

prey logistic-curve with time-dependent amplitude,

TABLE 7

Effect of Different Fixed Lengthening Rates on the Results of Experiments

Length. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0 11 8 1621 2.66 1.51 24.6 40.5 48.4
5 11 7 1609 2.97 1.61 39.4 47.7 47.0
10 10 6 1545 2.99 1.58 40.0 46.3 44.6
20 10 7 1736 3.11 1.62 50.8 45.5 44.2
40 11 7 1559 3.67 1.96 82.0 50.9 40.5
60 11 3 1329 3.65 1.85 75.2 52.2 38.5
80 10 6 1477 4.12 2.28 128.7 52.0 38.1
100 8 1 1048 4.61 2.78 165.8 55.1 36.5
Ave. 10.3 5.6 1490 3.47 1.90 75.8 48.8 42.2

FIGURE 6

Evolution of diversity as a function of lengthening rate.
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varying with a period of 314 generations between

0.25 and 0.75. It can be seen that this variability

reduced the stability of the viable experiments, while

the other measurements (diversity and populations)

remained comparable with the fixed cases.

5.5. Effect of Changing Three Parameters at the Same Time
A final batch of experiments was performed to find

whether the ecosystem remained viable when three of the

parameters vary at the same time. Those parameters were

chosen among those that display a critical range:

� The shortening rate was varied with a period of 314

generations between the values of 0 and 20%.

� The logistic-curve amplitude was varied with the

same period, in phase with the preceding parameter,

between 0.25 and 0.75.

� The predator efficiency was varied by 0.001 with the

same period, but in phase opposition with both pre-

ceding parameters. This parameter is much more

critical than the previous ones. Several batches of

experiments had to be performed before we found a

time-dependent predator efficiency that would give

rise to viable experiments. This was not possible if

the efficiency varied by 0.01 or more, but a maxi-

mum variation of 0.001 gave rise to results compara-

ble to the experiments performed with a fixed

efficiency.

Table 10 shows the results of this batch of 20 experi-

ments, compared with the results of the fixed case and

those where only one parameter was variable.

Apparently, the variability of the parameters does not

affect much the different measurements, although the sta-

bility of the triple variable case is somewhat smaller and

the diversity slightly higher.

6. CONCLUSIONS
In this article, we have designed a procedure that gen-

erates artificial predator–prey ecologies that exhibit many

of the features of natural evolution, among them the

following:

TABLE 8

Effect of Different Variable Lengthening Rates on the Results of Experiments

Length. Rate >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0220 10 5 1332 3.31 1.64 51.0 44.6 45.1
Fix. ave. 10.5 7.0 1628 2.93 1.58 38.7 45.0 46.1
20240 10 3 1127 3.25 1.78 47.9 49.9 41.0
Fix. ave. 10.5 7.0 1648 3.39 1.79 66.4 48.2 42.3
40260 9 5 1530 3.77 2.07 86.8 48.9 40.6
Fix. ave. 11 5.0 1444 3.66 1.90 78.6 51.5 39.5
60280 9 3 1334 3.74 2.17 86.8 57.2 34.9
Fix. ave. 10.5 4.5 1403 3.88 2.06 101.9 52.1 38.3
802100 10 2 920 3.79 2.13 104.2 59.4 36.1
Fix. ave. 9.0 3.5 1262 4.36 2.53 147.2 53.6 37.3
Var. ave. 9.6 3.6 1249 3.57 1.96 75.3 52.0 39.5

TABLE 9

Effect of Different Fixed Logistic-Curve Amplitudes on the Results of Experiments

Log. Amp. >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

0 0 0
0.1 2 1 1499 2.93 1.45 40.0 39.0 49.0
0.25 21 8 1370 2.93 1.68 40.2 43.6 48.2
0.5 19 9 1508 3.09 1.59 41.2 40.2 50.1
0.75 11 7 1609 2.97 1.61 39.4 47.7 47.0
0.9 10 9 1885 2.86 1.66 39.8 41.1 48.8
1 11 9 1728 3.15 1.67 48.7 40.5 49.1
Fix. ave. 10.6 6.1 1600 2.99 1.61 41.6 42.0 48.7
Var. ave. 13 3 826 2.81 1.70 29.7 50.8 42.7
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� A Volterra-like relationship between predators and

prey, as shown by the cycle displayed in Figure 2.

Although this figure corresponds to a part of a single

experiment, cycles of this kind also appear in other

experiments, although the fact that our ecologies are

not in equilibrium makes this situation unusual.

� The prey/predator population relationship stabilizes

automatically between one and two orders of magni-

tude, as in biological populations.

� Differentiation of the prey in more than one species

increases the stability of the ecosystem.

� When the predator niche becomes empty, it can be

colonized by the offspring of a prey niche, which

sometimes gives rise to something similar to canni-

balism. With the Lotka–Volterra equations this can-

not happen: when the predator disappears, the prey

becomes extinct too, because it proliferates too

quickly and exhausts all its sources of food. In our

system, the fact that we set a maximum population

eliminates this effect, therefore, a single-niche prey

ecosystem can endure indefinitely. As the Lotka–Vol-

terra equations are simplifications that apply to eco-

logical systems in evolutionary equilibrium, they

should not be taken as the absolute standard of

comparison. In real biological systems, niche coloni-

zation by nearby niches undoubtedly happens [27].

� Although our results are still too few, and no sys-

tematic analysis has been made, they seem to favor

S. J. Gould theory of punctuated evolution [24]

rather than phyletic gradualism [29].

We believe that these results provide some support for

the hypothesis that some of the features displayed by bio-

logical evolution may depend to some extent on chance

modifications of the genome plus natural selection, rather

than on the particular form adopted by the phenotypes.

Of course, in living beings things are much more compli-

cated, and the genotype–phenotype relationship is not

one-sided, as in our simplified experiments, therefore, this

hypothesis may well be a too far-fetched extrapolation.

However, the fact that phenotypes as different as mathe-

matical functions and biological beings give rise to a few

similar features seems to support the idea that some at

least of these features may be a consequence of the mech-

anism, rather than of the actual form taken by the

phenotype.

An interesting question that may be raised in this

respect is the following: what is the significance of these

simulation experiments? Are they a mere metaphor, or do

they provide us with ideas that we can use in the study of

real ecological systems? We believe they are something

more than a metaphor: they can become a working anal-

ogy, with the potential to teach useful concepts applicable

to real life.

To perform our experiments, we have used the follow-

ing ideas:

� GE, which separates genomes from phenotypes (this

is a standard technique in genetic programming).

� Individual genotypes are represented by means of

mathematical expressions. Fitness functions become

simple mathematical tests on those expressions.

Mathematical expressions (using lambda-calculus,

rather than APL2, without GE) have been used

before in artificial life experiments [30,31]. In princi-

ple, lambda-calculus and APL2 should be equivalent

for the representation of mathematical functions.

� Simultaneous evolution of several ‘‘niches’’ is

attained by means of changes in the genome inter-

pretation (the first element selects the niche), and

using several fitness functions (one per niche).

� Predators are represented as individuals belonging to

one of the available niches which prey on those in

the other niches. At the end of every generation,

predators try to eat prey in several bouts. If they do

not reach a minimum number of captures (usually

one in our experiments) they die. Prey eaten also

dies, obviously. The result of each predator–prey

TABLE 10

Effect of Varying Three Critical Parameters at the Same Time

Params. >200 Gen. >2000 Gen. Ave. Duration Max. Divers. Ave. Divers. Max. Species Prey / Preds. Ave. Nr. Preds.

Fixed 11 7 1609 2.97 1.61 39.4 47.7 47.0
Var. short. 13 8 1684 3.02 1.53 35.9 45.7 45.1
Var. log.amp. 13 3 826 2.81 1.70 29.7 50.8 42.7
Var. pred.eff. 12 10 1763 3.09 1.53 35.5 43.1 47.3
3 var. parms. 11 5 1229 3.28 1.92 48.9 46.3 44.4

Rows represent: all fixed parameters; variable shortening of genomes; variable amplitude of logistic curve for the predator2prey interaction; variable

predator efficiency; and all three parameters variable at the same time
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encounter depends on their respective fitness and

also on chance. In each bout, predators are offered

available prey chosen from those with less fitness.

Predators with highest fitness are offered the prey

with least fitness. This procedure does not require

the division of the ecological space in discrete areas

with space coordinates.

We have performed a sensitivity analysis by modifying

the different parameters of the genetic algorithm and got

the following results:

� Increasing the mutation rate does not affect the

number of successful experiments, the average prey/

predator population quotient and the average num-

ber of predators, but it decreases their stability and

increases diversity. A variable mutation rate pro-

duces results comparable to a fixed rate equal to its

average.

� Increasing the shortening rate affects negatively the

number of successful experiments and their stability.

This parameter is semicritical, as its viability range

is limited at one side of its possible range. Diversity

also decreases. A variable shortening rate produces

results comparable to a fixed rate equal to its

average.

� Increasing the lengthening rate does not affect the

number of successful experiments, but decreases

their stability. Diversity increases. A variable shorten-

ing rate produces results comparable to a fixed rate

equal to its average.

� The amplitude of the logistic curve used to compare

fitness in the predator–prey interaction is a semicrit-

ical parameter, as the number of successful experi-

ments drops to zero at the lower end of the scale.

Their stability, however, increases slightly or remains

constant. Diversity also remains constant. A variable

logistic curve amplitude reduces stability but keeps

the other measurements the same.

� Predator efficiency is a very critical parameter. Making

it variable even very slightly (by 0.01 or more) reduced

to zero the number of successful experiments.

� Making the three critical parameters (shortening,

logistic curve amplitude, and predator efficiency)

variable at the same time, without leaving their via-

bility region, slightly decreases the stability of the

experiments and increases their diversity.

This analysis will help us focus on the best performing

values of the parameters, which will speed-up our future

experiments. It can also help to detect, which are the criti-

cal parameters in real ecological systems.

In the future, we intend to explore the following issues:

� To compare our approach using GE with a similar imple-

mentation using more traditional genetic algorithms

� To measure the relative ease with which the off-

spring generated during our experiments can

migrate from one niche to another, depending on

the genetic distance of their fitness functions

� To study the effect of predator species being special-

ized to a certain prey niche

� To study the effect of having two predator species

that compete with one another

� To study the effect of having three or more different

prey species

� To analyze the effect of using different fitness func-

tions for the predator/prey ecological niches

� Our fitness function is currently absolute: the same

function is used during the whole program runs. In

the future, this function can be made relative, so as

to make more realistic the competition between

individuals and niches, and the arms race between

predator and prey

� To perform a more complete analysis of the appa-

rent emergence of punctuated equilibrium in this set

of experiments

� To perform a similar sensitivity analysis with our

parasite–host experiments described in [19], and to

compare the results to our predator–prey experi-

ments described in this article

APPENDIX A: PROGRAMMING CONSIDERATIONS
Both the expressions and the GE environment are

written in the APL2 language [32], which has been

selected as the language of choice for the following

reasons:

� APL2 is a very powerful language, especially for the

generation of expressions, with a large number of

primitive functions and operators available.

� The APL2 expression grammar is very simple and

can be implemented with just four nonterminal

symbols, which makes the GE process simpler.

� APL2 instructions can be protected to prevent

semantic and execution errors giving rise to pro-

gram failures. In this way, we can rest assured that

all the expressions associated to the different indi-

viduals will execute, although their results may not

correspond to a good fitness. The GE technique

also becomes simpler thanks to this feature,

because it is not necessary to include any semantic

information.

� Being an interpretive language, APL2 makes it possi-

ble to create programming functions at execution

time, thus providing the feasibility of computing fit-

ness during the execution of the genetic algorithm.

With a compiling language such as C or C11, this

would be very difficult.
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A phenotype is an APL2 function of the following form:
½0� Z  Fnnn X

½1� Z  ðqXÞq0

½2� ! ð5 < qwLCÞ=0

½3� 0 0wEA ‘Z  APL2 expression’

Only the APL2 expression in line 3 is generated from

the genome. The remainder of the functions is the same

for all.

� Line [0] defines a monadic function with explicit

result, called Fnnn.

� Line [1] assigns to the function result a vector of

zeros.

� Line [2] stops the execution of the function if func-

tion call depth is greater than five (this eliminates

infinite recursion).

� Line [3] executes the expression generated from the

genome and, if no error is detected, returns its value

as the result of the function. Otherwise, a result of

all zeros is returned (this is what line [1] is for).

The following fitness expression selects for third degree

polynomials in APL2 notation:�
ð1=j22=22=22=22=ZÞ14j1=22=22=22=Z

�
3ð:2 5 1000Þ½1=50 1000 < qX �

where X is the genome of the individual. This is the same

expression represented in common mathematical notation

by Eq. (2).

The grammar describing APL2 expressions is used to

generate a phenotype from a genotype using GE:

E : : 5 0 j o0 j 0o0 ðmathematical expressionÞ

0 : : 5 N j X j ðEÞ ðoperandsÞ

o : : 5 1 j 2 j 3 j � j 4 j � j C j L j � j ! j j ðoperatorsÞ

N : : 5 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 ðdigitsÞ

where X, the digits and operators f1; 2 ; 3 ; � ;4 ;o ; C ; L ;

� ; ! ; jg are the terminal symbols of the grammar, while

{E, O, o, N} are the nonterminal symbols, or variables, that

is, intermediate symbols that will transform into other

symbols using one of the indicated rules. Table 11 shows

the functions that the APL2 operators compute.

APPENDIX B: EXAMPLE OF GENOTYPE TO PHENOTYPE
CONVERSION

Let the genome be [89,40,58,130]. In step 1, we start

with V 5 ‘‘E.’’

1. The first nonterminal symbol in V is E. The number

of right parts of the rule with left part E is K 5 3.

The next element in the genome is G 5 89. There-

fore, n 5 mod(89,3) 5 2. The second right part (in

zero origin) for the rule with left part E is OoO.

We replace E by OoO in V. After this step, V 5

‘‘OoO.’’

2. The first nonterminal symbol in V is O. The num-

ber of right parts of the rule with left part O is K

5 3. The next element in the genome is G 5 40.

Therefore, n 5 mod(40,3) 5 1. The first right part

(in zero origin) for the rule with left part O is X.

We replace O by X in V. After this step, V 5

‘‘XoO.’’

3. The first nonterminal symbol in V is o. The number

of right parts of the rule with left part o is K 5 11.

The next element in the genome is G 5 58. There-

fore, n 5 mod(58,11) 5 3. The third right part (in

zero origin) for the rule with left part o is *. We

replace o by * in V. After this step, V 5 ‘‘X*O.’’

4. The first nonterminal symbol in V is O. The num-

ber of right parts of the rule with left part O is K

5 3. The next element in the genome is G 5 130.

Therefore, n 5 mod(130,3) 5 1. The first right part

(in zero origin) for the rule with left part O is X.

We replace O by X in V. After this step, V 5 ‘‘X*X.’’

5. Now V does not contain any nonterminal symbol,

therefore, the generation is complete and the result

is expression ‘‘X*X,’’ that is, X to the X power in

APL2. The APL2 function generated is

½0� Z  Fnnn X

½1� Z  ðqXÞq0

½2� ! ð5 < qwLCÞ=0

½3� 0 0wEA ‘Z  X � X

TABLE 11

APL2 Operators Generated by the Grammar

Operator Monadic Dyadic

1 Identity Addition
2 Sign change Subtraction
3 Sign function Multiplication
* Exponential Power
4 Inverse Division
o Pi times Circular functs.
C Higher integer Maximum
L Lower integer Minimum
~ Natural log Base log
! Factorial Combinatorial
j Absolute value Residue
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