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Abstract 

An improvement on drayage operations is necessary for intermodal freight transport to become competitive. When drayage takes 
place in cities or urban centres transit times are usually random, as a consequence finding the optimal fleet schedule is very 
difficult, and this schedule can even change during the day. The work we present here is a dynamic optimisation model which 
uses real-time knowledge of the fleet’s position, permanently enabling the planner to reallocate tasks as the problem conditions 
change. Stochastic trip times are considered, both in the completion of each task and between tasks. Tasks can also be flexible or 
well-defined. We describe the algorithm in detail for a test problem and then apply it to a set of random drayage problems of 
different size and characteristics, obtaining significant cost reductions with respect to initial estimates. 
© 2010 Elsevier Ltd. 
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1. Introduction 

Road transport has been and continues to be prevalent for the movement of freight on land. However, increasing 
road congestion and the necessity to find more sustainable means of transport has encouraged governments to 
promote inter-modality as an alternative. For inter-modality to become viable for trips shorter than 700 km a cost 
reduction is necessary. Final road trips (drayage) represents 40% of intermodal transport costs. It is possible to 
overcome this disadvantage and make intermodal transport more competitive through proper planning of the 
drayage operation. 

Traditionally, optimisation efforts focused on drayage operations concentrate on improving the cost and quality 
of service through the collaboration between drayage companies. Along this line, Morlok and Spasovic (1994) 
develop an integer programming model to plan truck and container movements in a centralised manner. They 
contemplate different payment options for drayage services and conclude that centralised management of drayage 
operations would result in savings between 43% and 63%, as well as an improvements in the quality of service. 
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Following the initial work by De Meulemeester et al (1997) and Bodin et al. (2000), the number of references on 
centralised drayage management has increased significantly over the last years, but most of them consider the 
problem only from a static and deterministic perspective. The main objective is normally the assignment of 
transportation tasks to the different vehicles, often with the presence of time windows (Wang and Regan, 2002). The 
first part of the work by Cheung and Hang (2003) develops a deterministic model with time windows, which is then 
solved by means of the making each task’s start and end time discrete, and by incorporating the concept of dummy 
tasks for the beginning and the end of the vehicle’s day. Ileri et al. (2006) cover a large number of task types, both 
simple and combined, as well as the costs involved in drayage operations, and solve the problem with a column 
generation method. Smilovik (2006) and Francis et al. (2007) incorporate flexible tasks where only the origin or the 
destination is precisely known. 

Much research also includes randomness in the generation of tasks (Bent and Van Hentenryck, 2004; Bertsimas, 
1992; Gendreau et al., 1995) or dynamic assignment (Bent and Van Hentenryck, 2004; Psaraftis, 1995; Wang et al., 
2007). However, it is hard to find randomness in trip times (Laporte et al., 1992), which is appropriate when the 
intermodal terminal requiring drayage operations is close to a large urban centre. Cheung and Hang (2003) and 
Cheung et al. (2005) do consider the dynamic and stochastic characteristics of the drayage problem and solve it with 
a rolling window heuristic, but this randomness only affects the duration of the task, and not the displacement time 
between different tasks.  

The work we present here considers random trip times both in the completion of each task and between tasks. It 
also incorporates real-time knowledge of the vehicles’ position, which permanently enables the planner to reassign 
the tasks in case the problem conditions change. Section 3 generalizes the drayage problem as a Multi-Resource 
Routing Problem with flexible tasks. Section 4 describes the solution methodology for the dynamic and stochastic 
drayage problem, and section 5 applies this methodology to series of random test cases and summarizes the results. 
Section 6 summarizes the main conclusions of the work. 

2. Drayage Problem Description 

Drayage operation can be modelled as a Multi-Resource Routing Problem with Flexible Tasks (MRRP-FT) 
(Smilowitz, 2006). In a MRRP-FT multiple resources have to be used to complete a series of tasks. The MRRP-FT 
is defined as follows: 
GIVEN: A set of tasks (both well defined and flexible) that require the use of some resources, with certain service 
times for each resource and time windows; a fleet of each resource type; operating hours at all locations; and a 
network with stochastic travel times. 
FIND: A set of routes for each resource type that satisfies all the tasks while meeting an objective function 
(minimize operation costs) and observing operating rules for both tasks and resources. 

The region where the drayage operations are performed is represented by a graph G = (N, A). The nodes i  N 
represent the different facilities of interest for the problem: terminals, depots, loading/unloading points. Each of 
these nodes is associated a time to attach/detach the container to/from the vehicle, τi. Between each pair of nodes i, j 

 N there is an arc (i, j)  τij, not known in advance. The transit time has an 
associated discrete distribution, TT if known. 

Every day a series of drayage tasks T must be completed, and failure to do so implies a given subcontracting cost. 
The drayage tasks can be classified into two groups: well-defined tasks, wT , and flexible tasks, fT . Each Tt  has a 

time window ],[ ini
t

ini
t ba  associated with it. This window limits the time period in which the task has to be completed.  

Well-defined tasks represent movements between terminals and customers or vice versa, being both, origin 
Not

 and destination Ndt
of the movement known. Time windows for well-defined tasks can be flexible, as 

shown in Figure 1: if the task represents the pickup of a container in the terminal, this task can never start before the 
train or vessel arrives, on the other hand, if the drayage driver is late then the task can still be completed although it 
will be penalised. In this last example, a given amount will have to be paid for the time the container remains 
waiting at the terminal. In a similar manner, if the task represents the delivery of a container to the terminal and it is 
completed before the allocated time, the container will also be subject to a waiting cost. This cost has been 
considered proportional to the waiting time. 
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Flexible tasks represent the movement of empty containers between customers and the depot. Delivery or 
collection movements of empty containers can take place between a customer and the depot, but also between 
customers under certain circumstances. For example, from a customer who has requested the collection of an empty 
container directly to another who has requested the delivery of an empty container, given that their time windows 
overlap. Therefore, for flexible tasks only the origin or destination is known a-priori, and therefore multiple 
scenarios, denoted as Rt, are possible. The set of all movements, well-defined tasks and different scenarios generated 
by possible flexible tasks, is represented by M. 
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Figure 1 Types of time windows considered for well-defined tasks: hard (above) and flexible (below) 

In order to perform all the tasks requested a set of resources is available: containers, vehicles and drivers. 
Containers are linked to the movement of the tasks with no additional restrictions. Driver-vehicle pairs are 
considered and represented by V. Each pair is characterised by a location where the working day starts and ends. 
The different drivers have a time window for the start of their working day ],[ ini

v
ini
v ba  and cannot work longer than 

MAXv hours a day. In addition, driver-vehicle pairs have different costs per unit of time depending on whether the 
vehicle is stopped or moving. 

In order to enrich the model with dynamic conditions, a geographic positioning system by satellite (GPS, Galileo, 
Glonass) is considered in order to provide real time information about the position of each vehicle. This data is used 
to improve the solution dynamically. Figure 2 shows a scheme of the functioning of the dynamic part of the system 
considered.  
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Figure 2 Use of real-time information 
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3. Genetic Algorithm for Stochastic Transit Time Drayage Problem 

The stochastic drayage problem is a NP-hard problem that is extremely difficult to solve analytically. Exact 
solutions have been found for small problems, but the computation time is high. The stochastic problem appears 
undoubtedly unsolvable analytically, even more when flexible tasks are incorporated. Furthermore, the use of the 
real time information about the geographic position of the vehicles requires a high-speed procedure to find the 
desired schedules. So, an evolutionary algorithm has been used to solve the problem described. 

 
The genetic algorithm used for solving the problem is as follows: 
Genetic Algorithm 
population = InsertionHeuristic (n_task, n_vehicle); 
for i=1:max_iter 
 population = PopulationGeneration (n_task, n_vehicle, size_population); 
 fitness = Evaluation (population); 
 parents = Selection(population, fitness, size_selection,’TOP’); 
 offsprings = GeneticCross (parents, cross_probability); 
 offsprings = Mutate s(offsprings, mutate_probability); 
 population = population + offsprings ; 
 fitness = Evaluation (population); 
 dead = Selection (population, fitness, size_selection,’BOTTOM’); 
 population = population – dead; 
end 

 
The chromosome which represents each solution is of the same pattern shown as presented in Wang et al. (2007). 

An example chromosome is shown in Table 1. In this representation, each chromosome is composed of a number of 
genes, with each gene being a task to complete. So, each task is associated to a fixed gene. A gene is characterized 
by four features, first being the vehicle to which the task is associated, and is used to identify the order in which 
each vehicle completes the tasks. The routes represented by the chromosome below would be: Vehicle 1: task1  
task2  task4; Vehicle 2: task3  task6  task5.  

Table 1 Chromosome example 

1 2 3 4 5 6 

1.123 1.673 2.234 1.942 2.440 2.294 

 
The parameters of the genetic algorithm were tested with a sample of problems, and no clear tendency was 

observed in its performance. The population size was finally set to 60 individuals, 59 of which were initially 
generated at random and the last one by an insertion heuristic, which also provided the base for comparison of the 
effectiveness of the algorithm. In every iteration, 2 individuals are selected, taking into account the probability of 
selection of each individual, as shown in equation (1). 

 

j j

iTOP
i torElitismFac

torElitismFac

fitness
fitness

fitness
fitness

PSelection
min

min

   (1) 

 
These individuals are then allowed to cross and mutate with probabilities of 0.9 and 0.1 respectively. After this, 

two of the worst individuals are eliminated from the resulting population. Equation (2) shows the mechanism to 
choose these individuals. 
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The ElitismFactor takes a value of 1 at the beginning of the algorithm execution, and it is incremented by 1 every 

10 iterations until reaching its highest value, 20. This way of varying the EliticismFactor value favours diversified 
search process at the beginning and intensified at the end (very desirable characteristics for a genetic algorithm 
applied to a problem as the one presented here). 

The repetition of individuals is not allowed in the population. When a new individual that is already in the 
population appears (repetition case) it is deleted and a new individual is random generated. In addition, when the 
average fitness of the population is only 10% worse than the best individual of the population, the whole population 
is randomly regenerated except for that best individual.  

An example of the workings of the typical genetic operators of mutation and crossover are shown in Table 2 and 
Table 3. The crossover operator switches the genes of two parents between two tasks which are selected randomly, 
tasks 2 and 4 in the following example. 

Table 2 Crossover operator example 

Task 1 2 3 4 5 6 

Parent 1 1.123 1.673 2.234 1.942 2.440 2.294 

Parent 2 2.432 1.721 2.325 1.987 1.006 1.396 

Child 1 1.123 1.721 2.325 1.987 2.440 2.294 

Child 2 2.432 1.673 2.234 1.942 1.006 1.396 

 
The mutation operator randomly selects a gene of the parent individual and changes its first digit to another 

possible/feasible value. 

Table 3 Crossover operator example 

Task 1 2 3 4 5 6 

Parent 1.123 1.673 2.234 1.942 2.440 2.294 

Child 1.123 1.673 1.234 1.942 2.440 2.294 

 
The fitness of each individual represents the total costs associated with the resulting routes. The costs 

contemplated for each route includes four factors: 
 

 Fixed cost per vehicle, 
 Distance cost, 
 Waiting cost of containers at the terminals due to early arrival or late collection, and 
 Cost of task loss, assimilated to the subcontracting cost of that task to an external company. 

 
However, trip times are stochastic, so the fitness needs to be calculated as an estimate of the expected costs. An 

iterative algorithm was developed to complete that estimation, calculating the probability of reaching the next link 
of the route at a given time and the resulting costs involved. The different phenomenon that may occur during a task 
execution has to be considered by the iterative algorithm. If the arrival time of a vehicle at the beginning of a given 
task is prior to the opening of its time window, this vehicle will have to wait until the start of the time window, or 
else incur cost in a proportional the amount of waiting time. On the other hand, if the arrival is after the time 
window has closed, there is a higher penalty due to the waiting cost at the terminal or to the possible task loss 
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(because of the departure of the train or vessel). It can also happen that two tasks on the same route are both flexible 
and complementary, they will be combined and completed at the same time, thus avoiding a return to the depot.  

4. Dynamic Methodology 

As previously explained, the dynamic aspects of the tasks completion are incorporated in the model and the 
problem is solved through real time vehicle localization. So, the proposed algorithm is applied to the problem as 
follows: the genetic algorithm is run at the beginning of the day, and the best solution is obtained given the cost 
estimations that are available at that time. After this, every time a vehicle completes a task, the algorithm is run 
again considering the updated data only for the remaining, pending tasks. The real-time location of the vehicles is 
considered, and cost and time estimations are run for each iteration for the vehicles that are yet to complete a task. 
Figure 3 shows a schematic view of the dynamic methodology used. 
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Figure 3 Dynamic methodology 

5. Test Problem and Result 

The genetic algorithm was tested using a problem generator that randomly builds problems of a specified size. 
The inputs to the generator were the number of available vehicles in the fleet and the number of flexible and well-
defined tasks. 

The generator randomly distributes the customers, the intermodal terminal and the depot in a 100x100 area. The 
well-defined tasks consist, with equal probability, either of a pickup or delivery of containers at the terminal. 
Flexible tasks imply either the collection or delivery of empty containers at the customers, also with equal 
probability. 

Time windows for well-defined tasks range from 30 minutes to 4 hours with a uniform stochastic distribution, 
and their start time is fixed randomly during the day. Time windows for flexible tasks will be open from the 
beginning of the day until a specified time for empty container deliveries, and from a specified time until the end of 
the day for empty container collections. Those specified times are also generated randomly with a uniform 
distribution.  

To simplify calculations, the time horizon is divided into 5 minute intervals. Finally, to simulate in real time the 
position of each vehicle, a uniformly distributed speed between 45 and 55 km/h is calculated for each 5-minute 
period. 

In order to test the performance of the algorithm for problems of different size and characteristics, we have built a 
set of random drayage problems using the problem generator (see Table 4). For each random problem, we have 
determined the improvement of the genetic algorithm with regards to the insertion heuristic in the first iteration (see 
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Table 5, column 2), the average improvement of the estimated cost for the best solution in iteration i+1 with respect 
to the simulated cost for iteration i (column 4), and the estimated cost reduction between the first and last iteration of 
the genetic algorithm (column 5). 

Table 4 Description of the problem set 

Problem 
code 

Task 
number 

No. of well-defined 
tasks 

No. of flexible 
tasks 

Fleet size 

L1 20 0 20 5 

L2  5 15 5 

L3  10 10 5 

L4  15 5 5 

L5  20 0 5 

M1 30 0 30 7 

M2  10 20 7 

M3  15 15 7 

M4  20 10 7 

M5  30 0 7 

H1 40 0 40 9 

H2  10 30 9 

H3  20 20 9 

H4  30 10 9 

H5  40 0 9 

 

Table 5 Results obtained for the random problem set 

Problem code 
Genetic vs. Insertion 
Improvement  (%) 

No of iterations 
Average improvement of the GA 
(%) 

Dynamic Improvement (%) 

L1 5,9109 6 0,23981 27,229 

L2 20,015 10 0,98411 39,084 

L3 0 8 2,6657 11,052 

L4 0,3848 10 0,73763 29,83 

L5 5,0968 12 2,864 34,36 

M1 27,01 8 0,5923 49,326 

M2 7,7103 10 2,3859 30,608 

M3 15,857 13 5,0287 36,844 

M4 5,507 12 2,6161 23,785 

M5 6,3091 15 6,6728 25,95 

H1 6,3557 12 0,76608 35,271 

H2 1,1787 10 3,5312 10,38 

H3 16,126 12 2,9754 42,62 

H4 2,6864 13 2,3971 6,8958 

H5 10,128 18 2,4007 43,871 
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To clarify the results, the M3 test problem is explained with more detail (See Table 6). For each iteration, the cost 
estimations correspond to the real costs involved in the vehicles operations up to that moment plus the estimated 
costs remaining until the end of the day, as previously explained. We have also simulated the best solution provided 
by the genetic algorithm for each iteration until the end of the day, leaving aside the dynamic data, in order to find 
out to what extent the dynamic data helps to continuously improve the solution as the day proceeds. If the genetic 
algorithm finds a task allocation that is better than the one simulated in the previous iteration, the estimated cost for 
the genetic algorithm is lower than the simulated cost obtained before. Otherwise, both costs are identical or at least 
very close. 

Table 6 Cost results for each iteration of the test problem M3 

 
Estimated cost for the 
insertion heuristic 

Estimated cost for the genetic 
algorithm 

Genetic Improvement  
(%) 

Simulated cost 

Iteration 1 1993,3 1677,3 15,8569 1941 

Iteration 2  1539,5 20,6852 1501,5 

Iteration 3  1427,5 4,9284 1507,3 

Iteration 4  1448,3 3,9142 1759,8 

Iteration 5  1461,3 16.9626 1439,3 

Iteration 6  1439,3 0 1576,8 

Iteration 7  1403,3 11,0036 1403,5 

Iteration 8  1394,5 0,6413 1301,5 

Iteration 9  1298,5 0,2305 1521 

Iteration 10  1499 1,4464 1496,9 

Iteration 11  1496,9 0 1316,4 

Iteration 12  1309,4 0,5317 1258,9 

Iteration 13  1258,9 0 1263,9 

 
The overall improvement achieved by the genetic algorithm can be estimated by comparing the estimated cost in 

the last iteration, 1258.9, with the estimated cost for the initial insertion heuristic, 1993.3, resulting in a 36.84% cost 
reduction. 

These results were obtained running the genetic algorithm for a fixed amount of time (2 min) for each iteration. 

6. Conclusion 

In this paper we have shown the importance of obtaining real-time data of vehicle locations in a drayage fleet 
through the use of a satellite positioning system. This knowledge, together with an optimisation algorithm based on 
metaheuristics, enables real-time management of the fleet in a changing environment, which reduces operation costs 
by as much as 30%. These results are especially valuable for intermodal operations in congested metropolitan areas, 
where travel times are stochastic due to congestion. Besides this, we have modelled the problem as a MRRP with 
flexible tasks, allowing both, intermodal drayage operations and the repositioning of empty containers, to be 
optimized at the same time. 

To solve the drayage problem, we have developed a real-time optimisation model based on a genetic algorithm 
that operates with stochastic cost estimations, and that has been tested with a series of drayage problems generated 
randomly. The genetic algorithm improves the initial solution, provided by an insertion heuristic, with an average 
improvement of around 5.57% for each dynamic iteration for the type of problems considered. 
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