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Abstract. In this paper we address the problem of describing the com-
plexity of the evolution of a tissue-like P system with cell division. In
the computations of such systems the number of (parallel) steps is not
sufficient to evaluate the complexity. Following this consideration, Sevilla
Carpets were introduced as a tool to describe the space-time complexity
of P systems.

Sevilla Carpets have already been used to compare two different so-
lutions of the Subset Sum problem (both designed in the framework of
P systems with active membranes) running on the same instance. In
this paper we extend the comparison to the framework of tissue-like P
systems with cell division.

1 Introduction

Comparing two cellular designs that solve the same problem is not an easy task,
as there are many ingredients to be taken into account. Moreover, in the case
of P systems where the number of membranes increases along the computation,
the problem of describing the complexity of the computational process becomes
specially hard. The complexity in time (number of parallel cellular steps) of these
solutions is polynomial, but it is clear that the time is not the unique variable
that we need to consider in order to evaluate the complexity of the process. This
fact has been observed previously in the literature of P systems. The first paper
related to this issue was [1], where Ciobanu, Păun and Ştefănescu presented a
new way to describe the complexity of a computation in a P system. The so-
called Sevilla Carpet was introduced as an extension of the notion of Szilard
language from grammars to the case when several rules are used at the same
time.

In [4], the problem was revisited, introducing new parameters for the study of
the descriptive complexity of P systems. Besides, several examples of a graphical



representation were provided, and the utility of these parameters for comparing
different solutions to a given problem was discussed. In that paper two differ-
ent solutions of the Subset Sum problem, running on the same instance, were
compared by using these parameters.

In this paper we adapt Sevilla Carpets to tissue-like models, in order to de-
scribe the complexity of their computations.

Note that given two Sevilla Carpets corresponding to P systems from different
models designed to solve a decision problem, we can obtain detailed information
about two single computations, but this is not enough to compare the efficiency
of the two models in general.

Nonetheless, the numerical parameters obtained from these two Sevilla Car-
pets can give us some hints to compare the corresponding designs of solutions
to the problem.

The paper is organized as follows. In Section 2 we recall the definition of
tissue-like P systems with cell division. In Section 3 we revisit the definition
of Sevilla Carpets and its associated parameters. Section 4 shows a comparison
among two different solutions to the Subset Sum problem in the framework of
P systems with active membranes and one solution designed with tissue-like P
systems with cell division, all of them running on the same instance. Some final
remarks are also provided.

2 Tissue-Like P Systems with Cell Division

Tissue-like P systems with cell division is a well-established P system model
presented by Gh. Păun et al. in [8]. In this section we briefly recall its main
features. The biological inspiration for this model is that alive tissues are not
static network of cells, since cells are duplicated via mitosis in a natural way.

Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. E ⊆ Γ .
3. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈
Γ ∗.

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .
5. i0 ∈ {0, 1, 2, . . . , q}.

A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of
q cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q.
We will use 0 to refer to the label of the environment, and i0 denotes the output
region (which can be the region inside a cell or the environment).



The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicate if it is possible for pairs of cells to communicate
directly. This is a dynamical graph, because new nodes can appear produced by
the application of division rules.

The strings w1, . . . , wq describe the multisets of objects initially placed in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that either i or j can be equal to 0 and
in this case the objects are interchanged between one cell and the environment.

The division rule [a]i → [b]i[c]i is applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell cannot be communicated in that step.

The main features of this model, from the computational point of view, are
that cells have no polarizations (the contrary holds in the cell-like model of P
systems with active membranes); the cells obtained by division have the same
labels as the original cell and if a cell is divided, its interaction with other cells
or with the environment is blocked during the mitosis process. In some sense,
this means that while a cell is dividing it closes the communication channels
with other cells and with the environment.

2.1 Recognizer Tissue-Like P Systems with Cell Division

Complexity classes within Membrane Computing have been usually studied in
the framework of decision problems. Let us recall that a decision problem is a
pair (IX , θX) where IX is a language over a finite alphabet (whose elements are
called instances) and θX is a total boolean function over IX .

In order to study the computational efficiency for solving NP-complete deci-
sion problems, a special class of tissue P systems with cell division is introduced
in [8]: recognizer tissue P systems. The key idea of such recognizer systems is
the same one as from recognizer P systems with cell-like structure.

Recognizer cell-like P systems were introduced in [10] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or



negative answer is equivalent to deciding if a string belongs or not to the language
associated with the problem.

In the literature, recognizer cell-like P systems are associated with P systems
with input in a natural way. The data encoding to an instance of the decision
problem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation (yes or no) is sent to the environment,
in the last step of the computation. In this way, cell-like P systems with input
and external output are devices which can be seen as black boxes, in the sense
that the user provides the data before the computation starts, and then waits
outside the P system until it sends to the environment the output in the last
step of the computation.

A recognizer tissue-like P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ, Σ, E , w1, . . . , wq,R, iin, i0)

where

– (Γ, E , w1, . . . , wq,R, i0) is a tissue-like P system with cell division of degree
q ≥ 1 (as defined in the previous section), i0 = env and w1, . . . , wq strings
over Γ \ Σ.

– The working alphabet Γ has two distinguished objects yes and no, present
in at least one copy in some initial multisets w1, . . . , wq, but not present in
E .

– Σ is an (input) alphabet strictly contained in Γ .
– iin ∈ {1, . . . , q} is the input cell.
– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configuration
of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w
to the contents of the input cell iin. We say that the multiset w is recognized
by Π if and only if the object yes is sent to the environment, in the last step
of the corresponding computation. We say that C is an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears
in the environment associated to the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:



− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an
input multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have defined every P system Π(n) to be confluent, in
the following sense: every computation of a system with the same input multiset
must always give the same answer.

3 Sevilla Carpets

Sevilla Carpets were presented in [1] as an extension of the Szilard language,
which consists of all strings of rule labels describing correct derivations in a
given grammar (see e.g., [6,7] or [11]). The Szilard language is usually defined
for grammars in the Chomsky hierarchy where only a single rule is used in each
derivation step, so a derivation can be represented as the string of the labels
of the rules used in the derivation (the labelling is supposed to be one-to-one).
Sevilla Carpets are a Szilard-way to describe a computation in a P system. The
main difference is that a multiset of rules can be used in each evolution step of a
P system. In [1] a bidimensional writing is proposed to describe a computation
of a P system. The (Sevilla) Carpet associated with a computation of a P system
is a table with the time on the horizontal axis and the rules explicitly mentioned
along the vertical axis; then, for each rule, in each step, a piece of information is
given. Depending on the amount of information given to describe the evolution,
Ciobanu, Păun and Ştefănescu propose five variants for the Sevilla Carpets:

1. Specifying in each time unit for each membrane whether at least one rule
was used in its region or not;

2. Specifying in each time unit for each rule whether it was used or not;
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets;

4. We can also distinguish three cases: that a rule cannot be used, that a rule
can be used but it is not because of the nondeterministic choice and that a
rule is actually used;

5. A further possibility is to assign a cost to each rule, and to multiply the
number of times a rule is used with its cost.

They also propose two parameters (weight and surface) to study Sevilla Carpets.
In [4] two new parameters (height and average weight) were proposed.



3.1 Parameters for the Descriptive Complexity

Many times we will not be interested only in the number of cellular steps of
the computation, but also in other type of resources required to perform the
computation. Specially if we want to implement in silico a P system, we need to
be careful with the number of times that a rule is applied, maybe with the number
of membranes and/or the number of objects present in a given configuration.

In order to describe the complexity of the computation, the following param-
eters are proposed:

– Weight: It is defined in [1] as the sum of all the elements in the carpet,
i.e., as the total number of applications of rules along the computation. The
application of a rule has a cost and the weight measures the total cost of the
computation.

– Surface: It is the multiplication of the number of steps by the total number
of the rules used by the P system. It can be considered as the potential size
of the computation. From a computational point of view we are not only
interested on P systems which halt in a small number of steps, but in P
systems which use a small amount of resources. The surface measures the
resources used in the design of the P system. Graphically, it represents the
surface where the Sevilla Carpet lies on.

– Height: It is the maximum number of applications of any rule in a step
along the computation. Graphically, it represents the highest point reached
by the Sevilla Carpet.

– Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla Carpet. This concept provides a relation between both parameters
which gives an index on how the P system exploits its massive parallelism.

4 Comparing the Solutions

In this section we compare three cellular solutions to the Subset Sum problem:
Two of them in the framework of P systems with active membranes and the
third one in the framework of tissue-like P systems with cell division.

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

Two uniform families of P systems with active membranes solving the Subset
Sum were presented in [4].

A tuple (n, (w1, . . . , wn), k) is used in all three solutions to represent an
instance of the problem, where n stands for the size of A = {a1, . . . , an},
wi = w(ai), and k is the constant given as input for the problem. All the so-
lutions are based on a brute force algorithm implemented in the framework of
P systems with active membranes. The idea of the design can be divided into
several stages:

– Generation stage: for every subset of A, a membrane is generated via mem-
brane division.



– Weight calculation stage: in each membrane the weight of the associated
subset is calculated. This stage will take place in parallel with the previous
one.

– Checking stage: in each membrane it is checked whether or not the weight
of its associated subset is exactly k. This stage cannot start in a membrane
before the previous ones are over in that membrane.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

The first family can be found in [9]. Let us recall that the instance u =
(n, (w1, . . . , wn), k) is processed by the P system Π1(〈n, k〉) with input the mul-
tiset xw1

1 xw2
2 . . . xwn

n .
This design depends on the two constants that are given as input in the

problem: n and k. It consists of 5n+5k+18 evolution rules, and if an appropriate
input multiset is introduced inside membrane e before starting the computation,
the system will stop and output an answer in 2n + 2k + 6 steps (if the answer is
No) or in 2n + 2k + 5 steps (if the answer is Y es).

The second family is inspired by the previous one. Some modifications were
made following the design presented in [3]. In this solution the instance u =
(n, (w1, . . . , wn), k) is processed by the P system Π2(n) with input the multiset
xw1

1 xw2
2 . . . xwn

n .
The above design depends only on one of the constants that are given as input

in the problem: n. It is quite similar to the previous one, the difference lies in the
checking stage and the answer stage. In this case we avoid the use of counters
that require knowing the constant k.

The number of evolution rules is 5n + 41, and the number of steps of the
computation depends on the concrete instance that we need to solve, but it is
linearly bounded.

For the study of the Sevilla Carpet in tissue-like P systems with cell division
we take the computation of one P system of the family presented in [2]. In that
paper a uniform family of tissue-like P systems with cell division solving the
Subset Sum problem was presented. The Subset Sum problem was solved in a
linear time by a family of recognizer tissue-like P systems with cell division.

We compare these solutions with the solution described in [2], where the
number of rules for a set A = {a1, . . . , an} of size n is n · 	log(k + 1)
 + 5n +
2	log(k+1)
+3	log n
+26 ∈ O(n·log k) and the number of steps is n+	log n
+
	log(k + 1)
+ 10 if the answer is Yes, and n + 	log n
+ 	log(k + 1)
+ 12 if the
answer is No.

4.1 Descriptive Complexity

We present some detailed statistics about the previous designs, trying to compare
them on a more general basis than just looking the number of steps that the
computation performs. Following this scheme, we present the Sevilla Carpets
associated with the computations of the three different solutions to the Subset
Sum problem working on the same instance: u = (6, (2, 3, 4, 8, 14, 5), 15). That
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Fig. 1. Sevilla Carpet for solution 1

is, n = 6, k = 15 and the list of weights is w1 = 2, w2 = 3, w3 = 4, w4 = 8, w5 =
14, w6 = 5.

The P system Π1(〈6, 15〉) has 123 evolution rules. The P system Π1(〈6, 15〉)
stops at step 46 and sends an object Y es to the environment.

The weight of the Sevilla Carpet (the total number of rule applications along
the computation) is 7597. The height of the Sevilla Carpet (the maximal number
of times that a rule is applied in one evolution step) is 281 and it is reached at
Step 10. The surface of the Sevilla Carpet is 5658. The average weight of the
Sevilla Carpet is 1.3427.

The P system Π2(6) has 66 evolution rules. The P system Π2(6) stops at step
51 and sends an object Y es to the environment.

Cell-like Tissue-like
Sol. 1 Sol.2 Sol. 3

Rules 123 66 97
Steps 46 51 24
Surface 5658 3366 2328
Weight 7597 9491 6592
Height 281 281 755
Average Weight 1.3427 2.8197 2.8316

The weight of the Sevilla Carpet is 9491. The height of the Sevilla Carpet is
281 and it is reached at step 10. The surface of the Sevilla Carpet is 3366. The
average weight of the Sevilla Carpet is 2.8197.
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Fig. 2. Sevilla Carpet for solution 2
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Fig. 3. Sevilla Carpet for solution 3

Finally, the solution with tissue-like P systems with cell division has 97 rules
and 95 of them are applied in this computation. The P system stops at step 24.
The surface of the Sevilla Carpet is 2328 and its weight is 6592. The height is
755 and it is reached at step 18. The average weight of the Sevilla Carpet is
2.8316.

The following table shows the parameters of all three solutions:
As far as the number of rules is concerned, we can observe that the second

solution is the most compact. From a designer point of view, it is interesting



to get designs as “short” as possible, minimizing the number of rules of the P
systems.

If we consider the number of (parallel) steps as a complexity measure to
compare the designs, then we conclude that the third solution is better than the
other ones, since it needs less steps.

Another relevant computational parameter is the weight of the Sevilla Car-
pet, that measures the total number of rules that have been applied along the
computation. If we assign a cost to each application of a rule, then we can say
that Solution 2 is the most expensive, while Solution 3 is the cheapest.

Nonetheless, the key point of a design of a solution in Membrane Computing
is the use of the massive parallelism. As pointed out in [5],

a bad design of a P system consists of a P system which does not exploit
its parallelism, that is, working as a sequential machine: in each step only
one object evolve in one membrane whereas the remaining objects do not
evolve. On the other hand, a good design consists of a P system in which
a huge amount of objects are evolving simultaneously in all membranes.
If both P systems perform the same task, it is obvious that the second
one is a better design that the first one.

In this line, the fact that the average weight of Solution 1 is smaller than the
average weights of Solutions 2 and 3 can be interpreted saying that the latter
designs make a better use of the parallelism in P systems than the first one.

To sum up, according to the parameters corresponding to the computations
of the three solutions running on the chosen instance, Solutions 2 and 3 are
similar regarding the average weight, but the tissue-like approach is overall the
best choice.

5 Conclusions and Future Work

It is important to remark that these are not asymptotical comparisons, as we
focus only on the data corresponding to one instance. Indeed, due to the expo-
nential number of membranes created during the generation stage, we believe
that considering another instance with a greater size will stress the differences
between the design based only on n and the other one, based on n and k. The
bound on the size of the instances that can be studied is imposed by the ne-
cessity to use a P systems simulator to obtain the detailed description of the
computation: number of rules, number of cellular steps, and number of times
that the rules are applied in each step.
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