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Abstract
The problem addressed in this paper belongs to the topic of order scheduling, in

which customer orders –composed of different individual jobs– are scheduled so the
objective sought refers to the completion times of the complete orders. Despite the
practical and theoretical relevance of this problem, the literature on order scheduling
is not very abundant as compared to job scheduling. However, there are several contri-
butions with the objectives of minimising the weighted sum of completion times of the
orders, the number of late orders, or the total tardiness of the orders. In this paper, we
focus in the last objective, which is known to be NP-hard and for which some construc-
tive heuristics have been proposed. We intend to improve this state-of-the-art regarding
approximate solutions by proposing two different methods: Whenever extremely fast
(negligible time) solutions are required, we propose a new constructive heuristic that
incorporates a look-ahead mechanism to estimate the objective function at the time
that the solution is being built. For the scenarios where longer decision intervals are
allowed, we propose a novel matheuristic strategy to provide extremely good solutions.
The extensive computational experience carried out shows that the two proposals are
the most efficient for the indicated scenarios.
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1 Introduction

In classic scheduling literature, jobs to be processed are treated as individual entities possibly

belonging to different customers, and hence the objectives sought are related to the completion
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times of the individual jobs, or to the differences between the completion times and their due

dates or deadlines. However, in many real-life situations, a customer order is composed of different

products that have to be processed in the shop, and it may be sensible to pursue objectives related

to the completion of the order as a whole rather than to the individual jobs within the order. This

is caused by the fact that many customers require to receive the complete order, which cannot

be shipped before all jobs in the order are completed. Therefore, from their viewpoint, only the

completion time of the full order is relevant (Ahmadi et al., 2005). In view of the frequency of

real-life settings where this situation arises, a branch of scheduling labelled order scheduling has

emerged as a new research area.

In this paper, we consider a case of order scheduling in which we have a facility with m machines

in parallel. Each machine can produce one (and only one) particular product type, i.e. they are

considered to be dedicated machines. The problem under consideration consists of scheduling n

customer orders composed of some/all product types. This problem was first formulated by Ahmadi

and Bagchi (1990), and several practical applications have been described, including some operations

in the paper industry (Leung et al., 2005b), manufacturing of semi finished lenses (Ahmadi et al.,

2005), the pharmaceutical industry (Leung et al., 2005a), or the assembly of operations (Leung

et al., 2005b). Different objectives related to the orders can be considered for this problem, such

as the minimisation of the sum of the completion times (see e.g. Wagneur and Sriskandarajah,

1993, Leung et al., 2005b, Roemer, 2006, Wang and Cheng, 2007, or Framinan and Perez-Gonzalez,

2017), or weighted sum of the completion time (Leung et al., 2007; Wang and Cheng, 2007). Due

date related objectives have been also the subject of research: Leung et al. (2006) analyse the

order scheduling problem with the objectives of maximum lateness and the total number of late

orders. Finally, Xu et al. (2016) minimise the total tardiness if a position-based learning effect in

the processing times can be assumed.

Our research focuses on the minimization of the total tardiness (i.e. the sum of the difference

between the completion time of an order and its due date if this difference is positive) in the order

scheduling setting, a problem that is known to be NP-hard (Ahmadi et al., 2005). Therefore,

most research in this topic has focused on developing approximate methods. More specifically, Lee

(2013) develops four fast constructive heuristics for the problem. Among them, it turns out that
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the so-called OMDD heuristic is clearly the most efficient one, therefore being the best approximate

method for the problem. Despite OMDD’s performance and modest computational requirements,

we believe that new efficient approximate methods can be proposed for this problem along two

directions:

1. Whenever the scheduling decision has to be taken in very short or almost real-time intervals,

the idea of developing an index to select the next order to be appended at the end of the

schedule under construction seems to be very efficient. This is the idea behind OMDD, and

also behind other efficient heuristics for other order scheduling problems (see e.g. Leung

et al., 2005b). However, the index developed by these heuristics is greedy in the sense that it

does not incorporate a look-ahead mechanism, so the contribution to the objective function

of the unscheduled orders is not taken into account. Developing such index can improve the

performance of these fast, constructive heuristics without compromising their running times.

2. For the case where a longer decision interval is allowed, more sophisticated procedures can

be developed. More specifically, the employ of matheuristics –combination of mathematical

procedures and metaheuristics– can use the knowledge of the problem domain to provide

extremely high-quality solutions.

These two directions are addressed in this paper: First, we propose a new heuristic based on

incorporating a look-ahead mechanism in order to be able to assess, not only the potential contribu-

tion of the candidate orders to the total tardiness, but also an estimation of the contribution to the

objective function of the non scheduled orders. Second, we propose a novel efficient matheuristic

strategy that is able to provide very high-quality solutions. To test the efficiency of these meth-

ods, we carry out an extensive computational experience that shows that our constructive heuristic

outperforms OMDD –which is the state-of-art constructive heuristic for the problem–, and that the

matheuristic strategy also outperforms other existing strategies.

The remainder of the paper is as follows: The problem is formally stated in Section 2, together

with its background. The proposed constructive heuristic is described in Section 3, while the

matheuristic strategy is presented in Section 4. The computational experience and the subsequent

analysis of the results are carried out in Section 5. Finally, in Section 6 we discuss the main
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conclusions of the research.

2 Problem statement and background

The problem under consideration can be formally stated as follows: There is a facility with m dedi-

cated machines in parallel, and n customer orders, each order j (j = 1, . . . , n) with its corresponding

due date dj . Each order is composed of some/all the product types that have to be manufactured

on one of the m machines without pre-emption. The total amount of processing required by order j

on machine i (i = 1, . . . ,m) is denoted by pij , i.e. order j contains a number of units of the product

type which is manufactured in machine i, thus requiring a total of pij time units of machine i. This

is equivalent to state that the number of units of a product type requested is different for each

customer, which reflects the usual real-life situation. The objective of the decision problem is to

sequence the orders so the total tardiness –defined as the sum across all orders of the difference

between the completion times of the orders and their due dates whenever this difference is positive–

is minimised.

A sequence or solution of the problem is given by Π := (π1, π2, . . . , πn) a permutation of n

components, as it has been shown that the same permutation of orders for all machines is optimal

for this problem (Lee, 2013). Ci,πj (Π), the completion time of product type i in the order scheduled

in the j position in sequence Π, can be computed using the following recursive equation:

Ci,πj (Π) = Ci,πj−1(Π) + pi,πj i = 1, . . . ,m, j = 1, . . . , n (1)

where Ci,π0(Π) := 0 ∀i. Thus Cπj (Π) the completion time of order scheduled in position j-th

is then

Cπj (Π) = max
1≤i≤m

{Ci,πj (Π)} (2)

Analogously, the tardiness of order scheduled in position j-th is

Tπj (Π) = max{Cπj (Π)− dπj ; 0} (3)
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The total tardiness is computed as T (Π) =
∑n
j=1 Tπj (Π). Similarly, C(Π) the sum of the

completion times of the orders scheduled according to Π can be computed as C(Π) =
∑n
j=1Cπj (Π).

Since the order scheduling problem with completion time as objective is known to NP-hard for

m ≥ 2 (Roemer and Ahmadi, 1997), so it is our problem. As a consequence, approximate procedures

are the best option to ensure solutions of good quality –although without optimality guarantee– in

problems of a realistic size. In this regard, Lee (2013) propose four fast constructive heuristics for

the problem. These are:

• TPT-EDD: Orders are sequenced in a non-decreasing order of index αj :

αj := max
{ m∑
i=1

pij ;m · dj
}

(4)

• MPT-EDD: Orders are sequenced in a non-decreasing order of index αj :

αj := max
{

max
1≤i≤m

{pij};m · dj
}

(5)

• EDD-MCT. Orders are sequenced separately on each machine to construct an index to sort

the orders. More specifically:

– Step 1: For each machine i (1 ≤ i ≤ m), sequence the orders in non decreasing order of

max
{
pij ; dj

}
. Compute CEDD−MCT (i, j) the completion time of order j in each one of

the so-obtained m sequences.

– Step 2: Sequence the orders in non decreasing order of the following index:

αj := max
1≤i≤m

{
CEDD−MCT (i, j)

}
(6)

• OMDD. This heuristic has the following steps:

– Step 0: Set Ω := (1, 2, . . . , n) (unscheduled orders), Π := ∅ (scheduled orders) and

ti = 0 (1 ≤ i ≤ m).

– Step 1: Select order r in Ω with the minimum value of index αj :
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αj = max
{

max
1≤i≤m

{ti + pij} − max
1≤i≤m

{ti}; dj − max
1≤i≤m

{ti}
}

(7)

– Step 2: Remove order r from Ω, append it at the end of Π and update ti := ti + pi,r

– Step 3: If Ω is not empty, go to Step 1.

Clearly, TPT-EDD and MPT-EDD are basically sorting algorithms, while EDD-MCT has a

multi-pass structure. OMDD uses a similar technique to that in the ECT heuristic by Leung

et al. (2005b) for the flowtime order scheduling problem, i.e it constructs a sequence by appending

the most suitable among the unscheduled orders. The extensive computational experience carried

out by Lee (2013) shows that the OMDD is the most efficient among the four. Therefore, in the

subsequent computational experiments presented in Section 5 we only include OMDD, which we

have re-implemented.

The heuristics presented above require negligible CPU times, so they are well-suited to these

cases where the interval to take the scheduling decision is very short. We already mentioned in

Section 1 that, when longer decision intervals are allowed, more sophisticated procedures could be

used to obtain solutions of very high quality. In recent years, a very efficient option to develop

such procedures is the use of matheuristics. Matheuristics can be broadly defined as algorithms in

which metaheuristic techniques are combined with mathematical procedures (Fanjul-Peyro et al.,

2017). Within the scheduling field, we are aware of the contributions by Billaut et al. (2015); Ta

et al. (2015) for the single-machine scheduling problem with tardiness objective, by Della Croce

et al. (2014b) for the same layout with tardiness objective and release dates, by Della Croce et al.

(2014a) for the 2-machine flowshop scheduling problem with total completion time, by Quang Chieu

et al. (2013) for the 2-machine scheduling problem with total tardiness, by Lin and Ying (2016)

for the no-wait flowshop scheduling problem with makespan objective, and by Fanjul-Peyro et al.

(2017) for the unrelated parallel machine case with additional resources and makespan as objec-

tive. We are not aware of the application of matheuristics to the problem under consideration, or

to other customer scheduling problems. However, the references cited before use position-based

binary variables in the MILP models in the same manner as in our case –see Section 4.1–, so it is

worth analysing the strategies employed to check their suitability for our problem. Among these
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strategies, the first and most common is the one that we will denote as Job-Position Fixing (JPF),

employed by Quang Chieu et al. (2013), Della Croce et al. (2014b), Della Croce et al. (2014a),

Billaut et al. (2015), and Ta et al. (2015). This strategy consists in, given an initial solution, fixing

a subset of contiguous jobs within this solution, and formulating a MILP model of the problem with

an additional number of constraints representing the fixed positions of these selected jobs, keeping

the rest unscheduled. Since this strategy has proved to provide excellent results in other schedul-

ing problems, it is described in detail in Section 4.2 as it will be used to compare our proposed

matheuristic strategy.

Lin and Ying (2016) use a property of the no-wait flowshop scheduling problem with makespan

objective so it can be transformed into an special case of the asymmetric travelling salesman prob-

lem, which can be modelled solely using binary integer variables. This model is employed within the

matheuristic strategy, so their approach cannot be used in our problem. Finally, Fanjul-Peyro et al.

(2017) test several matheuristic strategies for the unrelated parallel machine case with additional

resources and makespan as objective, including different JPF strategies, as well as a machine-

assignment fixing strategy which clearly does not make sense in our problem with dedicated ma-

chines. Among these, the most efficient strategy consists of first solving a MILP model to schedule

a subset of g jobs, and, at each subsequent iteration k (k = 1, . . .), the job scheduled in the last

position plus new g−1 unscheduled jobs are added, so the MILP model is solved assuming that the

previously scheduled k · (g − 1) jobs are fixed in their positions, and only the recently-added g jobs

have to be scheduled. This strategy, although potentially interesting for other problems, cannot

be efficiently applied –at least in an straightforward manner– to due-date based objective functions

(as in our case), as it is likely that, during the first iterations, the tardiness of the set g is zero

regardless the specific order in which the g jobs are processed, so the MILP model would possibly

find a solution which is not appropriate for the future iterations. Therefore, we will not include this

strategy in the comparison carried out in Section 5.

In summary, although there are constructive heuristics available for the problem under consid-

eration, we believe that there is room for improvement by using estimates of the contribution of the

unscheduled jobs in the objective function. A proposal in this direction is presented in Section 3.

In addition, it will be interesting to develop approximate procedures that use longer CPU times to

7



provide results of excellent quality. Our proposal is to employ a novel matheuristic strategy, which

is described in Section 4.

3 A new Constructive Heuristic

The proposed heuristic constructs a solution Π := (π1, . . . , πn) from a set U , representing the set of

unscheduled orders. Initially, no order has been scheduled and consequently, U contains all orders.

Then the heuristic starts an iterative process of n steps: in step k, each order in U is selected as

candidate to be appended at the end of Π. To select the chosen order among the candidates, for

each order ωl ∈ U with due date dl, a (partial) sequence Sl is formed by appending ωl at the end of

Π, i.e. Sl = (π1, . . . , πk−1, ωl).

Then, the following tardiness indicator ηl for the l-th candidate (order wl) is computed as follows:

ηl = max{C(Sl)− dl; 0}+ T ∗(Sl) (8)

where the first term represents the contribution to the total tardiness if selecting ωl, as C(Sl)

is the completion time of the (partial) sequence Sl, and dl its corresponding due date. T ∗(Sl) is an

estimate of the contribution to the total tardiness of the remaining unscheduled orders.

Note that the contribution of the scheduled orders to the completion times (and therefore to

the total tardiness) depends on how the remaining orders are scheduled. Since the objective is

to obtain an estimate of a sort of average contribution, we assume that the remaining orders are

scheduled following a specific sequence, which is fixed from the beginning of the algorithm to reduce

the computation burden. More specifically, we use Ω a given sequence of all orders before starting

the iterative procedure, and, for each iteration, we will compute T ∗(Sl) as if the remaining orders

are scheduled after the orders in Π according to the relative ordering given by Ω. In our case we

propose using the sequence given by sorting the orders according to the Earliest Due Date (EDD)

rule. In this manner, after selecting one order in Ω to be scheduled, this order is appended at the

end of the partial sequence and removed from Ω. Therefore, in the next iteration the remaining

orders in Ω are already sorted in EDD sequence, so they do not have to be computed again.

It is clear that selecting the order with the lowest value of η would have the smallest estimated
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contribution to the total tardiness. Consequently, the order with the lowest value of η is removed

from U and appended at the end of Π. The procedure is repeated until U = ∅. The pseudocode of

the heuristic is given in Figure 1. It can be seen that the complexity of this heuristic is determined

by the main iteration loop of complexity O(n3m).

4 Matheuristic

In order to present the matheuristic strategy proposed, we first describe in Section 4.1 the MILP

model for the problem under consideration, together with a further simplification in order to reduce

the number of constraints of the problem. In Section 4.2 we first describe the JPF approach –which

is, as discussed in Section 2, the main matheuristic strategy for scheduling problems– in order to

illustrate the novel strategy proposed for our problem in Section 4.3.

4.1 MILP formulation

A classical formulation of the problem would be based on positional variables, which are known to

be the best one for a range of scheduling problems (see e.g. Della Croce et al., 2014b): Let xkj

to be a binary variable equal to 1 if order k is sequenced in the j-th position, and Cj and Tj the

completion time and the tardiness of the order sequenced in the j-th position, respectively. Recall

that pik refers to the processing time on machine i of job k, and that dk is the due date of job k.

The resulting model MILP is as follows:

min
n∑
j=1

Tj (9)

subject to

n∑
k=1

xkj = 1 j = 1, . . . , n (10)

n∑
j=1

xkj = 1 k = 1, . . . , n (11)
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Procedure FP
Π := ∅;
Obtain sequence Ω := (ω1, . . . , ωn) by sorting orders according to EDD rule;
Set cti = 0 (1 ≤ i ≤ m);
// Append orders one by one
for j = 1 to n do

// Compute indicator for each unscheduled order
for each ωl ∈ Ω do

// Compute ecti the estimated completion times of wl for each machine i;
for i = 1 to m do

ecti = cti + pi,wl
;

end
// Compute first term of indicator ηl, see Equation (8)
ηl = max

{
max1≤i≤m{ecti} − dwl

; 0
}

;
// Compute second term of indicator ηl
for each wk ∈ Ω− {wl} do

for i = 1 to m do
ecti = ecti + pi,wk

;
end
ηl = ηl + max

{
max1≤i≤m{ecti} − dwk

; 0
}

;
end

end
// Select order with minimum value of ηl
r := argmin1≤l≤n−j+1 ηl;
Append ωr at the end of Π, i.e. Π := (π1, . . . , πj−1, ωr);
Extract ωr from Ω, i.e. Ω := (ω1, . . . , ωr−1, ωr+1, . . . , ωn−j+1);
// Update completion times
for i = 1 to m do

cti = cti + pi,wr ;
end

end
end

Figure 1: Constructive heuristic proposed
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n∑
k=1

j∑
r=1

pik · xkr ≤ Cj i = 1, . . . ,m j = 1, . . . , n (12)

Cj −
n∑
k=1

dk · xkj ≤ Tj j = 1, . . . , n (13)

xkj ∈ {0, 1} Tj ≥ 0 Cj ≥ 0 k = 1, . . . , n j = 1, . . . , n (14)

Equation (9) expresses the objective function. Constraints (10) state that one (and only one)

order is sequenced in the j-th position, while constraints (11) ensure that each order k is sequenced

in one (and only one) position. Constraints (12) state that the completion time of an order is given

by the maximum of the processing times of the components of the order in the machines. The

definition of tardiness is ensured by constraints (13), while constraints (14) express the domain of

the variables of the model.

The resulting MILP model has n · (m + 3) constraints and n · (n + 2) variables. A reduction

of the model can be achieved by removing variables Cj : Constraints (13) can be written as Cj ≤

Tj +
∑n
k=1 dk · xkj , so they can be combined with constraints (12) into:

n∑
k=1

 j∑
r=1

pik · xkr − dk · xkj

 ≤ Tj i = 1, . . . ,m j = 1, . . . , n (15)

which replace constraints (12) and (13). The resulting model has n · (m + 2) constraints and

n · (n+ 1) variables. Therefore, the model minimising (9) subject to constraints (10), (11), (14) and

(15) will be used in the following.

4.2 JPF matheuristic strategy

The JPF strategy consists in, given a current solution, a subset of contiguous jobs in the solution

sequence is left free while the remaining jobs are kept in the same positions. More specifically, given

a solution Π (which corresponds to a given set of compatible x̄kj variables), a job index r, and a

so-called job window of size h, let us define S̄(Π, r, h) the index set of the free jobs, i.e. those within

the job window. Therefore, jobs that are not in positions r, r + 1, . . . , r + h − 1 in sequence Π are
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Algorithm JPF(h, tw, tlimit)
Let x̄ contain the positional binary variables corresponding to a heuristic solution Π.
repeat

Set improved = false;
repeat

Pick r ∈ {1, . . . , n− h+ 1} randomly;
Compute S̄(Π, r, h);
Solve the minimisation of (9) subject to (10), (11), (14), (15), and (16) during tw
seconds. Let x̂ be the so-obtained solution;
if f(x̄) > f(x̂) then

Set x̄ = x̂;
Set improved = true;

end
until improved or all r values have been tried;

until not improved or tlimit exceeded;
end

Figure 2: Procedure based on the JPF strategy

assumed to be fixed, so the corresponding positional binary variables, xkj where k /∈ S(Π, r, h),

are set to those corresponding values in the solution for Π, i.e. xkj = xkj . These equalities are

added to the set of constraints of the original model so this enhanced MILP model –denoted as

window re-optimisation model– would find the best positions for the solutions in S̄(Π, r, h). More

specifically, the following set of n · (n− h) constraints is added (assuming r < n− h):

xkj = x̄kj ∀k 6∈ S̄(Π, r, h) j = 1, . . . , n (16)

Therefore, for a given parameter h and an index r, a window re-optimisation model can be solved

using a MILP solver. With these ingredients, an iterative procedure naturally arises by exploring

the neighbourhood of an index r (r = 1, . . . , n−h+ 1), where the domain of the index r is explored

in random order. This procedure –used by Quang Chieu et al. (2013), Della Croce et al. (2014b),

Della Croce et al. (2014a), Billaut et al. (2015), and Ta et al. (2015)– is presented in Figure 2.

4.3 Proposed matheuristic strategy

Our proposed strategy –denoted as Job-Position Oscillation, or JPO in the following– also starts

with a given solution Π, but, in our case, when searching for a solution using a MILP model we

12



restrict the order in position j in Π to be displaced back and forth a maximum of δ positions.

More specifically, given a sequence Π, for all orders k (k = 1, . . . , n) we find wk(Π) the position of

order k in Π. Then, a set of allowed positions for k are found so order k can only move at maximum

δ positions backwards and δ positions forward (δ is thus a parameter of the matheuristic that would

be called oscillation). The set of allowed positions for order k is Pk(Π, δ) = {wk(Π, δ), wk(Π, δ) +

1, . . . , w̄k(Π, δ)}, where wk(Π, δ) = max{0;wk(Π) − δ} and w̄k(Π, δ) = min{n;wk(Π) + δ}. In this

manner, for each order k (k = 1, . . . , n), positional variables xkj are not meaningful for j 6∈ Pk(Π, δ),

and the size of the resulting MILP model is reduced with respect to the number of variables.

Analogously, the set of orders that can occupy position j can be defined as Oj(Π, δ) = {k : j ∈

Pk(Π, δ)}.

The reduced MILP model can be expressed as follows:

min
n∑
j=1

Tj (17)

subject to

∑
k∈Oj(Π,δ)

xkj = 1 j = 1, . . . , n (18)

∑
j∈Pk(Π,δ)

xkj = 1 k = 1, . . . , n (19)

∑
k∈Oj(Π,δ)

min{j;w̄k(Π,δ)}∑
r=wk(Π,δ)

pik · xkr − dk · xkj

 ≤ Tj i = 1, . . . ,m j = 1, . . . , n (20)

xkj ∈ {0, 1} k = 1 . . . , n j ∈ Pk(Π, j)

Tj ≥ 0 j = 1, . . . , n
(21)

Equation (17) expresses the objective function. Constraints (18) state that one (and only one)

order, among the set of orders allowed in this position, is sequenced in the j-th position, while

constraints (19) ensure that each order k is sequenced in one (and only one) of its allowed posi-
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tions. Constraints (20) state that the completion time of an order is given by the maximum of the

processing times of the components of the order in the machines. Finally, constraints (21) express

the domain of the variables in the reduced model.

The following property establishes the reduction in the MILP model:

Property 1. For δ an oscillation parameter with δ < n, the number of variables xkj in the reduced

MILP is n(2δ + 1)− δ(δ + 1).

Proof. First, note that the number of variables depends on the number of elements in set Pk(Π, δ)

for each k. In turn, the cardinality of Pk(Π, δ), denoted |Pk(Π, δ)|, depends on the position j

occupied by order k. Therefore, |Pk(Π, δ)| depends on j as follows:

• If j ≤ δ ⇒ |Pk(Π, δ)| = j + δ

• If δ + 1 ≤ j ≤ n− δ ⇒ |Pk(Π, δ)| = 2δ + 1

• If j > n− δ ⇒ |Pk(Π, δ)| = δ + n− j + 1

Since, in the reduced model, we compute Pk(Π, δ) ∀ k = 1, . . . , n, the total number of variables

is equal to

n∑
j=1
|Pk(Π, δ)| =

δ∑
j=1

(j + δ) +
n−δ∑
j=δ+1

(2δ + 1) +
n∑

j=n−δ+1
(δ + n− j + 1) =

=
δ∑
j=1

j + δ2 + (n− δ − δ)(2δ + 1) + (n− (n− δ))(δ + n+ 1)−
n∑

j=n−δ+1
j =

= δ2 + (n− 2δ)(2δ + 1) + δ(δ + n+ 1)− δ(n− δ) = n(2δ + 1)− δ(δ + 1)

Note that the resulting value is n times the number of positions as if it would be possible to

move δ positions back and forth, minus the sum of the δ first and last indices.

The next corollary establishes the conditions for the resulting MILP model to be smaller than

the original one:
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Corollary 1. The number of variables xkj in the resulting MILP is lower than in the original MILP

if and only if δ < n− 1.

Proof. According to the property above, the number of variables xkj in the resulting MILP is

n(2δ + 1)− δ(δ + 1), being n2 in the original MILP. It follows that

n(2δ + 1)− δ(δ + 1) < n2 ⇔ n2 − n(2δ + 1) + δ(δ + 1) > 0⇔

⇔ (n− (δ + 1))(n− δ) > 0⇔ n < δ or n > δ + 1

Since δ < n by hypothesis, then the number of variables xkj in the resulting MILP is lower than

n2 if and only if n > δ + 1.

The last corollary determines the number of variables in the resulting MILP:

Corollary 2. The number of variables in the resulting MILP is (2n− δ)(δ + 1).

Proof. The proof is obvious taking into account Property 1 and the fact that the reduced MILP

model also includes n continuous variables Tj .

Clearly, the proposed strategy can be embedded in an iterative procedure, which is shown in

Figure 3. Since the size of δ may play a crucial role in the strategy, we include a mechanism for

avoiding the procedure not to be trapped in a solution, i.e. if the current solution does not improve

the best-so-far solution, then δ is increased so a less-restricted MILP model is solved. Note that,

since the time allotted to this bigger problem is also tw, probably the solution found by the solver

is not of a very good quality, but at least this mechanism allows the procedure to escape. In some

preliminary tests, we found that 10 is a good value to increase δ, so it was used for the experiments.

Finally, note that the property presented in this Section and its corollaries can be employed

to properly set the parameters of the strategy: In a first step, preliminary tests can be conducted

to determine the problem size n that can be optimally solved within tw seconds. Then, using the

second corollary, δ could be determined for each instance size accordingly. However, in order to

conduct a fair comparison with the JPF strategy, in this paper we will not make use of these results

and the values of tw and tlimit would be the same for all strategies.
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Algorithm JPO(δ, tw, tlimit)
Let x̄ contain the positional binary variables corresponding to a heuristic solution Π.
Πbest := Π
δcurr := δ
repeat

for k=1,. . . ,n do
Compute Pk(Π, δcurr)

end
Solve the minimisation of (17) subject to (18), (19), (20), (21) using Pk(Π, δcurr) (k =
1, . . . , n) during tw seconds. Store in x̄ the so-obtained solution;
Store in Π the sequence corresponding to solution x̄
if f(xbest) > f(x̄) then

Πbest := Π
xbest := x̄
δcurr := δ

else
δcurr := δcurr + 10

end
until tlimit is not exceeded;

end

Figure 3: Algorithm proposed

5 Computational experiments

In this section we describe the experiments carried out to assess the performance of the constructive

heuristic and the matheuristic proposed in Sections 3 and 4 respectively. In Section 5.1 we present

the test instances employed to conduct the experiments. The algorithms under comparison and the

criteria employed to evaluate their performance are presented in Section 5.2. Finally, in Sections

5.3 and 5.4 we describe the results of the experiments.

5.1 Testbed design

The testbed design is aimed at two goals:

1. To assess the efficiency of the constructive heuristic proposed in Section 3 as compared to

that in the existing literature, most notably the OMDD heuristic by Lee (2013).

2. To assess the efficiency of the matheuristic strategy proposed in Section 4.

Regarding the first goal, in order to conduct a fair comparison, we develop a testbed –labelled in
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the following SMALL – that replicates the instance sizes and parameters presented in Lee (2013).

More specifically, n ∈ {10, 20, 30, 40, 50} and m ∈ {2, 5, 8}. The processing times for job k in order j

are generated following a uniform distribution U [1, 100]. The due date dj for each order is generated

randomly from a uniform distribution U [P (1− TF −RDD/2), P (1− TF +RDD/2)], where:

• P is the sum of processing times divided by the number of machines, i.e. P =
∑m
k=1

∑n
j=1 pjk/m

and thus can be computed for each problem instance.

• RDD is the range of the due dates: RDD ∈ {0.2, 0.5, 0.8}.

• TF is the tardiness factor of the due dates: TF ∈ {0.2, 0.5, 0.8}.

Note that the combination of TF = 0.8 and RDD = 0.5|0.8 may generate negative due dates,

a case that it is avoided by drawing a new due date until it is non-negative. For each combination

of parameters, 20 instances have been generated, resulting in a total of 2,700 instances.

Regarding the second goal –to assess the efficiency of the matheuristic strategy–, the SMALL

testbed is not sufficient and therefore we build a second testbed –denoted BIG– containing instances

of larger sizes. Furthermore, the performance of the constructive heuristics can be also tested in

BIG, so a more complete assessment is obtained. This larger testbed contains instance sizes with

n ∈ {100, 150, 200, 300}, and m ∈ {5, 10}. The same procedure for processing times and due date

generation as in SMALL has been adopted, and also 20 instances of the same size and combination

of parameters have been generated. Therefore, this testbed is composed of 1,440 instances.

5.2 Algorithms under comparison

Regarding constructive heuristics –tested on SMALL and BIG testbeds–, the following algorithms

have been compared:

• The EDD (Earliest Due Date) heuristic for base comparison.

• The OMDD heuristic by Lee (2013).

• The proposal presented in Section 3, denoted as FP .
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Regarding matheuristic strategies, we use the BIG testbed to compare JPF (h, tw, tlimit) –

embedded in the procedure in Figure 2–, and JPO(δ, tw, tlimit) –embedded in the procedure in

Figure 3–. Clearly, in order to conduct a fair comparison, the total amount of time tlimit and the

time to solve the MILP model tw should be the same for each strategy. In our experiments, we

use the values tlimit = 600 seconds and tw = 60 seconds, as these are the values most commonly

employed for the JPF strategy, see e.g. Della Croce et al. (2014b). Finally, different values of h and

δ are tested to cover different possibilities. After some preliminary experiments, the most promising

values are h ∈ {30, 40} and δ ∈ {10, 20}. In addition, an optimal solution for all problems in both

SMALL and BIG has been tried by solving the MILP model in Section 4.1 using the Gurobi 7

solver (Gurobi Optimization Inc., 2017) with the same time limit tlimit = 600 seconds.

In summary, we have tallied the results obtained by the following procedures:

• JPF (30, 60, 600), denoted as JPF30 in the results.

• JPF (40, 60, 600), denoted as JPF40 in the results.

• The JPO(10, 60, 600), denoted as JPO-10 in the results.

• The JPO(20, 60, 600), denoted as JPO-20 in the results.

• The MILP model running during 600 seconds, denoted as MILP in the results.

The results obtained by the constructive heuristics and the matheuristics on each instance have

been recorded using the following three indicators:

• RDI (Relative Deviation Index). When testing a set of heuristics H, the RDI obtained by

heuristic s ∈ H when applied to instance t is defined as follows:

RDIst =


0 if minh∈H Tht = maxh∈H Tht

Tst−minh∈H Tht

maxh∈H Tht−minh∈H Tht
· 100 otherwise

(22)

being Tst the tardiness value obtained by heuristic s in instance t. In our case minh∈H Tht

is the optimal value if the MILP model is able to find the optimal solution within the as-

signed computation time, or the best solution found among the heuristics and matheuristics
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otherwise. Note that RDI is an standard indicator for measuring the quality of approxi-

mate solutions in scheduling problems where due dates are involved (see e.g. Kim, 1993,

Fernandez-Viagas and Framinan, 2015, or Karabulut, 2016).

• Optimality, Opt ∈ {0, 1}, being 1 if the solution obtained is equal to that provided by the

MILP (if the MILP has reached the optimum); and 0 otherwise.

• CPU time in seconds.

The heuristics and matheuristics have been coded in C# using Microsoft Visual Studio 2013

and Gurobi 7 .NET API in the case of the matheuristics. The algorithms have been run in an Intel

Core i7-3770 with 3.4 GHz and 16 GB RAM computer. Special care has been taken to use the same

data structures and methods.

5.3 Results for the SMALL testbed

Table 1 shows the results for the different values of m and n, including the average and standard

deviation of the RDI values –except for the MILP column–, the percentages of times that a method

has found the optimal value, and the average computational time required by each method. Average

and standard deviation RDI are zero for MILP as the total tardiness found for all instances is the

minimum across all heuristic under comparison. Table 2 shows the same results aggregated with

respect to TF and RDD. From both tables, it can be seen that FP obtains the best results

regardless the problem size in terms of RDI, and the highest percentage of optima. Additionally, it

is the method with lowest standard deviation values, which speaks for its relative robustness. Tukey

95% confidence intervals show that there are statistical differences with respect to the RDI values

obtained by FP with respect to EDD and OMDD for different values of TF (see Figure 4a), and

for different values of RDD (see Figure 4b). Finally, regarding the CPU times, all tested heuristics

provide their results almost instantaneously.

5.4 Results for the BIG testbed

Table 3 shows the results for the different constructive heuristics and matheuristics grouped by

problem size. CPU times are not shown as all methods (except all constructive heuristic, which
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obtained their solutions in less than 1 second) have consumed the time limit. It can be seen that the

lowest average RDI is obtained by JPO-10 and JPO-20 (around 3%), whereas the JPF strategies

lag behind with a RDI roughly four times higher. Furthermore, JPO-10 and JPO-20 also yield the

lowest standard deviation. For the small subset of instances (up to n = 200 and m = 5) MILP

yields the best results, but for bigger instances the solver collapses and is not able to find even good

solutions within the time limit. Overall, the worst RDI values are obtained by EDD and OMDD,

in line with the results in Section 5.3.

The results for the different values of TF and RDD are shown in Table 4. It can be seen

that all methods –except MILP and OMDD– obtain their best results for the case TF = 0.2 and

RDD = 0.8, so it may be considered the easiest case. Figure 5 shows the 95% Tukey confidence

intervals for RDI for the different methods (EDD and OMDD results are removed due to their poor

performance). The best results regarding the average and standard deviation of RDI are given by

JPO-10 and JPO-20 without statistical differences between them.

Table 5 shows the number of instances with their optimal value obtained by the MILP in 600

seconds, and the percentage of these instances that is found by each approach. It can be seen that

JPO-10 and JPO-20 are able to find almost all optimal values also found by the MILP (93.7% and

94.5%, respectively).

Figure 6a and Figure 6b show the RDI results for the different values of TF and RDD respec-

tively. Regarding both TF and RDD, JPO-10 and JPO-20 are the best methods for all the cases,

with statistically significant differences. Note that, for all levels of TF and RDD, the matheuristics

provide better results than the MILP, except for RDD = 0.2, for which JPF30 and JPF40 yield

the worst results.

6 Conclusions

In this paper we have addressed the order scheduling problem with tardiness objective. This rele-

vant problem is known to be NP-hard and some approximate procedures have been proposed in the

literature. However, the best of these approximate procedures –the OMDD heuristic– constructs

the solution using a sort of greedy approach that does not take into account the influence of the un-
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m n MILP EDD OMDD FP JPF30 JPF40 JPO-10 JPO-20
5 100 57 45.61 35.09 49.12 57.89 57.89 98.25 98.25

150 49 65.31 48.98 65.31 67.35 67.35 85.71 89.80
200 29 93.10 79.31 93.10 93.10 93.10 96.55 96.55
300 10 100.00 80.00 100.00 100.00 100.00 100.00 100.00

10 100 51 39.22 35.29 43.14 49.02 49.02 90.20 90.20
150 26 84.62 73.08 84.62 88.46 88.46 96.15 96.15
200 16 81.25 68.75 87.50 93.75 93.75 100.00 100.00
300 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 238 63.03 51.68 65.13 69.75 69.75 93.70 94.54

Table 5: BIG Testbed: Number of optimum for MILP and % of optimal solutions for the rest of methods
for m and n.

Figure 5: BIG Tesbed: Tukey confidence intervals for RDI
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scheduled jobs in the objective function. In this paper we propose a new constructive heuristic with

a look-ahead mechanism that attempts to estimate this contribution, thus making a more balanced

decision. The computational experience carried out shows that our proposal clearly outperforms

OMDD and is able to provide good results in negligible CPU time.

For the scenario where bigger decision intervals are allowed, more sophisticated procedures could

be used to provide excellent (close-to-optimal) solutions using the available CPU time. Along this

line, we propose a matheuristic strategy that is able to find around 94% of the optimal solutions

that a MILP solver can find within the same time limit. For the larger instances where the MILP

solver cannot obtain good solutions within the given time limit, the proposed strategy provides

high-quality solutions, substantially better than those found by other matheuristic strategies using

the same CPU time, or by the constructive method presented above. Furthermore, the matheuristic

strategy proposed is very robust with respect to its main design parameter.

Acknowledgements

The authors wish to thank the referees for their comments on the earlier versions of the manuscript.

This research has been funded by the Spanish Ministry of Science and Innovation, under grant

“PROMISE” with reference DPI2016-80750-P.

References

Ahmadi, R. and Bagchi, U. (1990). Scheduling of mult-jobs customer orders in multi-machine

enviroments. In ORSA/TIMS, Philadelphia.

Ahmadi, R., Bagchi, U., and Roemer, T. A. (2005). Coordinated scheduling of customer orders for

quick response. Naval Research Logistics, 52(6):493–512.

Billaut, J.-C., Della Croce, F., and Grosso, A. (2015). A single machine scheduling problem with two-

dimensional vector packing constraints. European Journal of Operational Research, 243(1):75–81.

26



Della Croce, F., Grosso, A., and Salassa, F. (2014a). A matheuristic approach for the two-machine

total completion time flow shop problem. Annals of Operations Research, 213(1):67–78.

Della Croce, F., Salassa, F., and T’Kindt, V. (2014b). A hybrid heuristic approach for single

machine scheduling with release times. Computers and Operations Research, 45:7–11.

Fanjul-Peyro, L., Perea, F., and Ruiz, R. (2017). Models and matheuristics for the unrelated

parallel machine scheduling problem with additional resources. European Journal of Operational

Research, 260(2):482–493.

Fernandez-Viagas, V. and Framinan, J. (2015). NEH-based heuristics for the permutation flowshop

scheduling problem to minimise total tardiness. Computers and Operations Research, 60:27–36.

Framinan, J. and Perez-Gonzalez, P. (2017). New approximate algorithms for the customer order

scheduling problem with total completion time objective. Computers and Operations Research,

78:181–192.

Gurobi Optimization Inc. (2017). Gurobi optimizer version 7.0.

Karabulut, K. (2016). A hybrid iterated greedy algorithm for total tardiness minimization in

permutation flowshops. Computers & Industrial Engineering, 98:300 – 307.

Kim, Y.-D. (1993). Heuristics for flowshop scheduling problems minimizing mean tardiness. Journal

of the Operational Research Society, 44(1):19–28.

Lee, I. S. (2013). Minimizing total tardiness for the order scheduling problem. International Journal

of Production Economics, 144(1):128–134.

Leung, J.-T., Li, H., and Pinedo, M. (2005a). Multidisciplinary Scheduling: Theory and Applications.

Springer.

Leung, J. Y. T., Li, H., and Pinedo, M. (2005b). Order Scheduling in an Environment with Dedicated

Resources in Parallel. Journal of Scheduling, 8(5):355–386.

27



Leung, J. Y.-T., Li, H., Pinedo, M., and Zhang, J. (2007). Minimizing total weighted completion

time when scheduling orders in a flexible environment with uniform machines. Information

Processing Letters, 103(3):119–129.

Leung, J. Y.-T., Li, H., and Pinedo, M. A. I. (2006). Scheduling orders for multiple product types

with due date related objectives. European Journal of Operational Research, 168(2):370–389.

Lin, S.-W. and Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop scheduling

problems using efficient matheuristics. Omega (United Kingdom), 64:115–125.

Quang Chieu, T., Gen, W., Billaut, J.-C., and Bouquard, J.-L. (2013). Resolution of the F2||
∑
tj

scheduling problem by genetic algorithm and matheuristic. In Proceedings of 2013 International

Conference on Industrial Engineering and Systems Management, IEEE - IESM 2013.

Roemer, T. and Ahmadi, R. (1997). The complexity of scheduling customer orders. In INFORMS

Conference 1997, Dallas.

Roemer, T. A. (2006). A note on the complexity of the concurrent open shop problem. Journal of

Scheduling, 9(4):389–396.

Ta, Q., Billaut, J.-C., and Bouquard, J.-L. (2015). Matheuristic algorithms for minimizing total

tardiness in the m-machine flow-shop scheduling problem. Journal of Intelligent Manufacturing.

Wagneur, E. and Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of

Operational Research, 71(3):366–378.

Wang, G. and Cheng, T. (2007). Customer order scheduling to minimize total weighted completion

time. Omega (United Kingdom), 35(5):623–626.

Xu, J., Wu, C.-C., Yin, Y., Zhao, C., Chiou, Y.-T., and Lin, W.-C. (2016). An order scheduling

problem with position-based learning effect. Computers and Operations Research, 74:175–186.

28


