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Abstract. Tissue-like P systems with cell division is a computing model
in the framework of Membrane Computing inspired by the intercellular
communication and neuronal synaptics. It considers the cells as unit
processors and the computation is performed by the parallel application
of given rules. Division rules allow an increase of the number of cells
during the computation. We present a polynomial-time solution for the
Independent Set problem via a uniform family of such systems.

1 Introduction

In the last years, Membrane Computing is becoming one of the pillars of Natural
Computing. In the similar way as other research fields in Natural Computing, as
Genetic Algorithms, Neural Networks, or DNA Computing, it takes advantage
from the way in which Nature computes.

Membrane Computing is a theoretical model of computation inspired by the
structure and functioning of cells as living organisms able to process and generate
information. The computational devices in Membrane Computing are called P
systems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according to
given rules. In the most extended model, the rules are applied in a synchronous
non-deterministic maximally parallel manner, but some other semantics are be-
ing explored (see [14] for details).

Since the seminal paper [10], different models of P systems have been studied.
According to their architecture, these models can be split into two sets: cell-like P
systems and tissue-like P systems. This paper is devoted to the second approach:
tissue-like P systems. According to the architecture, the main difference with cell-
like P systems is that the structure of membranes is defined by a general graph in-
stead of a tree-like graph. This kind of models was first presented by
Mart́ın–Vide et al. in [7] and it has two biological inspirations (see [8]): intercellu-
lar communication and cooperation between neurons. The communication among
cells is based on symport/antiport rules [12]. Symport rules move objects across a



membrane together in one direction, whereas antiport rules move objects across a
membrane in opposite directions.

The search of the abilities of tissue-like P systems as computational model
has leaded many authors to consider new models with small differences from the
original one (see, for example, [4,5,6]) . One of the most interesting variants of
tissue P systems was presented in [13] (and it was studied in depth in [1]). In
that paper, tissue P systems are endowed with the ability of getting new cells
based on cellular division, yielding tissue-like P systems with cell division.

This is a further step in the analogy between a theoretical computational
model and living tissues. In a living tissue, new cells are obtained via cellular
division or mitosis. This ability allows the tissue to grow till reaching its maturity
or repairing damages. Cells divide themselves till reaching a number of copies big
enough to perform its activity successfully. Following such analogy, tissue-like P
systems with cell division are endowed with the ability of obtaining a number
of cells greater than the original by means of a rule which implement the idea
of mitosis. The computational meaning is that we can create an exponential
number of cells in linear time. Each individual cell can be seen as a processor
and the cells work in parallel.

The ability of obtaining an exponential amount of workspace in polynomial-
time has been the basis to open a new landscape for the study of a key problem in
the theory of computational complexity: P vs. NP. Finding biologically inspired
differences among the different P system models that may determine different
borderlines between tractability and intractability is the key problem of the Com-
plexity Theory in P systems. Some NP-complete problems have been efficiently
solved with tissue-like P systems with cell division: SAT [13], 3–coloring [2] or
Subset Sum [3]. In this paper, we extend our study by presenting a polynomial–
time solution to the Independent Set problem.

The paper is organized as follows: in Section 2 we recall the definition of
Tissue-like P systems with cell division. A linear–time solution to the Indepen-
dent Set problem with the necessary resources and the main results are presented
in the following section. Section 4 includes a short overview of the computations.
Finally, some conclusions and new open research lines are presented.

2 Tissue-Like P Systems with Cell Division

In the first definition of the model of tissue P systems [7,8] the membrane struc-
ture did not change along the computation. Based on the cell-like model of P
systems with active membranes, Gh. Păun et al. presented in [13] a new model
of tissue P systems with cell division. The biological inspiration is clear: alive
tissues are not static network of cells, since cells are duplicated via mitosis in a
natural way.

The main features of this model, from the computational point of view, are
that cells have not polarizations (the contrary holds in the cell-like model of P
systems with active membranes, see [11]); the cells obtained by division have the
same labels as the original cell; and if a cell is divided, its interaction with other
cells or with the environment is blocked during the mitosis process.



Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of
the form Π = (Γ, E , w1, . . . , wq,R, i0), where:

1. Γ is a finite alphabet (a set of symbols that will be called objects).
2. E ⊆ Γ (the objects in the environment).
3. w1, . . . , wq ∈ Γ ∗ are strings over Γ representing the multisets of objects

associated with the cells at the initial configuration.
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i �= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of
q cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q.
We will use 0 to refer to the label of the environment, and i0 denotes the output
region (which can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicate if it is possible for pairs of cells to communicate
directly. This is a dynamical graph, because new nodes can be produced by the
application of division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

The division rule [a]i → [b]i[c]i is applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, i.e, in each step we apply a maximal set of rules.
This way of applying rules has only one restriction: when a cell is divided, the
division rule is the only one which is applied for that cell in that step.

2.1 Recognizer Tissue-Like P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision prob-
lems. Let us recall that a decision problem is a pair (IX , θX) where IX is a
language over a finite alphabet (whose elements are called instances) and θX is
a total boolean function over IX .



In order to study the computing efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced
in [13]: recognizer tissue-like P systems. The key idea of such recognizer systems
is the same one as from recognizer cell-like P systems.

Recognizer (cell-like) P systems were introduced in [9] and they provide a
natural framework to study and solve decision problems within Membrane Com-
puting, since deciding whether an instance of a given problem has an affirmative
or negative answer is equivalent to deciding whether a string belongs or not to
the language associated with the problem.

In the literature, recognizer (cell-like) P systems are associated with P systems
with input in a natural way. The data encoding an instance of the decision
problem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset to be placed in
an input membrane. The output of the computation (yes or no) is sent to the
environment, and in the last step of the computation.

A recognizer tissue-like P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, Σ, E , w1, . . . , wq,R, iin, i0), where

– (Γ, E , w1, . . . , wq,R, i0) is a tissue-like P system with cell division of degree
q ≥ 1 (as defined in the previous section), i0 = env and w1, . . . , wq strings
over Γ \ Σ.

– The working alphabet Γ has two distinguished objects yes and no, present
in some initial multiset wi, but not present in E .

– Σ is an (input) alphabet strictly contained in Γ .
– iin ∈ {1, . . . , q} is the input cell.
– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configuration
of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w
to the contents of the input cell iin. We say that C is an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears
in the environment associated to the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding from IX in Π) such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));



− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every system Π(n) to be confluent,
in the following sense: every computation of Π(n) with the same input multiset
must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizer tissue-like P systems with cell division in polynomial time.
This class is closed under polynomial reduction and under complement.

3 A Solution for the Independent Set Problem

Let us recall that an independent set of a non-directed graph is a subset of its
vertices such that it does not contain any pair of vertices adjacent between them.
The number of nodes in the subset is called the size of the independent set.

The Independent Set Problem (IS) can be settled as follows: given a non-
directed graph, G = (V, E), and a natural number k ≤ |V |, to determine whether
or not G has an independent set of size k.

Next, we will prove that IS can be solved in linear time (in the number of nodes
and edges of the graph) by a family of recognizer tissue-like P systems with cell
division. To this aim, let us construct a family Π = {Π(n, m, k) : n, m, k ∈ N}
where each system of the family will process every instance u of the problem
given by a graph G = (V, E) with n vertices and m edges, and by a size k of the
independent set. More formally, we define s(u) = 〈n, m, k〉 = 〈n, 〈m, k〉〉, where
〈x, y〉 = (x + y)(x + y + 1)/2 + x is the Gödel mapping. In order to provide a
suitable encoding of this instances into the systems, we will use the objects Aij ,
with 1 ≤ i < j ≤ n, to represent the edges of the graph, and we will provide
cod(u) as the initial multiset for the system, where cod(u) is the multiset (A, f)
with A = {Aij : 1 ≤ i < j ≤ n} and f : A → N such that f(Aij) = 1 if
{vi, vj} ∈ E and f(Aij) = 0 if {vi, vj} /∈ E. It is easy to check that (cod, s) is a
polynomial encoding from IIS in Π.

Then, given an instance u of the IS problem, the system Π(s(u)) with input
cod(u) decides that instance by a brute force algorithm, implemented in the
following four stages:

– generation stage: all possible subsets of vertices are generated by applying
division rules;

– pre-checking stage: only those subsets of size k are selected;



– checking stage: we check for each selected subset if they do not contain a
pair of adjacent vertices;

– output stage: an affirmative or negative answer to the problem is given,
according to the results of the previous stage.

The family Π = {Π(n, m, k) : n, m, k ∈ N} of recognizer tissue-like P sys-
tems with cell division of degree 2 is defined as follows: for each n, m, k ∈
N, Π(n, m, k) = (Γ, Σ, E , w1, w2,R, iin), where

– Γ = {Ai, Bi, Bi, B
′
i, Pi : 1 ≤ i ≤ n}∪ {ai : 1 ≤ i ≤ 3n + m + �lg n�+ 14}∪

{ci, di : 1 ≤ i ≤ n + 1} ∪ {ei : 1 ≤ i ≤ 2n + 1} ∪
{fi : 0 ≤ i ≤ n − 1} ∪ {gi : 1 ≤ i ≤ �lg n� + 1} ∪
{li : 1 ≤ i ≤ m + �lg n� + 7} ∪ {hi : 1 ≤ i ≤ �lg m� + 1} ∪
{Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} ∪ {Aij , Pij : 1 ≤ i < j ≤ n} ∪
{Dij : 1 ≤ i, j ≤ n} ∪ {b, D, F1, F2, p, T, S, N, α, β, yes, no}.

– Σ = {Aij : 1 ≤ i < j ≤ n}.
– E = Γ \ {a1, b, c1,yes,no, D, A1, . . . , An}.
– w1 = a1 b c1 yesno and w2 = D A1 ... An.
– R is the following rules set:

1. Division rules:
r1,i ≡ [Ai]2 → [Bi]2[α]2, for i = 1, . . . , n

2. Communication rules:
r2,i ≡ (1, ai/ai+1, 0), for i = 1, . . . , 3n + m + �lg m� + 13
r3,i ≡ (1, ci/c2

i+1, 0), for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/ei+1, 0), for i = 1, . . . , 2n
r7,ij ≡ (2, djBi/Dij , 0), for 1 ≤ i, j ≤ n
r8,ij ≡ (2, Dij/Bidj+1, 0), for 1 ≤ i, j ≤ n
r9,j ≡ (2, e2n+1dj/fj−1, 0), for j = 1, . . . , n
r10 ≡ (2, fk/l1F1, 0)
r11,i ≡ (2, li/li+1, 0), for i = 1, . . . , m + �lg n� + 6
r12 ≡ (2, F1/pF2, 0)
r13 ≡ (2, F2/g1h1, 0)
r14,i ≡ (2, gi/g2

i+1, 0), for i = 1, . . . , �lg n�
r15,i ≡ (2, hi/h2

i+1, 0), for i = 1, . . . , �lg m�
r16,ij ≡ (2, Aijh�lg m�+1/Pij , 0), for 1 ≤ i < j ≤ n

r17,i ≡ (2, g�lg n�+1Bi/Bi1, 0), for i = 1, . . . , n
r18,ij ≡ (2, Bij/Bij+1B

′
i, 0), for = 1, . . . , n and j = 1, . . . , m

r19,ij ≡ (2, PijB
′
i/Pj , 0), for 1 ≤ i < j ≤ n

r20,j ≡ (2, PjB
′
j/β, 0), for j = 1, . . . , n

r21 ≡ (2, p β/α, 0)
r22 ≡ (2, lm+�lg n�+7p/T, 0)
r23 ≡ (2, T/α, 1)
r24 ≡ (1, b T/S, 0)
r25 ≡ (1, Syes/α, 0)



r26 ≡ (1, a2n+m+�lg n�+14b /N, 0)
r27 ≡ (1, noN/α, 0)

– iin = 2, is the input cell.

In order to establish that the family Π is polynomially uniform by deterministic
Turing machines we firstly note that the sets of rules associated with the systems
Π(n, m, k) are recursively defined. Hence, it suffices to justify that the amount of
necessary resources for defining the systems is polynomial in max{n, m, �lg k�}.
In fact, it is polynomial in max{n, m}, since those resources are the following:

1. Size of the alphabet: n(5n−1)/2+n ·m+8n+2m+3�lg n�+ �lg m�+36 ∈
Θ(n2 + m).

2. Initial number of cells: 2 ∈ Θ(1).
3. Initial number of objects: n + 6 ∈ Θ(n).
4. Number of rules: 3n2 + n · m + 9n + 2�lg n� + �lg m� + 31 ∈ Θ(n2 + nm).
5. Upper bound for the length of the rules: 3 ∈ Θ(1)

As we will see in the following section, the family Π is also polynomially (in fact,
linearly) bounded, sound and complete with regard to (IS, cod, s). So, we have
the main result of the paper.

Theorem 1. IS ∈ PMCTD

Taking into account that IS is an NP–complete problem, and that the class
PMCTD is closed under complement, the following is deduced.

Corollary 1. NP ∪ co− NP ⊆ PMCTD

4 An Overview of the Computations

Next, we describe in detail the steps followed by the system Π(s(u)) when the
input multiset cod(u) is supplied, for an arbitrary instance u of IS. Let us note
that the system starts with only two cells, one labelled by 1 and the other labelled
by 2, and that division rules are only applied to cells labelled by 2. This means
that along the computations there will always be a unique cell labelled by 1
(which we will call the 1-cell), but that new cells labelled by 2 (which we will
call the 2-cells) will be produced.

In order for the system Π(s(u)) to decide the instance of the IS problem
encoded by cod(u), it starts with the generation stage, where cells for all the
possible subsets of nodes of the graph are generated. This is performed by
the successive application of the division rules. These rules take the objects
Ai in the 2-cells, which encode the vertices of the graph, and produce two new
2-cells, one of them with the object Bi, meaning that we include the vertex in
the subset, and the other without it, meaning that we do not include the vertex
in the subset. Of course, all the remaining objects contained in the original 2-
cells are replicated into the new ones. This way, at the end of this stage, which
spends n steps, the system will have 2n 2-cells, each of them encoding one and
only one subset of vertices of the graph, by means of the objects Bi.



To control the end of this stage, the objects ci in the 1-cell of the system are
used as counters. Initially object c1 is interchanged for two objects c2 from the
environment using rule r3,1; each of these objects are again interchanged for two
objects c3 using rule r3,2; and so on. Thus, at the end of the generation stage
the 1-cell will contain 2n+1 objects cn+1. On the other hand, objects ai in the
1-cell of the system are used as global counters of the computation by means of
the rules r2,i. Note that this generation stage is non-deterministic, but it is easy
to check its confluence: independently of the way the division rules are applied,
at the end of the stage the same configuration is always reached.

Once all the subsets of vertices of the graph are generated, the pre-checking
stage selects only those of size k. This stage is activated by the rules r4 and r5,
which interchange the object D of each 2-cell (recall that there are 2n of them)
with an object cn+1 of the 1-cell (recall that there are 2n+1 of them), and then
each of the latter in each 2-cell with one object d1 and one object e1 of the
environment (recall that there are infinitely many of them). From now on, the
1-cell will wait counting the number of steps of the computation by means the
objects ai and the rules r2,i.

The objects d1 and e1 start two processes of counting in each 2-cell. The first
one counts the number of steps of the stage that have been performed, and it is
controlled by the objects ei, which are repeatedly interchanged by objects ei+1

from the environment using the rules r6,i.
The second process counts the number of vertices in the subset. It is performed

using the rules r7,ij and r8,ij , which interchange the objects Bi in the 2-cells by
objects Bi (indicating this way that the corresponding vertex has been counted)
and increase the counter dj (the only purpose of the objects Dij is to decrease
the length of the rules). Note that this is a non-deterministic process, since the
vertex “counted” in each step is chosen in a non-deterministic way. However, as
the size of the subsets of vertices is upper bounded by n, after 2n steps the same
configuration is always reached, so this stage is also confluent.

Note that for the counter dj of a 2-cell to increase, it is necessary and sufficient
that in that cell there exist objects Bi left. This means that at the end of the
process explained in the previous paragraph, the only 2-cells that contain objects
encoding subsets of size k are those containing the object dk+1. At this moment,
those cells also contain the counter e2n+1, which then in two steps cause (using
the rules r9,j and r10, and the intermediate objects fj for rules size reduction)
the object dk+1 to be interchanged by objects l1 and F1 of the environment.

The checking stage starts now, but before we can check if any of the subsets
of vertices of size k selected in the previous stage is an independent set of the
graph, we need some preparation steps. First of all, the objects li will be used
as a counter of the number of steps performed, controlled by rules r11,i.

Simultaneously, the objects p and F2 are traded against the object F1 (by
applying the rule r12). In this way, the counters g and h appear (rule r13) and
they are duplicated (rules r14,i and r15,i, respectively) till producing at least n
copies of the object g�lg n�+1 and m copies of the object h�lg m�+1 respectively.



In the step 3n + �lg m� + 7, the rule r16,ij produces the trade of the objects
Aij and h�lg m�+1 against the objects Pij . On the other hand, in the step 3n +
�lg n�+7 the objects Bi and g�lg n�+1 are traded against the objects Bi1. Along
the following m steps, the rules r18,ij (i=1, . . . , n and j = 1, . . . , m) are applied
and the produce the occurrence of m objects B′

i (one in each step) in the cells
with label 2 which remain active after the pre-checking stage.

In the next step, the rules r19,ij are applied in the cells with label 2. Such
rules trade the objects Pij and B′

i against the objects Pj , and, in the next step,
the objects Pj and B′

j are trade against an object β by means of the rules r20,j .
Since m copies of the object B′

i are obtained, then the last step in which an
object β can appear in a cell 2 is the step 3n + m + �lg n� + 9. In this way, the
following step is the last one in which an object p can be sent to the environment
(by applying the rule r21, and by finishing the checking stage.

The answer stage starts when an object lm+�lg n�+7 appears in a cell with
label 2. Two possibilities must be considered.

If there exists an object p in a cell labelled by 2 when the checking stage
is finished, then the subset encodes an independent set of size k of the graph
G = (V, E), and, by applying the ruler22, at least one object T appears in the
cell. Then, the rules r23, r24 and r25 are applied and an object yes is sent to the
environment. This ends the computation.

If no object p remains in any cell with label 2 after the checking stage, then
the subset does not encode an independent set of the graph G = (V, E) of size
k and the rule r22 cannot be applied. Then, in the step 3n + m + �lg n� + 12,
no object T arrives to the cell with label 1 and the rules r24 and r25 cannot
be applied. In this way, the counter a reaches the object a3n+m+�lg n�+14 which
is traded together the object b against an object N by means of the rule r26.
Such object N is sent together with an object no to the environment in the step
3n + m + �lg n� + 15, and this ends the computation.

5 Conclusion and Future Work

As pointed above, the study of tractability in Membrane Computing opens a
new perspective of the classical problem P vs. NP from a biologically inspired
point of view. This research field is only a few years old and much work needs
to be done in this line, not only in the theoretical results about tractability, but
also in the development of new skills on the design of cellular solutions.

Following the ideas used in [2] (where an efficient solution of the 3–coloring
problem was presented), an schema for solving NP–complete problems of graph
theory has been inferred. It is used in this paper for presenting a first (linear–
time) solution to the Independent Set problem.

More open questions in the framework of Membrane Computing related to
tractability can be considered. For example, it is interesting to investigate the
possibility to address efficient solutions to NP-complete problems in different
frameworks allowing to produce an exponential number of cells in linear time
(e.g. cell creation or separation).



It is also worth investigating a lower bound on the length of the symport/
antiport rules used by the system (in this paper, rules of length at most 3 are
used). Another research problem is related to the number of objects in the envi-
ronment. One could also consider a tissue-like P system where the environment
always has a finite amount of objects.
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